KR100634814B1 - Precursors of novel titanium oxide and preparation method thereof - Google Patents

Precursors of novel titanium oxide and preparation method thereof Download PDF

Info

Publication number
KR100634814B1
KR100634814B1 KR1020050030475A KR20050030475A KR100634814B1 KR 100634814 B1 KR100634814 B1 KR 100634814B1 KR 1020050030475 A KR1020050030475 A KR 1020050030475A KR 20050030475 A KR20050030475 A KR 20050030475A KR 100634814 B1 KR100634814 B1 KR 100634814B1
Authority
KR
South Korea
Prior art keywords
formula
titanium
compound
represented
titanium oxide
Prior art date
Application number
KR1020050030475A
Other languages
Korean (ko)
Inventor
김윤수
김창균
이영국
정택모
안기석
이선숙
장홍석
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020050030475A priority Critical patent/KR100634814B1/en
Application granted granted Critical
Publication of KR100634814B1 publication Critical patent/KR100634814B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)

Abstract

An organo-titanium compound is provided to be thermally stable and high volatile, thereby being used for high quality titanium oxide film. The organo-titanium compound is represented by the formula(1) and prepared by reacting an amido compound of titanium represented by the formula(2), Ti(NR'_2)4, with an alcohol compound represented by the formula(3), HOCR^1R^2R^3, or by reacting titanium chloride represented by the formula(4), TiCl4, with an alkali metal salt of alcohol represented by the formula(5), M'OCR^1R^2R^3. In the formulae(1) to (5), each R^1, R^2 and R^3 is independently C1-4 linear or branched alkyl, provided that not all the R^1, R^2 and R^3 are methyl, R' is methyl or ethyl, and M' is Li, Na or K.

Description

새로운 티타늄 산화물 선구 물질 및 그 제조 방법{PRECURSORS OF NOVEL TITANIUM OXIDE AND PREPARATION METHOD THEREOF}New Titanium Oxide Precursor and Method of Making the Substance {PRECURSORS OF NOVEL TITANIUM OXIDE AND PREPARATION METHOD THEREOF}

도 1은 본 발명에 따른 실시예 1에서 제조한 Ti(mp)4의 수소 원자 핵자기 공명 (1H NMR) 스펙트럼이고, 1 is a hydrogen atom nuclear magnetic resonance ( 1 H NMR) spectrum of Ti (mp) 4 prepared in Example 1 according to the present invention,

도 2는 본 발명에 따른 실시예 1에서 제조한 Ti(mp)4의 탄소 원자 핵자기 공명 (13C NMR) 스펙트럼이고, 2 is a carbon atom nuclear magnetic resonance ( 13 C NMR) spectrum of Ti (mp) 4 prepared in Example 1 according to the present invention,

도 3은 본 발명에 따른 실시예 1에서 제조한 Ti(mp)4의 적외선 (IR) 스펙트럼이고, 3 is an infrared (IR) spectrum of Ti (mp) 4 prepared in Example 1 according to the present invention,

도 4는 본 발명에 따른 실시예 1에서 제조한 Ti(mp)4의 열분석 (TG/DTA) 그래프다.4 is a thermal analysis (TG / DTA) graph of Ti (mp) 4 prepared in Example 1 according to the present invention.

본 발명은 티타늄 산화물의 선구 물질로 유용한 새로운 유기 티타늄 착화합물 및 그 제조 방법에 관한 것이다.The present invention relates to novel organic titanium complexes useful as precursors of titanium oxides and methods for their preparation.

티타늄 산화물 (티타니아, TiO2)은 절연층 (dielectric layers), 광소자용 비반사성 코팅 (antireflection coatings), 센서, 광촉매 등 많은 분야에서 응용되고 있는 물질이다. 이들 티타니아 물질을 성장시키는 방법으로 금속 유기물 화학 증착법 (metal organic chemical vapor deposition: MOCVD)이 있다. 이 공정은 장치가 간단하고 층 덮임성이 다른 기법에 비해 월등하며 성분 조절이 쉽고 대량 생산으로 전환하기에 무리가 없다는 장점이 있다. 또 다른 방법으로 원자층 침착법(atomic layer deposition: ALD)이 있는데, 이 방법은 자체 조절 반응(self-limiting reaction)이 가능하여 원하는 두께로 박막을 성장시킬 수 있는 장점을 갖는다. 박막의 제조를 위해서는 공정에 사용되는 선구 물질의 개발과 특성을 이해하는 것이 필수적이다. MOCVD 및 ALD용 선구 물질은 200 ℃ 이하에서 증기압이 충분히 높아야 하고, 기화시키기 위해 가열하는 동안에 열적으로 충분히 안정해야 하며, 저장하는 동안에 공기 및 습기에 충분히 안정해야 한다. 그리고 그 자체에 또는 분해 생성 물질에 독성이 없거나 적어야 하며 합성법이 간단하며 원재료의 단가가 낮아야 함을 부수적인 요건으로 한다.Titanium oxide (Titania, TiO 2 ) is a material applied in many fields such as dielectric layers, antireflection coatings for optical devices, sensors, and photocatalysts. A method of growing these titania materials is metal organic chemical vapor deposition (MOCVD). This process has the advantages of a simple device, superior layer coverage compared to other techniques, easy control of components, and no difficulty in switching to mass production. Another method is atomic layer deposition (ALD), which has the advantage of allowing self-limiting reactions to grow thin films to a desired thickness. For the manufacture of thin films, it is essential to understand the development and characteristics of the precursors used in the process. The precursors for MOCVD and ALD should be sufficiently high vapor pressure below 200 ° C., thermally stable during heating to vaporize, and sufficiently stable to air and moisture during storage. As an additional requirement, it must be non-toxic or less toxic to itself or to decomposition products, to simplify the synthesis and to lower the cost of the raw materials.

티타늄 산화물을 제조하기 위한 선구 물질로는 알킬산티타늄 (titanium alkoxide)이 가장 좋은 물질인 것으로 알려져 지금까지 많이 사용되고 있다. 그 중에서도 티타늄 테트라이소프로폭사이드[titanium tetraisopropoxide, Ti(O i Pr)4] 와 같은 알콕사이드 화합물은 액체이고, 증기압이 높으며, 박막 증착 온도에 덜 민감하고 증착되는 박막의 표면에 도드라지는 부분 (hump)이나 흐릿한 부분 (haziness)을 발생시키지 않아 낮은 증착 온도 (< 400 ℃)에서 티타늄 산화물의 선구 물질로 사용되었다. 그러나, 이 선구 물질은 공기와 수분에 대하여 반응성이 매우 높은 불포화 Ti(IV) 중심을 가지고 있다. 또한, Ti-O 결합이 높은 온도에서 쉽게 분해하여 MOCVD 공정의 장점인 층 덮임성 (step coverage)이 나빠지게 된다.As a precursor for producing titanium oxide, titanium alkoxide is known to be the best material and has been widely used until now. Among them, alkoxide compounds such as titanium tetraisopropoxide (Ti (O i Pr) 4 ) are liquid, high vapor pressure, less sensitive to thin film deposition temperature, and bumps on the deposited film surface. It was used as a precursor of titanium oxide at low deposition temperatures (<400 ° C) without causing haze or hazeiness. However, this precursor has an unsaturated Ti (IV) center that is highly reactive to air and moisture. In addition, Ti-O bonds readily decompose at high temperatures, resulting in poor step coverage, which is an advantage of the MOCVD process.

이와 같은 문제를 해결하기 위해 Ti(O i Pr)2(tmhd)2 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate)와 같이 포화한 배위 상태를 갖는 변형 알콕사이드 (modified alkoxide)에 관한 연구가 이루어졌다. Ti(O i Pr)2(tmhd)2는 증기압이 높고 공기 중에서 안정하며 열적 안정성도 우수하다고 알려져 있다 [참조: J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc., 1999, 146, 3783; J.-H. Lee and S.-W. Rhee, Electrochem. Solid-State Lett., 1999, 2, 507]. Ti(O i Pr)2(tmhd)2와 같이 두 개의 알콕사이드와 두 개의 β-디케토네이트 리간드를 갖는 티타늄 선구 물질로 Ti(O i Pr)2(tbaoac)2 (tbaoac = tert-butylacetoacetate)을 이용하여 박막을 증착하는 연구 결과가 보고되었다[참조: R. Bhakta, R. Thomas, F. Hipler, H. F. Bettinger, J. Muller, P. Ehrhartb, A. Devi, J. Mater. Chem., 2004, 14, 3231].To solve this problem, modified alkoxides with saturated coordination states such as Ti (O i Pr) 2 (tmhd) 2 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate) ) Has been studied. Ti (O i Pr) 2 (tmhd) 2 is known for its high vapor pressure, stability in air and excellent thermal stability [J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc ., 1999 , 146 , 3783; J.-H. Lee and S.-W. Rhee, Electrochem. Solid-State Lett ., 1999 , 2 , 507]. Ti (O i Pr) 2 ( tmhd) by two alkoxide and titanium precursor with two β- diketonates ligand, such as 2 (O i Pr) Ti 2 (tbaoac) 2 (tbaoac = tert-butylacetoacetate) the The results of the deposition of the thin films using the polymers have been reported [R. Bhakta, R. Thomas, F. Hipler, HF Bettinger, J. Muller, P. Ehrhartb, A. Devi, J. Mater. Chem., 2004, 14, 3231.

또한, 최근에는 두 개 이상의 주개 (donor)를 갖는 기능성 주개 군 (donor group) (예컨대, 디메틸아미노에톡사이드(dmae), 디메틸아미노프로폭사이드(dimethylaminopropoxide) 등)을 알콕사이드와 치환하는 방법도 시도되고 있다 [참조: K. Szczegot and M. Nowakowska, Polimery (Warsaw), 1977, 22, 399].In recent years, a method of replacing a functional donor group having two or more donors (eg, dimethylaminoethoxide, dimethylaminopropoxide, etc.) with an alkoxide is also attempted. [K. Szczegot and M. Nowakowska, Polimery ( Warsaw ), 1977 , 22 , 399].

4 배위의 Ti(O i Pr)4에서 하나 또는 두 개의 O i Pr을 dmae로 대체한 Ti(O i Pr)3(dmae)와 Ti(O i Pr)2(dmae)2가 합성되었으며, 이들은 알콕사이드보다 수분에 덜 민감한데, 이들 화합물을 선구 물질로 이용하여 액체 주입 화학 증착법 (liquid injection CVD)으로 질이 좋은 TiO2 막이 얻어졌다 [참조: A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O'Brien, and M. E. Pemble, J. Mater. Chem., 1998, 8, 1773].Ti (O i Pr) 3 (dmae) and Ti (O i Pr) 2 (dmae) 2 were synthesized by replacing one or two O i Pr with dmae in 4 coordination Ti (O i Pr) 4 . Moisture less sensitive than alkoxides, using these compounds as precursors, a good quality TiO 2 film was obtained by liquid injection CVD [AC Jones, TJ Leedham, PJ Wright, MJ Crosbie, KA] Fleeting, DJ Otway, P. O'Brien, and ME Pemble, J. Mater. Chem ., 1998 , 8 , 1773].

리간드 4 개가 모두 dmae로 이루어진 Ti(dmae)4는 Ti(O i Pr)2(tmhd)2에 비하여 증착 온도에 덜 민감하고 도드라진 부분 및 흐릿한 부분도 생기지 않는 결과를 나타내었다 [참조: J.-H. Lee, J. Y. Kim, J.-Y. Shim, and S.-W. Rhee, J. Vac. Sci. Technol. A, 1999 , 17, 3033]. Ti (dmae) 4 , which consists of all four ligands of dmae, is less sensitive to deposition temperature than Ti (O i Pr) 2 (tmhd) 2 and results in no raised or blurry parts. J. -H. Lee, JY Kim, J.-Y. Shim, and S.-W. Rhee, J. Vac. Sci. Technol. A, 1999 , 17 , 3033].

한편 ALD를 이용하여 티타니아 박막을 제조하는 연구가 최근에 활발히 진행되고 있다. 티타늄 소스로 주로 Ti(OiC3H7)4 [참조: M. Ritala, M. Leskel

Figure 112005019051331-pat00002
, L. Niinist
Figure 112005019051331-pat00003
, and P. Haussalo, Chem. Mater., 1993, 5, 1174; A. Rahtu and M. Ritala, Chem. Vap. Deposition, 2002, 8, 21]나 Ti(OC2H5)4 [참조: M. Ritala, M. Leskel
Figure 112005019051331-pat00004
, and E. Rauhala, Chem. Mater., 1994, 6, 556; J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskel
Figure 112005019051331-pat00005
, Thin Solid Films, 2000, 370, 163; A. Rahtu, K. Kukli, and M. Ritala, Chem. Mater., 2001, 13, 817]같은 알콕사이드 화합물을 사용하거나 TiCl4 [참조: M. Ritala, M. Leskel
Figure 112005019051331-pat00006
, E. Nyk
Figure 112005019051331-pat00007
nen, P. Soininen, and L. Niinist
Figure 112005019051331-pat00008
, Thin Solid Films, 1993, 225, 288; J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films, 1997, 305, 270; R. Matero, A. Rahtu, and M. Ritala, Chem. Mater., 2001, 13, 4506]나 TiI4 [참조: K. Kukli, M. Ritala, M. Schuisky, M. Leskel
Figure 112005019051331-pat00009
, T. Sajavaara, J. Keinonen, T. Uustare, and A. H
Figure 112005019051331-pat00010
rsta, Chem. Vap. Deposition, 2000, 6, 303; K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. H
Figure 112005019051331-pat00011
rsta, M. Ritala, and M. Leskel
Figure 112005019051331-pat00012
, Langmuir, 2000, 16, 8122]와 같은 할라이드 화합물을 사용하는데, 대분분의 경우에 산소 소스로 물을 넣어준다.On the other hand, researches for producing titania thin films using ALD have been actively conducted in recent years. Titanium source is mainly Ti (OiC 3 H 7 ) 4 [M. Ritala, M. Leskel
Figure 112005019051331-pat00002
, L. Niinist
Figure 112005019051331-pat00003
, and P. Haussalo, Chem. Mater. , 1993 , 5 , 1174; A. Rahtu and M. Ritala, Chem. Vap. Deposition , 2002 , 8 , 21] or Ti (OC 2 H 5 ) 4 [M. Ritala, M. Leskel
Figure 112005019051331-pat00004
, and E. Rauhala, Chem. Mater. , 1994 , 6 , 556; J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskel
Figure 112005019051331-pat00005
, Thin Solid Films , 2000 , 370 , 163; A. Rahtu, K. Kukli, and M. Ritala, Chem. Alkoxide compounds such as Mater ., 2001 , 13 , 817] or TiCl 4 [M. Ritala, M. Leskel
Figure 112005019051331-pat00006
, E. Nyk
Figure 112005019051331-pat00007
nen, P. Soininen, and L. Niinist
Figure 112005019051331-pat00008
, Thin Solid Films , 1993 , 225 , 288; J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films , 1997 , 305 , 270; R. Matero, A. Rahtu, and M. Ritala, Chem. Mater ., 2001 , 13 , 4506] or TiI 4 [K. Kukli, M. Ritala, M. Schuisky, M. Leskel
Figure 112005019051331-pat00009
, T. Sajavaara, J. Keinonen, T. Uustare, and A. H
Figure 112005019051331-pat00010
rsta, Chem. Vap. Deposition , 2000 , 6 , 303; K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. H
Figure 112005019051331-pat00011
rsta, M. Ritala, and M. Leskel
Figure 112005019051331-pat00012
, Langmuir , 2000 , 16 , 8122]. In most cases, water is used as the oxygen source.

이상과 같이 종래에 알려진 티타늄 화합물은 그 화합물들이 갖고 있는 장점들에도 불구하고 낮은 증착 온도를 갖는 물질은 공기나 수분에 민감하고 공기 중이나 열적으로 안정한 물질은 증기압이 매우 낮다는 단점을 가지고 있다. 따라서 열적 안정성과 휘발성을 증가시키기 위한 새로운 티타늄 산화물 선구 물질의 개발은 그 의미가 크다고 할 수 있다.As described above, titanium compounds known in the related art have disadvantages that materials having a low deposition temperature are sensitive to air or moisture and materials in the air or thermally stable are very low in vapor pressure despite the advantages of the compounds. Therefore, the development of new titanium oxide precursors to increase thermal stability and volatility is significant.

본 발명자들은 기존 화합물이 가지는 문제점을 해결하기 위하여 tert-butoxide의 세 메틸기 중 최소한 하나가 메틸 기보다 더 큰 작용기로 치환된 알콕 사이드를 리간드로 도입하여 새로운 티타늄 산화물 선구 물질을 개발하기에 이르렀다. 본 발명에 따른 새로운 티타늄 산화물 선구 물질은 티타늄 중심 금속이 tert-butoxide나 isopropoxide보다 상대적으로 큰 작용기로 둘러싸여 있기 때문에 분자간 상호 작용을 줄이는 효과가 있어서 기존의 티타늄 알콕사이드 화합물보다 훨씬 더 안정하다. 그러면서도 복잡한 리간드를 써서 티타늄의 배위 자리를 더 채워 지나치게 안정해진 화합물들 (예를 들면 β-디케토네이트 화합물)보다는 리간드가 단순하기 때문에 본 발명에 따른 새로운 티타늄 산화물 선구 물질의 반응성이 더 높다. In order to solve the problems of the existing compounds, the present inventors have introduced alkoxides in which at least one of the three methyl groups of tert-butoxide is substituted with a functional group larger than the methyl group as a ligand to develop a new titanium oxide precursor. The novel titanium oxide precursor according to the present invention is much more stable than the conventional titanium alkoxide compound because the titanium center metal is surrounded by relatively larger functional groups than tert-butoxide or isopropoxide, thereby reducing the intermolecular interaction. Yet the new titanium oxide precursor according to the invention is more responsive because the ligand is simpler than the compounds that are more stabilized by complex ligands and thus become more stable in the coordination sites of titanium (eg β-diketonate compounds).

본 발명의 목적은 양질의 티타늄 산화막을 형성하기 위해 열적으로 안정하고 휘발성이 증가한 티타늄 산화물 선구 물질을 제공하는 데 있다.It is an object of the present invention to provide a titanium oxide precursor that is thermally stable and has increased volatility to form a high quality titanium oxide film.

상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식 1의 새로운 티타늄 산화물 선구 물질인 유기 티타늄 화합물을 제공한다.In order to achieve the above object, the present invention provides an organic titanium compound that is a novel titanium oxide precursor of the formula (1).

[화학식 1][Formula 1]

Figure 112005019051331-pat00013
Figure 112005019051331-pat00013

상기 식에서, R1, R2 및 R3는 서로 독립적으로 C1-C4의 선형 또는 분지형 알킬기며, 단, R1, R2 및 R3가 모두 메틸기인 경우는 제외한다. 바람직하게는 R1 및 R2 는 서로 독립적으로 CH3, C2H5, n-C3H7, i-C3H7, n-C4H9 및 t-C4H9에서 선택되고, R3는 C2H5, n-C3H7, i-C3H7, n-C4H9 및 t-C4H9에서 선택되며, 더욱 바람직하게는 R1이 CH3 이고, R2와 R3가 C2H5이다. In the above formula, R 1 , R 2 and R 3 are independently of each other a C 1 -C 4 linear or branched alkyl group, except that R 1 , R 2 and R 3 are all methyl groups. Preferably R 1 and R 2 are each independently selected from CH 3 , C 2 H 5 , nC 3 H 7 , iC 3 H 7 , nC 4 H 9 and tC 4 H 9 , R 3 is C 2 H 5 , nC 3 H 7 , iC 3 H 7 , nC 4 H 9 and tC 4 H 9 , more preferably R 1 is CH 3 and R 2 and R 3 are C 2 H 5 .

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 상기 화학식 1에 표시한 화합물은, 출발 물질로서 하기 화학식 2에 표시한 테트라키스디알킬아미도티타늄 화합물과 화학식 3에 표시한 알코올 화합물을 비극성 용매에서 반응시키거나, 출발 물질로서 하기 화학식 4에 염화티타늄과 화학식 5에 표시한 알코올의 알칼리 금속 염을 반응시켜 제조할 수 있다.The compound represented by Chemical Formula 1 according to the present invention may be reacted with a tetrakis dialkyl amido titanium compound represented by the following Chemical Formula 2 and an alcohol compound represented by Chemical Formula 3 as a starting material in a nonpolar solvent, or as a starting material. It can be prepared by reacting titanium chloride with the formula (4) and the alkali metal salt of the alcohol represented by the formula (5).

[화학식 2][Formula 2]

Ti(NR'2)4 Ti (NR ' 2 ) 4

[화학식 3][Formula 3]

HOCR1R2R3 HOCR 1 R 2 R 3

[화학식 4][Formula 4]

TiCl4 TiCl 4

[화학식 5][Formula 5]

M'OCR1R2R3 M'OCR 1 R 2 R 3

상기 식에서, R1, R2 및 R3는 상술한 바와 같고, R'은 메틸 또는 에틸이며, M'은 Li, Na 또는 K이다.Wherein R 1 , R 2 and R 3 are as described above, R 'is methyl or ethyl and M' is Li, Na or K.

본 발명의 티타늄 산화물 선구 물질 [Ti(OCR1R2R3)4]을 제조하기 위해, 상기 화학식 2에 표시한 화합물 [Ti(NR'2)4]을 출발 물질로 하여 화학식 3의 알코올 (HOCR1R2R3)과 반응시키는 반응을 하기 반응식 1에 나타내었다.In order to prepare the titanium oxide precursor [Ti (OCR 1 R 2 R 3 ) 4 ] of the present invention, the compound [Ti (NR ' 2 ) 4 ] represented by the formula ( 2 ) is used as a starting material. Reaction with HOCR 1 R 2 R 3 ) is shown in Scheme 1 below.

[반응식 1]Scheme 1

Ti(NR'2)4 + 4 HOCR1R2R3 → Ti[OCR1R2R3]4 + 4 HNR'2 Ti (NR ' 2 ) 4 + 4 HOCR 1 R 2 R 3 → Ti [OCR 1 R 2 R 3 ] 4 + 4 HNR' 2

상기 반응에 따르면, 화학식 2의 화합물 1 당량이 녹아 있는 헥산, 펜탄 또 는 톨루엔과 같은 비극성 용매의 용액에 화학식 3의 화합물 4 당량이 녹아 있는 헥산, 펜탄 또는 톨루엔과 같은 비극성 용매의 용액을 실온에서 천천히 첨가한 다음, 12 시간 동안 치환 반응을 진행한 뒤 감압 하에서 용매를 제거하여 화학식 1의 화합물을 얻는다.According to the reaction, a solution of a nonpolar solvent such as hexane, pentane or toluene, in which 4 equivalents of the compound of formula 3 is dissolved in a solution of a nonpolar solvent such as hexane, pentane or toluene, in which one equivalent of the compound of formula 2 is dissolved, After slowly adding, the reaction was carried out for 12 hours, and then the solvent was removed under reduced pressure to obtain a compound of Formula 1.

상기 반응에서 사용하는 출발 물질인 Ti(NR'2)4 는 반응성이 높은 디알킬아미도 리간드를 포함하고 있어 이차아민의 수소에 비하여 상대적으로 산성인 수소가 있는 알코올 (HOCR1R2R3)과 4 당량 치환 반응시킴으로써 신규의 티타늄 산화물의 선구 물질인 화학식 1의 [Ti(OCR1R2R3)4]을 제조한다.Ti (NR ' 2 ) 4, which is a starting material used in the reaction, contains a highly reactive dialkylamido ligand and has an acidic hydrogen (HOCR 1 R 2 R 3 ) which is relatively acidic compared to that of the secondary amine. [Ti (OCR 1 R 2 R 3 ) 4 ] of the general formula (1), which is a precursor of the novel titanium oxide, is prepared by a 4 equivalent substitution reaction.

본 발명의 티타늄 산화물 선구 물질 [Ti(OCR1R2R3)4]을 제조하기 위한 또 하나의 반응 공정으로서, 상기 화학식 4에 표시한 화합물인 염화티타늄 (TiCl4)을 출발 물질로 하여 화학식 5에 표시한 화합물인 알코올의 알칼리 금속 염 (M'OCR1R2R3)과 반응시켜 화학식 1에 표시한 화합물을 제조하는 반응을 하기 반응식 2로 나타내었다. As another reaction process for preparing the titanium oxide precursor [Ti (OCR 1 R 2 R 3 ) 4 ] of the present invention, the compound represented by Chemical Formula 4 as a starting material of titanium chloride (TiCl 4 ) A reaction for preparing the compound represented by Chemical Formula 1 by reacting with an alkali metal salt (M'OCR 1 R 2 R 3 ) of an alcohol which is the compound represented by 5 is shown in Scheme 2 below.

[반응식 2]Scheme 2

TiCl4 + 4 M'OCR1R2R3 → Ti(OCR1R2R3)4 + 4 M'ClTiCl 4 + 4 M'OCR 1 R 2 R 3 → Ti (OCR 1 R 2 R 3 ) 4 + 4 M'Cl

상기 반응에 따르면, 출발 물질인 염화티타늄 (화학식 4의 화합물) 1 당량과 화학식 5의 화합물 4 당량을 테트라하이드로퓨란, 톨루엔, 또는 헥산에서 1 시간 동안 반응시키고, 12 시간 동안 환류한 뒤 감압 하에서 여과한 다음, 여과액으로부터 감압 하에서 용매를 제거하여 화학식 1의 화합물을 얻는다.According to the reaction, 1 equivalent of titanium chloride (compound of formula 4), which is a starting material, and 4 equivalents of compound of Formula 5 were reacted in tetrahydrofuran, toluene, or hexane for 1 hour, refluxed for 12 hours, and filtered under reduced pressure. Then, the solvent is removed from the filtrate under reduced pressure to obtain a compound of formula 1.

상기 화학식 1에 표시한 신규의 티타늄 산화물 선구 물질 [Ti(OCR1R2R3)4]은 금속과 결합하는 알콕사이드의 산소와 결합한 탄소에 알킬기가 결합해 있어 유기 용매에 대한 친화성이 높다. 또 알콕사이드의 산소에 대하여 α-위치에 있는 탄소에 크기가 다른 여러 가지 알킬기를 도입함으로써 티타늄 t-부톡사이드나 티타늄 이소프로폭사이드와 비교할 때 산소와 결합한 중심 금속이 이웃한 리간드의 산소와 분자간 상호 작용을 일으키지 못하도록 입체 장애를 주기 때문에 이 선구 물질이 단위체로 존재할 수 있다. 이러한 구조적 특성으로 인하여 상기 화학식 1에 표시한 티타늄 산화물 선구 물질은 상온에서 안정한 액체로서 유기 용매, 예를 들면 펜탄, 헥산, 디에틸에테르, 테트라하이드로퓨란, 톨루엔 등에 대한 용해도가 높고, 휘발성이 뛰어날 뿐만 아니라, 할로겐 원소를 포함하지 않고, 상온에서 안정하여 보관에 유리하며 이들을 사용하여 질이 더 좋은 티타늄 산화막을 얻을 수 있다.The novel titanium oxide precursor [Ti (OCR 1 R 2 R 3 ) 4 ] represented by Chemical Formula 1 has an affinity for an organic solvent because an alkyl group is bonded to carbon bonded to oxygen of an alkoxide which is bonded to a metal. In addition, by introducing various alkyl groups of different sizes to the carbon in the α-position to the oxygen of the alkoxide, the central metal bonded to oxygen is intermolecular interaction with the oxygen of the neighboring ligand as compared with titanium t-butoxide or titanium isopropoxide. This precursor can exist as a monomer because it impairs steric hindrance to prevent action. Due to such structural characteristics, the titanium oxide precursor represented by Chemical Formula 1 is a stable liquid at room temperature, and has high solubility in organic solvents such as pentane, hexane, diethyl ether, tetrahydrofuran, toluene, and high volatility. In addition, it does not contain a halogen element, is stable at room temperature, which is advantageous for storage, and can be used to obtain a titanium oxide film of better quality.

본 발명에서 합성한 유기 티타늄 화합물의 특성을 분석하기 위하여 수소 및 탄소 원자 핵자기 공명 스펙트럼 (1H, 13C NMR)과 적외선 스펙트럼 (IR)을 이용하였고, 화합물의 열적 안정성, 휘발성, 분해 온도는 열무게 분석/시차 열분석법 (thermogravimetric/differential thermal analysis, TG/DTA)을 이용하여 조사하였 다.Hydrogen and carbon atom nuclear magnetic resonance spectra ( 1 H, 13 C NMR) and infrared spectra (IR) were used to analyze the properties of the organic titanium compound synthesized in the present invention. Investigations were performed using thermogravimetric / differential thermal analysis (TG / DTA).

도 1 및 도 2는 실시예 1에서 제조한 Ti(mp)4(mp = 3-methyl-3- pentoxide)의 수소 및 탄소 원자 핵자기 공명 스펙트럼을 도시하였는데, 출발 물질로 사용한 Ti(NMe2)4의 메틸기의 봉우리가 사라지고 반응 물질로 사용한 3-메틸-3-펜톡시 리간드의 봉우리가 나타났다.1 and 2 show the nuclear and magnetic resonance spectra of hydrogen and carbon atoms of Ti (mp) 4 (mp = 3-methyl-3-pentoxide) prepared in Example 1, wherein Ti (NMe 2 ) was used as a starting material. The peak of the methyl group of 4 disappeared and the peak of the 3-methyl-3-pentoxy ligand used as a reaction material appeared.

도 3에 도시한 실시예 1의 Ti(mp)4의 적외선 스펙트럼에서 반응 물질로 사용한 3-메틸-3-펜타놀의 히드록시기의 봉우리가 없어지고 615 cm-1에서 티타늄과 산소의 결합을 가리키는 봉우리가 나타났다.The peak of the hydroxyl group of 3-methyl-3-pentanol used as a reactant in the infrared spectrum of Ti (mp) 4 of Example 1 shown in FIG. 3 disappeared and the peak indicating the bonding of titanium and oxygen at 615 cm −1 . Appeared.

도 4에 실시예 1에서 제조한 Ti(mp)4의 TGA/DTA 그래프 (10 ℃/min to 800 ℃, 100 cc/min N2 purge)를 도시하였다. 50-200 ℃에서 약 10% 정도 질량 감소가 일어나고 250 ℃에서 급격한 질량 감소가 일어났다. 250 ℃에서는 88% 이상의 질량 감소가 관찰되었고 잔류 물질이 12% 정도 되었다. 또 TGA 그래프는 T1/2이 248 ℃임을 보여 준다.4 shows a TGA / DTA graph (10 ° C./min to 800 ° C., 100 cc / min N 2 purge) of Ti (mp) 4 prepared in Example 1. FIG. Mass loss of about 10% occurred at 50-200 ° C. and sudden mass loss at 250 ° C. At 250 ° C., a mass loss of over 88% was observed, with about 12% residual material. The TGA graph also shows that T 1/2 is 248 ° C.

본 발명에서 개발한 신규의 유기 티타늄 화합물은 PZT (납-지르코늄-티타늄 산화물) 박막을 비롯한 티타늄을 포함하는 각종 산화물 박막 제조용 선구 물질로서, 특히 반도체 제조 공정에 널리 이용하고 있는 금속 유기물 화학 증착 (MOCVD) 또는 원자층 침착 (ALD) 공정에 바람직하게 적용할 수 있다.The novel organic titanium compound developed in the present invention is a precursor for producing various oxide thin films including titanium, including PZT (lead-zirconium-titanium oxide) thin films, and metal organic chemical vapor deposition (MOCVD), which is widely used in semiconductor manufacturing processes. ) Or atomic layer deposition (ALD) process.

본 발명은 하기의 실시예에 의하여 더 잘 이해할 수 있으며, 하기의 실시 예는 본 발명의 예시 목적을 위한 것이며 첨부한 특허 청구 범위에 의하여 한정되는 보호 범위를 제한하고자 하는 것은 아니다.The invention is better understood by the following examples, which are intended for purposes of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

모든 실험은 장갑 상자 또는 슐렝크 관 (Schlenk line)을 이용하여 비활성 아르곤 또는 질소 분위기에서 수행하였다. 실시예 1에서 얻은 반응 생성물의 구조와 물성은 수소 원자 핵자기 공명법 (1H nuclear magnetic resonance, NMR), 탄소 원자 핵자기 공명법 (13C NMR), 원소 분석법 (elemental analysis, EA), 질량 분석법 (mass spectroscopy), 열무게 분석/시차 열분석법 (thermogravimetric/differential thermal analysis, TG/DTA)을 이용하여 확인하였다.All experiments were performed in an inert argon or nitrogen atmosphere using a glove box or Schlenk line. Example 1 Structure and physical properties of the reaction product obtained in the hydrogen nuclear magnetic resonance (1 H nuclear magnetic resonance, NMR ), the carbon atom nuclear magnetic resonance (13 C NMR), elemental analysis (elemental analysis, EA), mass Mass spectroscopy, thermogravimetric / differential thermal analysis (TG / DTA) was used to confirm.

티타늄 산화물 선구 물질의 제조Preparation of Titanium Oxide Precursor

실시예 1: 테트라키스(3-메틸-3-펜톡시)티타늄(IV) [Ti(mp)4]의 합성Example 1 Synthesis of Tetrakis (3-methyl-3-pentoxy) titanium (IV) [Ti (mp) 4 ]

헥산 (50 mL)이 들어 있는 불꽃 건조한 125 mL 슐렝크 플라스크에 테트라키스디메틸아미도티타늄(IV) (2.00 g, 8.92 mmol)을 넣고 용해하였다. 이 용액에 mpH (3-methyl-3-pentanol, 3-메틸-3-펜타놀) (3.65 g, 35.72 mmol)를 헥산 (30 mL)에 녹인 용액을 천천히 첨가하고 12 시간 동안 교반하였다. 감압 하에서 용매를 제거 하고 갑압 증류 (140 ℃ / 10-2 Torr)하여 노란색 액체인 표제 화합물 3.64 g을 얻었다 (수율: 98.4%).Tetrakisdimethylamidotitanium (IV) (2.00 g, 8.92 mmol) was dissolved in a flame dried 125 mL Schlenk flask containing hexane (50 mL). To this solution, a solution of mpH (3-methyl-3-pentanol, 3-methyl-3-pentanol) (3.65 g, 35.72 mmol) in hexane (30 mL) was slowly added and stirred for 12 hours. The solvent was removed under reduced pressure and distillation under reduced pressure (140 ° C./10 −2 Torr) gave 3.64 g of the title compound as a yellow liquid (yield: 98.4%).

1H NMR (C6D6, 300.13 MHz): δ 1.02 (t, 24H, J = 7.5 Hz, CCH2CH 3), 1.30 (s, 12H, CCH 3), 1.62 (q, 16H, J = 7.5 Hz, CCH 2CH3). 1 H NMR (C 6 D 6 , 300.13 MHz): δ 1.02 (t, 24H, J = 7.5 Hz, CCH 2 C H 3 ), 1.30 (s, 12H, CC H 3 ), 1.62 (q, 16H, J = 7.5 Hz, CC H 2 CH 3 ).

13C{1H} NMR (C6D6, 75.03 MHz): δ 85.0 (OCCH3), 35.0 (C(CH2CH3)2), 27.4 (CCH3), 8.9 (C(CH2 CH3)2). 13 C { 1 H} NMR (C 6 D 6 , 75.03 MHz): δ 85.0 (O C CH 3 ), 35.0 (C ( C H 2 CH 3 ) 2 ), 27.4 (C C H 3 ), 8.9 (C (CH 2 C H 3 ) 2 ).

원소 분석 C24H52O4Ti {Calcd. (found)}: C, 58.13 (58.04); H, 10.57 (11.05).Elemental Analysis C 24 H 52 O 4 Ti {Calcd. (found)}: C, 58.13 (58.04); H, 10.57 (11.05).

상술한 바와 같이, 본 발명에 따른 티타늄 산화물 선구 물질인 새로운 유기 티타늄 화합물은 기존에 알려진 알콕사이드 화합물에 비해 휘발성이 그리 낮지 않고 보관에 유리하며, 특히 산화막의 우수한 질을 요구하는 금속 유기물 화학 증착법 (MOCVD) 또는 원자층 침착법 (ALD)의 티타늄 산화물 선구 물질로서 손색이 없어 티타늄 산화물을 포함하는 산화물 박막 제조용 선구 물질로서 유용하게 사용할 수 있다.As described above, the new organic titanium compound, which is a titanium oxide precursor according to the present invention, is less volatile than conventionally known alkoxide compounds and is advantageous for storage, and in particular, a metal organic chemical vapor deposition method (MOCVD) requiring excellent quality of oxide film. ) Or as the titanium oxide precursor of the atomic layer deposition method (ALD), and can be usefully used as a precursor for producing an oxide thin film containing titanium oxide.

Claims (6)

하기 화학식 1로 표시되는 유기 티타늄 화합물.An organic titanium compound represented by the following formula (1). [화학식 1][Formula 1]
Figure 112005019051331-pat00014
Figure 112005019051331-pat00014
(상기 식에서, R1, R2 및 R3는 서로 독립적으로 C1-C4의 선형 또는 분지형 알킬기며, 단, R1, R2 및 R3가 모두 메틸기인 경우는 제외한다.)(Wherein R 1 , R 2 and R 3 are independently of each other a C 1 -C 4 linear or branched alkyl group, except that R 1 , R 2 and R 3 are all methyl groups.)
제 1항에 있어서, The method of claim 1, R1 및 R2 는 서로 독립적으로 CH3, C2H5, n-C3H7, i-C3H7, n-C4H9 및 t-C4H9에서 선택되고, R3는 C2H5, n-C3H7, i-C3H7, n-C4H9 및 t-C4H9에서 선택되는 것을 특징으로 하는 유기 티타늄 화합물.R 1 and R 2 are each independently selected from CH 3 , C 2 H 5 , nC 3 H 7 , iC 3 H 7 , nC 4 H 9 and tC 4 H 9 , and R 3 is C 2 H 5 , nC 3 An organic titanium compound selected from H 7 , iC 3 H 7 , nC 4 H 9 and tC 4 H 9 . 제 1항에 있어서, The method of claim 1, R1이 CH3, R2와 R3가 C2H5인 것을 특징으로 하는 유기 티타늄 화합물.An organic titanium compound, wherein R 1 is CH 3 , R 2 and R 3 are C 2 H 5 . 하기 화학식 2의 티타늄의 아미도 화합물과 하기 화학식 3의 알코올 화합물을 반응시키는 것을 포함하는, 제1 항에 따른 화학식 1의 유기 티타늄 화합물의 제조 방법.A method for preparing an organotitanium compound of formula (1) according to claim 1 comprising reacting an amido compound of titanium of formula (2) with an alcohol compound of formula (3). [화학식 2][Formula 2] Ti(NR'2)4 Ti (NR ' 2 ) 4 [화학식 3][Formula 3] HOCR1R2R3 HOCR 1 R 2 R 3 (상기 식에서, R1, R2 및 R3는 제1 항에서 정의한 바와 같고, R'은 메틸 또는 에틸이다.)(Wherein R 1 , R 2 and R 3 are as defined in claim 1 and R 'is methyl or ethyl.) 하기 화학식 4에 표시한 염화티타늄과 하기 화학식 5에 표시한 알코올의 알 칼리 금속 염을 반응시키는 것을 포함하는, 제1 항에 따른 화학식 1의 유기 티타늄 화합물의 제조 방법.A method for producing an organotitanium compound of formula (1) according to claim 1 comprising reacting titanium chloride represented by formula (4) with an alkali metal salt of an alcohol represented by formula (5). [화학식 4][Formula 4] TiCl4 TiCl 4 [화학식 5][Formula 5] M'OCR1R2R3 M'OCR 1 R 2 R 3 (상기 식에서, R1, R2 및 R3는 제1 항에서 정의한 바와 같고, M'은 Li, Na 또는 K이다.)(Wherein R 1 , R 2 and R 3 are as defined in claim 1 and M ′ is Li, Na or K.) 삭제delete
KR1020050030475A 2005-04-12 2005-04-12 Precursors of novel titanium oxide and preparation method thereof KR100634814B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050030475A KR100634814B1 (en) 2005-04-12 2005-04-12 Precursors of novel titanium oxide and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050030475A KR100634814B1 (en) 2005-04-12 2005-04-12 Precursors of novel titanium oxide and preparation method thereof

Publications (1)

Publication Number Publication Date
KR100634814B1 true KR100634814B1 (en) 2006-10-16

Family

ID=37626372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050030475A KR100634814B1 (en) 2005-04-12 2005-04-12 Precursors of novel titanium oxide and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100634814B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093817B1 (en) * 2009-07-15 2011-12-19 한국화학연구원 Novel titanium alkoxide compounds and process for preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093817B1 (en) * 2009-07-15 2011-12-19 한국화학연구원 Novel titanium alkoxide compounds and process for preparing method thereof

Similar Documents

Publication Publication Date Title
KR100988973B1 (en) Metal complexes of tridentate beta-ketoiminates
JP4680953B2 (en) Multidentate β-ketoiminato metal complex
JP2007302656A5 (en)
WO2009155507A1 (en) Titanium pyrrolyl-based organometallic precursors and use thereof for preparing dielectric thin films
KR101120065B1 (en) Novel germanium complexes with amidine derivative ligand and process for preparing the same
JP5698161B2 (en) Metal complexes for metal-containing film deposition
TWI469988B (en) The novel 4b group metalorganic compounds and the preparations thereof
US6620971B2 (en) Asymmetric β-ketoiminate ligand compound, preparation method thereof, and organometal percursor comprising the same
KR101962355B1 (en) Precursor for vapor deposition having excellent thermal stability and reactivity and preparing method thereof
KR100634814B1 (en) Precursors of novel titanium oxide and preparation method thereof
KR101306810B1 (en) Novel tungsten aminoalkoxide compounds, preparation method thereof and process for the formation of thin films using the same
KR102080218B1 (en) Double-substituted cyclopentadiene compounds, organometallic compounds and preparation method thereof
KR101072002B1 (en) Novel Aluminum alkoxide complexes and process for preparing thereof
KR100584200B1 (en) Precursors of titanium oxide and preparation method thereof
KR101093817B1 (en) Novel titanium alkoxide compounds and process for preparing method thereof
KR100544353B1 (en) A precursor of zirconium dioxide, preparation method thereof and process for the formation of thin film using the same
KR20140074162A (en) A precursor compound containing group iv transition metal, and depositing method of thin film using the same
KR100544355B1 (en) Precursors of group iv transition metal oxide and preparing method thereof
KR102590511B1 (en) Novel Organo-Barium Compounds, Preparation method thereof, and Method for deposition of thin film using the same
KR100962431B1 (en) Novel Aluminum amino-alkoxide complexes and process for preparing thereof
KR101306812B1 (en) Novel tungsten silylamide compounds, preparation method thereof and process for the formation of thin films using the same
KR100992982B1 (en) Novel hafnium alkoxide compounds and preparing method thereof
KR20140121761A (en) A precursor compound containing group iv transition metal and depositing method of thin film using the same
KR101306813B1 (en) Novel tungsten aminoamide azide compounds, preparation method thereof and process for the formation of thin films using the same
KR20190086255A (en) Organic metal compound, composition for depositing semiconductor thin film, manufacturing method for thin film using thereof, and semiconductor device includinf thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110915

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee