KR20100118860A - Manufacturing method of biocompatible poly(vinyl alcohol)-based hydrogel - Google Patents

Manufacturing method of biocompatible poly(vinyl alcohol)-based hydrogel Download PDF

Info

Publication number
KR20100118860A
KR20100118860A KR1020090037778A KR20090037778A KR20100118860A KR 20100118860 A KR20100118860 A KR 20100118860A KR 1020090037778 A KR1020090037778 A KR 1020090037778A KR 20090037778 A KR20090037778 A KR 20090037778A KR 20100118860 A KR20100118860 A KR 20100118860A
Authority
KR
South Korea
Prior art keywords
polyvinyl alcohol
hydrogel
poly
peo
hydrophilic polymer
Prior art date
Application number
KR1020090037778A
Other languages
Korean (ko)
Other versions
KR101091575B1 (en
Inventor
이진호
임천수
오세행
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020090037778A priority Critical patent/KR101091575B1/en
Publication of KR20100118860A publication Critical patent/KR20100118860A/en
Application granted granted Critical
Publication of KR101091575B1 publication Critical patent/KR101091575B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE: A manufacturing method of biocompatible poly(vinyl alcohol)-based hydrogel is provided to secure the harmlessness to the human body by avoid using a cross-linking agent without the toxicity. CONSTITUTION: A manufacturing method of biocompatible poly(vinyl alcohol)-based hydrogel comprises a step of freezing and melting a polyvinyl alcohol/hydrophilic polymer aqueous solution containing polyvinyl alcohol and a hydrophilic polymer. The weight average molecular weight of the polyvinyl alcohol is 10,000~1,000,000 g/mol. The freezing time for the freezing step is 1 second~12 hours.

Description

생체적합성 폴리비닐알콜계 하이드로겔의 제조방법{Manufacturing method of biocompatible poly(vinyl alcohol)-based hydrogel} Manufacturing method of biocompatible poly (vinyl alcohol) -based hydrogel

본 발명은 제조 시간이 매우 짧고, 우수한 기계적 물성을 가지며, 인체 독성을 나타내는 어떠한 유기용매 및 가교제도 사용하지 않아 생체적합성이 우수한 폴리비닐알콜계 하이드로겔의 제조방법에 관한 것이다. The present invention relates to a method for producing a polyvinyl alcohol-based hydrogel having a very short production time, excellent mechanical properties, and excellent biocompatibility without using any organic solvents and crosslinking agents exhibiting human toxicity.

하이드로겔이란 많은 양의 물이 고분자 물질의 격자 내에 채워져 팽윤된, 삼차원적인 구조를 유지하는 상태를 말한다. 하이드로겔은 전체 중량의 적어도 20% 이상의 수분을 흡수할 수 있으며, 이 중에서도 95% 이상의 물을 흡수하는 것을 고흡수성 하이드로겔이라고 부른다. 이러한 하이드로겔은 외부 이력에 의한 유동성이 거의 없는 구조적으로 안정한 삼차원 네트워크 구조를 형성하는데, 이러한 구조는 공유결합, 수소결합, 반 데르 발스 결합 또는 물리적인 응집 등 여러 요인에 의해 형성되는 것으로 알려져 있다. 또한 수용액 상에서 팽윤된 후에 열역학적으로 안정하게 존재하여 액체와 고체의 중간 형태에 해당하는 기계적·물리화학적 특성을 지닌다. Hydrogel refers to a state in which a large amount of water is filled in a lattice of a polymer material to maintain a swelling, three-dimensional structure. The hydrogel may absorb at least 20% or more of the total weight of water, and among these, absorbing more than 95% of water is called a superabsorbent hydrogel. The hydrogel forms a structurally stable three-dimensional network structure with little fluidity due to external hysteresis, which is known to be formed by various factors such as covalent bonds, hydrogen bonds, van der Waals bonds, or physical aggregation. It is also thermodynamically stable after swelling in an aqueous solution, and has mechanical and physicochemical properties corresponding to the intermediate form of liquid and solid.

1960년대 Wichterle 등에 의해 폴리-2-하이드록시에틸메타아크릴레이트(PHEMA)로 이루어진 하이드로겔이 개발된 이후, 이것이 가지는 친수성과 생체적합성으로 인하여 생체재료 분야에서의 응용에 꾸준히 관심이 증가되어 왔다 [O. Wichterle and D. Lim, Nature, 185, 117 (1960)]. Since the development of hydrogels consisting of poly-2-hydroxyethyl methacrylate (PHEMA) by Wichterle et al. . Wichterle and D. Lim, Nature , 185 , 117 (1960).

1980년경 칼슘알지네이트 하이드로겔이 개발된 이후 천연 또는 합성고분자를 이용한 다양한 생체재료용 하이드로겔이 개발되었으며, 하이드로겔의 물리화학적 특성에 관한 많은 연구결과로 다양한 종류의 하이드로겔이 개발되고 있다. Since the development of calcium alginate hydrogels in 1980, various biomaterials using natural or synthetic polymers have been developed, and various types of hydrogels have been developed as a result of many studies on the physical and chemical properties of hydrogels.

또한, 고흡수성을 기반으로 하는 위생용품에 응용을 시작으로 현재에는 다양한 부가적인 기능성의 도입에 의해 약물전달시스템, 색전술, 조직공학용 지지체, 케미컬밸브, 이밖에 단백질의 분리 및 농축 그리고 안정화, 면역분석, 생물반응기, 센서, 크로마토그래피 그리고 화장품 충진제 등 의약학적 응용에서 산업적 응용에 이르기까지 매우 광범위한 분야에서 유용하게 이용되고 있다 [S. Y. Kim, Tissue Eng. Regen. Med., 5, 14 (2008)]. In addition, starting with the application of hygroscopic products based on superabsorbency, the present invention introduces a variety of additional functionalities for drug delivery systems, embolization, tissue engineering supports, chemical valves, and other proteins. , Bioreactors, sensors, chromatography, and cosmetic fillers, ranging from pharmaceutical applications to industrial applications. [SY Kim, Tissue Eng. Regen. Med., 5 , 14 (2008)].

이러한 하이드로겔은 이들을 구성하고 있는 고분자의 가교형태에 따라 크게 화학적 하이드로겔과 물리적 하이드로겔로 분류될 수 있다. 화학적 하이드로겔은 라디칼 중합에 의한 가교(저분자 단량체의 중합에 의해) 혹은 화학반응에 의한 가교가 대표적인 예이며, 물리적 하이드로겔은 고분자 사슬 간의 이온결합 (예, Ca2+에 의한 알긴산의 가교) 혹은 결정화(반복적인 동결-해동에 의한 결정화 혹은 사슬간 interaction 증가에 의한 가교) 등에 의한 가교를 통해 하이드로겔을 형성시킨 다. Such hydrogels can be broadly classified into chemical hydrogels and physical hydrogels according to the crosslinking form of the polymers constituting them. Chemically cross-linked hydrogel by a radical polymerization (by polymerization of a low molecular weight monomer) or a cross-linked by chemical reaction, and a typical example, an ionic bond between the physical hydrogel polymer chains (for example, cross-linking of the alginate by Ca 2+) or Hydrogels are formed through crosslinking by crystallization (crystallization by repeated freeze-thaw or crosslinking by increasing interchain interactions).

한편, 폴리비닐알콜(poly(vinyl alcohol), PVA)은 이들의 비독성 (non-toxicity), 비발암성(non-carcinogenicity), 생분해성(biodegradability), 생체적합성(biocompatibility), 우수한 기계적 특성 (high mechanical properties), 높은 함수량(high water content) 등의 특성을 지니고 있어 약물전달매체(drug delivery system), 상처드레싱(wound dressing), 보형물(filler) 콘택트렌즈(contact lens), 그리고 바이오센서(biosensors) 등과 같은 생체재료로 응용하기 위한 연구가 활발히 진행되고 있다. Polyvinyl alcohol (PVA), on the other hand, is non-toxicity, non-carcinogenicity, biodegradability, biocompatibility, excellent mechanical properties (high Its mechanical properties, high water content and other properties make it possible to deliver drug delivery systems, wound dressings, filler contact lenses, and biosensors. Research is being actively conducted for application to biomaterials such as.

상기 폴리비닐알콜 역시 물리적 또는 화학적 가교방법이 하이드로겔의 제조에 사용되어 오고 있다. The polyvinyl alcohol has also been used in the preparation of hydrogel physical or chemical crosslinking method.

물리적 가교방법은 어떠한 첨가제도 넣지 않은 PVA 수용액을 물의 어는 점 아래(통상 -10 내지 -20℃ 정도의 온도)에서 12 내지 24시간여 동안 동결(freezing)시키고, 이를 다시 상기 어는 점 이상의 온도(통상 상온(room temperature))에서 해동(thawing)시키는 과정을 수차례 반복하여 가교, 또는 겔을 형성시킨다. 그러나 이러한 물리적 가교방법은 동결 및 해동 과정을 수차례 반복시킴으로써 통상 3 ~ 4일 이상의 긴 시간이 소요되고 공정이 다소 복잡하여 제조상의 효율이 떨어지는 문제가 있다. The physical crosslinking method freezes the PVA aqueous solution without any additives for 12 to 24 hours under the freezing point of water (typically about -10 to -20 ° C), and again the temperature above the freezing point (typically Thawing at room temperature is repeated several times to form crosslinks or gels. However, this physical crosslinking method has a problem that it takes a long time usually 3 to 4 days or more by repeating the freezing and thawing process several times and the manufacturing process is somewhat complicated and the manufacturing efficiency is lowered.

또 다른 화학적 가교방법은 글루타알데하이드(gluteraldehyde), 보릭산(boric acid) 등의 가교제에 의해 가교(하이드로겔)시키는 것이다. 그러나, 화학적 가교방법에 사용되는 상기 가교제들은 대부분 인체에 해를 끼치는 독성가능성이 있으나 하이드로겔로부터 이들의 완벽한 제거가 쉽지 않으므로 인체에 적용하기 위한 재료로 사용하기에 어려움이 있고, 뿐만 아니라 제조된 하이드로겔의 기계적 물성이 다소 낮은 문제가 있다. 이러한 문제들로 인하여 폴리비닐알콜 하이드로겔로의 우수한 특성에도 불구하고, 이들로부터 제조된 하이드로겔의 의학적 이용에는 상당한 제한이 따르고 있는 실정이다. Another chemical crosslinking method is crosslinking (hydrogel) by a crosslinking agent such as glutaraldehyde and boric acid. However, the crosslinking agents used in the chemical crosslinking method are most likely to be harmful to the human body, but it is difficult to use them as a material for applying to the human body since it is not easy to remove them completely from the hydrogel. There is a problem that the mechanical properties of the gel is somewhat low. Due to these problems, despite the excellent properties of polyvinyl alcohol hydrogels, the medical use of the hydrogels prepared from them is subject to considerable limitations.

이에 본 발명에서는 종래 폴리비닐알콜 하이드로겔을 화학적 가교법으로 제조시 인체 독성 가교제의 사용으로 인한 안전성/물성저하 문제 및 물리적 가교법으로 제조함에 따른 상당히 긴 제조 시간으로 인한 생산성 저하 등의 문제를 해결할 수 있는 개선된 폴리비닐알콜계 하이드로겔의 제조방법을 제공하고자 한 것이다. Therefore, the present invention solves the problems of safety / property degradation due to the use of a human toxic crosslinking agent in the production of the conventional polyvinyl alcohol hydrogel by chemical crosslinking method, and problems such as productivity decrease due to a considerably long manufacturing time due to the physical crosslinking method. It is an object of the present invention to provide an improved method of preparing a polyvinyl alcohol-based hydrogel.

따라서, 본 발명의 목적은 인체 독성을 가지는 가교제를 사용하지 않으므로 인체에 무해하고, 기계적 물성이 우수한 폴리비닐알콜계 하이드로겔을 간단하고 짧은 시간에 제조할 수 있는 제조방법을 제공하는 데 있다. Therefore, an object of the present invention is to provide a manufacturing method that can be produced in a simple and short time to produce a polyvinyl alcohol-based hydrogel which is harmless to the human body and excellent in mechanical properties because it does not use a cross-linking agent having human toxicity.

본 발명에서는 폴리비닐알콜 수용액 상에서 물 분자와 폴리비닐알콜의 미세분리(micro-separation)를 유도하여 폴리비닐알콜 풍부 영역(PVA-rich domain, 고분자 사슬 간의 가교 역할)의 형성을 촉진시킬 수 있는 다양한 친수성 고분자를 첨가하고 이를 적절한 온도와 시간에서 단 1회의 동결-해동과정으로도 우수한 기계적 물성을 가지는 폴리비닐알콜계 하이드로겔이 형성될 수 있다는 것을 수많은 실험을 통하여 확인하여 본 발명을 완성하였다. In the present invention, a poly-vinyl alcohol solution may induce micro-separation of water molecules and polyvinyl alcohol to promote the formation of polyvinyl alcohol-rich domains (PVA-rich domain, a crosslinking role between polymer chains). The present invention was completed through numerous experiments that hydrophilic polymers were added and polyvinyl alcohol-based hydrogels having excellent mechanical properties could be formed by only one freeze-thaw process at an appropriate temperature and time.

본 발명에 따른 폴리비닐알콜계 하이드로겔 제조 방법은 종래 기술과 달리 인체 독성을 지닌 가교제를 사용하지 않아 생체적합성이 우수하며, 또한 매우 짧은 시간에 우수한 기계적 물성을 갖는 하이드로겔을 제조할 수 있다는 장점이 있다. 나아가, 이와 같은 장점을 지닌 본 발명의 제조방법으로 제조된 폴리비닐알콜 하이드로겔은 고분자를 이용한 화학분야에 폭 넓게 응용이 가능하며, 특히 약물전달시스템, 색전술, 조직공학용 지지체, 이밖에 단백질의 분리 및 농축 그리고 안정화, 면역분석, 생물반응기, 센서, 그리고 화장품 충진제 등 의약학적 분야에 폭 넓게 응용이 가능하다.Polyvinyl alcohol-based hydrogel manufacturing method according to the present invention, unlike the prior art does not use a cross-linking agent with human toxicity is excellent in biocompatibility, and also has the advantage of producing a hydrogel having excellent mechanical properties in a very short time There is this. Furthermore, the polyvinyl alcohol hydrogel prepared by the method of the present invention having such an advantage can be widely applied to the chemical field using polymers, and in particular, drug delivery system, embolization, tissue engineering scaffold, and other separation of proteins. And pharmaceutical applications such as concentration and stabilization, immunoassays, bioreactors, sensors, and cosmetic fillers.

본 발명의 목적을 달성하기 위한 폴리비닐알콜 하이드로겔의 제조방법은 폴리비닐알콜과 폴리비닐알콜 수용액 상에서 물 분자와 폴리비닐알콜의 미세분리(micro-separation)를 유도하여 폴리비닐알콜 풍부 영역(PVA-rich domain, 고분자 사슬 간의 가교 역할)의 형성을 촉진시킬 수 있는 다양한 친수성 고분자를 포함하는 것으로 구성된 폴리비닐알콜/친수성고분자 수용액을 0 내지 -250℃의 온도에서 1회의 동결-해동시키는 단계를 거쳐 제조되는 것을 그 특징으로 한다. The polyvinyl alcohol hydrogel production method for achieving the object of the present invention induces the micro-separation of water molecules and polyvinyl alcohol on the polyvinyl alcohol and polyvinyl alcohol aqueous solution polyvinyl alcohol rich region (PVA) -rich domain, a polyvinyl alcohol / hydrophilic polymer aqueous solution comprising a variety of hydrophilic polymers capable of promoting the formation of (crosslinking role between polymer chains) through a single freeze-thaw step at a temperature of 0 to -250 ℃ It is characterized by being manufactured.

이하에서 본 발명에 따른 폴리비닐알콜 하이드로겔의 제조방법을 더욱 상세히 설명하면 다음과 같다. Hereinafter, a method for preparing a polyvinyl alcohol hydrogel according to the present invention will be described in more detail.

본 발명의 폴리비닐알콜 하이드로겔은 폴리비닐알콜 수용액에 친수성 고분자를 일정 비율로 혼합하여 수용액을 제조하고, 이를 적절한 온도와 시간으로 동결시 킨 다음, 이를 상온에서 해동시키는 단 1회의 과정을 거침으로써 제조된다. In the polyvinyl alcohol hydrogel of the present invention, an aqueous solution is prepared by mixing a hydrophilic polymer with a predetermined ratio in an aqueous polyvinyl alcohol solution, freezing it at an appropriate temperature and time, and then defrosting it at room temperature by only one step. Are manufactured.

먼저, 폴리비닐알콜을 초순수(deionized water)에 용해시켜 고분자 용액을 제조하고, 이 수용액에 다양한 친수성 고분자를 혼합하여 사용한다.First, polyvinyl alcohol is dissolved in ultrapure water to prepare a polymer solution, and various hydrophilic polymers are mixed and used in this aqueous solution.

상기 폴리비닐알콜 고분자는 중량평균분자량 1,000 ~ 1,000,000 g/mol인 것이 바람직하다. Preferably, the polyvinyl alcohol polymer has a weight average molecular weight of 1,000 to 1,000,000 g / mol.

상기 폴리비닐알콜은 용매인 초순수(deionized water)에 1 내지 40중량% 농도의 수용액을 제조하는 것이 바람직하며, 더욱 바람직하기로는 10 내지 20중량%가 좋다. 상기 폴리비닐알콜 수용액의 농도가 1중량% 미만이면 물성이 너무 약한 하이드로겔이 형성되는 문제가 있으며, 40중량%을 초과하는 경우에는 제조된 용액의 점도가 너무 높아 취급이 용이하지 않은 어려움이 있다.The polyvinyl alcohol is preferably prepared in an aqueous solution of 1 to 40% by weight in ultrapure water (deionized water) is a solvent, more preferably 10 to 20% by weight. When the concentration of the polyvinyl alcohol solution is less than 1% by weight, there is a problem in that hydrogels having too weak physical properties are formed. When the concentration of the polyvinyl alcohol solution is greater than 40% by weight, the viscosity of the prepared solution is too high, making it difficult to handle. .

또한, 상기 친수성 고분자는 용매인 초순수에 0.1 내지 40중량%로 혼합하여 사용하는 것이 바람직하며, 더욱 바람직하기로는 5 내지 30중량%가 좋다. 상기 친수성 고분자가 0.1중량% 미만으로 사용되면 제조된 폴리비닐알콜을 하이드로겔의 기계적 물성이 떨어져 형태가 쉽게 허물어지는 문제가 있으며, 40중량%를 초과하는 경우에는 이 고분자들이 균일하게 혼합되지 않아 (침전형성) 형성되는 하이드로겔이 불균일하게 제조되는 문제가 있다. In addition, the hydrophilic polymer is preferably used by mixing 0.1 to 40% by weight in ultrapure water as a solvent, more preferably 5 to 30% by weight. When the hydrophilic polymer is used in less than 0.1% by weight, there is a problem that the polyvinyl alcohol produced is easily broken down due to the mechanical properties of the hydrogel, and when the hydrophilic polymer exceeds 40% by weight, the polymers are not uniformly mixed ( Precipitation formation) there is a problem that the hydrogel formed is produced unevenly.

본 발명에서 사용된 폴리비닐알콜의 미세상분리를 촉진시킬 수 있는 친수성 고분자로는 중량평균분자량 1,000 ~ 5,000,000 g/mol인 히알루론산(hyaluronic acid), 알긴산(alginic acid), 펙틴(pectin), 카라기난(carrageenan), 콘드로이틴 설페이트(chondroitin sulfate), 덱스트란 설페이트(dextran sulfate), 키토산, 폴 리리신(polylysine), 콜라겐, 젤라틴, 카르복시메틸 키틴, 피브린(fibrin), 덱스트란(dextran), 아가로스(agarose), 플루란(pullulan), 폴리아크릴아마이드(PAAm), 폴리(N-이소프로필 아크릴아마이드-co-아크릴산)(P(NIPAAm-co-AAc)), 폴리(N-이소프로필 아크릴아마이드-co-에틸메타크릴레이트)P(NIPAAm-co-EMA), 폴리비닐아세테이트/폴리비닐알콜(PVAc/PVA), 폴리(N-비닐 피롤리돈)(PVP), 폴리(메틸메타크릴레이트-co-하이드록시에틸 메타크릴레이트)(P(MMA-co-HEMA)), 폴리(폴리에틸렌글리콜-co-펩타이드(P(PEG-co-peptide)), 알지네이트-g-(폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드)(alginate-g-(PEO-PPO-PEO)), 폴리(폴리라틱산-co-글리콜릭산)-co-세린)(P(PLGA-co-serine)),콜라겐-아크릴레이트(collagen-acrylate), 알지네이트-아크릴레이트(alginate-acrylate), 폴리(하이드록시프로필 메타크릴아마이드-g-펩타이드)(P(HPMA-g-peptide)), 폴리(하이드록시에틸메타크릴레이트/메트리겔)(P(HEMA/Matrigel)), 히알루론산-g-N-이소프로필아크릴아마이드(HA-g-NIPAAm), 폴리에틸렌옥사이드(PEO), 폴리에틸렌옥사이드-폴리프로필렌옥사이드 공중합체(PEO-PPO, Pluronic series), 폴리에틸렌옥사이드-폴리락틱산 공중합체(PEO-PLA), 폴리에틸렌옥사이드-폴리락틱글리콜산 공중합체(PEO-PLGA), 폴리에틸렌옥사이드-폴리카프로락톤 공중합체(PEO-PCL), 폴리옥시에틸렌 알킬 에테르류 (polyoxyethylene alkyl ethers, Brij Series), 폴리옥시에틸렌 케스터 오일 유도체류(polyoxyethylene castor oil derivatives, Cremophores), 폴리옥시에틸렌 소르비탄 지방산 에스터류(polyoxyethylene sorbitan fatty acid esters, Tween Series), 및 폴리옥시에틸렌 스테아레이트류(polyoxyethylene stearates)로 이루어 진 그룹으로부터 선택된 1종 이상인 것이 사용될 수 있다. Hydrophilic polymers that can promote the microphase separation of the polyvinyl alcohol used in the present invention include hyaluronic acid, alginic acid, pectin, and carrageenan (weight average molecular weight 1,000 to 5,000,000 g / mol). carrageenan, chondroitin sulfate, dextran sulfate, chitosan, polylysine, collagen, gelatin, carboxymethyl chitin, fibrin, dextran, agarose ), Pullulan, polyacrylamide (PAAm), poly (N-isopropyl acrylamide-co-acrylic acid) (P (NIPAAm-co-AAc)), poly (N-isopropyl acrylamide-co- Ethyl methacrylate) P (NIPAAm-co-EMA), polyvinylacetate / polyvinyl alcohol (PVAc / PVA), poly (N-vinyl pyrrolidone) (PVP), poly (methylmethacrylate-co-hydride Oxyethyl methacrylate) (P (MMA-co-HEMA)), poly (polyethylene glycol-co-peptide (P (PEG-c) o-peptide)), alginate-g- (polyethylene oxide-polypropylene oxide-polyethylene oxide) (alginate-g- (PEO-PPO-PEO)), poly (polylactic acid-co-glycolic acid) -co-serine (P (PLGA-co-serine)), collagen-acrylate, collagen-acrylate, alginate-acrylate, poly (hydroxypropyl methacrylamide-g-peptide) (P (HPMA- g-peptide)), poly (hydroxyethyl methacrylate / methgel) (P (HEMA / Matrigel)), hyaluronic acid-gN-isopropylacrylamide (HA-g-NIPAAm), polyethylene oxide (PEO), Polyethylene oxide-polypropylene oxide copolymer (PEO-PPO, Pluronic series), polyethylene oxide-polylactic acid copolymer (PEO-PLA), polyethylene oxide-polylactic glycolic acid copolymer (PEO-PLGA), polyethylene oxide-poly Caprolactone copolymer (PEO-PCL), polyoxyethylene alkyl ethers (Brij S eries, polyoxyethylene castor oil derivatives (Cremophores), polyoxyethylene sorbitan fatty acid esters (Tween Series), and polyoxyethylene stearates. One or more selected from the group consisting of can be used.

그러나, 본 발명은 상기에 제시된 친수성 고분자 이외에도 본 발명의 목적을 벗어나지 않는 범위 내에서 생체적합성을 가지며, 본 발명에서 요구되는 물성과 효과를 낼 수 있는 다른 친수성 고분자나 첨가제를 추가적으로 포함할 수 있음은 물론이다.However, the present invention, in addition to the hydrophilic polymers set forth above, may have additional biocompatibility within the scope not departing from the object of the present invention, and may further include other hydrophilic polymers or additives that may produce the properties and effects required by the present invention. Of course.

또한, 본 발명의 폴리비닐알콜과 다양한 친수성 고분자 혼합 수용액을 이용한 하이드로겔의 제조에 있어서, 상기 동결 조건은 0℃ 내지 -250℃의 온도에서 1초 내지 12시간 동안 수행되는 것이 우수한 물성을 가지는 하이드로겔을 형성시키기 위해 바람직하다. In addition, in the preparation of a hydrogel using a polyvinyl alcohol and various hydrophilic polymer mixed aqueous solution of the present invention, the freezing conditions are hydro having excellent properties to be performed for 1 second to 12 hours at a temperature of 0 ℃ to -250 ℃ It is preferred to form a gel.

상기와 같이 폴리비닐알콜 수용액에 친수성 고분자를 혼합하고, 이를 상기의 온도에서 동결시키면 친수성 고분자가 수용액상에서 물 분자와 폴리비닐알콜의 미세분리(micro-separation)를 유도하여 폴리비닐알콜 풍부 영역(PVA-rich domain, 고분자 사슬 간의 가교 역할; 종래의 물리적 가교법의 경우 3 ~ 4회의 반복적인 동결-해동과정이 필요)의 형성을 촉진시킬 수 있으므로, 아주 짧은 시간 내에, 인체독성을 나타내는 어떠한 유기용매 및 가교제를 사용하지 않고도 기계적 물성이 우수한 하이드로겔의 제조가 가능하다. When the hydrophilic polymer is mixed with the polyvinyl alcohol aqueous solution as described above and frozen at the above temperature, the hydrophilic polymer induces micro-separation of water molecules and polyvinyl alcohol in the aqueous solution and thus the polyvinyl alcohol-rich region (PVA). -rich domain, which can promote the formation of crosslinks between polymer chains; three to four repeated freeze-thaw processes in the conventional physical crosslinking method. And it is possible to produce a hydrogel excellent in mechanical properties without using a crosslinking agent.

이를 더욱 상세히 설명하면, 통상 폴리비닐알콜 수용액에 친수성 고분자의 일종인 폴리에틸렌글리콜을 혼합하면, 폴리비닐알콜 사슬들이 일부는 뒤엉켜 있거나(entangled), 반결정화된 상태로 존재하며, 상기 폴리비닐알콜 사슬들 사이에 폴리에틸렌글리콜 분자들이 고르게 분산되어 있다. 만일 이 혼합 수용액을 동결과정 없이 상온(통상의 실온, room temperature를 의미함)에서 일정시간 보관하게 되면 폴리비닐알콜 사슬 간의 상호작용(수소결합 등)에 의해 폴리비닐알콜 풍부 영역(PVA rich domain, 폴리비닐알콜 간 가교역할)이 형성되는데 그 영역의 밀도가 낮아 제조된 하이드로겔의 물성이 크게 증가하지 않게 된다. In more detail, when a polyethylene glycol, which is a kind of hydrophilic polymer, is mixed with an aqueous polyvinyl alcohol solution, polyvinyl alcohol chains are partially entangled or exist in a semi-crystallized state. Polyethylene glycol molecules are evenly dispersed in between. If the mixed aqueous solution is stored at room temperature (usually room temperature, room temperature) without freezing for a certain time, the polyvinyl alcohol rich region (PVA rich domain, Cross-linking role between polyvinyl alcohol) is formed, the density of the region is low so that the physical properties of the prepared hydrogel does not increase significantly.

이는 기존의 해동-동결의 과정을 통해 제조된 폴리비닐알콜의 1회 동결-해동과정에서 나타나는 현상과 유사하며, 따라서 기존의 동결-해동과정을 통한 하이드로겔의 제조에서는 이러한 과정을 수차례 반복하여 상기 폴리비닐알콜 풍부 영역의 밀도를 높임으로서 우수한 물성의 폴리비닐알콜 하이드로겔을 제조하게 된다(통상 3 ~ 4일이 소요됨). This is similar to the phenomenon seen in the one-time freeze-thaw process of polyvinyl alcohol prepared through the conventional thawing-freezing process. Therefore, this process is repeated several times in the production of hydrogel through the conventional freeze-thawing process. By increasing the density of the polyvinyl alcohol rich region to prepare a polyvinyl alcohol hydrogel of excellent physical properties (usually takes 3 to 4 days).

그러나, 본 발명의 경우 폴리비닐알콜/친수성 고분자 혼합 수용액을 0℃ 내지 -250℃의 온도 범위에서 동결시키게 되면 수용액상에 녹아있는 친수성 고분자가 물 분자와 폴리비닐알콜의 미세분리(micro-separation)를 유도하여 폴리비닐알콜 풍부 영역(PVA-rich domain, 고분자 사슬 간의 가교 역할)의 형성을 촉진시켜, 1회 동결-해동과정을 통해서도 기존의 대표적인 물리적 가교법인 동결-해동법의 3 ~ 4회 사이클을 수행한 것보다 우수한 물성을 지닌 하이드로겔이 형성되게 된다. However, in the case of the present invention, when the polyvinyl alcohol / hydrophilic polymer mixed aqueous solution is frozen at a temperature range of 0 ° C to -250 ° C, the hydrophilic polymer dissolved in the aqueous solution is micro-separation of water molecules and polyvinyl alcohol. Induces the formation of polyvinyl alcohol-rich domains (PVA-rich domain, the role of crosslinking between polymer chains), and 3-4 cycles of freeze-thaw, which is a typical physical crosslinking method, even through a single freeze-thaw process. Hydrogels having better physical properties than those performed are formed.

또한, 이러한 효과는 폴리비닐알콜 수용액에 혼합되는 친수성 고분자의 함량이 증가될수록 더욱 뚜렷하게 나타나지만, 상기 친수성 고분자의 함량은 용매 (초순수) 함량에 대하여 40중량%까지 사용되는 것이 바람직하다. 만일 친수성 고분자의 함량이 용매 (초순수)에 대하여 40중량%를 초과하는 경우에는 침전이 형성되거나 폴리비닐알콜과 균일하게 혼합되지 않아 제조되는 하이드로겔이 불균일하게 제 조되는 문제가 있다In addition, this effect is more pronounced as the content of the hydrophilic polymer mixed in the polyvinyl alcohol aqueous solution increases, but the content of the hydrophilic polymer is preferably used up to 40% by weight relative to the solvent (ultra pure water) content. If the content of the hydrophilic polymer exceeds 40% by weight with respect to the solvent (ultra pure water), there is a problem in that a hydrogel is produced non-uniformly produced because precipitation is formed or it is not uniformly mixed with polyvinyl alcohol.

따라서, 본 발명에서는 종래의 물리적 가교방법에서와 같이 동결-해동의 과정을 3 ~ 4회에 걸쳐 반복적으로 수행해야하는 긴 시간의 소요 없이 단 1회의 과정만으로 원하는 물성과 효과를 가지는 폴리비닐알콜 하이드로겔의 제조가 가능하다. Therefore, in the present invention, polyvinyl alcohol hydrogel having the desired physical properties and effects in only one process without requiring a long time that the freeze-thaw process has to be repeatedly performed three to four times as in the conventional physical crosslinking method. It is possible to manufacture.

상기 일정 온도에서 동결시킨 폴리비닐알콜 하이드로겔의 해동 과정은 1℃ 내지 50℃ 의 온도에서 진행되는 것이 바람직하다. The thawing of the polyvinyl alcohol hydrogel frozen at the predetermined temperature is preferably performed at a temperature of 1 ℃ to 50 ℃.

도 1은 본 발명의 일 실시예에 따른 폴리비닐알콜 하이드로겔의 제조과정의 모식도를 나타낸 것으로, 폴리비닐알콜 수용액에 친수성 고분자의 일종인 폴리에틸렌글리콜(PEG)을 균일하게 섞어 제조한 다음, 상기 용액을 원하는 모양의 일정한 틀에 채우고 적절한 온도 및 시간에서 단 1회의 동결-해동 과정을 통해 하이드로겔을 제조할 수 있다. Figure 1 shows a schematic diagram of the manufacturing process of a polyvinyl alcohol hydrogel according to an embodiment of the present invention, by uniformly preparing a polyethylene glycol (PEG) of a hydrophilic polymer in a polyvinyl alcohol aqueous solution, and then the solution The hydrogel can be prepared by filling the mold into the desired shape and by only one freeze-thaw process at a suitable temperature and time.

이하 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같으나, 본 발명이 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

실시예 1Example 1

생체적합성을 나타내는 폴리비닐알콜(중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하고, 여기에 폴리에틸렌 글라이콜 (PEG, 중량평균분자량 400 g/mol)을 상기 초순수에 10중량%로 되게 혼합하여 폴리비닐알콜/폴리에틸렌 글라이콜 혼합 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was added to deionized water and heated to 90 ° C. to prepare 15% by weight aqueous polyvinyl alcohol solution. Polyethylene glycol (PEG, weight average molecular weight 400 g / mol) was mixed in the ultrapure water to 10% by weight to prepare a polyvinyl alcohol / polyethylene glycol mixed aqueous solution.

상기 폴리비닐알콜/폴리에틸렌글라이콜이 혼합 수용액을 일정틀에 붓고 이를 -196℃에서 1분간 동결시키고, 곧바로 상온에서 4시간동안 해동시켰으며, 형성된 하이드로겔 내에 존재하는 폴리에틸렌글라이콜을 초순수에서 24시간 세척하여 폴리비닐알콜 하이드로겔을 제조하였다.The polyvinyl alcohol / polyethylene glycol was poured into a mixed aqueous solution on a frame and frozen at -196 ° C. for 1 minute and immediately thawed at room temperature for 4 hours, and the polyethylene glycol present in the formed hydrogel was purified in ultrapure water. Washing for 24 hours to prepare a polyvinyl alcohol hydrogel.

실시예 2Example 2

생체적합성을 나타내는 폴리비닐알콜(중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하고, 여기에 폴리에틸렌 글라이콜 (PEG, 중량평균분자량 400 g/mol)을 상기 초순수에 20중량%로 되게 혼합하여 폴리비닐알콜/폴리에틸렌글라이콜 혼합 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was added to deionized water and heated to 90 ° C. to prepare 15% by weight aqueous polyvinyl alcohol solution. Polyethylene glycol (PEG, weight average molecular weight 400 g / mol) was mixed in the ultrapure water to 20% by weight to prepare a polyvinyl alcohol / polyethylene glycol mixed aqueous solution.

상기 폴리비닐알콜/폴리에틸렌글라이콜이 혼합 수용액을 일정틀에 붓고 이를 -196℃에서 1분간 동결시키고, 곧바로 상온에서 4시간동안 해동시켰으며, 형성된 하이드로겔 내에 존재하는 폴리에틸렌글라이콜을 초순수에서 24시간 세척하여 폴리비닐알콜 하이드로겔을 제조하였다.The polyvinyl alcohol / polyethylene glycol was poured into a mixed aqueous solution on a frame and frozen at -196 ° C. for 1 minute and immediately thawed at room temperature for 4 hours, and the polyethylene glycol present in the formed hydrogel was purified in ultrapure water. Washing for 24 hours to prepare a polyvinyl alcohol hydrogel.

실시예 3Example 3

생체적합성을 나타내는 폴리비닐알콜(중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하고, 여기에 폴리에틸렌 글라이콜 (PEG, 중량평균분자량 400 g/mol)을 상기 초순수에 30중량%로 되게 혼합하여 폴리비닐알콜/폴리에틸렌글라이콜 혼합 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was added to deionized water and heated to 90 ° C. to prepare 15% by weight aqueous polyvinyl alcohol solution. Polyethylene glycol (PEG, weight average molecular weight 400 g / mol) was mixed to 30% by weight in the ultrapure water to prepare a polyvinyl alcohol / polyethylene glycol mixed aqueous solution.

상기 폴리비닐알콜/폴리에틸렌글라이콜이 혼합 수용액을 일정틀에 붓고 이를 -196℃에서 1분간 동결시키고, 곧바로 상온에서 4시간동안 해동시켰으며, 형성된 하이드로겔 내에 존재하는 폴리에틸렌글라이콜을 초순수에서 24시간 세척하여 폴리비닐알콜 하이드로겔을 제조하였다.The polyvinyl alcohol / polyethylene glycol was poured into a mixed aqueous solution on a frame and frozen at -196 ° C. for 1 minute and immediately thawed at room temperature for 4 hours, and the polyethylene glycol present in the formed hydrogel was purified in ultrapure water. Washing for 24 hours to prepare a polyvinyl alcohol hydrogel.

실시예 4Example 4

-70℃의 온도에서 60분간 동결시키는 것을 제외하고는, 상기 실시예 2와 동일한 혼합 수용액 및 제조과정을 이용하여 폴리비닐알콜 하이드로겔을 제조하였다.A polyvinyl alcohol hydrogel was prepared using the same mixed aqueous solution and preparation as in Example 2, except that the mixture was frozen at a temperature of −70 ° C. for 60 minutes.

실시예 5Example 5

-20℃의 온도에서 60분간 동결시키는 것을 제외하고는, 상기 실시예 2와 동일한 혼합 수용액 및 제조과정을 이용하여 폴리비닐알콜 하이드로겔을 제조하였다.A polyvinyl alcohol hydrogel was prepared using the same mixed aqueous solution and preparation as in Example 2, except that the mixture was frozen for 60 minutes at a temperature of −20 ° C.

실시예 6Example 6

생체적합성을 나타내는 폴리비닐알콜(중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하고, 여기에 알긴산 (Alginic acid, low viscosity, Sigma-Aldrich)을 2중량%로 되게 혼합하여 폴리비닐알콜/알긴산 혼합 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was added to deionized water and heated to 90 ° C. to prepare 15% by weight aqueous polyvinyl alcohol solution. Alginic acid (Alginic acid, low viscosity, Sigma-Aldrich) was mixed to 2% by weight to prepare a polyvinyl alcohol / alginic acid mixed aqueous solution.

상기 폴리비닐알콜/알긴산 혼합 수용액을 일정틀에 붓고 이를 -196℃에서 1분간 동결시키고, 곧바로 상온에서 4시간 동안 해동시켰으며, 형성된 하이드로겔 내에 존재하는 알긴산을 과량의 초순수에서 24시간 세척하여 폴리비닐알콜 하이드로겔을 제조하였다.The polyvinyl alcohol / alginic acid mixed aqueous solution was poured into a frame and frozen at -196 ° C. for 1 minute, immediately thawed at room temperature for 4 hours, and the alginic acid present in the formed hydrogel was washed with excess ultrapure water for 24 hours to remove poly Vinyl alcohol hydrogel was prepared.

제조된 폴리비닐알콜 하이드로겔의 형상 및 물성이 실시예 3과 유사함을 관찰 할 수 있었다.It can be observed that the shape and physical properties of the prepared polyvinyl alcohol hydrogel similar to Example 3.

실시예 7Example 7

생체적합성을 나타내는 폴리비닐알콜(중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하고, 여기에 하이알론산(hyaluronic acid, 중량 평균 분자량, 3,000~10,000 g/mol)을 5중량%로 되게 혼합하여 폴리비닐알콜/하이알론산 혼합 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was added to deionized water and heated to 90 ° C. to prepare 15% by weight aqueous polyvinyl alcohol solution. Hyaluronic acid (weight average molecular weight, 3,000 ~ 10,000 g / mol) was mixed to 5% by weight to prepare a polyvinyl alcohol / hyaluronic acid mixed aqueous solution.

상기 폴리비닐알콜/하이알론산 혼합 수용액을 일정틀에 붓고 이를 -196℃에서 1분간 동결시키고, 곧바로 상온에서 4시간동안 해동시켰으며, 형성된 하이드로겔 내에 존재하는 하이알론산을 과량의 초순수에서 24시간 세척하여 폴리비닐알콜 하이드로겔을 제조하였다.The polyvinyl alcohol / hyalonic acid mixed aqueous solution was poured into a frame and frozen at -196 ° C. for 1 minute and immediately thawed at room temperature for 4 hours. The hyaluronic acid present in the formed hydrogel was added in an excessive amount of ultrapure water to 24 hours. Washing for a time to prepare a polyvinyl alcohol hydrogel.

비교예 1Comparative Example 1

생체적합성을 나타내는 폴리비닐알콜 (중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was put in deionized water and heated to 90 ℃ to prepare a 15% by weight polyvinyl alcohol aqueous solution.

상기 폴리비닐알콜 수용액을 일정틀에 붓고 이를 -20℃에서 18시간 동안 동결시키고, 25℃에서 4시간 동안 해동시켜 폴리비닐알콜 하이드로겔을 제조하였다 (1회 동결-해동). The polyvinyl alcohol aqueous solution was poured into a frame and frozen at -20 ° C for 18 hours and thawed at 25 ° C for 4 hours to prepare a polyvinyl alcohol hydrogel (once freeze-thaw).

비교예 2Comparative Example 2

생체적합성을 나타내는 폴리비닐알콜 (중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was put in deionized water and heated to 90 ℃ to prepare a 15% by weight polyvinyl alcohol aqueous solution.

상기 폴리비닐알콜 수용액을 일정틀에 붓고 이를 -196℃에서 1분 동안 동결시키고, 25℃에서 4시간 동안 해동시켜 폴리비닐알콜 하이드로겔을 제조하였다 (1회 동결-해동). The polyvinyl alcohol aqueous solution was poured into a frame and frozen at −196 ° C. for 1 minute and thawed at 25 ° C. for 4 hours to prepare a polyvinyl alcohol hydrogel (once freeze-thaw).

비교예 3Comparative Example 3

생체적합성을 나타내는 폴리비닐알콜 (중량평균분자량 89,000~98,000 g/mol, hydrolysis ~98%)을 초순수(deionized water)에 넣고 90℃로 가열하여 15중량%의 폴리비닐알콜 수용액을 제조하였다.Polyvinyl alcohol (weight average molecular weight 89,000 ~ 98,000 g / mol, hydrolysis ~ 98%) showing biocompatibility was put in deionized water and heated to 90 ℃ to prepare a 15% by weight polyvinyl alcohol aqueous solution.

상기 폴리비닐알콜 수용액을 일정틀에 붓고 이를 -20℃에서 18시간 동안 동결시키고, 25℃에서 4시간 동안 해동시켰다. 상기 동일한 조건에서 동결-해동 과정을 3회 반복하여 폴리비닐알콜 하이드로겔을 제조하였다 (기존의 동결-해동법; LOZINSKY V. L. et al., J. Appl. Polymer Sci., 77, 2017-2023 (2000)). The polyvinyl alcohol aqueous solution was poured into a frame and frozen at 18 ° C. for 18 hours, and thawed at 25 ° C. for 4 hours. The polyvinyl alcohol hydrogel was prepared by repeating the freeze-thaw process three times under the same conditions (conventional freeze-thaw method; LOZINSKY VL et al., J. Appl. Polymer Sci., 77 , 2017-2023 (2000) ).

비교예 4Comparative Example 4

동결과정없이 상온(25℃)에서 24시간 보관하는 것을 제외하고는 상기 실시예 2와 동일한 혼합 수용액을 이용하여 폴리비닐알콜 하이드로겔을 제조하였다. A polyvinyl alcohol hydrogel was prepared using the same mixed aqueous solution as Example 2, except that the sample was stored at room temperature (25 ° C.) for 24 hours without a freezing process.

실험예Experimental Example

상기 실시예 및 비교예에서 제조된 폴리비닐알콜을 기본으로 한 하이드로겔의 기계적 물성 분석을 다음과 같이 수행하였으며, 그 결과를 다음 표 1에 나타내었다. Mechanical properties of the hydrogels based on the polyvinyl alcohols prepared in Examples and Comparative Examples were performed as follows, and the results are shown in Table 1 below.

-기계적 물성: ASTM D638(type V)를 이용하여 아령 모양의 시편을 제조한 다음 cross-head 50mm/min의 속도로 인장 강도를 측정하였다. Mechanical Properties: Dumbbell-shaped specimens were prepared using ASTM D638 (type V), and then tensile strength was measured at a rate of 50 mm / min cross-head.

인장강도(KPa)Tensile Strength (KPa) 실시예 1Example 1 328± 93328 ± 93 실시예 2Example 2 1300± 321300 ± 32 실시예 3Example 3 1798± 1341798 ± 134 실시예 4Example 4 1330± 571330 ± 57 실시예 5Example 5 1310± 901310 ± 90 실시예 6Example 6 1852± 821852 ± 82 실시예 7Example 7 1951± 781951 ± 78 비교예 1Comparative Example 1 측정불가 (겔 형성 어려움)Not measurable (gel formation difficult) 비교예 2Comparative Example 2 125± 67125 ± 67 비교예 3Comparative Example 3 345± 52345 ± 52 비교예 4Comparative Example 4 238± 93238 ± 93

상기 표 1의 결과에서와 같이, 본 발명의 실시예와 같이 폴리비닐알콜에 생체적합성을 나타내는 친수성 고분자를 혼합하고, 이를 적절한 온도와 시간에서 단 1회의 동결-해동 과정만으로도 우수한 기계적 물성을 나타내는 하이드로겔을 제조할 수 있음을 확인할 수가 있었다. As shown in the results of Table 1, as shown in the embodiment of the present invention, a hydrophilic polymer having biocompatibility is mixed with polyvinyl alcohol, and the hydrophilic polymer exhibits excellent mechanical properties by only one freeze-thaw process at an appropriate temperature and time. It could be confirmed that the gel could be prepared.

또한, 상기 친수성 고분자의 함량이 증가될수록(실시예 1, 2, 3) 기계적 물성이 우수해지는 것을 확인할 수 있으며, 이는 폴리비닐알콜 하이드로겔 내에서 폴리에틸렌 글라이콜이 물분자와 폴리비닐알콜의 미세상분리를 촉진시키고, 이로인해 폴리비닐알콜의 풍부 영역 (PVA rich region, 폴리비닐알콜 사슬 간 가교역할)이 폴리에틸렌 글라이콜의 첨가량에 비례하여 보다 많이 형성되었기 때문이라 판단된다.In addition, as the content of the hydrophilic polymer is increased (Examples 1, 2, 3) it can be confirmed that the mechanical properties are excellent, which means that the polyethylene glycol in the polyvinyl alcohol hydrogel is fine of water molecules and polyvinyl alcohol It is believed that the phase separation is promoted, and thus, more polyvinyl alcohol (PVA rich region, crosslinking role between polyvinyl alcohol chains) is formed in proportion to the amount of polyethylene glycol added.

하지만, 폴리비닐알콜 수용액만을 가지고 -20℃(비교예 1) 및 -196℃(비교예 2)에서 동결하고 상온에서 해동하여 제조한 폴리비닐알콜 하이드로겔의 경우(1회 동결-해동), 기계적 물성이 본 발명의 실시예에 비해 현저히 떨어지는 것을 확인할 수 있었으며, 이를 통해 폴리비닐알콜 수용액만을 이용한 단 1회의 동결-해동을 통해서는 우수한 물성을 지니는 폴리비닐알콜 하이드로겔의 제조가 어려움을 확인할 수 있었다. 기 보고된 바와 같이 폴리비닐알콜 수용액의 동결-해동과정의 횟수를 늘림으로써 물성이 강화됨도 관찰되었다 (비교예 4). However, in the case of polyvinyl alcohol hydrogels prepared by freezing at -20 ° C (Comparative Example 1) and -196 ° C (Comparative Example 2) with only polyvinyl alcohol aqueous solution and thawing at room temperature (single freeze-thaw), It was confirmed that the physical properties are significantly lower than the embodiment of the present invention, through which only one freeze-thaw using polyvinyl alcohol aqueous solution was able to confirm the difficulty of preparing a polyvinyl alcohol hydrogel having excellent properties. . As reported, the physical properties were also enhanced by increasing the number of freeze-thaw processes of the polyvinyl alcohol solution (Comparative Example 4).

앞에서 언급하였듯이, 폴리비닐알콜/폴리에틸렌 글라이콜 수용액을 동결과정없이 상온(통상의 실온, room temperature를 의미함)에서 일정시간 보관하였을 경우, 폴리비닐알콜 사슬 간의 상호작용 (수소결합 등)에서 기인되는 일정 폴리비닐알콜 풍부 영역의 형성에 의한 물성 강화를 볼 수 있었으나, 본 발명의 온도에서 동결한 실시예에 비해 그 물성이 매우 낮음을 즉, 일정 동결-해동과정에서만 폴리비닐알콜 하이드로겔의 물성이 강화됨을 확인할 수 있었다 (비교예 4). As mentioned above, when the polyvinyl alcohol / polyethylene glycol aqueous solution is stored for a certain time at room temperature (meaning room temperature, room temperature) without a freezing process, it is due to the interaction between the polyvinyl alcohol chains (hydrogen bond, etc.). Although the physical properties of the polyvinyl alcohol-rich region were enhanced, the physical properties of the polyvinyl alcohol hydrogels were significantly lower than those of the frozen material at the temperature of the present invention. This could be confirmed (Comparative Example 4).

이로부터 본 발명에 따른 폴리비닐알콜을 기본으로 하는 하이드로겔은 인체에 유해한 어떠한 화학적 가교제를 사용하지 않고도, 매우 짧은 시간 내에 단 1회의 동결-해빙 과정을 거쳐 우수한 기계적 물성을 갖는 하이드로겔의 제조가 가능한 방법을 제공함으로써 조직공학 분야에서 폴리비닐알콜 하이드로겔을 적용하는데 매우 긍정적이며 응용 가능성이 많은 하이드로겔이다.From this, the hydrogel based on polyvinyl alcohol according to the present invention is capable of producing a hydrogel having excellent mechanical properties through only one freeze-thawing process in a very short time without using any chemical crosslinking agent that is harmful to the human body. It is a very positive and highly applicable hydrogel for applying polyvinyl alcohol hydrogel in the field of tissue engineering by providing a possible method.

도 1은 본 발명에 따른 폴리비닐알콜 하이드로겔의 제조과정을 나타낸 모식도이다. 1 is a schematic diagram showing a manufacturing process of a polyvinyl alcohol hydrogel according to the present invention.

Claims (7)

폴리비닐알콜과 친수성 고분자를 포함하는 것으로 구성된 폴리비닐알콜/친수성고분자 수용액을 0℃ 내지 -250℃에서 1회의 동결-해동시키는 단계를 포함하는 폴리비닐알콜 하이드로겔의 제조방법.A method of preparing a polyvinyl alcohol hydrogel comprising the step of freeze-thawing a polyvinyl alcohol / hydrophilic polymer aqueous solution comprising polyvinyl alcohol and a hydrophilic polymer at 0 ° C. to −250 ° C. once. 제 1항에 있어서, 상기 폴리비닐알콜은 중량평균분자량 10,000~1,000,000g/mol인 것을 특징으로 하는 폴리비닐알콜 하이드로겔의 제조방법.The method according to claim 1, wherein the polyvinyl alcohol has a weight average molecular weight of 10,000 to 1,000,000 g / mol. 제 1항에 있어서, 상기 폴리비닐알콜은 1 내지 40중량% 농도로, 상기 친수성 고분자는 0.1 내지 40중량%의 농도로 포함됨을 특징으로 하는 폴리비닐알콜 하이드로겔의 제조방법. The method of claim 1, wherein the polyvinyl alcohol is contained in a concentration of 1 to 40% by weight, and the hydrophilic polymer is prepared in a polyvinyl alcohol hydrogel, characterized in that it is contained in a concentration of 0.1 to 40% by weight. 제 1항에 있어서, 상기 동결 시간은 1초 내지 12시간인 것을 특징으로 하는 폴리비닐알콜 하이드로겔의 제조방법.The method of claim 1, wherein the freezing time is 1 second to 12 hours. 제 1항에 있어서, 상기 친수성 고분자는 히알루론산(hyaluronic acid), 알긴산(alginic acid), 펙틴(pectin), 카라기난(carrageenan), 콘드로이틴 설페이트(chondroitin sulfate), 덱스트란 설페이트(dextran sulfate), 키토산, 폴리리신(polylysine), 콜라겐, 젤라틴, 카르복시메틸 키틴, 피브린(fibrin), 덱스트란(dextran), 아가로스(agarose), 플루란(pullulan), 폴리아크릴아마이드(PAAm), 폴리(N-이소프로필 아크릴아마이드-co-아크릴산)(P(NIPAAm-co-AAc)), 폴리(N-이소프로필 아크릴아마이드-co-에틸메타크릴레이트)P(NIPAAm-co-EMA), 폴리비닐아세테이트/폴리비닐알콜(PVAc/PVA), 폴리(N-비닐 피롤리돈)(PVP), 폴리(메틸메타크릴레이트-co-하이드록시에틸 메타크릴레이트)(P(MMA-co-HEMA)), 폴리(폴리에틸렌글리콜-co-펩타이드(P(PEG-co-peptide)), 알지네이트-g-(폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드)(alginate-g-(PEO-PPO-PEO)), 폴리(폴리라틱산-co-글리콜릭산)-co-세린)(P(PLGA-co-serine)),콜라겐-아크릴레이트(collagen-acrylate), 알지네이트-아크릴레이트(alginate-acrylate), 폴리(하이드록시프로필 메타크릴아마이드-g-펩타이드)(P(HPMA-g-peptide)), 폴리(하이드록시에틸메타크릴레이트/메트리겔)(P(HEMA/Matrigel)), 히알루론산-g-N-이소프로필아크릴아마이드(HA-g-NIPAAm), 폴리에틸렌옥사이드(PEO), 폴리에틸렌옥사이드-폴리프로필렌옥사이드 공중합체(PEO-PPO, Pluronic series), 폴리에틸렌옥사이드-폴리락틱산 공중합체(PEO-PLA), 폴리에틸렌옥사이드-폴리락틱글리콜산 공중합체(PEO-PLGA), 폴리에틸렌옥사이드-폴리카프로락톤 공중합체(PEO-PCL), 폴리옥시에틸렌 알킬 에테르류 (polyoxyethylene alkyl ethers, Brij Series), 폴리옥시에틸렌 케스터 오일 유도체류(polyoxyethylene castor oil derivatives, Cremophores), 폴리옥시에틸렌 소르비탄 지방산 에스터류(polyoxyethylene sorbitan fatty acid esters, Tween Series), 및 폴리옥시에틸렌 스테아레이트류(polyoxyethylene stearates)등 으로 이루어진 그룹으로부터 선택된 1종 이상인 것을 특징으로 하는 폴리비닐알콜 하이드로겔의 제조방법.The method of claim 1, wherein the hydrophilic polymer is hyaluronic acid, alginic acid, pectin, carrageenan, chondroitin sulfate, dextran sulfate, chitosan, Polylysine, collagen, gelatin, carboxymethyl chitin, fibrin, dextran, agarose, pullulan, polyacrylamide (PAAm), poly (N-isopropyl) Acrylamide-co-acrylic acid) (P (NIPAAm-co-AAc)), poly (N-isopropyl acrylamide-co-ethylmethacrylate) P (NIPAAm-co-EMA), polyvinylacetate / polyvinyl alcohol (PVAc / PVA), poly (N-vinyl pyrrolidone) (PVP), poly (methylmethacrylate-co-hydroxyethyl methacrylate) (P (MMA-co-HEMA)), poly (polyethylene glycol -co-peptide (P (PEG-co-peptide)), alginate-g- (polyethylene oxide-polypropylene oxide-polyethylene oxime (Alginate-g- (PEO-PPO-PEO)), poly (polylactic acid-co-glycolic acid) -co-serine) (P (PLGA-co-serine)), collagen-acrylate (collagen- acrylate), alginate-acrylate, poly (hydroxypropyl methacrylamide-g-peptide) (P (HPMA-g-peptide)), poly (hydroxyethyl methacrylate / methgel) ( P (HEMA / Matrigel)), hyaluronic acid-gN-isopropylacrylamide (HA-g-NIPAAm), polyethylene oxide (PEO), polyethylene oxide-polypropylene oxide copolymer (PEO-PPO, Pluronic series), polyethylene oxide Polylactic acid copolymer (PEO-PLA), polyethylene oxide-polylactic glycolic acid copolymer (PEO-PLGA), polyethylene oxide-polycaprolactone copolymer (PEO-PCL), polyoxyethylene alkyl ethers ethers, Brij Series), polyoxyethylene castor oil derivatives (Cremophores), Preparation of polyvinyl alcohol hydrogel, characterized in that at least one selected from the group consisting of polyoxyethylene sorbitan fatty acid esters (Tween Series), polyoxyethylene stearates, etc. Way. 제 1항에 있어서, 상기 친수성 고분자는 상기 폴리비닐알콜 수용액 상에서 물 분자와 폴리비닐알콜의 미세분리(micro-separation)를 유도하여 폴리비닐알콜 풍부 영역(PVA-rich domain)의 형성을 촉진시키는 것을 특징으로 하는 폴리비닐알콜 하이드로겔의 제조방법.The method of claim 1, wherein the hydrophilic polymer induces micro-separation of water molecules and polyvinyl alcohol in the aqueous polyvinyl alcohol solution to promote formation of a polyvinyl alcohol rich domain. Method for producing a polyvinyl alcohol hydrogel, characterized in that. 제 1항에 있어서, 상기 해동은 1 내지 50℃ 의 온도에서 수행됨을 특징으로 하는 폴리비닐알콜 하이드로겔의 제조방법. The method of claim 1, wherein the thawing is carried out at a temperature of 1 to 50 ℃ polyvinyl alcohol hydrogel production method.
KR1020090037778A 2009-04-29 2009-04-29 Manufacturing method of biocompatible polyvinyl alcohol-based hydrogel KR101091575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090037778A KR101091575B1 (en) 2009-04-29 2009-04-29 Manufacturing method of biocompatible polyvinyl alcohol-based hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090037778A KR101091575B1 (en) 2009-04-29 2009-04-29 Manufacturing method of biocompatible polyvinyl alcohol-based hydrogel

Publications (2)

Publication Number Publication Date
KR20100118860A true KR20100118860A (en) 2010-11-08
KR101091575B1 KR101091575B1 (en) 2011-12-13

Family

ID=43405041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090037778A KR101091575B1 (en) 2009-04-29 2009-04-29 Manufacturing method of biocompatible polyvinyl alcohol-based hydrogel

Country Status (1)

Country Link
KR (1) KR101091575B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706251A (en) * 2013-11-25 2014-04-09 大连理工大学 Method utilizing electrosensitive gel as absorption material in forward osmosis technology
KR101404089B1 (en) * 2012-04-02 2014-06-05 원광대학교산학협력단 Bilayer Hydrogel Moist Wound Dressing containig Amniotic Membranes-Loaded and Method for Preparing the Same
KR101413510B1 (en) * 2012-06-19 2014-07-02 주식회사 제네웰 Method of preparing raw materials for transplantation using biocompatible polymers
KR20160057111A (en) * 2014-11-13 2016-05-23 한국원자력연구원 Reusable Hydrogels for Removing a Heavy Metal Ion and Uses Thereof
CN106039418A (en) * 2016-07-22 2016-10-26 胡懿郃 Method for preparing PLGA-HA-PVA scaffold modified HA-PVA artificial cartilage materials
CN107185051A (en) * 2017-05-27 2017-09-22 大连理工大学 Polyvinyl alcohol hydrogel and preparation method thereof
KR101879628B1 (en) * 2016-12-14 2018-07-18 주식회사 히기아 Echo-friendly filler having chaff for atrificial turf and structure thereof
KR20200047313A (en) * 2018-10-26 2020-05-07 재단법인 바이오나노헬스가드연구단 Composition for adsorbing of clinical specimen comprising glycopolymers, preparation method thereof and use the same
WO2021096221A1 (en) * 2019-11-15 2021-05-20 영남대학교 산학협력단 Human body-insertable dilator using hydrogel having dual network structure
KR20210067288A (en) * 2019-11-29 2021-06-08 한남대학교 산학협력단 Microneedle patch for topical skin care and manufacturing method thereof
CN114230814A (en) * 2021-12-30 2022-03-25 佛山市中医院 Hydrogel carrying traumatology yellow water and preparation method thereof
CN115403881A (en) * 2022-09-06 2022-11-29 五邑大学 Conductive hydrogel and preparation method and application thereof
CN116515164A (en) * 2023-05-26 2023-08-01 南京工业大学 Mussel protein antibacterial hydrogel and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR111216A1 (en) * 2017-02-23 2019-06-19 Japan Vam & Poval Co Ltd CELLULAR OR TISSULAR INTEGRATION DEVICE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1260154B (en) 1992-07-03 1996-03-28 Lanfranco Callegaro HYALURONIC ACID AND ITS DERIVATIVES IN INTERPENETRATING POLYMERS (IPN)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404089B1 (en) * 2012-04-02 2014-06-05 원광대학교산학협력단 Bilayer Hydrogel Moist Wound Dressing containig Amniotic Membranes-Loaded and Method for Preparing the Same
KR101413510B1 (en) * 2012-06-19 2014-07-02 주식회사 제네웰 Method of preparing raw materials for transplantation using biocompatible polymers
CN103706251A (en) * 2013-11-25 2014-04-09 大连理工大学 Method utilizing electrosensitive gel as absorption material in forward osmosis technology
KR20160057111A (en) * 2014-11-13 2016-05-23 한국원자력연구원 Reusable Hydrogels for Removing a Heavy Metal Ion and Uses Thereof
CN106039418A (en) * 2016-07-22 2016-10-26 胡懿郃 Method for preparing PLGA-HA-PVA scaffold modified HA-PVA artificial cartilage materials
KR101879628B1 (en) * 2016-12-14 2018-07-18 주식회사 히기아 Echo-friendly filler having chaff for atrificial turf and structure thereof
CN107185051A (en) * 2017-05-27 2017-09-22 大连理工大学 Polyvinyl alcohol hydrogel and preparation method thereof
KR20200047313A (en) * 2018-10-26 2020-05-07 재단법인 바이오나노헬스가드연구단 Composition for adsorbing of clinical specimen comprising glycopolymers, preparation method thereof and use the same
WO2021096221A1 (en) * 2019-11-15 2021-05-20 영남대학교 산학협력단 Human body-insertable dilator using hydrogel having dual network structure
KR20210059571A (en) * 2019-11-15 2021-05-25 영남대학교 산학협력단 A human insert type dilator using dual-network structured hydrogel
KR20210067288A (en) * 2019-11-29 2021-06-08 한남대학교 산학협력단 Microneedle patch for topical skin care and manufacturing method thereof
CN114230814A (en) * 2021-12-30 2022-03-25 佛山市中医院 Hydrogel carrying traumatology yellow water and preparation method thereof
CN114230814B (en) * 2021-12-30 2024-02-23 佛山市中医院 Hydrogel carrying yellow water for wound department and preparation method thereof
CN115403881A (en) * 2022-09-06 2022-11-29 五邑大学 Conductive hydrogel and preparation method and application thereof
CN115403881B (en) * 2022-09-06 2024-03-08 五邑大学 Conductive hydrogel and preparation method and application thereof
CN116515164A (en) * 2023-05-26 2023-08-01 南京工业大学 Mussel protein antibacterial hydrogel and preparation method and application thereof
CN116515164B (en) * 2023-05-26 2024-03-19 南京工业大学 Mussel protein antibacterial hydrogel and preparation method and application thereof

Also Published As

Publication number Publication date
KR101091575B1 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
KR101091575B1 (en) Manufacturing method of biocompatible polyvinyl alcohol-based hydrogel
US6497902B1 (en) Ionically crosslinked hydrogels with adjustable gelation time
CN108341977B (en) Citric acid crosslinked chitosan hydrogel and preparation method thereof
Nogueira et al. Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective
CN112759774B (en) Mechanically-enhanced gelatin frozen hydrogel and preparation method and application thereof
EP2341895A2 (en) Hyaluronic acid cryogel - compositions, uses, processes for manufacturing
Zhao et al. Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications
CN110407982B (en) Antibacterial hydrogel material and preparation method thereof
CN111057250B (en) Injectable high-light polymerized hyaluronic acid self-healing hydrogel and preparation method thereof
CN110698692A (en) Preparation method and application of self-healing sodium alginate/gelatin-based hydrogel material capable of spraying to form film
Li et al. In situ formed thermogelable hydrogel photonic crystals assembled by thermosensitive IPNs
Hu et al. Recent Advances in Polysaccharide‐Based Physical Hydrogels and Their Potential Applications for Biomedical and Wastewater Treatment
Ishikawa et al. On-demand retrieval of cells three-dimensionally seeded in injectable thioester-based hydrogels
Kong et al. The novel medical thermoresponsive hydrogel derived from chitosan
Ding et al. Self-healing hydrogels based on the Knoevenagel condensation reaction for wound healing
Dong et al. Injectable shape memory hydroxyethyl cellulose/soy protein isolate based composite sponge with antibacterial property for rapid noncompressible hemorrhage and prevention of wound infection
Wang et al. Fabrication, characterization and potential application of biodegradable polydopamine-modified scaffolds based on natural macromolecules
CN115040702B (en) Temperature-sensitive injectable antibacterial hydrogel filler and preparation method thereof
CA2662004A1 (en) Nano/macroporous bone tissue scaffolds for regenerative medicine
CN112979999B (en) Biological macromolecule and modified halloysite composite hydrogel and preparation and application thereof
KR20160038120A (en) Alginate hydrogel and manufacturing method thereof
Wei et al. Gelatin/carboxymethyl chitosan/aloe juice hydrogels with skin-like endurance and quick recovery: Preparation, characterization, and properties
KR20180064715A (en) Highly densified microparticles composed of low cross-linked hyaluronic acid and process for preparing thereof
Song et al. Preparation of Multi‐Functional Quaternary Ammonium Chitosan/Surfactin Hydrogel and its Application in Wound Management
TW201338816A (en) Fiber-forming hydrogel composition and preparation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee