KR20100124017A - One of flexible display organic light emitting display panel and method of manufacturing the same - Google Patents

One of flexible display organic light emitting display panel and method of manufacturing the same Download PDF

Info

Publication number
KR20100124017A
KR20100124017A KR1020090043046A KR20090043046A KR20100124017A KR 20100124017 A KR20100124017 A KR 20100124017A KR 1020090043046 A KR1020090043046 A KR 1020090043046A KR 20090043046 A KR20090043046 A KR 20090043046A KR 20100124017 A KR20100124017 A KR 20100124017A
Authority
KR
South Korea
Prior art keywords
maintained
sinx
moisture barrier
manufacturing
oled display
Prior art date
Application number
KR1020090043046A
Other languages
Korean (ko)
Inventor
구송림
김경민
송갑득
Original Assignee
주식회사 동아테크윈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동아테크윈 filed Critical 주식회사 동아테크윈
Priority to KR1020090043046A priority Critical patent/KR20100124017A/en
Publication of KR20100124017A publication Critical patent/KR20100124017A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE: A manufacturing method of a flexible OLED display is provided to prevent the property degradation of a device due to the reaction between hydrogen, which remains in SiH4 and NH3 gas, and an organic compound. CONSTITUTION: A pattern is formed on an ITO substrate(10). An organic compound and a cathode(20) are deposited on the pattern. A DPN processing is executed on the organic compound and the cathode and SiNx is deposited. A planarization layer is formed by solidifying a light curing resin on the first vapor permeability prevention film.

Description

플렉시블 오엘이디 디스플레이의 제조방법{ONE OF FLEXIBLE DISPLAY ORGANIC LIGHT EMITTING DISPLAY PANEL AND METHOD OF MANUFACTURING THE SAME}ONE OF FLEXIBLE DISPLAY ORGANIC LIGHT EMITTING DISPLAY PANEL AND METHOD OF MANUFACTURING THE SAME}

플렉시블 OLED 디스플레이의 제조방법에 관한 것으로, 유기물 및 캐소드 증착 후 제1 투습 방지막으로 사용하는 SiNx 박막 형성시 소스(Source) 가스인 SiH4와 NH3 가스에 존재하는 수소가 유기물과 반응하여 소자 특성을 저해하는 것을 억제하도록 한 것으로, 먼저 N2 가스로 DPN(Decoupled Plasma Nitridation) 처리하여 질화물(Nitride) 막을 형성한 다음 SiNx 박막을 형성하여 발광 면적의 수축 또는 발광 효율을 증대시킴으로써 소자 특성이 개선되도록 한 것이다.The present invention relates to a method of manufacturing a flexible OLED display. In the formation of a SiNx thin film used as a first moisture barrier layer after deposition of organic materials and cathodes, hydrogen present in SiH 4 and NH 3 gases, which are source gases, reacts with organic materials to improve device characteristics. To suppress the inhibition, first, a nitride film is formed by decoupled plasma nitration (DPN) treatment with N 2 gas, and then a thin film of SiNx is formed to increase the shrinkage of the light emitting area or the luminous efficiency to improve device characteristics. will be.

일반적으로 차세대 평판 디스플레이로 기대되고 있는 유기전계 발광 소자는 OLED(Organic Light Emitting Diode 또는 Organic Electroluminescent Display)로도 불리며, 자체 발광 특성과 함께 시야각이 넓고, 고선명, 고화질, 고속응답성 등의 장점을 갖고 있어 소형 디스플레이에 많이 적용되고 있다.In general, organic light emitting diodes, which are expected to be the next generation of flat panel displays, are also called OLEDs (Organic Light Emitting Diodes or Organic Electroluminescent Displays), and have the advantages of self-luminous characteristics, wide viewing angles, high definition, high definition, and high-speed response It is widely applied to small displays.

유기 전계 발광 소자는 기판상에 양극(anode), 정공 주입층(hole injection layer), 정공 운송층(hole transfer layer), 발광층(emitting layer), 전자 운송층(eletron transfer layer), 전자 주입층(eletron injection layer), 음극(cathode)이 순서대로 적층되어 형성된다. 양극으로는 면저항이 작고 투과성이 좋은 ITO(Indium Tin Oxide)가 주로 사용되고, 발광층으로 사용되는 유기물은 Alq3, TPD, PBD, m-MTDATA, TCTA 등이다. 음극으로는 Al 금속막이 사용된다.The organic electroluminescent device includes an anode, a hole injection layer, a hole transfer layer, an emitting layer, an electron transfer layer, and an electron injection layer on a substrate. An eletron injection layer and a cathode are stacked in this order. ITO (Indium Tin Oxide) having a small sheet resistance and good permeability is mainly used as the anode, and organic materials used as the light emitting layer are Alq3, TPD, PBD, m-MTDATA, TCTA, and the like. An Al metal film is used as the cathode.

또한, 유기 박막은 공기 중의 수분과 산소에 매우 약하므로 소자의 수명(life time)을 증가시키기 위해 봉합하는 봉지막이 필요하다. 이 봉합하는 공정 중에 봉지막과 기판을 붙이기 위하여 프릿 글래스(frit glass) 및 여러 종류의 밀봉제(sealant) 등이 쓰이고 있다. 이러한 재료를 스핀코터, 스크린 프린터, 디스펜서를 이용하여 봉지막 위에 도포를 하고 상ㆍ하판을 붙이는 과정에 자외선(UV) 혹은 열을 가함으로서 완전한 밀폐효과를 얻어내고 있다.In addition, since the organic thin film is very weak against moisture and oxygen in the air, an encapsulation film that is sealed to increase the life time of the device is required. In order to adhere the sealing film and the substrate during this sealing process, frit glass and various kinds of sealants are used. Such a material is applied onto the encapsulation film using a spin coater, a screen printer, and a dispenser, and ultraviolet light (UV) or heat is applied to the upper and lower plates to achieve a perfect sealing effect.

또한, 유기 박막 형성 방법에는 진공증착법(Vacuum Deposition Method), 스퍼터링(sputtering)법, 이온빔 증착(Ion-beam Deposition)법, Pulsed-laser 증착법, 분자선 증착법, 화학기상증착법, 스핀코터(spin coater) 등이 있으며, 진공증착법이 많이 사용되고 있다.In addition, a method of forming an organic thin film includes a vacuum deposition method, a sputtering method, an ion-beam deposition method, a pulsed-laser deposition method, a molecular beam deposition method, a chemical vapor deposition method, a spin coater, and the like. There are many vacuum deposition methods.

현재 유기전계 발광 소자 제조시 수분 및 산소 등의 외부 불순물이 소자 내부로 침투하여 발광면적의 수축을 방지하기 위해 흡습제(desiccant) 및 캔(sus Can)을 사용하여 외부 침투를 방지하고 있다. 하지만 캔(Can)을 사용할 경우 소자의 두께가 두꺼워지고, 원가 측면에서 불리하며, 글라스(Glass)를 접착하기 위해 사용하는 밀봉제(Sealant)로부터 이물질이 발생하여 소자의 유기층에 영향을 주며, 차세대 디바이스인 플렉시블(Flexible) 기판을 사용하는 경우 이점이 없다.At present, in the manufacturing of the organic light emitting device, external impurities such as moisture and oxygen penetrate into the device to prevent external penetration by using a desiccant and a sus can to prevent shrinkage of the light emitting area. However, when using a can, the thickness of the device becomes thick, it is disadvantageous in terms of cost, and foreign substances are generated from the sealant used to bond the glass to affect the organic layer of the device. There is no advantage when using a flexible substrate which is a device.

이러한 문제를 해결하기 위해 현재 캔(Can)을 사용하지 않고 Thin Film 박막을 이용한 투습 방지막에 대한 연구가 활발히 진행되고 있다. 상기 Thin Film 박막을 사용 할 경우 외부로부터 침투하는 수분이나 산소를 막아주는 것이 중요하므로 이에 대응하는 박막을 형성하는 것이 중요하다. In order to solve this problem, studies on the moisture barrier film using a thin film thin film without using cans are being actively conducted. In the case of using the thin film thin film, it is important to prevent moisture or oxygen from penetrating from the outside to form a thin film corresponding thereto.

현재 유기층 및 음극 증착후 1차 소자 보호 및 투습 방지막으로 사용되는 것은 SiNx 박막이다. Currently, the SiNx thin film is used as a primary device protection and moisture barrier film after deposition of the organic layer and the cathode.

상기 SiNx 박막 증착시 사용되는 소스(Source) 가스는 SiH4이고, 반응가스는 N2 또는 NH3 이다. 여기서 소스 가스인 SiH4와 NH3 가스는 플라즈마(Plasma) 여기시 분해되어 수소 이온이 형성된다. 이때 형성된 수소는 유기층과 반응하여 다른 형태의 분자구조를 형성할 가능성이 많아 발광 면적의 수축 또는 발광 효율을 떨어뜨리는 문제점이 있었다.The source gas used for depositing the SiNx thin film is SiH 4 , and the reaction gas is N 2 or NH 3 . Here, SiH 4 and NH 3 gases, which are source gases, are decomposed when plasma is excited to form hydrogen ions. At this time, the formed hydrogen is likely to form a different molecular structure by reacting with the organic layer, there was a problem of reducing the shrinkage or emission efficiency of the light emitting area.

본 발명은 플렉시블 OLED 디스플레이를 제조할 때, 유기물 및 캐소드 증착 후 제1 투습 방지막으로 사용하는 SiNx 박막 형성시 소스(Source) 가스인 SiH4와 NH3 가스에 존재하는 수소가 유기물과 반응하여 소자 특성을 저해하는 것을 억제하도록 한 것으로, 먼저 N2 가스로 DPN(Decoupled Plasma Nitridation) 처리하여 질화물(Nitride) 막을 형성한 다음 SiNx 박막을 형성하여 발광 면적의 수축 또는 발광 효율을 증대시킴으로써 소자 특성이 크게 개선되도록 한 플렉시블 OLED 디스플레이의 제조방법을 제공함에 목적이 있다.In the present invention, when the flexible OLED display is manufactured, SiH 4 , which is a source gas, and hydrogen present in NH 3 gas react with organic materials when forming a SiNx thin film used as a first moisture barrier layer after deposition of organic materials and cathodes. In this case, first, a decoupled plasma nitridation (DPN) process is performed with N 2 gas to form a nitride film, and then a SiNx thin film is formed to increase the shrinkage of the light emitting area or to improve luminous efficiency. It is an object of the present invention to provide a method of manufacturing a flexible OLED display.

본 발명은 OLED 소자 제조 공정 중 봉지 공정으로 박막 사용시 적용되는 것으로 유기물 및 음극 증착후, 1차 소자 보호 및 투습 방지막으로 사용하는 SiNx 박막 형성시 소스(Source) 가스인 SiH4와 NH3 가스에 존재하는 수소가 유기물과 반응하여 소자 특성 저하를 방지하게 된다.The present invention is applied when the thin film is used as an encapsulation process in the OLED device manufacturing process, and is present in SiH 4 and NH 3 gases, which are source gases, when forming a SiNx thin film used as a primary device protection and moisture barrier film after deposition of organic material and cathode. Hydrogen reacts with the organic material to prevent deterioration of device characteristics.

본 발명은 N2 가스로 DPN(Decoupled Plasma Nitridation) 처리하여 질화물(Nitride) 막을 형성한 다음 SiNx 박막을 형성하여 발광 면적의 수축을 방지하고 발광 효율을 증대시켜 소자 특성을 개선시키는 방법이다. The present invention is a method for the treatment by DPN (Decoupled Plasma Nitridation) forming a nitride film (Nitride) with N 2 gas and then to form the SiNx thin film preventing the shrinkage of the light emitting area and by increasing the light emission efficiency improving device characteristics.

상기 DPN(Decoupled Plasma Nitridation) 공정은 Remote Plasma 방식으로 진행되는 것으로 plasma에 의한 Under Layer를 attack이 없고, 산소 침투 방지막으로 우수한 특성을 가지고 있다.The DPN (Decoupled Plasma Nitridation) process is performed by a remote plasma method, which does not attack the under layer by plasma, and has excellent characteristics as an oxygen penetration prevention film.

또한 본 발명은, 글라스(Glass)위에 ITO와 유기층 및 캐소드가 증착되는 공정과, 유기물 보호 및 투습을 방지하기 위해 제1 투습 방지막을 N2 Plasma로 처리하는 공정과, PECVD법으로 SiNx 박막을 형성하는 공정과, Planarization Layer로 경화수지를 도포하고 자외선(UV)으로 광경화하는 공정과, 제2 투습 방지막으로 SiNx/Al/SiNx를 형성하는 공정과, 소자 보호를 위해 다시 광경화 수지를 도포하고 자외선(UV)으로 경화시키는 공정을 포함한다.In addition, the present invention, the process of depositing the ITO, the organic layer and the cathode on the glass, the process of treating the first moisture barrier layer with N 2 Plasma to protect the organic material and prevent moisture permeation, and to form a SiNx thin film by PECVD Process to apply the cured resin to the planarization layer and photocuring with ultraviolet (UV) light, to form SiNx / Al / SiNx as the second moisture barrier layer, and to apply the photocurable resin again to protect the device. And curing with ultraviolet (UV) light.

또한 본 발명은, 제1 투습 방지막 증착전, DPN 처리를 실시하는 것을 특징으로 하며, 이때 반응가스로 N2O와 He 가스를 각각 30sccm ~ 1000sccm 사용하고, 반응로의 압력은 0.1torr ~ 3torr로 유지하고, 반응로의 내부 히팅 온도는 룸 온도(Room Termp)로 유지하고, Plasma 여기시 RF 파워는 20Watt ~ 1kWatt로 유지하는 것을 특징으로 한다.In addition, the present invention is characterized in that the DPN treatment is carried out before the first moisture barrier film is deposited, wherein N 2 O and He gases are used at 30 sccm to 1000 sccm, respectively, and the pressure of the reactor is 0.1 to 3 tor. It maintains, the internal heating temperature of the reactor is maintained at the room temperature (Room Termp), the RF power when Plasma excitation is characterized in that it is maintained at 20Watt ~ 1kWatt.

또한 본 발명은, 제1 투습 방지막은 PECVD법으로 SiNx 증착하되, 소스 가스로 SiH4를 30sccm~500sccm 사용하고, 반응가스로 N2 또는 NH3를 30sccm ~ 500sccm 사용하고, 반응로의 압력은 0.1torr ~ 2torr로 유지하고, 반응로의 히팅 온도는 50℃ ~ 150℃로 유지하고, RF 파워는 20Watt ~ 200Watt로 유지하는 것을 특징으로 한 다.In addition, in the present invention, the first moisture barrier film is SiNx deposited by PECVD, using 30 sccm ~ 500 sccm of SiH 4 as the source gas, 30 sccm ~ 500 sccm of N 2 or NH 3 as the reaction gas, the pressure of the reactor is 0.1 Torr ~ 2torr is maintained, the heating temperature of the reactor is maintained at 50 ℃ ~ 150 ℃, RF power is characterized in that it is maintained at 20Watt ~ 200Watt.

또한 본 발명은, 평탄화 층(Planarization Layer) 및 보호층은 광경화 수지(Urethan,epoxy)를 스핀 코터(Spin Coator0나 스크린 프린터(Screen Printer)로 도포하는 것을 그 특징으로 한다. In addition, the present invention is characterized in that the planarization layer and the protective layer apply photocurable resin (Urethan, epoxy) to a spin coater (Spin Coator0) or a screen printer (Screen Printer).

또한 본 발명은, SiN/Al/SiN을 형성할 때, SiNx 형성은 상기와 동일하게 진행하되 RF 파워는 1kw까지 실시하는 것을 특징으로 하며, 스포터(Sputter) 방법으로 상기 Al를 증착하고, 소스타겟으로 상기 Al을 사용하고, 불활성 가스로 Ar을 30sccm ~ 500sccm 사용하고, 플라즈마 여기시 RF 파워는 100Watt ~ 2kWatt로 유지하고, 반응로의 압력은 0.1torr ~ 10torr로 유지하고, 반응로의 내부 히팅 온도는 50℃ ~ 100℃로 유지하는 것을 특징으로 한다.In addition, the present invention, when forming the SiN / Al / SiN, SiNx formation is carried out in the same manner as above, but the RF power is characterized in that up to 1kw, depositing the Al by the spotter method, the source The Al is used as a target, Ar is used as an inert gas 30sccm ~ 500sccm, RF power is maintained at 100Watt ~ 2kWatt during plasma excitation, the pressure of the reactor is maintained at 0.1torr ~ 10torr, the internal heating of the reactor The temperature is maintained at 50 ° C to 100 ° C.

또한 본 발명은, 상기 SiNx/Al/SiNx 대신 SiNx/Al2O3/SiNx 또는SiOx/Al2O3/SiOx로 하는 것을 특징으로 한다.In addition, the present invention is characterized in that the SiNx / Al 2 O 3 / SiNx or SiOx / Al 2 O 3 / SiOx instead of the SiNx / Al / SiNx.

또한 본 발명은, 무기막을 PECVD 대신 ALD법 및 스포터(Sputter)인 롤 코터(Roll Coater)에서 증착하는 것을 그 특징으로 한다.In addition, the present invention is characterized in that the inorganic film is deposited in a roll coater, which is an ALD method and a spotter, instead of PECVD.

또한 본 발명은, DPN 공정으로 투습 방지막을 형성하되, 휘어지는 기판 특히 모든 플라스틱 기판에 사용하는 것을 그 특징으로 한다.In addition, the present invention is characterized in that the moisture permeation prevention film is formed by the DPN process, and is used for bending substrates, especially all plastic substrates.

본 발명은 OLED 소자 제조시 1차 소자 보호 및 투습 방지막으로 사용하는 SiNx 박막 형성시 소스(Source) 가스인 SiH4와 NH3 가스에 존재하는 수소가 유기물과 반응하여 소자의 특성 저하를 방지하는 효과가 있다.The present invention is to prevent the deterioration of device characteristics by reacting the hydrogen in the source gas SiH 4 and NH 3 gas with the organic material when forming the SiNx thin film used as the primary device protection and moisture barrier film when manufacturing the OLED device There is.

또한 본 발명은 N2 가스로 DPN(Decoupled Plasma Nitridation) 처리하여 질화물(Nitride) 막을 형성한 다음 SiNx 박막을 형성하여 발광 면적의 수축을 방지하고 발광 효율을 증대시켜 소자의 특성이 개선되는 효과가 있다.In addition, the present invention has the effect of improving the characteristics of the device by preventing the shrinkage of the light emitting area and increase the luminous efficiency by forming a nitride (Nitride) film by the DPN (Decoupled Plasma Nitridation) treatment with N 2 gas to form a thin film of SiNx .

이하, 본 발명의 바람직한 실시 예들을 첨부한 도면에 따라 상세히 설명하고자 한다. 본 발명의 실시 예들을 설명함에 있어 도면들 중 동일한 구성 요소들은 가능한 한 동일 부호로 기재하고, 관련된 공지구성이나 기능에 대한 구체적인 설명은 본 발명의 요지가 모호해지지 않도록 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the embodiments of the present invention, the same components in the drawings are denoted by the same reference numerals as much as possible, and detailed descriptions of related known configurations or functions will be omitted so as not to obscure the subject matter of the present invention.

본 발명을 구현하기 위한 N2 Plasma 처리 및 SiNx박막 형성 방법은 다음과 같다.N 2 Plasma treatment and SiNx thin film formation method for implementing the present invention is as follows.

글라스(Glass) 또는 플라스틱(Plastic) 위에 ITO가 증착된 ITO기판(10) 준비단계;Preparing an ITO substrate 10 having ITO deposited on glass or plastic;

상기 ITO기판(10) 위에 유기물 형성을 위한 패턴(Isolation 및 Separator) 형성 단계;Forming a pattern (Isolation and Separator) for forming an organic material on the ITO substrate (10);

상기 패턴 위에 유기물 및 캐소드(20)를 증착하는 단계;Depositing an organic material and a cathode (20) over the pattern;

상기 유기물 및 캐소드(20) 위에 유기물 보호 및 투습 방지를 위한 제1 투습 방지막(30)으로 DPN 처리 및 SiNx 증착하는 단계;DPN treatment and SiNx deposition on the organic material and the cathode 20 with the first moisture barrier film 30 for protecting the organic material and preventing moisture permeation;

상기 제1 투습 방지막(30) 위에 평탄화 층(Planarization Layer)(40)인 광경화 수지를 스핀 코터(Spin Coator)나 스크린 프린터(Screen Printer)로 도포한 후 자외선(UV)으로 경화시키는 단계;Coating a photocurable resin, which is a planarization layer 40, on a surface of the first moisture barrier layer 30 with a spin coater or a screen printer and curing the same with ultraviolet light (UV);

상기 평탄화 층(40) 위에 제2 투습 방지막으로 SiNx/Al/SiNx을 적층 형성하는 단계; Stacking SiNx / Al / SiNx on the planarization layer 40 as a second moisture barrier layer;

상기 제2 투습 방지막 위에 소자를 보호하기 위해 광경화 수지를 스핀 코터(Spin Coator)나 스크린 프린터(Screen Printer)로 도포한 후 자외선(UV)으로 경화시킨 보호층(120)을 형성하는 단계; 로 된다.Forming a protective layer (120) on which the photocurable resin is coated with a spin coater or a screen printer and then cured with ultraviolet rays to protect the device on the second moisture barrier layer; .

본 발명에서 제1 투습 방지막(30)으로 DPN 처리하고 SiNx 증착하게 되며, 먼저 유기층과 수소와의 반응을 억제하기 위해 먼저 DPN 처리는 다음과 같이 진행한다.In the present invention, the first moisture barrier layer 30 is subjected to DPN treatment and SiNx deposition. First, in order to suppress the reaction between the organic layer and hydrogen, the first DPN treatment proceeds as follows.

a). 반응가스로 N2와 He 가스를 각각 30sccm ~ 1000sccm 사용하고,a). Each with 30sccm ~ 1000sccm the N 2 and He gas as the reaction gas,

b). Plasma 여기시 RF 파워는 20Watt ~ 1kWatt로 유지하고,b). RF power at Plasma excitation is maintained at 20Watt ~ 1kWatt,

c). 반응로의 압력은 0.1torr ~ 3torr로 유지하고,c). The reactor pressure is maintained at 0.1torr ~ 3torr,

d). 반응로 내부의 히팅 온도는 룸 온도(Room Temp)에서 실시한다.d). The heating temperature inside the reactor is at room temperature.

다음으로 SiNx 형성은,Next, SiNx formation is

a). 소스 가스(Source Material)로 SiH4를 30sccm~500sccm 사용하고,a). Sisc 4 is used as the source material (30sccm ~ 500sccm),

b). 반응가스로 N2 또는 NH3 30sccm ~ 500sccm 사용하고,b). N 2 or NH 3 30sccm ~ 500sccm as the reaction gas,

c). 플라즈마 여기시 RF 파워는 20Watt ~ 200Watt로 유지하고,c). RF power during plasma excitation is maintained at 20Watt ~ 200Watt,

d). 반응로의 압력은 0.1torr ~ 2torr로 유지하고,d). The reactor pressure is maintained at 0.1torr ~ 2torr,

e). 반응로의 내부 히팅 온도는 50℃ ~ 100℃로 유지하는 조건으로 증착시켜 제1 투습 방지막(30)을 형성한다. e). The internal heating temperature of the reactor is deposited under the condition of maintaining at 50 ° C to 100 ° C to form the first moisture barrier film 30.

본 발명에서 제2 투습 방지막으로 SiNx/Al/SiNx을 다음과 같이 적층 형성하게 된다.In the present invention, SiNx / Al / SiNx is laminated as a second moisture barrier layer as follows.

먼저 SiN 증착은 위와 같은 조건과 동일하게 진행하되 R.F.Power를 1kw까지 실시하며, 스포터(Sputter)로 Al 증착은 다음과 같이 실시한다.First of all, SiN deposition is carried out in the same manner as above, but R.F.Power is performed up to 1kw, and Al deposition is performed using a spotter as follows.

a). 소스 가스로 Al을 사용하고,a). Using Al as the source gas,

b). 불활성 가스로 Ar을 30sccm ~ 500sccm 사용하고,b). Ar is used as an inert gas 30sccm ~ 500sccm,

c). 플라즈마 여기시 RF 파워는 100Watt ~ 2kWatt로 유지하고, c). RF power during plasma excitation is maintained at 100Watt ~ 2kWatt,

d). 반응로의 압력은 0.1torr ~ 10torr로 유지하고,d). The reactor pressure is maintained at 0.1torr ~ 10torr,

e). 반응로 내부의 히팅 온도는 50℃ ~ 150℃로 유지하는 조건으로 증착시켜 제2 투습 방지막을 형성한다.e). The heating temperature inside the reactor is deposited under the condition of maintaining at 50 ° C to 150 ° C to form a second moisture barrier film.

본 발명에서 평탄화 층(30)과 보호층(120)은 광경화 수지를 스핀 코터(Spin Coator)나 스크린 프린터(Screen Printer)로 도포한 후 자외선(UV)으로 경화시켜 소자를 보호하도록 구성된다.In the present invention, the planarization layer 30 and the protective layer 120 are configured to protect the device by applying a photocurable resin to a spin coater or a screen printer and curing with ultraviolet (UV).

상기 유기물은 정공 주입층(HIL)/정공 수송층(HTL)/발광층(EML)/전자 수송층(ETL)/전자주입층(EIL)이 차례로 증착되어 층구조를 가지며, 그 상부에 캐소드(Cathode)가 증착된다. 상기 캐소드(음극 전극)는 원할한 전자 공급을 위하여 일함수가 낮은 금속, 예컨대 Al 금속막 등이 사용된다.The organic material has a layer structure in which a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL) are sequentially deposited, and a cathode is formed thereon. Is deposited. As the cathode (cathode electrode), a metal having a low work function, such as an Al metal film, is used for smooth electron supply.

본 발명은 봉지 공정 중 투습 방지막으로 사용하는 모든 디스플레이에 사용 할 수 있다.The present invention can be used for all displays used as the moisture barrier film during the sealing process.

본 발명은 SiH4와 N2 또는 NH3에 Plasma를 여기시켜 SiNx 박막을 형성할 때 수소 이온과 유기층과의 반응을 억제함으로써 N2 가스에 DPN 처리에 의해 얇은 질화물(Nitride) 막이 증착되어 발광 면적의 수축이 방지되고, 발광 효율이 크게 증대된다.In the present invention, when a plasma is excited by SiH 4 and N 2 or NH 3 to form a SiNx thin film, a thin nitride film is deposited on N 2 gas by DPN treatment, thereby suppressing the reaction between hydrogen ions and the organic layer. Shrinkage is prevented, and the luminous efficiency is greatly increased.

이상과 같이 설명한 본 발명은 본 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러가지 치환, 변형 및 변경이 가능하며, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다.The present invention as described above is not limited to the present embodiment and the accompanying drawings, various substitutions, modifications and changes are possible within the scope without departing from the technical spirit of the present invention, which is usually in the art It is self-evident for those who have knowledge.

도 1 : 본 발명에서 ITO기판 위에 유기층 및 캐소드가 증착된 상태.1 is a state in which an organic layer and a cathode are deposited on an ITO substrate in the present invention.

도 2 : 본 발명에서 제1 투습 방지막이 증착된 상태.2 is a state in which the first moisture barrier film is deposited in the present invention.

도 3 : 본 발명에서 제1 투습 방지막 위에 평탄화 층이 형성된 상태.3 is a state in which a planarization layer is formed on the first moisture barrier film in the present invention.

도 4 : 본 발명에서 평탄화 층 위에 제2 투습 방지막이 증착된 상태.4 is a state in which a second moisture barrier film is deposited on the planarization layer in the present invention.

도 5 : 본 발명에서 제2 투습 방지막 위에 소자 보호층이 형성된 상태5 is a state in which the device protective layer is formed on the second moisture barrier film in the present invention

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

(10)--ITO기판(10)-ITO Board

(20)--유기층 및 캐소드(20)-organic layers and cathodes

(30)(60)--제1 투습 방지막(30) (60)-first moisture barrier

(40)(51)--평탄화 층40 (51)-flattening layer

(50)(120)--보호층(50) (120)-Protective Layer

(70)--제2 투습 방지막의 AL 또는 AL2O3 박막층(70)-AL or AL 2 O 3 thin film layer of the second moisture barrier

(80)--제2 투습 방지막의 SiNx 박막층(80)-SiNx thin film layer of second moisture barrier

(90)--제2 투습 방지막의 SiN 박막층(90)-SiN thin film layer of second moisture barrier film

(100)--제2 투습 방지막의 AL 또는 AL2O3 박막층(100)-AL or AL 2 O 3 thin film layer of the second moisture barrier

Claims (6)

플렉시블 OLED 디스플레이의 제조방법에 있어서; A method for producing a flexible OLED display; ITO기판 준비단계;ITO substrate preparation step; 상기 ITO기판 위에 패턴을 형성하는 단계;Forming a pattern on the ITO substrate; 상기 패턴 위에 유기물 및 캐소드를 증착하는 단계;Depositing an organic material and a cathode on the pattern; 상기 유기물 및 캐소드 위에 제1 투습 방지막으로 DPN 처리 및 SiNx를 증착하는 단계;Depositing a DPN treatment and SiNx with a first moisture barrier layer on the organic material and the cathode; 상기 제1 투습 방지막 위에 광경화 수지를 경화시켜 평탄화 층을 형성하는 단계;Curing a photocurable resin on the first moisture barrier layer to form a planarization layer; 상기 평탄화 층 위에 제2 투습 방지막으로 SiNx/Al/SiNx을 적층 형성하는 단계; Stacking SiNx / Al / SiNx as a second moisture barrier layer on the planarization layer; 상기 제2 투습 방지막 위에 광경화 수지를 경화시켜 보호층을 형성하는 단계; 로 된 플렉시블 OLED 디스플레이의 제조방법.Curing the photocurable resin on the second moisture barrier layer to form a protective layer; Method of manufacturing a flexible OLED display. 청구항 1에 있어서; The method according to claim 1; 제1 투습 방지막으로 DPN 처리하고 SiNx 증착하도록 함을 특징으로 하는 플렉시블 OLED 디스플레이의 제조방법.Process for producing a flexible OLED display, characterized in that the first moisture-permeable anti-DPN treatment and SiNx deposition. 청구항 2에 있어서; The method according to claim 2; DPN 처리는, DPN processing is a). 반응가스로 N2와 He 가스를 각각 30sccm ~ 1000sccm 사용하고,a). Each with 30sccm ~ 1000sccm the N 2 and He gas as the reaction gas, b). Plasma 여기시 RF 파워는 20Watt ~ 1kWatt로 유지하고,b). RF power at Plasma excitation is maintained at 20Watt ~ 1kWatt, c). 반응로의 압력은 0.1torr ~ 3torr로 유지하고,c). The reactor pressure is maintained at 0.1torr ~ 3torr, d). 반응로 내부의 히팅 온도는 룸 온도(Room Temp)에서 실시하도록 함을 특징으로 하는 플렉시블 OLED 디스플레이의 제조방법.d). Method for manufacturing a flexible OLED display, characterized in that the heating temperature inside the reactor to be carried out at room temperature (Room Temp). 청구항 2에 있어서; The method according to claim 2; SiNx 형성은,SiNx formation, a). 소스 가스(Source Material)로 SiH4를 30sccm~500sccm 사용하고,a). Sisc 4 is used as the source material (30sccm ~ 500sccm), b). 반응가스로 N2 또는 NH3 30sccm ~ 500sccm 사용하고,b). N 2 or NH 3 30sccm ~ 500sccm as the reaction gas, c). 플라즈마 여기시 RF 파워는 20Watt ~ 200Watt로 유지하고,c). RF power during plasma excitation is maintained at 20Watt ~ 200Watt, d). 반응로의 압력은 0.1torr ~ 2torr로 유지하고,d). The reactor pressure is maintained at 0.1torr ~ 2torr, e). 반응로의 내부 히팅 온도는 50℃ ~ 100℃로 유지하는 조건으로 증착하도록 함을 특징으로 하는 플렉시블 OLED 디스플레이의 제조방법.e). The internal heating temperature of the reactor is a method of manufacturing a flexible OLED display, characterized in that to be deposited under the conditions maintained at 50 ℃ ~ 100 ℃. 청구항 1 또는 청구항 2에 있어서; The method according to claim 1 or 2; 제2 투습 방지막은, The second moisture barrier film, 먼저 SiN 증착은 청구항 3과 같은 조건으로 진행하되 RF 파워를 1kw까지 실 시하도록 함을 특징으로 하는 플렉시블 OLED 디스플레이의 제조방법.First, SiN deposition proceeds under the same conditions as in claim 3, but the method of manufacturing a flexible OLED display, characterized in that to perform RF power up to 1kw. 청구항 1 또는 청구항 2에 있어서; The method according to claim 1 or 2; 제2 투습 방지막은, 스포터(Sputter)로 Al 증착하되, The second moisture barrier layer is deposited Al with a spotter, a). 소스 가스로 Al을 사용하고,a). Using Al as the source gas, b). 불활성 가스로 Ar을 30sccm ~ 500sccm 사용하고,b). Ar is used as an inert gas 30sccm ~ 500sccm, c). 플라즈마 여기시 RF 파워는 100Watt ~ 2kWatt로 유지하고, c). RF power during plasma excitation is maintained at 100Watt ~ 2kWatt, d). 반응로의 압력은 0.1torr ~ 10torr로 유지하고,d). The reactor pressure is maintained at 0.1torr ~ 10torr, e). 반응로 내부의 히팅 온도는 50℃ ~ 150℃로 유지하는 조건으로 증착하도록 함을 특징으로 하는 플렉시블 OLED 디스플레이의 제조방법.e). Method for manufacturing a flexible OLED display, characterized in that the heating temperature inside the reactor to be deposited under the conditions maintained at 50 ℃ ~ 150 ℃.
KR1020090043046A 2009-05-18 2009-05-18 One of flexible display organic light emitting display panel and method of manufacturing the same KR20100124017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090043046A KR20100124017A (en) 2009-05-18 2009-05-18 One of flexible display organic light emitting display panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090043046A KR20100124017A (en) 2009-05-18 2009-05-18 One of flexible display organic light emitting display panel and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20100124017A true KR20100124017A (en) 2010-11-26

Family

ID=43408383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090043046A KR20100124017A (en) 2009-05-18 2009-05-18 One of flexible display organic light emitting display panel and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20100124017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099677B2 (en) 2013-07-23 2015-08-04 Samsung Display Co., Ltd. Encapsulation structure for an organic light emitting display device, an organic light emitting display device, and methods of manufacturing an organic light emitting display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099677B2 (en) 2013-07-23 2015-08-04 Samsung Display Co., Ltd. Encapsulation structure for an organic light emitting display device, an organic light emitting display device, and methods of manufacturing an organic light emitting display device

Similar Documents

Publication Publication Date Title
KR101108166B1 (en) Organic luminescent device including barrier comprising silicon oxide layer and silicon rich silicon nitride layer
CN101431147B (en) Organic electroluminescence display device and manufacturing method thereof
US20110097533A1 (en) Thin film encapsulation method
US20110198627A1 (en) Organic Optoelectronic Device And A Method For Encapsulating Said Device
US20040021416A1 (en) Organic light emitting device with improved moisture seal
US20160056414A1 (en) Thin film permeation barrier system for substrates and devices and method of making the same
US20190221771A1 (en) Buffer layer for organic light emitting devices and method of making the same
US9269923B2 (en) Barrier films for thin film encapsulation
US7994707B2 (en) Organic el device and method of producing the device
KR20100124012A (en) One of flexible display organic light emitting display panel and method of manufacturing the same
US8530928B2 (en) Encapsulated optoelectronic component and method for the production thereof
US7976908B2 (en) High throughput processes and systems for barrier film deposition and/or encapsulation of optoelectronic devices
KR20110101518A (en) Flexible substrate and flexible organic light emitting display with preventing humidity and method of manufacturing the same
KR20130091281A (en) Gas barrier film and the method for preparing the same
JP2005166400A (en) Surface protection film
Kim et al. Hydrogen-assisted low-temperature plasma-enhanced chemical vapor deposition of thin film encapsulation layers for top-emission organic light-emitting diodes
KR20020093169A (en) An organic EL panel capable of preventing infiltration of oxygen or moisture and manufacturing method therefor
JP2013187019A (en) Organic el display device and method for manufacturing the same
KR20100124010A (en) How to waterproof from the flexible display
KR20100124017A (en) One of flexible display organic light emitting display panel and method of manufacturing the same
KR20100124009A (en) How to waterproof from the oled
KR20100124019A (en) One of flexlble display organic light emitting display panel and method of manufacturing the same
KR20100124015A (en) How to waterptoof from the flexible display
JP2015080855A (en) Sealing film, method for producing the same and functional element sealed with sealing film
WO2016084791A1 (en) Sealing film, function element and method for producing sealing film

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application