KR20110005472A - Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same - Google Patents

Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same Download PDF

Info

Publication number
KR20110005472A
KR20110005472A KR1020090063050A KR20090063050A KR20110005472A KR 20110005472 A KR20110005472 A KR 20110005472A KR 1020090063050 A KR1020090063050 A KR 1020090063050A KR 20090063050 A KR20090063050 A KR 20090063050A KR 20110005472 A KR20110005472 A KR 20110005472A
Authority
KR
South Korea
Prior art keywords
dye
titanium dioxide
nano
sensitized solar
polyvinyl alcohol
Prior art date
Application number
KR1020090063050A
Other languages
Korean (ko)
Inventor
한치환
윤경훈
이학수
조태연
배상훈
전세미나
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090063050A priority Critical patent/KR20110005472A/en
Publication of KR20110005472A publication Critical patent/KR20110005472A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A nano titanium dioxide paste for dye-sensitized solar cell is provided to ensure excellent quantum efficiency using a mixing process of a polyvinylalcohol solution and titanium dioxide nanopowder. CONSTITUTION: A method for manufacturing a nano titanium dioxide paste for dye-sensitized solar cell comprises the steps of: dissolving polyvinyl alcohols in water to prepare a polyvinyl alcohol solution; mixing titanium dioxide nanopowder with the polyvinyl alcohol solution to prepare a paste; and additionally adding carbon black to the nano titanium dioxide paste for dye-sensitized solar cell.

Description

염료감응 태양전지용 나노이산화티타늄 페이스트, 이의 제조방법 및 이를 이용하여 제조된 염료감응 태양전지{NANO TITANIUM DIOXIDE PASTE FOR DYE-SENSITIZED SOLARCELL, PREPARATION METHOD THEREOF AND DYE-SENSITIZED SOLARCELL PREPARED BY USING THE SAME}Nano titanium dioxide paste for dye-sensitized solar cell, manufacturing method thereof and dye-sensitized solar cell manufactured using same

본 발명은 염료감응 태양전지용 나노이산화티타늄 페이스트, 이의 제조방법 및 이를 이용하여 제조된 염료감응 태양전지에 관한 것이다.The present invention relates to a nano-titanium dioxide paste for dye-sensitized solar cells, a method for preparing the same, and a dye-sensitized solar cell prepared using the same.

최근 들어 직면하는 에너지 문제를 해결하기 위하여 기존의 화석 연료를 대체할 수 있는 다양한 연구가 진행되고 있다. 특히 수십년 이내에 고갈될 석유 자원을 대체하기 위하여 풍력, 원자력, 태양력 등의 자연 에너지를 활용하기 위한 광범위한 연구가 진행되고 있다. 이들 중 태양에너지를 이용한 태양전지는 기타 다른 에너지원과는 달리 자원이 무한하고 환경 친화적이므로 1983년 Se 태양전지를 개발한 이후로 꾸준한 연구가 계속되어 최근에는 실리콘 태양전지가 각광을 받고 있다. Recently, various researches are being conducted to replace the existing fossil fuels to solve the energy problem. In particular, extensive research is being conducted to harness natural energy such as wind, nuclear power and solar power to replace petroleum resources that will be exhausted within decades. Unlike other energy sources, solar cells using solar energy have unlimited resources and are environmentally friendly. Therefore, since the development of Se solar cells in 1983, research has been continued and silicon solar cells have been in the spotlight recently.

그러나, 이와 같은 실리콘 태양전지는 제조비용이 상당히 고가이기 때문에 실용화 가 곤란하고, 전지효율을 개선하는데도 많은 어려움이 따르고 있다. 이러한 문제를 극복하기 위하여 제조비용이 현저히 저렴한 염료감응 태양전지의 개발이 적극 검토되어 오고 있다.However, such a silicon solar cell is difficult to commercialize because of the high manufacturing cost, and there are many difficulties in improving battery efficiency. In order to overcome this problem, the development of dye-sensitized solar cells, which are significantly cheaper to manufacture, has been actively studied.

1991년 스위스의 그라첼(Gratzel) 등에 의해 개발된 염료감응 태양전지는 가시광선을 흡수하여 전자-홀 쌍(electron-hole pair)을 생성할 수 있는 감광성 염료분자와 생성된 전자를 전달하는 나노결정성 산화티타늄 입자로 이루어진 산화물 반도체 전극을 이용한 광전기화학적 태양전지로서, 색소증감형 태양전지 또는 습식 태양전지라고도 불린다. 이와 같은 태양전지는 실리콘형 태양전지와 비교하여 제조공정이 간단하고 제조비용이 저렴하며 실용적으로 사용가능한 광전변환 효율을 갖는 특징이 있어, 이에 관하여 많은 연구가 진행되고 있다.Dye-sensitized solar cells, developed in 1991 by Gratzel et al., Switzerland, are photosensitive dye molecules capable of absorbing visible light to produce electron-hole pairs, and nanocrystals that deliver the resulting electrons. A photoelectrochemical solar cell using an oxide semiconductor electrode made of oxidized titanium oxide particles, also called a dye-sensitized solar cell or a wet solar cell. Such a solar cell has a feature of having a photoelectric conversion efficiency that is simple in manufacturing process, low in manufacturing cost, and practically usable as compared with a silicon type solar cell, and many studies have been conducted on this.

도 2는 염료감응 태양전지의 일반적인 구조를 나타낸 단면도로서, 도 2를 참조하면 염료감응 태양전지는 음극계 전극(100), 양극계 전극(200), 액체 전해액(300)을 포함하여 이루어진다. 음극계 전극(100)은 투명기판(110)과 상기 투명기판 상부에 형성된 투명전도성 산화물층(예를 들어, 불소가 도핑된 틴 옥사이드(FTO) 또는 인듐 틴 옥사이드(ITO), 120)을 포함하는 전도성 투명기재 상에 다공질의 나노 산화물층(130)에 염료가 흡착된 구조를 갖는다. 양극계 전극(200)은 투명기판(210)과 상기 투명기판 상부에 형성된 투명전도성 산화물층(220)을 포함하는 전도성 투명기재 상에 액체 전해액 중의 전해질의 환원반응을 촉진시키는 역할을 하는 백금촉매로부터 형성된 백금층(230)으로 이루어지는 구조를 갖는다. 액체 전해액(300)은 일반적으로 전해질을 용해시킨 용액이 사용되고 있으며, 음극계 전 극(100)과 양극계 전극(200) 사이에 공간을 형성하도록 넣어준 열가소성 고분자층(400) 내에 게재되어 양 전극과 전기화학적으로 접하고 있다.2 is a cross-sectional view illustrating a general structure of a dye-sensitized solar cell. Referring to FIG. 2, the dye-sensitized solar cell includes a cathode electrode 100, an anode electrode 200, and a liquid electrolyte 300. The negative electrode 100 includes a transparent substrate 110 and a transparent conductive oxide layer (eg, fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) 120 formed on the transparent substrate). A dye is adsorbed onto the porous nano oxide layer 130 on the conductive transparent substrate. The anode electrode 200 is formed of a platinum catalyst which serves to promote a reduction reaction of an electrolyte in a liquid electrolyte on a conductive transparent substrate including a transparent substrate 210 and a transparent conductive oxide layer 220 formed on the transparent substrate. It has a structure consisting of the formed platinum layer 230. In the liquid electrolyte 300, a solution in which an electrolyte is dissolved is generally used, and both electrodes are disposed in the thermoplastic polymer layer 400 placed to form a space between the anode electrode 100 and the anode electrode 200. And electrochemically.

염료감응 태양전지에 있어서, 광전변환 과정은 조사된 광에너지가 음극계 전극(100)의 염료에 흡수되고, 이때 염료가 활성화되어 정공과 전자를 발생하게 된다. 발생된 전자는 나노 산화물층(130)을 통해 다시 투명전도성 산화물층(120)으로 전달되고, 투명전도성 산화물층(120)에 연결된 회로를 통하여 양극계 전극(200)과 연결된 회로로 이동하게 되며, 양극계 전극(200)을 통하여 다시 액체 전해액(300)으로 전달된다. 한편, 전자와 함께 발생된 정공은 액체 전해액(300)으로 통하게 되어 양극계 전극(200)을 통해 되돌아온 전자와 재결합하는 과정으로 이루어진다.In the dye-sensitized solar cell, the photoelectric conversion process is irradiated light energy is absorbed by the dye of the cathode electrode 100, the dye is activated to generate holes and electrons. The generated electrons are transferred back to the transparent conductive oxide layer 120 through the nano oxide layer 130, and move to the circuit connected to the anode electrode 200 through a circuit connected to the transparent conductive oxide layer 120. It is delivered to the liquid electrolyte 300 again through the anode-based electrode 200. On the other hand, the holes generated with the electrons are passed through the liquid electrolyte 300 is made of a process of recombining with the electrons returned through the anode-based electrode (200).

이와 같은 염료감응 태양전지는 기존의 실리콘 태양전지에 비해 제조단가가 저렴하고 투명한 전극으로 인해 건물 외벽 유리창이나 유리온실 등에 응용이 가능하여 상용화가 진행되고 있으나, 기존의 상용화된 태양전지와 경쟁하기 위해서는 제조단가를 보다 낮추는 기술개발이 필요하다.Such dye-sensitized solar cells are cheaper to manufacture than conventional silicon solar cells and are commercially available because they can be applied to glass walls or glass greenhouses of building walls due to transparent electrodes, but to compete with existing commercialized solar cells, There is a need for technology development that lowers manufacturing costs.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 염료감응 태양전지의 음극계 전극의 제조에 사용되는 종래의 수열법에 의해서 제조된 고가의 나노이산화티타늄 페이스트, 종래의 복잡한 공정에 의해 제조되는 D-paste, 에틸셀룰로오즈와 터핀올을 사용한 페이스트, 페치니 방법에 의한 페이스트 등을 대체하기 위해 서, 폴리비닐알콜 수용액과 나노이산화티타늄 분말을 혼합하는 단순 혼합공정만으로 염료감응 태양전지용 나노이산화티타늄 페이스트를 제조하는 방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention is an expensive nano-titanium dioxide paste prepared by a conventional hydrothermal method used for the production of a cathode-based electrode of a dye-sensitized solar cell, prepared by a conventional complex process In order to replace D-paste, paste using ethyl cellulose and terpinol, paste by pechini method, nano titanium dioxide paste for dye-sensitized solar cell by simple mixing process of mixing polyvinyl alcohol solution and nano titanium dioxide powder It is an object to provide a method for producing a.

상기의 목적을 달성하기 위하여, 본 발명은 폴리비닐알콜을 물에 녹여 폴리비닐알콜 수용액을 제조하는 단계 및 상기 폴리비닐알콜 수용액에 나노이산화티타늄 분말을 혼합하여 페이스트를 제조하는 단계를 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법을 제공한다.In order to achieve the above object, the present invention is a dye-sensitization comprising the step of preparing a polyvinyl alcohol solution by dissolving polyvinyl alcohol in water and preparing a paste by mixing nano titanium dioxide powder in the polyvinyl alcohol solution Provided is a method of manufacturing nano titanium dioxide paste for solar cells.

본 발명은 폴리비닐알콜을 물에 녹여 제조한 폴리비닐알콜 수용액 및 상기 폴리비닐알콜 수용액에 첨가되는 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트를 제공한다.The present invention provides a nano-titanium dioxide paste for dye-sensitized solar cells comprising a polyvinyl alcohol aqueous solution prepared by dissolving polyvinyl alcohol in water and nano titanium dioxide powder added to the polyvinyl alcohol aqueous solution.

또한 본 발명은 음극계 전극, 양극계 전극 및 전해질을 포함하는 염료감응 태양전지로서, 상기 음극계 전극의 투명기판의 상부에 형성되는 나노산화물층은, 폴리비닐알콜 수용액 및 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트를 도포한 후 염료를 흡착시켜 제조된 것임을 특징으로 하는 염료감응 태양전지를 제공한다.In another aspect, the present invention is a dye-sensitized solar cell comprising a cathode electrode, an anode electrode and an electrolyte, the nano oxide layer formed on the transparent substrate of the anode electrode comprises a polyvinyl alcohol aqueous solution and nano titanium dioxide powder To provide a dye-sensitized solar cell, which is prepared by adsorbing a dye after applying the titanium dioxide paste for dye-sensitized solar cell.

본 발명에 따른 염료감응 태양전지용 나노이산화티타늄 페이스트는 카본 블랙을 더 첨가하여 제조되는 것이 바람직하다.The nano titanium dioxide paste for dye-sensitized solar cells according to the present invention is preferably prepared by further adding carbon black.

본 발명의 염료감응 태양전지용 나노이산화티타늄 페이스트, 이의 제조방법 및 이를 이용하여 제조된 염료감응 태양전지에 따르면, 종래 고가의 나노이산화티타늄 페이스트를 사용한 염료감응 태양전지 및 종래의 복잡한 공정에 의해 제조되어 제조단가가 높은 나노이산화티타늄 페이스트를 사용한 염료감응 태양전지와 대등한 광전변환 효율을 가지면서도 간단한 공정으로 제조된 본 발명의 염료감응 태양전지용 나노이산화티타늄 페이스트를 사용함으로써 제조단가를 월등히 낮출 수 있는 염료감응 태양전지를 제공할 수 있다. 본 발명에 따른 염료감응 태양전지는 건물 외벽 유리창이나 유리온실 등의 다양한 분야에 응용이 가능할 것으로 기대된다.According to the present invention, a titanium titanium paste for dye-sensitized solar cells, a method for producing the same, and a dye-sensitized solar cell prepared by using the same, are prepared by a dye-sensitized solar cell using a conventional expensive nano-titanium dioxide paste and a conventional complex process. Dye that can significantly lower the manufacturing cost by using the nano-titanium dioxide paste for dye-sensitized solar cells of the present invention produced in a simple process while having a photoelectric conversion efficiency comparable to the dye-sensitized solar cell using nano-titanium dioxide paste having high manufacturing cost. The solar cell can be provided. The dye-sensitized solar cell according to the present invention is expected to be applicable to various fields such as building exterior glass windows or glass greenhouses.

이하, 본 발명을 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 폴리비닐알콜을 물에 녹여 폴리비닐알콜 수용액을 제조하는 단계 및 상기 폴리비닐알콜 수용액에 나노이산화티타늄 분말을 혼합하여 페이스트를 제조하는 단계를 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법을 제공한다.The present invention is to prepare a nano-titanium dioxide paste for dye-sensitized solar cell comprising the step of preparing a polyvinyl alcohol solution by dissolving polyvinyl alcohol in water and preparing a paste by mixing nano titanium dioxide powder in the polyvinyl alcohol solution. Provide a method.

도 1은 본 발명의 일 실시형태에 따른 염료감응 태양전지용 나노이산화티타 늄 페이스트의 제조과정을 나타내는 흐름도이다.1 is a flow chart showing a manufacturing process of the nano-titanium dioxide paste for dye-sensitized solar cells according to an embodiment of the present invention.

하기에서 도 1을 참조하여 본 발명의 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법을 설명한다.Hereinafter, a method of manufacturing a nano titanium dioxide paste for dye-sensitized solar cells of the present invention will be described with reference to FIG. 1.

우선, 폴리비닐알콜을 물에 녹여 폴리비닐알콜 수용액을 제조한다.First, polyvinyl alcohol is dissolved in water to prepare an aqueous polyvinyl alcohol solution.

상기 폴리비닐알콜 수용액은 폴리비닐알콜 10 내지 30 중량% 및 물 90 내지 70 중량%를 혼합하여 제조될 수 있다. 상기 폴리비닐알콜은 시중에서 구입할 수 있는 것이면 제한 없이 사용될 수 있다.The polyvinyl alcohol aqueous solution may be prepared by mixing 10 to 30% by weight of polyvinyl alcohol and 90 to 70% by weight of water. The polyvinyl alcohol may be used without limitation as long as it is commercially available.

다음으로, 상기 폴리비닐알콜 수용액에 나노이산화티타늄 분말을 혼합하여 페이스트를 제조하는 단계를 수행한다.Next, a step of preparing a paste by mixing nano titanium dioxide powder in the polyvinyl alcohol aqueous solution is performed.

상기 나노이산화티타늄 분말은 상기 폴리비닐알콜 수용액 100 중량부에 대하여 20 내지 60 중량부로 혼합될 수 있다. 상기 나노이산화티타늄 분말은 수열법에 의해 제조된 것을 사용할 수도 있으며, 이에 제한되지 않고 시중에서 구입할 수 있는 것이면 제한 없이 사용될 수 있다.The nano titanium dioxide powder may be mixed in an amount of 20 to 60 parts by weight based on 100 parts by weight of the polyvinyl alcohol aqueous solution. The nano-titanium dioxide powder may be prepared by a hydrothermal method, and the present invention is not limited thereto, and may be used without limitation as long as it is commercially available.

또한 본 발명에 따른 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법은 상기에서 제조된 페이스트에 카본 블랙을 더 첨가하는 단계를 포함할 수 있다.In addition, the method for producing a nano-titanium dioxide paste for dye-sensitized solar cells according to the present invention may include adding carbon black to the paste prepared above.

상기 카본 블랙은 상기 염료감응 태양전지용 나노이산화티타늄 페이스트 100 중량부에 대하여 0.1 내지 10 중량부로 첨가되는 것이 바람직하다.The carbon black is preferably added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the nano titanium dioxide paste for dye-sensitized solar cells.

상기 카본 블랙은 비결정성의 흑연물질로 400 내지 700℃의 공기 중 또는 산소분위기 하에서 산화하여 입자의 성장을 막을 수 있도록 한다. 온도 범위 한정 이유는 400℃ 이하에서는 카본 블랙의 산화가 불가능하여 반응이 일어나지 않고, 700℃ 이상에서는 나노입자보다 큰 입자가 형성되기 때문이다.The carbon black is an amorphous graphite material which is oxidized in air at 400 to 700 ° C. or under an oxygen atmosphere to prevent the growth of particles. The reason for the temperature range limitation is that oxidation of carbon black is impossible at 400 ° C. or lower, so that no reaction occurs, and particles larger than nanoparticles are formed at 700 ° C. or higher.

상기 카본 블랙으로는 아세틸렌 블랙을 사용할 수 있으나 이에 제한되는 것은 아니다.Acetylene black may be used as the carbon black, but is not limited thereto.

또한 본 발명은 폴리비닐알콜 수용액 및 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트를 제공한다.In another aspect, the present invention provides a nano titanium dioxide paste for dye-sensitized solar cells comprising a polyvinyl alcohol aqueous solution and nano titanium dioxide powder.

본 발명에 따른 염료감응 태양전지용 나노이산화티타늄 페이스트는 카본 블랙을 더 포함할 수 있다.The nano-titanium dioxide paste for dye-sensitized solar cells according to the present invention may further include carbon black.

상기 폴리비닐알콜 수용액, 나노이산화티타늄 분말 및 카본 블랙의 사용함량 및 제조방법은 상술한 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법과 동일한 조건 하에서 수행된다.The polyvinyl alcohol aqueous solution, nano titanium dioxide powder and carbon black use and production method are carried out under the same conditions as the method for preparing nano titanium dioxide paste for dye-sensitized solar cells.

또한, 본 발명은 음극계 전극, 양극계 전극 및 전해질을 포함하는 염료감응 태양전지로서, 상기 음극계 전극의 투명기판의 상부에 형성되는 나노산화물층은, 폴리비닐알콜 수용액 및 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트를 도포한 후 염료를 흡착시켜 제조된 것임을 특징으로 하는 염료감응 태양전지를 제공한다.In addition, the present invention is a dye-sensitized solar cell comprising a negative electrode, a positive electrode and an electrolyte, the nano oxide layer formed on the transparent substrate of the negative electrode, the polyvinyl alcohol aqueous solution and nano titanium dioxide powder It provides a dye-sensitized solar cell, characterized in that prepared by adsorbing a dye after coating the nano-titanium dioxide paste for dye-sensitized solar cell comprising.

상술한 바와 같이 본 발명에 따른 염료감응 태양전지는 상기 음극계 전극의 나노산화물층의 형성시 본 발명에 따른 염료감응 태양전지용 나노이산화티타늄 페이스트를 사용함으로써 제조단가를 월등히 감소시켜 제조할 수 있다.As described above, the dye-sensitized solar cell according to the present invention can be manufactured by significantly reducing the manufacturing cost by using the nano-titanium dioxide paste for dye-sensitized solar cell according to the present invention when the nanooxide layer of the cathode electrode is formed.

본 발명의 일 실시형태에 있어서, 본 발명에 따른 염료감응 태양전지의 음극계 전극은 투명 유리 기판 상의 투명 전도성 산화물층 상부에 폴리비닐알콜 수용액 및 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트를 닥터블레이드법 등에 의해 도포하고 열처리하여 나노산화물층을 형성한 후, 염료를 흡착시켜 제조될 수 있다.In one embodiment of the present invention, the negative electrode of the dye-sensitized solar cell according to the present invention is a nano-dioxide for a dye-sensitized solar cell comprising a polyvinyl alcohol aqueous solution and nano titanium dioxide powder on the transparent conductive oxide layer on a transparent glass substrate Titanium paste may be applied by a doctor blade method or the like and heat treated to form a nanooxide layer, followed by adsorbing a dye.

상기 염료감응 태양전지용 나노이산화티타늄 페이스트로는 카본 블랙을 더 포함하여 제조한 것을 사용하는 것이 광전변환 효율 측면에 있어서 바람직하다(표 1 참조).As the nano-titanium dioxide paste for dye-sensitized solar cells, one prepared by further comprising carbon black is preferable in terms of photoelectric conversion efficiency (see Table 1).

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.

실시예Example 1 One

(1) 폴리비닐알콜(Junsei사)을 15중량%의 농도로 증류수에 녹여 폴리비닐알 콜 수용액을 준비한다. 나노 TiO2 (P-25, Degussa사) 10g과 폴리비닐알콜 수용액 34g을 혼합하여 막자사발로 약 20분 정도 갈아서 나노이산화티타늄 페이스트를 제조하였다. (1) Dissolve polyvinyl alcohol (Junsei) in distilled water at a concentration of 15% by weight to prepare a polyvinyl alcohol aqueous solution. 10 g of nano TiO 2 (P-25, Degussa Co., Ltd.) and 34 g of polyvinyl alcohol aqueous solution were mixed to grind for about 20 minutes using a mortar to prepare a nano titanium dioxide paste.

(2) 불소가 도핑된 틴 옥사이드 투명전도성 산화물층이 형성된 투명 유리 기판을 준비하였다. 상기 기판의 투명전도성 산화물층 상부에 제조된 나노이산화티타늄 페이스트를 닥터블레이드법으로 도포하고, 500 ℃에서 30분 동안 열처리하여, 나노크기의 금속 산화물 간의 접촉 및 충진이 이루어지도록 하여 약 7 ㎛ 두께의 나노 산화물층을 형성시켰다. 이어서, 상기 나노 산화물층의 상부에 이산화티탄을 포함하는 코팅용 조성물을 동일한 방법으로 도포하고, 500 ℃의 온도에서 30분 동안 열처리하여 약 12 ㎛ 두께의 나노 산화물층을 형성시켰다. 0.2 mM의 루테늄 디티오시아네이트 2,2′-비피리딜-4,4′-디카르복실레이트 염료 용액을 제조하였다. 여기에 상기 나노 산화물층이 형성된 기판을 24시간 동안 담지한 후 건조시켜 나노크기의 금속 산화물에 염료를 흡착시켜 음극계 전극을 제조하였다.(2) A transparent glass substrate on which a fluorine-doped tin oxide transparent conductive oxide layer was formed was prepared. The nano-titanium dioxide paste prepared on top of the transparent conductive oxide layer of the substrate was applied by a doctor blade method and heat-treated at 500 ° C. for 30 minutes to allow contact and filling between nano-sized metal oxides to have a thickness of about 7 μm. A nano oxide layer was formed. Subsequently, a coating composition including titanium dioxide was applied to the upper portion of the nano oxide layer by the same method, and heat-treated at a temperature of 500 ° C. for 30 minutes to form a nano oxide layer having a thickness of about 12 μm. A 0.2 mM ruthenium dithiocyanate 2,2'-bipyridyl-4,4'-dicarboxylate dye solution was prepared. The substrate having the nano oxide layer formed thereon was supported for 24 hours and then dried to adsorb a dye to the nano-sized metal oxide to prepare a cathode electrode.

(3) 불소가 도핑된 틴 옥사이드 투명전도성 산화물층이 형성된 투명 유리 기판을 준비하였다. 상기 기판의 투명전도성 산화물층 상부에 육염화백금산(H2PtCl6)이 녹아있는 2-프로판올 용액을 떨어뜨린 후, 450 ℃에서 30분 동안 열처리하여 백금층을 형성시켜 상대전극을 제조하였다. (3) A transparent glass substrate on which a fluorine-doped tin oxide transparent conductive oxide layer was formed was prepared. A counter electrode was prepared by dropping a 2-propanol solution in which platinum hexachloride (H 2 PtCl 6 ) was dissolved on the transparent conductive oxide layer of the substrate, followed by heat treatment at 450 ° C. for 30 minutes.

(4) 제조된 음극계 전극의 나노 산화물층과 상대 전극의 백금층이 서로 대향하도록 한 후, SURLYN(Du Pont사 제조)으로 이루어지는 약 60 ㎛ 두께의 열가소성 고분자층을 형성한 후, 130 ℃의 오븐에 넣어 2분 동안 유지하여 두 전극을 부착하여 밀봉하였다. 다음으로, 음극계 전극과 상대 전극을 관통하는 미세 홀을 형성하고 이 홀을 통해 두 전극 사이의 공간에 전해질 용액을 주입한 다음, 다시 홀의 외부를 접착제로 밀봉하였다. 여기서, 전해질 용액은 3-메톡시프로피온니트릴(3-Methoxypropionitrile) 용매에 0.1M LiI, 0.05M I2, 0.5M 4-터트-부틸피리딘4-tert-butylpyridine)과 이온성 액체인 0.6M 1,2-디메틸-3-프로필이미다졸리움 아이오다이드(1,2-Dimethyl-3-propylimidazolium iodide)를 녹여서 제조하였다.(4) After the nano-oxide layer of the prepared cathode electrode and the platinum layer of the counter electrode face each other, a thermoplastic polymer layer having a thickness of about 60 µm made of SURLYN (manufactured by Du Pont) is formed, and then Placed in an oven and held for 2 minutes, the two electrodes were attached and sealed. Next, fine holes penetrating the cathode electrode and the counter electrode were formed, an electrolyte solution was injected into the space between the two electrodes through the holes, and then the outside of the hole was sealed with an adhesive. Here, the electrolyte solution is 0.1M LiI, 0.05M I2, 0.5M 4-tert-butylpyridine 4-tert-butylpyridine in 3-Methoxypropionitrile solvent and 0.6M 1,2 as an ionic liquid. -Dimethyl-3-propylimidazolium iodide (1,2-Dimethyl-3-propylimidazolium iodide) was prepared by dissolving.

실시예Example 2 2

폴리비닐알콜(Junsei사)을 15중량%의 농도로 증류수에 녹여 폴리비닐알콜 수용액을 준비한다. 나노 TiO2 (P-25, Degussa사) 10g과 폴리비닐알콜 수용액 34g을 혼합하여 막자사발로 약 20분 정도 간 후 아세틸렌 블랙 0.028g을 추가하여 약 20분 정도 더 갈아주어 나노이산화티타늄 페이스트를 제조하였다. 음극계 전극 제조 시에, 위에서 제조된 나노이산화티타늄 페이스트를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Polyvinyl alcohol (Junsei) was dissolved in distilled water at a concentration of 15% by weight to prepare a polyvinyl alcohol aqueous solution. 10g of nano TiO 2 (P-25, Degussa Co., Ltd.) and 34g of polyvinyl alcohol aqueous solution were mixed for about 20 minutes with a mortar and then added 0.028g of acetylene black for about 20 minutes to prepare a nano titanium dioxide paste. It was. In preparing the negative electrode, the same process as in Example 1 was performed except that the nano-titanium dioxide paste prepared above was used.

비교예Comparative example 1 One

염료감응 태양전지의 음극계 전극 제조 시에, 나노이산화티타늄 페이스트로서 상용화된 쏠라로닉스사의 D-paste를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. In preparing the negative electrode of the dye-sensitized solar cell, it was carried out in the same manner as in Example 1 except that D-paste, which was commercialized as a nano-titanium dioxide paste, was used.

비교예Comparative example 2 2

나노 TiO2 (P-25, Degussa사) 10g과 에탄올 200mL 그리고 t-부틸 벤조산 3g을 혼합하여 초음파 분산기로 잘 분산한 후 에틸 셀룰로오즈 3g 을 추가한 후 35℃에서 60분 동안 초음파 분산기로 분산한다. 여기에 터핀올 15 ml을 추가한 후 회전 증발기를 이용하여 에탄올을 증발시켜 나노이산화티타늄 페이스트를 제조하였다. 염료감응 태양전지의 음극계 전극 제조 시에, 상술한 방법에 따라 제조된 나노이산화티타늄 페이스트를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.10 g of nano TiO 2 (P-25, Degussa Co., Ltd.), 200 mL of ethanol, and 3 g of t-butyl benzoic acid were mixed and dispersed well by using an ultrasonic disperser, and then 3 g of ethyl cellulose was added and then dispersed by an ultrasonic disperser at 35 ° C. for 60 minutes. After adding 15 ml of terpinol, ethanol was evaporated using a rotary evaporator to prepare a nano titanium dioxide paste. In preparing the negative electrode of the dye-sensitized solar cell, it was carried out in the same manner as in Example 1 except that the nano-titanium dioxide paste prepared according to the method described above was used.

비교예Comparative example 3 3

에틸렌글리콜 29.8g을 60℃로 가열한다. 가열된 에틸렌글리콜에 티타늄이소프로폭사이드 5.68g과 시트릭산 23.088g을 넣고 90℃까지 가열하여 혼합용액이 투명해 질 때까지 저어준다. 투명해진 혼합용액을 상온으로 냉각시킨 후 나노 TiO2 (P-25, Degussa사) 11.186g을 넣고 막자사발로 옮겨 1시간 정도 잘 갈아주어 나노이산화티타늄 페이스트를 제조하였다. 음극계 전극 제조 시에, 이와 같이 제조된 나노이산화티타늄 페이스트를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. 29.8 g of ethylene glycol are heated to 60 ° C. 5.68 g of titanium isopropoxide and 23.088 g of citric acid are added to the heated ethylene glycol, and the mixture is heated to 90 ° C. and stirred until the mixed solution becomes transparent. The transparent mixed solution was cooled to room temperature, and then 11.186 g of nano TiO 2 (P-25, Degussa Co., Ltd.) was transferred to a mortar and changed well for about 1 hour to prepare a nano titanium dioxide paste. In preparing the negative electrode, the same process as in Example 1 was carried out except that the nano-titanium dioxide paste thus prepared was used.

시험예Test Example

상기 실시예 1~2 및 비교예 1~3에서 제조한 염료감응 태양전지의 광전변환 효율을 평가하기 위하여 하기와 같은 방법으로 광전압 및 광전류를 측정하여 광전기적 특성을 관찰하고, 이를 통하여 얻어진 전류밀도(Isc), 전압(Voc), 및 충진계수(fillfactor, ff)를 이용하여 광전변환 효율(ηe)을 하기 수학식 1로 계산하였다. In order to evaluate the photoelectric conversion efficiency of the dye-sensitized solar cells manufactured in Examples 1 to 2 and Comparative Examples 1 to 3, the photovoltaic characteristics were observed by measuring the optical voltage and the photocurrent in the following manner, and the current obtained through the same. Photoelectric conversion efficiency (η e ) was calculated by Equation 1 using the density (I sc ), the voltage (V oc ), and the fill factor (ff).

이때, 광원으로는 제논 램프(Xenon lamp, Oriel)를 사용하였으며, 상기 제논 램프의 태양조건(AM 1.5)은 표준 태양전지를 사용하여 보정하였다.At this time, Xenon lamp (Oriel) was used as the light source, and the solar condition (AM 1.5) of the xenon lamp was corrected using a standard solar cell.

ηe = (Voc × Isc × ff) / (Pine)η e = (V oc × I sc × ff) / (P ine )

상기 수학식 1에서, (Pine)는 100 ㎽/㎠(1 sun)을 나타낸다. In Equation 1, (P ine ) represents 100 ㎽ / ㎠ (1 sun).

상기와 같이 측정된 값들을 하기 표 1에 나타내었다. The values measured as above are shown in Table 1 below.

구분division 전류밀도(㎃/cm2)Current density (㎃ / cm 2 ) 전압(V)Voltage (V) 충진계수Fill factor 광전변환 효율(%)Photoelectric conversion efficiency (%) 실시예 1Example 1 11.811.8 0.720.72 0.660.66 5.615.61 실시예 2Example 2 11.411.4 0.750.75 0.680.68 5.825.82 비교예 1Comparative Example 1 12.212.2 0.750.75 0.600.60 5.495.49 비교예 2Comparative Example 2 8.08.0 0.790.79 0.670.67 4.234.23 비교예 3Comparative Example 3 9.49.4 0.770.77 0.660.66 4.774.77

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 실시예 2에 의해 제조된 나노이산화티타늄 페이스트를 이용한 음극계 전극을 포함하는 염료감응 태양전지는 종래 사용되었던 D-paste, 에틸셀룰로오즈와 터핀올을 사용한 페이스트, 그리고 페치니 방법에 의한 페이스트를 이용한 음극계 전극을 포함하는 염료감응 태양전지와 비교하여 우수한 광전변환 효율을 가지는 것을 확인할 수 있었으며, 실시예 1의 나노이산화티타늄 페이스트를 사용한 염료감응 태양전지보다 카본 블랙을 첨가한 실시예 2의 나노이산화티타늄 페이스트를 사용한 염료감응 태양전지가 광전변환 효율 측면에 있어 보다 우수한 것을 알 수 있다.As shown in Table 1, the dye-sensitized solar cell comprising a cathode-type electrode using the nano-titanium dioxide paste prepared in Example 1 and Example 2 according to the present invention and D-paste, ethyl cellulose Compared with the dye-sensitized solar cell including a paste using a terpinol, and a cathode electrode using a paste by the Pechin method, it was confirmed that the photoelectric conversion efficiency was excellent, and the dye using the nano titanium dioxide paste of Example 1 was used. It can be seen that the dye-sensitized solar cell using the nano-titanium dioxide paste of Example 2 in which carbon black was added to the sensitized solar cell is superior in terms of photoelectric conversion efficiency.

도 1은 본 발명의 일 실시형태에 따른 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조과정을 나타내는 흐름도이다.1 is a flow chart showing a manufacturing process of the nano-titanium dioxide paste for dye-sensitized solar cells according to an embodiment of the present invention.

도 2는 염료감응 태양전지의 일반적인 구조를 나타낸 단면도이다.2 is a cross-sectional view showing a general structure of a dye-sensitized solar cell.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100 : 음극계 전극 110, 210 : 투명기판 100: cathode electrode 110, 210: transparent substrate

120,220 : 투명전도성 산화물층 130 : 나노 산화물층 120,220: transparent conductive oxide layer 130: nano oxide layer

200 : 양극계 전극 230 : 백금층 200: anode electrode 230: platinum layer

300 : 액체 전해액 400 : 열가소성 고분자층300: liquid electrolyte 400: thermoplastic polymer layer

Claims (16)

폴리비닐알콜을 물에 녹여 폴리비닐알콜 수용액을 제조하는 단계; 및 상기 폴리비닐알콜 수용액에 나노이산화티타늄 분말을 혼합하여 페이스트를 제조하는 단계를 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법.Dissolving polyvinyl alcohol in water to prepare a polyvinyl alcohol aqueous solution; And preparing a paste by mixing nano titanium dioxide powder with the polyvinyl alcohol aqueous solution. 제1항에 있어서,The method of claim 1, 상기 염료감응 태양전지용 나노이산화티타늄 페이스트에 카본 블랙을 첨가하는 단계를 더 포함하는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법.The method of manufacturing a nano titanium dioxide paste for dye-sensitized solar cells further comprising the step of adding carbon black to the nano-titanium dioxide paste for dye-sensitized solar cells. 제1항에 있어서,The method of claim 1, 상기 폴리비닐알콜 수용액은 폴리비닐알콜 10 내지 30 중량% 및 물 90 내지 70 중량%를 혼합하여 제조되는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법.The polyvinyl alcohol aqueous solution is prepared by mixing 10 to 30% by weight of polyvinyl alcohol and 90 to 70% by weight of water. 제1항에 있어서,The method of claim 1, 상기 나노이산화티타늄 분말은 상기 폴리비닐알콜 수용액 100 중량부에 대하여 20 내지 60 중량부로 혼합되는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법.The nano-titanium dioxide powder is mixed with 20 to 60 parts by weight based on 100 parts by weight of the polyvinyl alcohol aqueous solution. 제2항에 있어서,The method of claim 2, 상기 염료감응 태양전지용 나노이산화티타늄 페이스트 100 중량부에 대하여 카본 블랙은 0.1 내지 10 중량부로 첨가되는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법.Carbon black is added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the nano-titanium dioxide paste for dye-sensitized solar cells. 제2항에 있어서,The method of claim 2, 상기 카본 블랙은 아세틸렌 블랙인 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트의 제조방법.The carbon black is an acetylene black method for producing a nano-titanium dioxide paste for dye-sensitized solar cells. 폴리비닐알콜 수용액 및 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트.Nano titanium dioxide paste for dye-sensitized solar cells comprising a polyvinyl alcohol aqueous solution and nano titanium dioxide powder. 제7항에 있어서,The method of claim 7, wherein 상기 염료감응 태양전지용 나노이산화티타늄 페이스트는 카본 블랙을 더 포함하는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트.The nano-titanium dioxide paste for dye-sensitized solar cells nano-titanium dioxide paste for dye-sensitized solar cells further comprising carbon black. 제7항에 있어서,The method of claim 7, wherein 상기 폴리비닐알콜 수용액은 폴리비닐알콜 10 내지 30 중량% 및 물 90 내지 70 중량%를 혼합하여 제조되는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트.The polyvinyl alcohol aqueous solution is a nano titanium dioxide paste for dye-sensitized solar cells, characterized in that the polyvinyl alcohol is prepared by mixing 10 to 30% by weight and water to 90 to 70% by weight. 제7항에 있어서,The method of claim 7, wherein 상기 나노이산화티타늄 분말은 상기 폴리비닐알콜 수용액 100 중량부에 대하여 20 내지 60 중량부로 혼합되는 것을 특징으로 하는 염료감응 태양전지용 나노이산화티타늄 페이스트.The nano titanium dioxide powder is nano titanium dioxide paste for dye-sensitized solar cells, characterized in that 20 to 60 parts by weight based on 100 parts by weight of the polyvinyl alcohol aqueous solution. 제8항에 있어서,The method of claim 8, 상기 염료감응 태양전지용 나노이산화티타늄 페이스트 100 중량부에 대하여 카본 블랙은 0.1 내지 10 중량부로 첨가되는 것을 특징으로 하는 염료감응 태양전 지용 나노이산화티타늄 페이스트.Carbon titanium is added to 0.1 to 10 parts by weight based on 100 parts by weight of the nano-titanium dioxide paste for dye-sensitized solar cells nano titanium dioxide paste for dye-sensitized solar cells. 음극계 전극, 양극계 전극 및 전해질을 포함하는 염료감응 태양전지로서,A dye-sensitized solar cell comprising a cathode electrode, an anode electrode, and an electrolyte, 상기 음극계 전극의 투명기판 상에 형성되는 나노산화물층은, 폴리비닐알콜 수용액 및 나노이산화티타늄 분말을 포함하는 염료감응 태양전지용 나노이산화티타늄 페이스트를 도포한 후 염료를 흡착시켜 제조된 것임을 특징으로 하는 염료감응 태양전지.The nano-oxide layer formed on the transparent substrate of the cathode electrode, characterized in that prepared by applying a dye and then adsorb the dye after applying a titanium dioxide paste for dye-sensitized solar cells containing a polyvinyl alcohol aqueous solution and nano titanium dioxide powder Dye-Sensitized Solar Cell. 제12항에 있어서,The method of claim 12, 상기 염료감응 태양전지용 나노이산화티타늄 페이스트는 카본 블랙을 더 포함하는 것을 특징으로 하는 염료감응 태양전지.The dye-sensitized solar cell nano-titanium dioxide paste further comprises carbon black. 제12항에 있어서,The method of claim 12, 상기 폴리비닐알콜 수용액은 폴리비닐알콜 10 내지 30 중량% 및 물 90 내지 70 중량%를 혼합하여 제조되는 것을 특징으로 하는 염료감응 태양전지.The polyvinyl alcohol aqueous solution is a dye-sensitized solar cell, characterized in that prepared by mixing 10 to 30% by weight of polyvinyl alcohol and 90 to 70% by weight of water. 제12항에 있어서,The method of claim 12, 상기 나노이산화티타늄 분말은 상기 폴리비닐알콜 수용액 100 중량부에 대하여 20 내지 60 중량부로 혼합되는 것을 특징으로 하는 염료감응 태양전지.The nano-titanium dioxide powder is a dye-sensitized solar cell, characterized in that 20 to 60 parts by weight based on 100 parts by weight of the polyvinyl alcohol aqueous solution. 제13항에 있어서,The method of claim 13, 상기 염료감응 태양전지용 나노이산화티타늄 페이스트 100 중량부에 대하여 카본 블랙은 0.1 내지 10 중량부로 첨가되는 것을 특징으로 하는 염료감응 태양전지.Dye-sensitized solar cell, characterized in that carbon black is added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the nano-titanium dioxide paste for dye-sensitized solar cells.
KR1020090063050A 2009-07-10 2009-07-10 Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same KR20110005472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090063050A KR20110005472A (en) 2009-07-10 2009-07-10 Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090063050A KR20110005472A (en) 2009-07-10 2009-07-10 Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same

Publications (1)

Publication Number Publication Date
KR20110005472A true KR20110005472A (en) 2011-01-18

Family

ID=43612628

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090063050A KR20110005472A (en) 2009-07-10 2009-07-10 Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same

Country Status (1)

Country Link
KR (1) KR20110005472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321484B1 (en) * 2011-08-04 2013-10-28 주식회사 엔에스 크리에이션 Electrolyte and Stacked Electrode Body for Water Generator and Manufacturing Method of the Same, and Water Generator Having the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321484B1 (en) * 2011-08-04 2013-10-28 주식회사 엔에스 크리에이션 Electrolyte and Stacked Electrode Body for Water Generator and Manufacturing Method of the Same, and Water Generator Having the Same

Similar Documents

Publication Publication Date Title
Calogero et al. A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells
Tang et al. A microporous platinum counter electrode used in dye-sensitized solar cells
KR20070091294A (en) Counter electrode for photoelectric converter and photoelectric converter
Huang et al. A Pt-free pristine monolithic carbon aerogel counter electrode for dye-sensitized solar cells: up to 20% under dim light illumination
JP2010535397A (en) Porous film manufacturing method and dye-sensitized solar cell using the same
Peng et al. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte
Cheng et al. Dye-sensitized solar cells based on hydroquinone/benzoquinone as bio-inspired redox couple with different counter electrodes
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
Park et al. Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells
KR101088675B1 (en) Electrolyte for dye-sensitized solarcell comprising pyridinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR100846156B1 (en) The preparation method of working electrode using carbon particles and dye-sensitive solar cell module using the same
KR20090123197A (en) Preparation method of titanium dioxide powder doped with erbium ion and ytterbium ion and its application to dye-sensitized solar cell as scattering layer
KR100416502B1 (en) Dye-sensitized solar cells including titanium silicalite-2
KR101044338B1 (en) Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof
KR101131055B1 (en) Dye sensitized solar cell comprising counter electrode having mesoporous carbon electrode deposited on transparent substrate and preparation method thereof
KR20080109502A (en) Sandwich type high performance dye-sensitized solar cell
KR20110005472A (en) Nano titanium dioxide paste for dye-sensitized solarcell, preparation method thereof and dye-sensitized solarcell prepared by using the same
KR101417646B1 (en) Dye sensitized solar cell and its manufacturing method
Chen et al. Membrane-based electrolyte sheets for facile fabrication of flexible dye-sensitized solar cells
KR101623585B1 (en) Dye-Sensitized Solar Cells And Manufacturing Method For Thereof
KR101170818B1 (en) Photo-electrode of dye-sensitized solar cell And Method for producing of the photo-electrode of dye-sensitized solar cell
KR20130019849A (en) Dye-sensitized solarcell
KR101381103B1 (en) Preparation method of porous polymer based solid electrolyte and dye-sensitized solar cells employing the same
KR101357053B1 (en) Hierarchically structured titanium dioxide powder manufacturing method and dye-sensitized solar cell manufacturing method using the same
KR20110038748A (en) Photoelectrode of dye-sensitized solar cell containing titanium oxide nanofiber and method for manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application