KR20100126046A - Prediction method of bitumen content in oil sand using ft-ir measurement - Google Patents

Prediction method of bitumen content in oil sand using ft-ir measurement Download PDF

Info

Publication number
KR20100126046A
KR20100126046A KR1020090045085A KR20090045085A KR20100126046A KR 20100126046 A KR20100126046 A KR 20100126046A KR 1020090045085 A KR1020090045085 A KR 1020090045085A KR 20090045085 A KR20090045085 A KR 20090045085A KR 20100126046 A KR20100126046 A KR 20100126046A
Authority
KR
South Korea
Prior art keywords
oil
sand
component
content
calibration curve
Prior art date
Application number
KR1020090045085A
Other languages
Korean (ko)
Other versions
KR101121663B1 (en
Inventor
윤성훈
이철위
이원규
이흥연
박상엽
Original Assignee
한국화학연구원
한국석유공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 한국석유공사 filed Critical 한국화학연구원
Priority to KR1020090045085A priority Critical patent/KR101121663B1/en
Publication of KR20100126046A publication Critical patent/KR20100126046A/en
Application granted granted Critical
Publication of KR101121663B1 publication Critical patent/KR101121663B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: A method for predicting oil content of oil sand using infrared spectroscopy analysis is provided to facilitate profitability analysis according to the content of oil component during quarry mining and underground oil sand layer discovery. CONSTITUTION: A method for predicting oil content of oil sand using infrared spectroscopy analysis comprises following steps. Calibration curve is formed about the content of the oil component and sand component according to infrared spectroscopy analysis Oil sand is compared with the calibration curve. The calibration curve is based on the peak of the characteristic frequency of the oil component and sand component.

Description

적외선분광분석을 이용한 오일샌드 내에 포함된 오일 함량 예측방법{Prediction method of bitumen content in oil sand using FT-IR measurement}Prediction method of bitumen content in oil sand using FT-IR measurement}

본 발명은 오일샌드 혹은 타르샌드에 함유된 초중질유 및 중질유와 같은 오일성분의 함유량을 예측하는 방법에 관한 것이다.The present invention relates to a method for predicting the content of oil components such as super heavy oil and heavy oil contained in an oil sand or tar sand.

세계적으로 근대화와 산업화의 영향에 따라 이에 사용되는 에너지의 문제는 가장 중요한 문제로 대두되고 있다. 특히, 근래의 유가상승으로 인해 기존의 석유자원이 아닌 좀 더 풍부하고 값싼 에너지원의 중요성이 부각되고 있다. 이에 오일샌드에 대한 관심이 증대하고 있는 상황이다.Due to the influence of modernization and industrialization around the world, the energy problem used is emerging as the most important problem. In particular, the recent rise in oil prices has highlighted the importance of more abundant and cheaper energy sources rather than existing oil resources. Thus, interest in oil sands is increasing.

오일샌드는 통상적으로 모래에 약 10 ~ 20 중량%의 초중질유의 일종인 비투멘(bitumen)을 함유하고 있는 천연물질이며, 통상적으로 모래를 제거하고 비투멘 성분만을 추출하여 업그레이드하면 유용한 자원인 합성석유(Synthetic Crude Oil; SCO)를 얻을 수 있다. 이러한 오일샌드는 매장량이 풍부하여 이와 관련된 기술 및 광구 확보를 통하여 저렴한 가격의 원료 공급과 안정적인 원유 공급을 가능하게 할 수 있게 한다. 오일샌드와 관련된 기술은 캐나다가 가장 앞선 기술을 보유하고 있고, 캐나다 알버타(Canada alberta)주에 대부분 그 시설이 집중되어 있다.Oil sand is a natural material that contains bitumen, a kind of ultra heavy oil, which is usually in sand, and is a synthetic material that is a useful resource for upgrading by removing sand and extracting only bitumen components. Synthetic Crude Oil (SCO) can be obtained. These oil sands are rich in reserves, which enables the supply of raw materials at a low cost and stable supply of crude oil through securing related technologies and mines. The technology related to oil sands is Canada's most advanced technology, and most of its facilities are concentrated in the province of Canada alberta.

현재 오일샌드를 추출하는 방식으로는 노천채굴(Mining), SAGD(Steam Assisted Gravity Drainage), CSS(Cyclic Steam Stimulation) 등이 있으나, 이러한 오일샌드에서 오일성분의 함유량을 예측을 통하여 경제성 분석을 실시하고 이를 통해 채굴 및 개발 여부를 결정해야 한다.Currently, oil sands are extracted by mining, steam assisted drainage (SAGD), and cyclic steam stimulation (CSS) .However, the oil sands in these oil sands are analyzed for economic efficiency through prediction of oil content. This should determine whether to mine and develop.

오일샌드의 오일성분의 함유량의 예측하기 위해서는 뜨거운 물에 오일샌드를 넣고 이를 기계적으로 분리하는 방법(CHWE; Clock Hot Water Extraction), ASTM 95, 96, 473, 1796, 4072, 4807 등에서 제시된 바와 같이 물의 함량 및 용매 등에 녹아나는 오일성분을 결정하는 방법 등이 제시되어 있다. 그러나 이들 방법은 장치가 복잡하고 처리시간이 오래 걸리는 단점이 있다.To predict the oil content of an oil sand, the water sand is added to the hot water, as shown in CHWE (Clock Hot Water Extraction), ASTM 95, 96, 473, 1796, 4072, 4807, etc. A method of determining the oil component dissolved in the content and solvent, and the like are provided. However, these methods have the disadvantage that the apparatus is complicated and the processing time is long.

또한, 근적외선 반사 모드(Near-IR reflectance mode)를 이용하고 이를 광학프로브(optical probe)에 연결하여 오일샌드 내에 함유된 비투멘 성분의 특정 반사 강도를 측정하는 방법이 상용화되어 적용되고 있다. 그러나 상기 방법은 고가의 장비가 요구되며, 샘플의 표면상태에 따라 산란정도가 바뀌게 되어 측정에 문제점이 발생할 수 있다. 샘플의 표면에 근적외선을 직접적으로 가하여 이에서 흡수되고 반사되는 빛의 강도를 측정하므로 근적외선이 흡수되는 길이(penetration length)사 샘플마다 달라질 수 있다는 문제점을 갖는다(참조: 1) Kelley, US Patent 1961, 2,980,600., 2) Friesen W. I., Qualitative analysis of oil sand slurries using on-line NIR spectroscopy. Applied Spectroscopy 1996;50;1535-1540. 3) Shaw R. C., Kratochvil B., Near-IR diffues reflectance analysis of Athabasca oil sand. Anal. Chem. 1990;62;167-174).In addition, a method of measuring a specific reflection intensity of the bitumen component contained in the oil sand by using a near-infrared reflection mode and connecting it to an optical probe has been commercially applied. However, the method requires expensive equipment, and the scattering degree is changed according to the surface state of the sample, which may cause a problem in the measurement. Since near-infrared rays are directly applied to the surface of the sample to measure the intensity of light absorbed and reflected therefrom, it has a problem that the near-infrared rays may vary from sample to sample (penetration length) (see: 1) Kelley, US Patent 1961 2,980,600., 2) Friesen WI, Qualitative analysis of oil sand slurries using on-line NIR spectroscopy. Applied Spectroscopy 1996; 50; 1535-1540. 3) Shaw R. C., Kratochvil B., Near-IR diffues reflectance analysis of Athabasca oil sand. Anal. Chem. 1990; 62; 167-174).

본 발명은 오일샌드의 오일성분을 예측하기 위한 방법에 관한 것으로, 기존의 예측방법이 갖는 고비용, 장기처리시간 및 부정확성의 문제점을 해결하는 것을 목적으로 한다. The present invention relates to a method for estimating oil components of an oil sand, and aims at solving the problems of high cost, long processing time and inaccuracy of a conventional prediction method.

본 발명은 상기 목적을 달성하기 위하여 지질학적으로 특성이 유사한 지역의 오일샌드의 오일성분 및 비오일성분을 적외선분광분석하여 검정곡선을 얻어내고, 측정대상인 오일샌드를 적외선분광분석하고 상기 검정곡선과 대비하여 오일성분 함량을 예측하는 방법에 관한 것이다.In order to achieve the above object, the present invention obtains a calibration curve by infrared spectroscopy analysis of oil components and non-oil components of oil sands having similar geological characteristics, and infrared spectroscopy analysis of the oil sands to be measured. It relates to a method of predicting the oil content in contrast.

본 발명은 기존의 근적외선 반사를 이용한 방법에 비하여 더 간단하고 정확한 방법으로 오일성분(초중질유 및 중질유)의 함유량을 예측하는 방법을 제공하고, 노천채굴 및 지하 오일샌드 층 탐사에 있어서, 오일성분을 함유량에 따른 경제성을 분석하기 용이한 방법을 제시하는 효과가 있다. The present invention provides a method for predicting the content of oil components (ultra heavy oil and heavy oil) in a simpler and more accurate manner than the conventional method using near infrared reflection, and in the open pit and underground oil sand layer exploration, There is an effect of suggesting an easy way to analyze the economics of the content.

본 발명은 오일샌드의 오일성분과 비오일성분의 함량에 대한 적외선분광분석(FT-IR)에 따른 검정곡선을 작성하는 1단계; 및 측정대상인 오일샌드를 적외선분광분석하여 상기 작성한 검정곡선과 대비하는 단계를 포함하는 오일샌드의 오일성분 함량 측정방법에 관한 것이다.The present invention comprises the steps of preparing a calibration curve according to infrared spectroscopic analysis (FT-IR) for the content of oil and non-oil components of the oil sand; And it relates to a method for measuring the oil content of the oil sand comprising the step of contrasting the calibration curve prepared by infrared spectroscopic analysis of the oil sand to be measured.

바람직하게는 본 발명은 상기 검정곡선은 오일성분과 비오일성분의 특성 주파수의 피크를 기준으로 하는 것을 특징으로 하는 오일샌드의 오일성분 함량 측정방법에 대한 것이다.Preferably, the present invention relates to a method for measuring the oil content of an oil sand, characterized in that the calibration curve is based on peaks of characteristic frequencies of the oil component and the non-oil component.

또한 바람직하게는 본 발명은 상기 검정곡선은 오일성분 및 비오일성분의 흡수도비에 따른 농도비의 선형적 관계인 것을 특징으로 하는 오일샌드의 오일성분 함량 측정방법에 대한 것이다.In addition, the present invention preferably relates to a method for measuring the oil content of the oil sand, characterized in that the calibration curve is a linear relationship of the concentration ratio according to the absorption ratio of the oil component and the non-oil component.

본 발명은 기존의 오일성분 예측방법의 문제점을 해결하기 위해, 널리 사용되는 적외선분광분석(FT-IR)을 이용하고, 흡수길이가 달라지는 문제점을 해결하기 위해 탐사하고자 하는 지역의 모래와 오일성분과의 함량비가 조절된 복합체를 형성하여 사용하고 이를 적외선분광분석하여 검정곡선(calibration curve)을 얻어내어, 오일샌드의 샘플의 적외선분광분석하여 얻어진 결과를 검정곡선과 대비하여 오일함량을 예측하는 방법에 대한 것으로, 기존의 방법보다 정확한 함유량을 예측하도록 하는 방법을 제공한다.The present invention uses a widely used infrared spectroscopy (FT-IR) to solve the problems of the conventional oil component prediction method, and sand and oil components of the region to be explored to solve the problem of the absorption length is different; In the method of forming a composite having a controlled content ratio of, and using an infrared spectroscopic analysis to obtain a calibration curve, the result obtained by infrared spectroscopic analysis of the sample of the oil sand is compared with the calibration curve. In this regard, the present invention provides a method for predicting more accurate content than conventional methods.

오일샌드는 오일성분의 대부분은 비투멘(bitumen)이다. 비투멘은 석탄과 가스 상태에 있는 것들을 제외한 수소와 탄소로 이루어진 천연 화합물을 말하는 것으로, 오일샌드에 함유된 비투멘 성분을 추출하여 업그레이드하여 합성석유를 얻을 수 있다.Oil sands are mostly bitumen. Bitumen refers to a natural compound composed of hydrogen and carbon, except those in the coal and gas phase, and can be upgraded by extracting and upgrading the bitumen contained in the oil sand.

오일성분인 비투멘의 적외선분광분석의 특징적인 피크는 3000 cm-1에서 나타나게 되고, 모래성분에 특징적인 피크는 1000 cm-1에서 나타난다.The characteristic peaks of infrared spectroscopy of oil-based bitumen appear at 3000 cm -1 and the characteristic peaks of sand appear at 1000 cm -1 .

오일성분인 비투멘의 특징적인 피크는 C-H 비대칭 스트레칭(C-H asymmetrical stretching)에 관련되어 있으며, 탄화수소계의 피크이다. 이러한 피크에서 Ibitu(0)와 Ibitu를 얻게 된다.The characteristic peak of the oil-based bitumen is related to CH asymmetrical stretching and is a hydrocarbon-based peak. At these peaks I bitu (0) and I bitu are obtained.

모래성분의 특징적인 피크는 Si-O-Si의 반대대칭 미폴딩 진동(antisymmetric unfolded vibration of Si-O-Si)에 관련된 것으로, 이는 실리카를 함유하는 모래성분에서는 공통적으로 나타난다. 이러한 피크에서 Isand(0)와 Isand를 얻게 된다(참조: Jiang T, Zhao Q, Yin H, Synthesis of highly stablized mesoporous sieves using natural clay as raw material. Appl. Clay Sci. 2007;35:155-161).The characteristic peak of the sand component is related to the antisymmetric unfolded vibration of Si-O-Si, which is common in silica-containing sand components. At these peaks, we obtain I sand (0) and I sand (see Jiang T, Zhao Q, Yin H, Synthesis of highly stablized mesoporous sieves using natural clay as raw material.Appl. Clay Sci. 2007; 35: 155- 161).

이렇게 얻어진 피크 강도는 다음의 식에서 이용된다.The peak intensity thus obtained is used in the following equation.

A sand = a sand(υ)c sand l = -log10(I sand(υ)/I sand 0(υ)) A sand = a sand (υ) c sand l = -log 10 ( I sand (υ) / I sand 0 (υ))

A bitu = a bitu(υ)c bitu l = -log10(I bitu(υ)/I bitu 0(υ)) A bitu = a bitu (υ) c bitu l = -log 10 ( I bitu (υ) / I bitu 0 (υ))

위와 같은 Beer-Lambert 법칙에서 흡수도(Absorbance; A)는 흡수계수(a), 성분의 농도(c), 빛이 통과하는 길이(l) 값에 비례하여 나타나게 된다. 적외선분광분석 실험시 오일샌드 안에는 같은 l 값을 가지므로 위의 식을 정리하면,Absorption (A) in the Beer-Lambert law is shown in proportion to the absorption coefficient ( a ), the concentration of the component ( c ), the length of the light passing ( l ). In the infrared spectroscopy experiment, the oil sand has the same l value.

C bitu/C sand = (a sand/a bitu)×(A bitu/A sand) C bitu / C sand = ( a sand / a bitu ) × ( A bitu / A sand )

로 정리가 가능하다.It is possible to organize.

다음의 과정을 거쳐서 식(3)과 같은 검정곡선을 얻을 수 있다.Through the following process, we can obtain the calibration curve as shown in Equation (3).

① 함유량을 예측하고자 하는 지역의 모래성분과 오일성분을 입수한다. 모래성분 및 오일성분의 시료에 대하여 적외선분광분석 실험을 수행하고, 각 성분의 특징적인 FT-IR 피크를 찾는다. 일반적으로 모래성분은 1000 cm-1, 오일성분은 3000 cm-1 부근에서 나타난다.① Obtain the sand and oil components of the area where you want to predict the content. Infrared spectroscopy experiments are performed on sand and oil samples and find characteristic FT-IR peaks for each component. In general, the sand component is around 1000 cm -1 and the oil component is around 3000 cm -1 .

② 함량비를 조절하여 오일성분과 모래성분의 복합체를 형성한다. 효과적인 복합체의 형성을 위해서는 오일성분의 점도를 낮출 수 있는 용매(펜탄, THF, 아세톤, 벤젠 등)을 사용하여 오일성분을 분산시킨 후 이를 모래성분과 함께 충분히 섞어주고 용매를 증발시켜 균일하게 분산된 복합체를 형성한다.② Adjust the content ratio to form a complex of oil and sand components. In order to form an effective complex, the oil components are dispersed using a solvent (pentane, THF, acetone, benzene, etc.) that can lower the viscosity of the oil component, and then mixed with the sand component sufficiently, and the solvent is evaporated to uniformly disperse the oil component. To form a complex.

③ 상기 제조한 오일성분의 함유량이 조절된 복합체를 이용하여 적외선분광분석에 따른 측정을 실시한다. 이러한 측정을 통하여 상기 수학식 1-3에서 필요로 하는 피크의 강도를 얻게 된다.③ The composite according to the content of the prepared oil component is measured by infrared spectroscopy analysis. Through this measurement, the intensity of the peak required by Equation 1-3 can be obtained.

④ 상기 수학식 3에서 검정곡선을 얻기 위하여 모래성분/오일성분의 농도비와 모래성분/오일성분 적외선분광분석 피크와의 관련값을 얻어내고 이로부터 최소자승법(least square)을 이용하여 직선식을 얻어낸다. 이 직선식은 y절편이 0 값에 가까이 위치해야 하고 선형도(R)이 1에 가까이 있을수록 좋은 결과라 할 수 있다. ④ In order to obtain the calibration curve in Equation 3, the value of the concentration ratio of the sand component / oil component and the infrared component of the sand component / oil component is obtained, and a linear equation is obtained from the least square method. Serve This linear equation is a good result if the y-intercept should be near 0 and linearity (R) is closer to 1.

⑤ 상기와 같이 검정곡선을 얻어내고 함유량 예측이 필요한 오일샌드의 적외선분광분석을 통하여 흡수도의 비를 얻어내고, 이를 실험적으로 구한 검정곡선에 적용하여 함유량을 예측하게 된다.⑤ Obtain the calibration curve as above and obtain the ratio of absorbance through the infrared spectroscopy analysis of the oil sand which needs the content prediction, and predict the content by applying it to the experimentally obtained calibration curve.

이와 같은 본 발명은 하기의 실시예에 의하여 더욱 구체화하겠는 바, 본 발명이 하기의 실시예에 한정되는 것은 아니다.Such a present invention will be further embodied by the following examples, but the present invention is not limited to the following examples.

실시예Example 1. 검정곡선의 도출 1. Derivation of the calibration curve

캐나다 아타바스카(Athabasca) 지역의 오일샌드를 입수하고 적외선분광분석을 하여 도 1에 나타내었다.The oil sands of Athabasca, Canada were obtained and infrared spectroscopy was shown in FIG. 1.

상기 오일샌드 200 g을 THF 800 ml에 혼합하여 충분히 교반하여, 오일성분을 녹여내었다. 녹여낸 오일성분을 80 ℃ 오븐에서 3 시간 동안 건조하여 오일성분 17.1 g을 얻었다. THF에 용해되지 아니한 성분은 모래성분으로 이용하였다.200 g of the oil sand was mixed with 800 ml of THF, and the mixture was sufficiently stirred to dissolve the oil component. The melted oil component was dried in an oven at 80 ° C. for 3 hours to obtain 17.1 g of oil component. Components that were not dissolved in THF were used as sand components.

상기 오일성분과 모래성분을 혼합하여 만드는 복합체의 오일성분의 함량이 5, 10, 15, 20 중량%가 되도록 성분을 조정하고 펜탄(pantane) 용매를 사용하여 충분히 교반하여 이를 50 ℃에서 건조하여 오일샌드 복합체를 제조하였다.Adjust the components so that the content of the oil component of the complex made by mixing the oil component and the sand component is 5, 10, 15, 20% by weight and sufficiently stirred with a pentane solvent and dried at 50 ° C. to oil Sand composites were prepared.

적외선분광분석을 수행하기 위하여 상기 제조한 오일샌드 복합체를 이용하여 KBr pellet을 제조하고, 이를 Bruker Equinox 55 FT-IR spectrometer를 이용하여 적외선분광분석을 수행하여 그 결과를 도 2 및 하기의 표 1에 나타내었다.In order to perform infrared spectroscopy, KBr pellets were prepared using the prepared oil sand complex, and infrared spectroscopy was performed using a Bruker Equinox 55 FT-IR spectrometer. The results are shown in FIG. 2 and Table 1 below. Indicated.


오일성분 함량(%)

Oil content (%)

농도비
(C bitu/C sand)

Concentration ratio
( C bitu / C sand )
모래성분의 흡수도(1083 cm-1)Absorbency of sand (1083 cm -1 ) 오일성분의 흡수도(2925 cm-1)Absorbency of oil components (2925 cm -1 ) A bitu/A sand A bitu / A sand
II II 00 A sand -log(I/I 0) A sand -log ( I / I 0 ) II II 00 A bitu -log(I/I 0) A bitu -log ( I / I 0 ) 55 0.05260.0526 21.2521.25 81.1081.10 0.5810.581 70.4070.40 83.3483.34 0.07320.0732 0.1260.126 1010 0.11110.1111 8.3128.312 71.6071.60 0.9350.935 47.7447.74 69.0769.07 0.1600.160 0.1720.172 1515 0.17640.1764 26.3526.35 82.3882.38 0.4950.495 58.4558.45 79.3179.31 0.1320.132 0.2680.268 2020 0.25000.2500 33.7233.72 81.6081.60 0.3840.384 52.4252.42 78.2678.26 0.1740.174 0.4540.454

상기 표 1의 실험결과를 이용하여 모래성분/오일성분의 농도비(Cbitu/Csand)와 모래성분/오일성분의 적외선분광분석 흡수비(Abitu/Asand)와의 관련값을 얻어내고, 이로부터 최소자승법을 이용하여 하기 수학식 4와 같은 직선식을 얻었다.Using the experimental results in Table 1 above, the relevant values of the concentration ratio of sand component / oil component (C bitu / C sand ) and the absorption spectra of sand component / oil component (A bitu / A sand ) were obtained. From the least square method to obtain a linear equation such as the following equation (4).

Cbitu/Csand = (0.57 ± 0.095) (Abitu/Asand) + (0.00247 ± 0.027)C bitu / C sand = (0.57 ± 0.095) (A bitu / A sand ) + (0.00247 ± 0.027)

상기 수학식 4에서 선형성을 나타내는 R값은 0.97278이며, y 절편은 0.00247로 0에 가까운 것으로 나타났다. 높은 선형성을 보이는 것을 알 수 있으며, 상기 수학식이 잘 적용되는 것을 알 수 있다.In Equation 4, the R value representing linearity is 0.97278, and the y intercept is 0.00247, which is close to zero. It can be seen that the high linearity is shown, and the above equation is well applied.

실시예Example 2.  2. 적외선분광분석에Infrared spectroscopy 의한  by 오일샌드의Oil sands 함량예측 Forecast

9.1 중량%의 오일성분 함량을 갖는 아타바스카 오일샌드를 적외선분광분석하여, 흡수값 Abitu와 Asand를 측정하였다. 흡수값의 비는 Abitu는 0.217, Asand는1.072였다.Infrared spectroscopic analysis of the Athabasca oil sands having an oil content of 9.1% by weight was carried out to measure the absorption values A bitu and A sand . The ratio of the absorption values A bitu is 0.217, A sand was 1.072.

상기 흡수값 Abitu와 Asand을 상기 수학식 4에 대입하였다. The absorption values A bitu and A sand were substituted into Equation 4.

Cbitu/Csand = (0.57 ± 0.095) (0.202)) + (0.00247 ± 0.027)C bitu / C sand = (0.57 ± 0.095) (0.202)) + (0.00247 ± 0.027)

상기 계산된 값 Cbitu/Csand은 0.1398로 오일성분의 함량은 10.5 중량%로 실제값이 9.1 중량%와는 9.5 %의 오차를 보이는 경우로 높은 신뢰도를 나타냄을 알 수 있었다.The calculated value C bitu / C sand was 0.1398, the content of the oil component is 10.5% by weight, the actual value was 9.1% and showed an error of 9.5% and shows a high reliability.

비교예Comparative example 1.  One. 근적외선Near infrared ray 반사에 의한  By reflection 오일샌드의Oil sands 함량예측 Forecast

9.1 중량%의 오일성분 함량을 갖는 아타바스카 오일샌드를 근적외선 반사에 의한 오일샌드의 함량을 예측하였다. 도 4는 근적외선 반사에 의한 실험 결과이며, 도 5는 파장이 1725 ㎚, 2308 ㎚에서 측정한 빛의 강도로부터 구한 검정곡선을 나타내고 있다. Athabasca oil sands having an oil content of 9.1% by weight predicted the content of oil sands by near infrared reflection. Fig. 4 is an experimental result by near-infrared reflection, and Fig. 5 shows a calibration curve obtained from the intensity of light measured at wavelengths of 1725 nm and 2308 nm.

하기 표 2에 근적외선 반사에 의한 오일샌드 함량 예측 결과를 나타내었다.Table 2 shows the oil sand content prediction results by the near infrared reflection.

FT-NIR diffuse reflectanceFT-NIR diffuse reflectance FT-IR transmission  FT-IR transmission λ=1725 nmλ = 1725 nm λ=2308 nmλ = 2308 nm l= 2924 cm-1 , 1083 cm-1 l = 2924 cm -1 , 1083 cm -1 cbitu c bitu 1.34 (±3.21)1.34 (± 3.21) 10.47 (±3.11)10.47 (± 3.11) 11.12 (±2.19)11.12 (± 2.19) r2 r 2 0.975740.97574 0.975310.97531 0.985360.98536

FT-IR 결과와 비교해 보았을 때 커다란 차이가 나타나지 않았으며, 오히려 선형도가 근적외선에 비해 높다는 것을 알 수 있었다. Compared with the FT-IR results, there was no significant difference, but rather the linearity was higher than that of near infrared.

도 1은 실시예 1의 오일샌드의 적외선분광분석 결과이다.1 is an infrared spectroscopic analysis result of the oil sand of Example 1.

도 2는 실시예 1의 복합체의 적외선분광분석 결과이다.2 is an infrared spectroscopic analysis result of the composite of Example 1.

도 3은 최소자승법에 의한 검량곡선이다.3 is a calibration curve by the least square method.

Claims (3)

오일샌드의 오일성분과 모래성분의 함량에 대한 적외선분광분석(FT-IR)에 따른 검정곡선을 작성하는 1단계; 및A first step of preparing a calibration curve according to infrared spectroscopic analysis (FT-IR) on the contents of oil and sand components of the oil sand; And 측정대상인 오일샌드를 적외선분광분석하여 상기 작성한 검정곡선과 대비하는 단계Infrared spectroscopic analysis of the oil sand to be measured and contrasted with the calibration curve 를 포함하는 오일샌드의 오일성분 함량 측정방법.Oil component content measuring method of the oil sand comprising a. 제 1 항에 있어서,The method of claim 1, 상기 검정곡선은 오일성분과 모래성분의 특성 주파수의 피크를 기준으로 하는 것을 특징으로 하는 오일샌드의 오일성분 함량 측정방법.The calibration curve is an oil component content measuring method of an oil sand, characterized in that based on the peak of the characteristic frequency of the oil component and sand component. 제 1 항에 있어서,The method of claim 1, 상기 검정곡선은 오일성분 및 모래성분의 흡수도비에 따른 농도비의 선형적 관계인 것을 특징으로 하는 오일샌드의 오일성분 함량 측정방법.The calibration curve is a method of measuring the oil content of the oil sand, characterized in that the linear relationship of the concentration ratio according to the absorption ratio of the oil component and the sand component.
KR1020090045085A 2009-05-22 2009-05-22 Prediction method of bitumen content in oil sand using FT-IR measurement KR101121663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090045085A KR101121663B1 (en) 2009-05-22 2009-05-22 Prediction method of bitumen content in oil sand using FT-IR measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090045085A KR101121663B1 (en) 2009-05-22 2009-05-22 Prediction method of bitumen content in oil sand using FT-IR measurement

Publications (2)

Publication Number Publication Date
KR20100126046A true KR20100126046A (en) 2010-12-01
KR101121663B1 KR101121663B1 (en) 2012-03-09

Family

ID=43504076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090045085A KR101121663B1 (en) 2009-05-22 2009-05-22 Prediction method of bitumen content in oil sand using FT-IR measurement

Country Status (1)

Country Link
KR (1) KR101121663B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102784673A (en) * 2012-08-13 2012-11-21 苏州汶颢芯片科技有限公司 Centrifugal micro-fluidic chip for detecting oil and grease and preparation method of centrifugal micro-fluidic chip
CN106610420A (en) * 2015-10-21 2017-05-03 中国石油化工股份有限公司 Method for analysis of oil product monocyclic aromatic hydrocarbon
CN109187262A (en) * 2018-09-19 2019-01-11 常州大学 A kind of measuring method of oil-sand oil content
CN109709060A (en) * 2019-01-30 2019-05-03 甘肃畅陇公路养护技术研究院有限公司 A kind of measuring method of asphalt softening point, needle penetration and mass loss

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101943947B1 (en) 2018-07-20 2019-01-31 주식회사 효림 Real time pollution level automatic measurement sensor system of contaminants in contaminated soil or groundwater
KR102314412B1 (en) 2019-12-27 2021-10-19 주식회사 효림 Remote Control System for Measuring Real Time Pollution of Groundwater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871681B1 (en) * 2008-08-22 2008-12-03 대한민국 Analytical method using infrared rays for examining the content of red pepper seed in red pepper powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102784673A (en) * 2012-08-13 2012-11-21 苏州汶颢芯片科技有限公司 Centrifugal micro-fluidic chip for detecting oil and grease and preparation method of centrifugal micro-fluidic chip
CN106610420A (en) * 2015-10-21 2017-05-03 中国石油化工股份有限公司 Method for analysis of oil product monocyclic aromatic hydrocarbon
CN109187262A (en) * 2018-09-19 2019-01-11 常州大学 A kind of measuring method of oil-sand oil content
CN109709060A (en) * 2019-01-30 2019-05-03 甘肃畅陇公路养护技术研究院有限公司 A kind of measuring method of asphalt softening point, needle penetration and mass loss

Also Published As

Publication number Publication date
KR101121663B1 (en) 2012-03-09

Similar Documents

Publication Publication Date Title
KR101121663B1 (en) Prediction method of bitumen content in oil sand using FT-IR measurement
Wang et al. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China
Marsac et al. Potential and limits of FTIR methods for reclaimed asphalt characterisation
CN102353646B (en) Nondestructive testing analytical method for kerogen based on terahertz time-domain spectroscopy
Li et al. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates
Lin et al. Studying individual macerals using ir microspectrometry, and implications on oil versus gas/condensate proneness and “low-rank” generation
Spötl et al. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study
Abbas et al. PLS regression on spectroscopic data for the prediction of crude oil quality: API gravity and aliphatic/aromatic ratio
Henry et al. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic-rich mudstones and coals
Mohammadi et al. Genetic algorithm based support vector machine regression for prediction of SARA analysis in crude oil samples using ATR-FTIR spectroscopy
Presswood et al. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) Coal Seam, Illinois Basin
Song et al. Structural transformations and hydrocarbon generation of low-rank coal (vitrinite) during slow heating pyrolysis
Xin et al. The reburning thermal characteristics of residual structure of lignite pyrolysis
Xiao et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities
Bansal et al. Direct estimation of shale oil potential by the structural insight of Indian origin kerogen
Bonoldi et al. Vibrational spectroscopy assessment of kerogen maturity in organic-rich source rocks
Charsky et al. Quantitative analysis of kerogen content and mineralogy in shale cuttings by Diffuse Reflectance Infrared Fourier Transform Spectroscopy
Zhang et al. Detection of oil yield from oil shale based on near-infrared spectroscopy combined with wavelet transform and least squares support vector machines
Du et al. Potential Raman parameters to assess the thermal evolution of kerogens from different pyrolysis experiments
Mi et al. The upper thermal maturity limit of primary gas generated from marine organic matters
Orrego-Ruiz et al. Mid-infrared Attenuated Total Reflectance (MIR-ATR) predictive models for asphaltene contents in vacuum residua: asphaltene structure–functionality correlations based on Partial Least-Squares Regression (PLS-R)
Zhan et al. Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases
Cesar et al. Organic geochemistry of kerogen from La Luna Formation, Western Venezuelan Basin, using diffuse reflectance–Fourier transform infrared spectroscopy (DRFTIR)
Kotyczka-Morańska et al. Comparison of the first stage of the thermal decomposition of Polish coals by diffuse reflectance infrared spectroscopy
Soares et al. A first approach into the characterisation of historical plastic objects by in situ diffuse reflection infrared Fourier transform (DRIFT) spectroscopy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee