KR20110000400A - Steel sheet having excellent low yield ratio property, and method for producing the same - Google Patents

Steel sheet having excellent low yield ratio property, and method for producing the same Download PDF

Info

Publication number
KR20110000400A
KR20110000400A KR1020090057867A KR20090057867A KR20110000400A KR 20110000400 A KR20110000400 A KR 20110000400A KR 1020090057867 A KR1020090057867 A KR 1020090057867A KR 20090057867 A KR20090057867 A KR 20090057867A KR 20110000400 A KR20110000400 A KR 20110000400A
Authority
KR
South Korea
Prior art keywords
steel sheet
strength
less
ferrite
martensite
Prior art date
Application number
KR1020090057867A
Other languages
Korean (ko)
Other versions
KR101149117B1 (en
Inventor
박진성
박형상
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020090057867A priority Critical patent/KR101149117B1/en
Publication of KR20110000400A publication Critical patent/KR20110000400A/en
Application granted granted Critical
Publication of KR101149117B1 publication Critical patent/KR101149117B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

PURPOSE: A steel sheet having excellent low yield ratio property and a manufacturing method thereof are provided to improve the strength of a steel sheet by controlling the contents of Al, Si, and V. CONSTITUTION: A steel sheet having excellent low yield ratio property comprises C 004~015 weight%, Si 0~02 weight% or less, Mn 18~25 weight%, P 0~0015 weight% or less, S 0~0005 weight% or less, Al 0~020 weight% or less, Mo 001~005 weight%, V 001~005 weight%, N 0~60 ppm or less, and Fe and inevitable impurities of the rest amount. The micro-structure is composed of including ferrite 70~95% and martensite 5~30%.

Description

저항복비 특성이 우수한 고강도 강판 및 그 제조방법{Steel sheet having excellent low yield ratio property, and method for producing the same}TECHNICAL FIELD [0001] The present invention relates to a high strength steel sheet having excellent resistance to abrasion resistance and a manufacturing method thereof,

본 발명은 저 항복비 특성이 우수한 고강도 강판 및 그 제조방법에 관한 것으로, 특히 프레스 성형성이 우수하고, 490~780MPa급의 인장강도를 갖는 저항복비 특성이 우수한 고강도 강판 및 그 제조방법에 관한 것이다. The present invention relates to a high-strength steel sheet excellent in low-yield ratio characteristics and a method for producing the same, and more particularly, to a high-strength steel sheet excellent in press formability and excellent in resistance to bending characteristic having a tensile strength of 490 to 780 MPa .

자동차 부품의 대부분은 프레스가공에 의해 성형되기 때문에 우수한 프레스 가공성이 요구되는 실정이며, 특히 최근에는 자동차의 디자인이 복잡해지고 소비자들의 욕구가 다양화됨에 따라 고강도이면서도 도금성과 가공성이 우수한 강을 요구하고 있다. Since most of automobile parts are formed by press working, excellent press workability is required. Especially, in recent years, automobile design has become complicated and consumers' desires are diversified, so a steel having high strength and excellent plating processability is required .

그 예로, 멤버류, 필라류, 범퍼보강재 등 차량 충돌시 높은 에너지 흡수능이 요구되는 부품에는 복합조직(CP : Complex Phase)강을 이용한 고강도 강판이 사용되고 있다. For example, high-strength steel plates using composite structure (CP) steels are used for parts that require high energy absorption performance in the event of a vehicle collision such as members, pillars, and bumper reinforcements.

복합조직강은 마르텐사이트와 페라이트의 분율을 최적화하여 인장강도와 항복강도를 확보하며, 이러한 조직 분율의 최적화를 위해 소입성 원소인 Mn, Cr, Mo, B가 첨가된다. In order to optimize the fraction of martensite and ferrite, tensile strength and yield strength are obtained. In addition, Mn, Cr, Mo and B, which are minerals, are added.

하지만 복합조직강은 합금화 용융아연도금 강판으로 제조시 도금직전과 직후에 존재하는 과시효와 합금화 열처리시 이상역에서의 오스테나이트가 페라이트, 펄라이트(시멘타이트), 베이나이트로 변태되므로 적정 마르텐사이트의 확보가 어려워 항복점 연신 및 강도 저하의 문제가 발생한다.However, because the austenite is transformed into ferrite, pearlite (cementite) and bainite in the anomalous zone during the overshoot and the alloying heat treatment which are present immediately before and after the plating in the manufacture of the galvannealed steel sheet, There arises a problem of elongation at yield point and lowering of strength.

따라서 최근에는 Mn, Mo을 다량 첨가하여 오스테나이트가 페라이트, 펄라이트 및 베이나이트로 변태되는 것을 억제함으로써 마르텐사이트 분율을 확보하고 있다. Therefore, in recent years, a large amount of Mn and Mo have been added to suppress the transformation of austenite into ferrite, pearlite and bainite, thereby securing the martensite fraction.

그러나 Mn, Mo의 과다 사용은 저항복비를 제한하는 문제점이 있어 프레스 가공시 스프링백 현상에 의해 부품 뒤틀림이 발생하는 문제점이 있다. However, excessive use of Mn and Mo has a problem of restricting the resistance ratio, which causes a problem of component twisting due to springback phenomenon during press working.

또한, Mn의 과다 첨가는 연주시 중심편석 및 수지상 편석에 의한 최종제품에 Mn밴드와 같은 줄무늬 띠를 형성하여 성형성을 저해하고 용융 아연도금시 강판 표면에 망간산화물(Mn2SiO4 등)을 형성하여 용융도금 특성을 저하시키게 된다. In addition, over-addition of Mn inhibits formability by forming streaks such as Mn bands in the final product due to center segregation and resin segregation at the time of playing, and manganese oxide (Mn 2 SiO 4, etc.) So that the hot dip galvanizing property is deteriorated.

또한 Mo의 과다 첨가는 강도확보는 가능하나 Mo가 고가 원소이므로 제조원가를 상승시켜 상업적 생산이 어려워지는 문제점이 있다. In addition, over-addition of Mo can secure the strength, but since Mo is an expensive element, the manufacturing cost is increased and commercial production becomes difficult.

본 발명은 상기한 제반 문제점을 감안하여 이를 해결하고자 제안된 것으로, 그 목적은 490~780MPa 이상의 강도를 가지면서 프레스 성형성이 우수하도록 한 저 항복비 특성이 우수한 고강도 강판 및 그 제조방법을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a high strength steel sheet having a strength of 490 to 780 MPa or more and excellent press formability, There is.

상기한 목적을 달성하기 위한 본 발명은 C: 0.04~0.15wt%, Si: 0초과 0.2wt% 이하, Mn: 1.8~2.5wt%, P: 0초과 0.015wt% 이하, S: 0초과 0.005wt% 이하, Al: 0초과 0.20wt% 이하, Mo: 0.01~0.05wt%, V: 0.01~0.05wt%, N: 0초과 60ppm 이하. 잔부 Fe 및 기타 불가피한 불순물의 합금조성을 가지고, In order to achieve the above-mentioned object, the present invention provides a ferritic stainless steel comprising 0.04 to 0.15 wt% of C, 0.2 wt% or more of Si, 0.2 wt% or less of Mn, 1.8 to 2.5 wt% of Mn, Mo: 0.01 to 0.05 wt%, V: 0.01 to 0.05 wt%, N: more than 0 and not more than 60 ppm, Al: more than 0 and not more than 0.20 wt% The balance Fe and other unavoidable impurities,

미세조직은 페라이트와 마르텐사이트를 포함한 2상으로 구성되는 것을 특징으로 한다.The microstructure is characterized by being composed of two phases including ferrite and martensite.

상기 미세조직은 페라이트 70~95%, 마르텐사이트 5~30%의 체적 분율을 갖는다.The microstructure has a volume fraction of 70 to 95% of ferrite and 5 to 30% of martensite.

본 발명의 다른 특징적인 요소인 제조방법은, C: 0.04~0.15wt%, Si: 0초과 0.2wt% 이하, Mn: 1.8~2.5wt%, P: 0초과 0.015wt% 이하, S: 0초과 0.005wt% 이하, Al: 0초과 0.20wt% 이하, Mo: 0.01~0.05wt%, V: 0.01~0.05wt%, N: 0초과 60ppm 이하. 잔부 Fe 및 기타 불가피한 불순물의 합금조성을 갖는 강슬라브를 A manufacturing method which is another characteristic element of the present invention is a manufacturing method which comprises: 0.04 to 0.15 wt% of C, 0.2 wt% or more of Si, 0.2 to 2.0 wt% of Mn, 0.015 wt% or less of P, Al: more than 0 and not more than 0.20 wt%, Mo: 0.01 to 0.05 wt%, V: 0.01 to 0.05 wt%, N: more than 0 and not more than 60 ppm. A steel slab having an alloy composition of the remainder Fe and other unavoidable impurities

1150~1250℃에서 균질화 처리하고, Ar3온도 이상에서 열간압연을 마무리 하여 550~650℃에서 권취하고, 냉간압연하고 Ar1~Ar3의 온도범위에서 5~120초간 유 지한 후 10~50℃/sec의 냉각속도로 400~500℃까지 냉각하여 소둔한 후 용융아연도금처리하는 것을 특징으로 한다.Rolled at 550 to 650 占 폚, cold rolled, maintained in a temperature range of Ar1 to Ar3 for 5 to 120 seconds, and then heat-treated at a temperature of 10 to 50 占 폚 / sec Cooled to 400 to 500 ° C at a cooling rate, and then subjected to hot-dip galvanizing treatment.

본 발명은 490~780MPa의 인장강도를 가지면서 프레스 성형성이 우수한 고강도 강판 및 그 제조방법에 관한 것인 바, 이에 따르면 본 발명은 Mn,Mo의 첨가량을 조절하고, Al,Si 및 V의 투입량을 조절하여 강도를 만족하면서 저 항복비 특성으로 인한 프레스 성형성을 향상시킬 수 있는 유용한 효과를 갖는다.The present invention relates to a high strength steel sheet having a tensile strength of 490 to 780 MPa and excellent in press formability and a method of manufacturing the same. According to the present invention, the amount of Mn and Mo is controlled, So that it is possible to improve the press formability due to the low yield ratio characteristics while satisfying the strength.

이하, 본 발명에 의한 저항복비 특성이 우수한 강판 및 그 제조방법의 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of a steel sheet and a method of manufacturing the steel sheet having excellent resistance to brittle characteristics according to the present invention will be described in detail.

본 발명의 강판은 C: 0.04~0.15wt%, Si: 0초과 0.2wt% 이하, Mn: 1.8~2.5wt%, P: 0초과 0.015wt% 이하, S: 0초과 0.005wt% 이하, Al: 0초과 0.2wt% 이하, Mo: 0.01~0.05wt%, V: 0.01~0.05wt%, N: 0초과 60ppm 이하. 잔부 Fe 및 기타 불가피한 불순물의 합금조성을 갖고, 미세조직은 페라이트와 마르텐사이트를 포함한 2상으로 구성된다. The steel sheet of the present invention contains 0.04 to 0.15 wt% of C, more than 0.2 wt% of Si, 1.8 to 2.5 wt% of Mn, more than 0 to 0.015 wt% of P, up to 0.005 wt% of S, 0 to 0.2 wt%, Mo: 0.01 to 0.05 wt%, V: 0.01 to 0.05 wt%, N: more than 0 and 60 ppm or less. The balance Fe and other unavoidable impurities, and the microstructure is composed of two phases including ferrite and martensite.

구체적으로, 본 발명은 목표 강도를 확보하도록 Mn, Mo의 함량을 조절하고, 바나듐을 첨가하여 소둔 공정중 페라이트 내 고용된 탄소를 바나듐 석출물로 입내 석출시켜 인장강도를 증가시키고 항복 강도를 낮춰 저항복 특성이 확보되도록 한다. Specifically, in the present invention, the content of Mn and Mo is adjusted so as to secure the target strength, vanadium is added, carbon deposited in the ferrite is precipitated in the ferrite during the annealing process to increase the tensile strength, So that the characteristics are secured.

이하, 본 발명의 합금원소들의 기능 및 함량의 한정 이유에 대해 설명한다. Hereinafter, reasons for limiting the function and content of the alloying elements of the present invention will be described.

C: 0.04~0.15wt%C: 0.04 to 0.15 wt%

C는 강도 향상이 목적이다. C는 0.04wt% 미만으로 첨가되면 강도가 저하되고 오스테나이트가 페라이트로 변태되어 마르텐사이트 분율확보가 어렵다. 또한 0.15wt%를 초과하여 첨가되면 용접성이 저하되고 강도 증가에 따른 연성 및 스트레치-플렌지성이 저하된다. C is for the purpose of strength improvement. When C is added in an amount less than 0.04 wt%, the strength is lowered and the austenite is transformed into ferrite, making it difficult to secure a martensite fraction. If it is added in an amount exceeding 0.15 wt%, the weldability is deteriorated and the ductility and stretch-flangeability with the increase in strength are lowered.

실리콘(Si): 0초과 0.2wt% 이하Silicon (Si): more than 0 and not more than 0.2 wt%

Si는 고용강화 원소로서 강의 청정화에 기여하고, 오스테나이트 내의 탄소 농화를 촉진한다. 또한, Si는 적정 Mn이 첨가되는 강에 첨가되면 용접시 용융금속의 유동성을 향상시켜 용접부내 개재물 잔류를 최대한 감소시키고 항복비와 강도 및 연성의 균형을 저해하지 않으면서 강도를 향상시킨다. Si is a solid solution strengthening element which contributes to the purification of steel and promotes carbon enrichment in austenite. In addition, Si is added to the steel to which the proper Mn is added to improve the flowability of the molten metal during welding, thereby minimizing the inclusion residue in the weld and improving the strength without hindering the balance between yield ratio and strength and ductility.

또한, Si는 페라이트내 탄소의 확산 속도를 느리게 하기 때문에 탄화물 성장을 억제하며 페라이트를 안정화하여 연신율을 향상시킨다. In addition, Si slows the diffusion rate of carbon in ferrite, thereby suppressing carbide growth and stabilizing ferrite to improve elongation.

Si는 0.2wt% 이하를 초과하여 첨가되면 도금성 및 적스케일로 인한 표면 결함을 발생시킬 뿐 아니라 용접성을 저하시키는 문제점을 발생시키므로, 0,2wt% 이하의 범위를 갖는 것이 바람직하다. When Si is added in an amount exceeding 0.2 wt%, surface defects due to plating and scale are generated, and weldability is deteriorated. Therefore, the Si content is preferably in the range of 0.2 wt% or less.

망간(Mn): 1.8~2.5wt%Manganese (Mn): 1.8 to 2.5 wt%

Mn은 고용강화 원소로 첨가된다. Mn은 오스테나이트를 안정화하여 2상역 소둔 온도를 저하시키며 낮은 임계냉각속도에서도 마르텐사이트가 생성되기 쉽게 한 다. Mn is added as a solid solution strengthening element. Mn stabilizes the austenite to lower the bimetallic annealing temperature, and martensite is easily produced even at a low critical cooling rate.

Mn은 1.8wt% 미만 첨가시 소둔 열처리 구간 중 오스테나이트가 베이나이트 및 펄라이트로 변태되어 강도가 저하되고 항복강도가 증가된다. 그리고 Mn은 2.5wt%를 초과하여 첨가되면 경화능이 증가하여 가공성이 열악해지고 슬라브 주조시 두께 중심부에서 망간밴드가 발달하여 굽힘 가공성이 저하된다. When Mn is added in an amount less than 1.8 wt%, the austenite is transformed into bainite and pearlite in the annealing heat treatment section, the strength is lowered and the yield strength is increased. When Mn is added in an amount exceeding 2.5 wt%, the hardenability is increased and the workability is poor, and the manganese band develops at the center of the thickness during the slab casting, thereby lowering the bending workability.

인(P): 0초과 0.015wt% 이하Phosphorus (P): more than 0 and not more than 0.015 wt%

P는 고용강화 효과가 높으면서 연신율값의 저하가 적은 원소로 고강도를 보증한다. P는 탄화물 형성의 억제로 고용 탄소의 증대에 의한 잔류 오스테나이트를 안정화시키는 역할을 한다. P guarantees a high strength with an element having a high solid solution strengthening effect and a small decrease in elongation value. P serves to stabilize the retained austenite due to the increase of the solid carbon by suppressing the formation of carbide.

P는 0.015wt%를 초과하여 첨가하면 가공성을 저하할 뿐 아니라 용접성도 크게 저하된다. When P is added in an amount exceeding 0.015 wt%, not only the workability is lowered but also the weldability is greatly lowered.

황(S): 0초과 0.005wt% 이하Sulfur (S): more than 0 and not more than 0.005 wt%

S는 인성 및 용접성을 저해하고 MnS 비금속 개재물을 증가시켜 강의 가공중 크랙을 발생하며 과다 첨가시 조대한 개재물을 증가시켜 피로특성을 열화하므로 0.005wt% 이하로 제한한다.S inhibits toughness and weldability and increases MnS nonmetallic inclusions, causing cracks during steel working, and excessive additions increase coarse inclusions, deteriorating fatigue characteristics and are limited to less than 0.005 wt%.

알루미늄(Al): 0초과 0.2wt% 이하Aluminum (Al): more than 0 and not more than 0.2 wt%

Al은 주로 탈산제로 사용되는 원소이다. Al은 페라이트 결정립을 안정화하여 연신율을 향상시키며 도금성을 개선한다. Al is an element mainly used as a deoxidizer. Al stabilizes the ferrite grains to improve the elongation and improve the plating ability.

여기서, Al은 알루미늄 탈산 후 용강 내 잔류하는 양을 나타낸 것이다. Al은 0.04wt%을 초과하면 강도가 저하된다. Here, Al represents the amount remaining in the molten steel after aluminum deoxidation. When Al exceeds 0.04 wt%, the strength is lowered.

몰리브덴(Mo): 0.01~0.05wt%Molybdenum (Mo): 0.01 to 0.05 wt%

Mo는 소입성 원소로 첨가되어 마르텐사이트 분율을 확보하여 강도를 향상시킬 수 있는 원소이다. Mo는 0.01wt% 미만이면 마르텐사이트 분율 확보가 어렵고, 0.05wt%를 초과하면 고 망간강의 Mn밴드층 형성 및 MnS개재물 형성을 조장하기 때문에 그 첨가량을 0.05wt%이하로 제한한다.Mo is an element that can be added as an ingot element to secure the martensite fraction and improve the strength. When the Mo content is less than 0.01 wt%, it is difficult to secure the martensite fraction. When the Mo content exceeds 0.05 wt%, the Mn banding layer and the MnS inclusions are promoted in the high manganese steel.

바나듐(V): 0.01~0.05wt%Vanadium (V): 0.01 to 0.05 wt%

V은 페라이트내에서 탄소와 결합, 입내 탄화물을 형성하여 강도를 향상시키고 고용탄소를 저감시켜 항복비를 감소시킨다.V bonds with carbon in the ferrite, forms a grain carbide to improve the strength, and reduces the yield ratio by reducing the solid carbon.

V은 고용탄소를 저감시키기 위하여 0.01wt% 이상 첨가가 필요하며, 0.05wt%를 초과하여 과다 첨가되면 고용 강화에 의하여 항복강도가 증가하기 때문에 그 첨가량을 0.05이하로 제한하는 것이 바람직하다.V is required to be added in an amount of 0.01 wt% or more in order to reduce the amount of solid carbon, and when the amount is over 0.05 wt%, the yield strength is increased by solid solution strengthening.

N: 0초과 60ppm 이하N: more than 0 and not more than 60ppm

N은 AlN 형성으로 결정립을 미세화하나 용융아연도금시 아연 도금층의 합금화 공정에서 냉각시 과포화되어 균일 연신율이 저하되므로 60ppm이하로 제한한다. N is made into fine grains by the formation of AlN, but in the galvannealing process during hot dip galvanizing, it becomes supersaturated upon cooling in the alloying process, and the uniform elongation is lowered, so it is limited to 60ppm or less.

본 발명은 상기 강판의 성분들을 함유하고, 나머지는 실질적으로 철(Fe) 및 불가피한 원소들이며, 원료, 자재, 제조설비 등의 상황에 따라 함유되는 원소로서 0.01%이하의 불가피한 불순물의 미세한 혼입도 허용된다. The present invention includes the elements of the above steel sheet, the rest being substantially iron (Fe) and inevitable elements, and it is possible to allow fine incorporation of unavoidable impurities of 0.01% or less as an element contained according to the conditions of raw materials, materials, do.

그리고, 강판의 스팟 용접성 확보를 위해 탄소당량(Ceq)은 0.24이하로 제한한다. In order to secure the spot weldability of the steel sheet, the carbon equivalent (Ceq) is limited to 0.24 or less.

상기와 같이 조성을 갖는 슬라브는 제강공정을 통해 용강을 얻은 다음에 연속주조공정을 통해 제조되며, 여기서는 가열로를 통해 가열하여 슬라브를 원하는 두께로 압연하는 열간압연, 냉간압연을 거쳐 강판 형태로 제조된 후에, 그 강판의 표면에 용융아연도금 처리하는 아래의 공정을 거치게 된다. The slab having a composition as described above is produced through a continuous casting process after obtaining molten steel through a steelmaking process. Here, the slab is manufactured through a hot-rolling process and a hot-rolling process in which the slab is rolled to a desired thickness, The surface of the steel sheet is subjected to the following steps of hot dip galvanizing.

각 공정은 아래와 같다.  Each process is as follows.

[가열로 공정][Heating furnace process]

상기한 조성을 갖는 슬라브를 주조시 편석된 성분을 재고용하기 위해 1150~1250℃에서 재가열 한다. The slab having the above composition is reheated at 1150 to 1250 占 폚 to recycle the segregated components when casting.

재가열 온도는 1150℃보다 낮으면 편석된 성분이 재고용되지 못하며, 1250℃를 초과하면 오스테나이트 결정립이 조대화되어 강도확보가 어렵다. If the reheating temperature is lower than 1150 ° C, the segregated components can not be reused. If the reheating temperature is higher than 1250 ° C, the austenite grains are coarsened and it is difficult to secure the strength.

이때, 재가열 시간은 1~3시간이 바람직하고 그 이상 유지할 경우 경제적으로 손해를 볼 수가 있고 너무 짧으면 주조시 편석된 성분이 재고용되지 못할 수 있다.In this case, the reheating time is preferably 1 to 3 hours, and if it is maintained for more than 1 hour, it can be economically damaged, and if it is too short, the segregated components may not be reused.

[열간압연 공정][Hot rolling process]

재가열한 슬라브를 오스테나이트 영역인 Ar3온도 이상에서 열간압연을 마무 리 한다. 열간압연을 마무리 한 다음에는 Mn과 Si의 표면농화 및 탄화물의 조대화를 방지하기 위하여 550~650℃에서 권취한다. Finish the reheated slab by hot rolling at a temperature above Ar3, the austenite zone. After the hot rolling is finished, the steel sheet is rolled at 550 to 650 ° C to prevent surface enrichment of Mn and Si and coarsening of carbide.

권취온도는 550℃보다 낮으면 페라이트 대신 펄라이트가 형성되고, 650℃보다 높으면 페라이트 분율확보가 어렵다. If the coiling temperature is lower than 550 ° C, pearlite is formed instead of ferrite. If the coiling temperature is higher than 650 ° C, it is difficult to secure a ferrite content.

열간압연을 마무리 한 다음 권취온도까지는 통상적인 냉각속도인 20~30℃/sec로 냉각한다. 그리고, 열간압연된 강판은 스케일 제거를 위해 산세를 수행하고 오일을 도포하여 산화가 방지하도록 한다. After hot rolling is completed, the steel sheet is cooled to a coiling temperature of 20 to 30 DEG C / sec, which is a normal cooling rate. The hot-rolled steel sheet is pickled to remove scale and coated with oil to prevent oxidation.

[냉간압연 공정][Cold Rolling Process]

강판의 최종 원하는 두께를 얻고 원하는 재질을 얻기 위해 냉간압연 하는 단계로서, 상온에서 50~70%의 압하율로 냉간압연을 실시한다. Cold rolling to achieve the final desired thickness of the steel sheet and cold rolling to obtain the desired material is carried out by cold rolling at a reduction rate of 50 to 70% at room temperature.

[소둔 공정][Annealing Process]

Ar1~Ar3의 온도범위에서 5~120초간 유지한 후 10~50℃/sec의 냉각속도로 400~500℃까지 냉각한다. And maintained at a temperature range of Ar1 to Ar3 for 5 to 120 seconds and then cooled to 400 to 500 DEG C at a cooling rate of 10 to 50 DEG C / sec.

바나듐은 소둔 공정중의 500~700℃의 구간에서 바나듐 카바이드 탄화물이 페라이트 입내에 석출되어 인장강도를 향상시키고 연신율을 향상시키게 된다.The vanadium carbide carbide precipitates in the ferrite grain at 500 to 700 ° C in the annealing process to improve the tensile strength and improve the elongation.

이때, 냉각속도가 너무 느리면 냉각 과정에서 오스테나이트가 페라이트 퍼얼라이트(세멘타이트), 베이나이트로 변태하는 문제가 발생하고, 냉각속도가 너무 빠를 때는 재질 불균일의 문제가 발생한다. At this time, if the cooling rate is too low, the austenite is transformed into ferrite pearlite (cementite) or bainite during the cooling process, and when the cooling rate is too high, the problem of material unevenness occurs.

또한, Ar1~Ar3의 온도범위에서 5초 이상 유지하는 것은 가열 중 오스테나이트상이 충분히 형성되지 않기 때문에 적정량의 마르텐사이트 분율을 얻을 수 없고, 120초 이상 초과할 경우에는 생산성이 떨어지는 문제점이 있다.Further, if the temperature is maintained for 5 seconds or more in the range of Ar1 to Ar3, a sufficient amount of martensite can not be obtained because austenite phase is not sufficiently formed during heating, and if it exceeds 120 seconds, the productivity is lowered.

본 발명의 제조방법을 통해 제조되는 강판의 미세조직은, 페라이트가 70~95%, 마르텐사이트가 5~30%의 체적분율을 갖는다.The microstructure of the steel sheet produced by the production method of the present invention has a volume fraction of 70 to 95% of ferrite and 5 to 30% of martensite.

페라이트가 70% 미만인 경우 연성과 프레스 가공성이 낮아지고, 페라이트가 95% 초과인 경우 강도 확보가 곤란하므로 페라이트 체적분율을 70~95%로 한정한다. When the content of ferrite is less than 70%, the ductility and pressability are lowered. When the content of ferrite exceeds 95%, it is difficult to secure strength, so that the volume fraction of ferrite is limited to 70 to 95%.

마르텐사이트가 5% 미만인 경우 강도 확보가 곤란하고, 마르텐사이트가 30% 초과인 경우 연성 및 프레스 가공성이 낮아지므로 마르텐사이트 체적분율을 5~30%로 한정한다. When the martensite content is less than 5%, it is difficult to secure strength. When the martensite content exceeds 30%, the ductility and press workability are lowered, so that the martensite volume fraction is limited to 5 to 30%.

즉, 본 발명의 강은 Mn, Mo의 함량을 조절하고 V을 첨가하여 항복비를 낮추도록 개선시켰다. That is, the steel of the present invention is improved to control the content of Mn and Mo and to reduce the yield ratio by adding V.

또한, 열간압연 제어기술과 소둔 열처리 온도 제어를 통하여 페라이트와 마르텐사이트의 분율을 조정함으로써, 490~780MPa급의 인장강도와 60% 이하의 항복비가 만족되는 저항복비 특성이 우수한 강판을 얻을 수 있다. Further, by adjusting the fraction of ferrite and martensite through the hot rolling control technique and the annealing heat treatment temperature control, it is possible to obtain a steel sheet excellent in tensile strength in the range of 490 to 780 MPa and yield ratio in the yield ratio of less than 60%.

이하에서는, 상술한 저항복비 특성이 우수한 강판 및 그 제조방법을 실시예와 다른 비교예를 대비하여 설명하기로 한다. Hereinafter, a steel sheet having excellent resistance to bending property and a manufacturing method thereof will be described in comparison with other comparative examples.

표 1은 본 발명의 실시예와 다른 비교예의 성분비를 나타낸 것이다. Table 1 shows the composition ratios of the Examples of the present invention and Comparative Examples.

표 1의 실시예와 비교예를, 1200℃에서 2시간 재가열한 후 890℃(Ar3이상)온도에서 2.8mm로 마무리 열간압연한 다음 580℃로 권취하였다. 산세처리 후 1.2mm로 냉간압연을 실시하고, 냉간압연된 강판을 700~800℃로 소둔 열처리한 후 460℃까지 급냉하고 아연 도금욕에 담근 후 500℃에서 합금화 열처리를 실시하고 냉각하여 기계적 성질을 측정하였다. The examples and comparative examples in Table 1 were reheated at 1,200 DEG C for 2 hours, and then subjected to finish hot rolling at 2.8 mm at a temperature of 890 DEG C (Ar3 or higher) and then rewound at 580 DEG C. [ After the pickling treatment, cold rolling was carried out at a thickness of 1.2 mm, and the cold-rolled steel sheet was annealed at 700 to 800 ° C., then quenched to 460 ° C., immersed in a zinc plating bath, annealed at 500 ° C., Respectively.

표 2는 표 1의 실시예와 비교예의 기계적 성질을 측정한 결과를 나타낸 것이다.Table 2 shows the results of measurement of the mechanical properties of the examples and comparative examples in Table 1. < tb > < TABLE >

(잔부 Fe, 단위:wt%)(The remainder Fe, unit: wt%), 구분
division
화학성분(wt%)Chemical composition (wt%) 비고
Remarks
CC SiSi MnMn PP SS MoMo AlAl VV N(ppm)N (ppm) 1One 0.0580.058 -- 1.81.8 0.0150.015 0.0030.003 0.040.04 0.040.04 -- 6060 비교예Comparative Example 22 0.0590.059 0.150.15 1.81.8 0.0150.015 0.0030.003 0.040.04 0.200.20 -- 6060 비교예Comparative Example 33 0.0570.057 0.140.14 1.81.8 0.0150.015 0.0030.003 0.040.04 0.200.20 0.050.05 5959 실시예Example 44 0.0580.058 0.140.14 1.81.8 0.0150.015 0.0030.003 0.040.04 0.200.20 0.100.10 6161 비교예Comparative Example 55 0.0580.058 -- 2.12.1 0.0140.014 0.0030.003 0.040.04 0.040.04 -- 5858 비교예Comparative Example 66 0.0600.060 0.160.16 2.12.1 0.0150.015 0.0030.003 0.040.04 0.200.20 -- 5959 비교예Comparative Example 77 0.0620.062 -- 2.12.1 0.0140.014 0.0030.003 0.040.04 0.200.20 0.050.05 5858 실시예Example 88 0.0630.063 0.160.16 2.12.1 0.0140.014 0.0030.003 0.040.04 0.200.20 0.100.10 5757 비교예Comparative Example 99 0.0580.058 -- 2.42.4 0.0150.015 0.0030.003 0.040.04 0.040.04 -- 6060 비교예Comparative Example 1010 0.0570.057 0.160.16 2.42.4 0.0140.014 0.0030.003 0.040.04 0.200.20 -- 6161 비교예Comparative Example 1111 0.0610.061 0.150.15 2.42.4 0.0140.014 0.0030.003 0.040.04 0.200.20 0.050.05 5757 실시예Example 1212 0.0610.061 0.150.15 2.42.4 0.0140.014 0.0030.003 0.040.04 0.200.20 0.100.10 5757 비교예Comparative Example

구분
division
열연조건Hot rolling condition 냉연소둔조건Cold annealing condition 기계적 성질Mechanical property 조직특성Organization characteristic 도금특성Plating property 비고Remarks
FDT(℃)FDT (占 폚) CT(℃)CT (° C) AT(℃)AT (占 폚) YSYS TSTS ElHand YRYR Vm(%)Vm (%) 1One 890890 600600 790790 369369 461461 3636 8080 00 양호Good 비교예Comparative Example 22 890890 600600 790790 325325 491491 3333 6666 66 양호Good 비교예Comparative Example 33 890890 600600 790790 300300 515515 3333 5858 66 양호Good 실시예Example 44 890890 600600 790790 325325 520520 3030 6363 66 양호Good 비교예Comparative Example 55 890890 600600 790790 453453 562562 3030 8181 88 양호Good 비교예Comparative Example 66 890890 600600 790790 391391 592592 2828 6666 1212 양호Good 비교예Comparative Example 77 890890 600600 790790 352352 605605 2828 5858 1212 양호Good 실시예Example 88 890890 600600 790790 380380 615615 2626 6262 1212 양호Good 비교예Comparative Example 99 890890 600600 790790 561561 744744 2424 7575 2020 양호Good 비교예Comparative Example 1010 890890 600600 790790 515515 785785 2121 6666 2626 양호Good 비교예Comparative Example 1111 890890 600600 790790 480480 799799 2121 6060 2626 양호Good 실시예Example 1212 890890 600600 790790 500500 805805 1919 6262 2626 양호Good 비교예Comparative Example

[FDT:마무리 열간압연 온도, CT:권취온도, AT:소둔온도, YS:항복강도, TS:인장강도, El:연신율, YR:저항복비 Vm : 마르텐사이트 체적분율]TS: tensile strength, El: elongation ratio, YR: resistance ratio Vm: martensite volume fraction] [0050] The hot-

즉, 본 발명의 발명강인 3,7,11번 실시예의 경우에는 Al, Si를 첨가한 결과 망간 밴드가 억제되어 소둔 공정이후의 마르텐사이트 밴드의 형성을 억제하여 연신율을 향상시킬 수 있으며, V이 첨가됨에 따라 인장강도를 만족하면서 60이하의 저항복비를 형성하게 된다.That is, in the case of the inventive steels 3, 7 and 11 according to the present invention, manganese bands are suppressed as a result of adding Al and Si, so that the formation of martensite bands after annealing can be suppressed and the elongation can be improved. As a result of the addition, the tensile strength is satisfied and a resistance ratio of less than 60 is formed.

또한, V은 소둔공정 중의 500~700℃의 서냉구간에서 바나듐 카바이드 탄화물이 페라이트 입내에 석출됨에 따라 인장강도를 향상시키고 항복강도를 저하시키지만, 바나듐을 0.05wt%를 초과할 경우(비교예 4,8,12)에는 페라이트내 고용 강화되어 저항복비가 60을 초과하게 되고 항복강도가 증가하게 되는 결과를 보이고 있다.In addition, when vanadium carbide carbide is precipitated in the ferrite ingot during the annealing process at 500 to 700 ° C in the annealing step, the tensile strength is improved and the yield strength is lowered. However, when vanadium exceeds 0.05 wt% 8, 12), the ferrite solid solution strengthened, resulting in an increase in the yield strength of the ferrite magnet with the resistance ratio exceeding 60%.

즉, 본 발명의 실시예들은 비교예의 비교강들과 비교해 볼 때 동일한 함량의 Mo과 Mn를 첨가하더라도 Si의 투입량 차이에 따라 망간 밴드의 저감 및 MnS 개재물의 형성을 억제하여 성형성을 향상시킬 수 있음과 아울러, 바나듐의 투입량 조절에 따라 인장강도를 증가시키고 항복강도를 낮춰 저항복비 특성을 얻을 수 있음을 알 수 있다.In other words, in the embodiments of the present invention, compared to the comparative steels of the comparative examples, even when Mo and Mn are added in the same amounts, the reduction of manganese bands and the formation of MnS inclusions are suppressed according to the difference in the amount of Si input, In addition, it can be seen that the tensile strength is increased and the yield strength is lowered by controlling the amount of vanadium input, so that the low resistance characteristic can be obtained.

Claims (3)

C: 0.04~0.15wt%, Si: 0초과 0.2wt% 이하, Mn: 1.8~2.5wt%, P: 0초과 0.015wt% 이하, S: 0초과 0.005wt% 이하, Al: 0초과 0.20wt% 이하, Mo: 0.01~0.05wt%, V: 0.01~0.05wt%, N: 0초과 60ppm 이하. 잔부 Fe 및 기타 불가피한 불순물의 합금조성을 가지고, P: more than 0 and not more than 0.015 wt%, S: more than 0 and not more than 0.005 wt%, Al: more than 0 and not more than 0.20 wt%, C: 0.04 to 0.15 wt% 0.01 to 0.05 wt% of Mo, 0.01 to 0.05 wt% of V, and N: more than 0 and 60 ppm or less. The balance Fe and other unavoidable impurities, 미세조직은 페라이트와 마르텐사이트를 포함한 2상으로 구성되는 것을 특징으로 하는 저 항복비 특성이 우수한 고강도 강판.Wherein the microstructure is composed of two phases including ferrite and martensite. 청구항 1에 있어서, The method according to claim 1, 상기 미세조직은 페라이트 70~95%, 마르텐사이트 5~30%의 체적 분율을 갖는 것을 특징으로 하는 저 항복비 특성이 우수한 고강도 강판.Wherein the microstructure has a volume fraction of 70 to 95% of ferrite and 5 to 30% of martensite. C: 0.04~0.15wt%, Si: 0초과 0.2wt% 이하, Mn: 1.8~2.5wt%, P: 0초과 0.015wt% 이하, S: 0초과 0.005wt% 이하, Al: 0초과 0.20wt% 이하, Mo: 0.01~0.05wt%, V: 0.01~0.05wt%, N: 0초과 60ppm 이하. 잔부 Fe 및 기타 불가피한 불순물의 합금조성을 갖는 강슬라브를 P: more than 0 and not more than 0.015 wt%, S: more than 0 and not more than 0.005 wt%, Al: more than 0 and not more than 0.20 wt%, C: 0.04 to 0.15 wt% 0.01 to 0.05 wt% of Mo, 0.01 to 0.05 wt% of V, and N: more than 0 and 60 ppm or less. A steel slab having an alloy composition of the remainder Fe and other unavoidable impurities 1150~1250℃에서 균질화 처리하고, Ar3온도 이상에서 열간압연을 마무리 하여 550~650℃에서 권취하고, 냉간압연하고 Ar1~Ar3의 온도범위에서 5~120초간 유지한 후 10~50℃/sec의 냉각속도로 400~500℃까지 냉각하여 소둔한 후 용융아연도 금처리하는 것을 특징으로 하는 저항복비 특성이 우수한 고강도 강판의 제조방법. Rolled at 550 to 650 ° C, cold rolled, maintained in a temperature range of Ar1 to Ar3 for 5 to 120 seconds, and then heat-treated at a temperature of 10 to 50 ° C / sec Wherein the steel sheet is cooled to a temperature of 400 to 500 占 폚 at a cooling rate, and is then subjected to hot-dip galvanizing treatment.
KR1020090057867A 2009-06-26 2009-06-26 Steel sheet having excellent low yield ratio property, and method for producing the same KR101149117B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090057867A KR101149117B1 (en) 2009-06-26 2009-06-26 Steel sheet having excellent low yield ratio property, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090057867A KR101149117B1 (en) 2009-06-26 2009-06-26 Steel sheet having excellent low yield ratio property, and method for producing the same

Publications (2)

Publication Number Publication Date
KR20110000400A true KR20110000400A (en) 2011-01-03
KR101149117B1 KR101149117B1 (en) 2012-05-25

Family

ID=43609263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090057867A KR101149117B1 (en) 2009-06-26 2009-06-26 Steel sheet having excellent low yield ratio property, and method for producing the same

Country Status (1)

Country Link
KR (1) KR101149117B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889873B2 (en) 2016-03-08 2021-01-12 Posco Complex-phase steel sheet having excellent formability and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193322B1 (en) * 2000-02-29 2006-07-05 JFE Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
CN1193110C (en) * 2000-11-28 2005-03-16 川崎制铁株式会社 Composite structure type hipe tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
JP4214006B2 (en) * 2003-06-19 2009-01-28 新日本製鐵株式会社 High strength steel sheet with excellent formability and method for producing the same
JP4786521B2 (en) * 2006-06-12 2011-10-05 新日本製鐵株式会社 High-strength galvanized steel sheet with excellent workability, paint bake hardenability and non-aging at room temperature, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889873B2 (en) 2016-03-08 2021-01-12 Posco Complex-phase steel sheet having excellent formability and method of manufacturing the same

Also Published As

Publication number Publication date
KR101149117B1 (en) 2012-05-25

Similar Documents

Publication Publication Date Title
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
KR100711468B1 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet having excellent formability and coating property, and the method for manufacturing thereof
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
KR100711475B1 (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
KR101858852B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof
KR20110119285A (en) Cold rolled steel sheet and zinc plated steel sheet having high strength and manufacturing method thereof
KR20120033008A (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
KR101778404B1 (en) Clad steel sheet having excellent strength and formability, and method for manufacturing the same
JP2007063604A (en) Hot-dip galvanized high strength steel sheet with excellent elongation and bore expandability, and its manufacturing method
KR101403076B1 (en) High strength galvannealed steel sheet with excellent stretch flangeability and coating adhesion and method for manufacturing the same
KR20110046689A (en) Steel sheet having excellent low yield ratio property, and method for producing the same
KR101066691B1 (en) Hot-rolled steel sheet having ultra-high strength and high burring workability, and method for producing the same
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR101452052B1 (en) High strength alloyed galvanized steel sheet with excellent coating adhesion and method for manufacturing the same
KR101149117B1 (en) Steel sheet having excellent low yield ratio property, and method for producing the same
KR20100047001A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR20100035835A (en) High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR101406561B1 (en) High strength hot rolled steel sheet having excellent impact toughness and method for manufacturing the same
KR101149193B1 (en) Steel sheet having excellent formability and galvanizing property, and method for producing the same
KR20090103619A (en) High-strength steel sheet, and method for producing the same
KR20100047003A (en) High-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
KR101070121B1 (en) Cold-Rolled Steel Sheet, Galvanized SteelSheet, Galvannealed Steel Sheet and Method for Manufacturing The Same
KR20090068993A (en) High-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
KR101129863B1 (en) High strength steel having excellent formability and galvanizing property, and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160420

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190425

Year of fee payment: 8