KR20100117954A - Activated carbon and the manufacturing method thereof - Google Patents

Activated carbon and the manufacturing method thereof Download PDF

Info

Publication number
KR20100117954A
KR20100117954A KR1020090036701A KR20090036701A KR20100117954A KR 20100117954 A KR20100117954 A KR 20100117954A KR 1020090036701 A KR1020090036701 A KR 1020090036701A KR 20090036701 A KR20090036701 A KR 20090036701A KR 20100117954 A KR20100117954 A KR 20100117954A
Authority
KR
South Korea
Prior art keywords
activated carbon
rice straw
pyrolysis
straw
char
Prior art date
Application number
KR1020090036701A
Other languages
Korean (ko)
Inventor
최종철
권혁기
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020090036701A priority Critical patent/KR20100117954A/en
Publication of KR20100117954A publication Critical patent/KR20100117954A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: An activated carbon and a manufacturing method thereof are provided to increase productivity by using waste byproducts without a hardening carbonation process. CONSTITUTION: An activated carbon is made to a bio char obtained by the pyrolysis of agricultural byproducts. The agricultural byproducts are pyrolyzed and the pyrolyzed bio char is chemically activated. A rice straw char is mixed with basic solutions. The byproducts are firstly dried. The firstly dried mixture is put in a reactor and the temperature of the reactor is raised. The raised temperature is maintained. The basic solution is cleaned with acid solution. The remaining acid ions are secondly cleaned. The activated carbon is secondly dried.

Description

활성탄 및 활성탄 제조 방법{Activated Carbon and the Manufacturing Method Thereof} Activated Carbon and the Manufacturing Method Thereof}

본 발명은 활성탄 및 활성탄 제조 방법에 관한 것으로 더 상세하게는 바이오 촤(Char)를 사용한 활성탄을 제조한 것이다.The present invention relates to activated carbon and a method for producing activated carbon, and more particularly, to prepare activated carbon using bio Char.

일반적으로 활성탄은 CSCR(Carbon Selective Catalystic reduction) 공정 및 흡착탑, 수처리 물질, 황산화물(SOx) 처리 물질로 많이 사용된다.Generally, activated carbon is widely used as a carbon selective catalyst reduction (CSCR) process, an adsorption tower, a water treatment material, and a sulfur oxide (SOx) treatment material.

그리고 상기 활성탄은 탄소원 중에서 원료 단가가 비교적 저렴한 물질 즉, 견과껍질, 목재, 석탄, 리그닌, 코코넛 껍질, 쌀겨, 과일 씨, 등이 사용 된다. In addition, the activated carbon is a material that is relatively inexpensive raw material price among the carbon source, that is, nut shell, wood, coal, lignin, coconut shell, rice bran, fruit seeds, and the like.

활성탄은 상기한 탄소원를 연소시켜 탄화 처리한 후 고온에서 증기로 활성화 한 것으로서, 탄화공정에 의해 세포벽이 타들어 갈 때 생긴 수많은 미세한 구멍들로 인해 그 빈 공간을 채우려고 하는 강한 흡착력을 갖는 물질이다. Activated charcoal is a material having a strong adsorption force that tries to fill the empty space due to the many fine holes generated when the cell wall burns by carbonization process after carbonization by burning the carbon source.

또 상기 활성탄은 탄화된 탄소원을 분쇄한 후 일정한 성형체로 성형하고 활성화하여 제조되는데, 활성화하기 전에 경화 탄화 공정을 거쳐야 한다.In addition, the activated carbon is manufactured by pulverizing a carbonized carbon source and then molding and activating a predetermined molded body, which must undergo a hard carbonization process before activation.

그러나, 상기 경화 탄화 공정은 탈수기(~120℃), 휘발성유기물질 제거기(~550 ℃), 고온 활성화기(~1000℃)를 거치며 많은 에너지를 필요로 하므로, 활성탄의 제조 원가를 상승시키는 주요 원인이 되었던 것이다.However, the hardening carbonization process requires a lot of energy through the dehydrator (~ 120 ℃), volatile organic material remover (~ 550 ℃), high temperature activator (~ 1000 ℃), the main cause of raising the production cost of activated carbon It would have been.

본 발명은 폐부산물을 활용하여 제조 공정을 단순화하여 생산성을 증대시키고, 제조 원가가 저렴한 활성탄 및 활성탄 제조 방법을 제공하는 데 있다. The present invention is to simplify the manufacturing process by utilizing the waste by-products to increase the productivity, and to provide a method for producing activated carbon and activated carbon at a low manufacturing cost.

이러한 본 발명의 목적은 농업 부산물을 열분해한 바이오 촤(Char)로 제조된 활성탄을 제공함으로써 해결되는 것이다.This object of the present invention is solved by providing an activated carbon made of bio Char (pyro) by pyrolysis of agricultural by-products.

상기 바이오 촤(Char)는 볏짚을 열분해한 볏짚 촤인 것이다.The bio Char (Char) is a straw straw pyrolyzed rice straw.

또한 농업 부산물을 열분해하는 열분해 공정과;A pyrolysis process for pyrolyzing agricultural byproducts;

상기 열분해 공정을 통해 열분해된 바이오 촤(char)를 활성화하는 활성화 공정을 포함한 활성탄 제조 방법을 제공함으로써 해결되는 것이다.It is solved by providing a method for producing activated carbon including an activation process for activating biodegraded biochar through the pyrolysis process.

상기 열분해 공정은 농업 부산물인 볏짚을 열분해하여 볏짚 촤를 제조하는 것이다.The pyrolysis process is to produce rice straw by pyrolysis of rice straw which is an agricultural by-product.

상기 활성화 공정은 화학적 활성화 방법으로 활성화한 것이다.The activation process is activated by a chemical activation method.

화학적 활성화 방법은 염기성 용액에 함침법을 이용하여 볏짚 촤(RC)와 섞어 혼합하는 함침 혼합 단계와;Chemical activation method comprises the impregnation mixing step of mixing and mixing with rice straw (RC) using an impregnation method in a basic solution;

상기 함침 혼합 단계를 거쳐 혼합된 혼합물을 건조하는 제 1 건조 단계와;A first drying step of drying the mixed mixture through the impregnation mixing step;

상기 제 1 단계로 건조된 혼합물을 반응기 내에 넣고, 반응기 내의 온도를 승온시키는 승온 단계와;A temperature raising step of putting the mixture dried in the first step into a reactor and raising the temperature in the reactor;

승온 단계로 승온된 온도가 유지되는 등온 단계와;An isothermal step in which the temperature raised in the temperature rising step is maintained;

상기 등온 단계를 거친 혼합물에서 염기성 이온을 산성 용액으로 세척하는 제 1 세척 단계와;A first washing step of washing basic ions with an acidic solution in the mixture subjected to the isothermal step;

상기 제 1 세척 단계에서 잔류된 산성 이온을 세척하여 제거하는 제 2 세척 단계와;A second washing step of washing and removing the acidic ions remaining in the first washing step;

상기 제 2 세척 단계로 제조된 활성탄을 건조하는 제 2 건조 단계를 포함한 것이다.It includes a second drying step of drying the activated carbon prepared in the second washing step.

상기 염기성 용액은 수산화 칼륨(KOH)용액을 사용하며 상기 산성 용액은 염화 수소(HCL) 용액을 사용하며, 제 2 세척 단계에서 증류수를 사용한 것이다.The basic solution uses potassium hydroxide (KOH) solution and the acidic solution uses hydrogen chloride (HCL) solution and distilled water in the second washing step.

본 발명은 경화 탄화 공정 없이 활성탄을 제조하여 제조 공정을 단순화하고, 제조 원가를 줄임과 동시에 품질이 향상되는 효과가 있는 것이다.The present invention has the effect of simplifying the manufacturing process by producing activated carbon without hardening carbonization process, and at the same time reducing the manufacturing cost and quality.

또한 본 발명은 바이오 매스를 열분해하여 오일 및 가스를 생산한 후 처리되는 폐부산물인 바이오 매스 열분해 촤를 활성탄 탄소원으로 활용하여 제조 원가를 줄이고, 폐부산물의 처리에 따른 비용을 줄이는 효과가 있는 것이다.In addition, the present invention has the effect of reducing the production cost by using biomass pyrolysis 촤, which is a waste by-product treated after producing the oil and gas by pyrolysis of biomass, as an activated carbon carbon source, and the cost of treating waste by-products.

본 발명의 바람직한 실시 예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings a preferred embodiment of the present invention.

도 1은 본 발명의 탄소원으로 사용한 볏짚 촤(RC)의 전자 주사 현미경 사진이며, 도 2는 도 1의 볏짚 촤를 물리적 활성법으로 활성화한 활성탄(RCW)의 전자 주사 현미경 사진이며, 도 3은 도 1의 볏짚 촤(char)를 화학적 활성법으로 활성화 한 활성탄(RCK)의 주사 현미경 사진이다.1 is an electron scanning micrograph of the rice straw (RC) used as the carbon source of the present invention, Figure 2 is an electron scanning micrograph of activated carbon (RCW) activated by the physical straw method of the rice straw of Figure 1, Figure 3 1 is a scanning micrograph of activated charcoal (RCK) activated by the chemical activity method of the straw char of FIG.

도 4는 흡착 곡선 분석 결과를 나타낸 그래프로써, 볏짚 촤(RC) 및 볏짚 촤를 물리적 활성법으로 활성화한 활성탄(RCW), 볏짚 촤(char)를 화학적 활성화한 활성탄(RCK)를 질소 등온 흡착법에 의해 분석한 흡착 곡선 그래프이다.Figure 4 is a graph showing the results of the adsorption curve analysis, activated carbon (RCW) activated rice straw (RC) and rice straw by physical activity method, activated carbon (RCK) chemically activated rice straw (char) in nitrogen isothermal adsorption method Adsorption curve graph analyzed by.

도 5는 기공 크기 분포도를 나타낸 그래프로써, 볏짚 촤(RC) 및 볏짚 촤를 물리적 활성법으로 활성화한 활성탄(RCW), 볏짚 촤(char)를 화학적 활성화한 활성탄(RCK)를 질소 흡착탈법에 의해 측정된 질소 탈착량을 BJH(Barrett-Joyner-Halenda)법을 이용해 해석하고 기공 크기 분포도를 나타낸 것이다.Figure 5 is a graph showing the pore size distribution, activated carbon (RCW) activated rice straw (RC) and rice straw by physical activity method, activated carbon (RCK) chemically activated rice straw (char) by nitrogen adsorption desorption method The measured nitrogen desorption amount was analyzed by Barrett-Joyner-Halenda (BJH) method and pore size distribution was shown.

이하, 본 발명의 활성탄은 목재 칩, 땅콩 껍질, 볏짚, 동물의 분뇨 등과 같은 농업 부산물을 탄소원으로 하여 상기 탄소원 중 어느 하나를 열분해한 바이오 촤(Char)를 활성화하여 제조한 것이다.Hereinafter, the activated carbon of the present invention is produced by activating a bio-char (Char) by thermally decomposing any one of the carbon sources by using agricultural by-products such as wood chips, peanut shells, rice straw, animal manure and the like as a carbon source.

그리고 바람직하게는 볏짚을 탄소원으로 열분해한 볏짚 촤(RC)를 활성화하여 제조하는 것이다.And it is preferably prepared by activating rice straw (RC) by thermally decomposing rice straw into a carbon source.

상기 볏짚은 국내에서 대량 생산되어 값이 저렴하며, 열분해 후 재가 많고 다량의 탄소를 함유하여 활성탄의 탄소원으로 적용하기 적합한 것이다.The rice straw is mass-produced in Korea and is inexpensive, and is suitable for application as a carbon source of activated carbon by containing a large amount of carbon after pyrolysis and containing a large amount of carbon.

상기 활성탄을 제조하는 제조 방법은 하기와 같다.The production method for producing the activated carbon is as follows.

일단 볏짚을 산소가 없는 진공 상태 또는 불활성 가스 분위기에서 450 ~ 550℃로 1시간 내지 2시간 열분해하여 볏짚 촤를 제조하는 열분해 공정을 거친다.Once the rice straw is pyrolyzed at 450 to 550 ° C. for 1 hour to 2 hours in an oxygen-free vacuum or inert gas atmosphere to undergo a pyrolysis process to produce rice straw.

상기 열분해 공정은 더 상세하게 볏짚을 밀폐된 금속통 내부에 채운 후 금속 통 내부에 질소(N2)를 50ml/min으로 주입하면서 500℃에서 1시간 동안 열분해한 것이다.In the pyrolysis process, the straw is filled in a sealed metal container in more detail, and then pyrolyzed at 500 ° C. for 1 hour while injecting nitrogen (N 2) into the metal container at 50 ml / min.

상기한 바와 같이 볏짚은 열분해 공정을 거치면서 열분해 오일 및 열분해 가스를 생산하게 되며, 오일 및 가스 생산 후 폐부산물인 볏짚 촤는 덩어리(pellet)로 형성되는 것이다.As described above, rice straw produces pyrolysis oil and pyrolysis gas through a pyrolysis process, and rice straw, which is a waste by-product after oil and gas production, is formed into pellets.

그리고 상기 볏짚 촤는 활성화 공정을 거쳐 활성탄으로 제조되는 것이다.And the rice straw 되는 is made of activated carbon through an activation process.

상기 활성화 공정은 물리적 활성화 방법 및 화학적 활성화 방법이 있으며, 바람직하게는 화학적 활성화 방법으로 활성화한 것이다.The activation process includes a physical activation method and a chemical activation method, and is preferably activated by a chemical activation method.

본 발명의 실시 예에서 볏짚 촤(RC)를 물리적 활성화 방법으로 활성화한 활성탄을 제 1 활성탄(RCW)이라 하고, 화학적 활성화 방법으로 활성화한 활성탄을 제 2 활성탄(RCK)로 하여 설명함을 밝혀둔다.In the embodiment of the present invention, activated carbon activated by rice straw (RC) by physical activation method is called first activated carbon (RCW), and activated carbon activated by chemical activation method is described as second activated carbon (RCK). .

제 1 활성탄(RCW)을 제조하는 물리적 활성화 방법은 볏짚 촤를 반응기에 투입한 후 반응기 내로 수증기가 함유된 수증기를 주입하는 수증기 주입 단계와;Physical activation method for producing the first activated carbon (RCW) is a steam injection step of injecting rice straw 촤 into the reactor and injecting steam containing steam into the reactor;

수증기 주입 단계로 반응기 내의 온도를 일정 온도로 승온 시키는 승온 단계와;A temperature raising step of raising the temperature in the reactor to a predetermined temperature by steam injection;

승온 단계로 승온된 일정 온도에서 일정 시간동안 유지시키는 등온 단계를 포함한다.It includes an isothermal step that is maintained for a predetermined time at a constant temperature raised by the temperature increase step.

본 발명의 일 예로 물리학적 활성화 방법으로 제 1 활성탄(RCW)을 제조한 과정을 더 상세히 설명하면 하기와 같다.As an example of the present invention, a process of manufacturing first activated carbon (RCW) by a physical activation method will be described in detail as follows.

상기 제 1 활성탄(RCW)는 볏짚 촤(RC) 5g을 U자형 반응기에 넣고, 수증기 함 량이 40%인 질소 가스를 50ml/min으로 주입하여 상온에서 5℃/min으로 700℃로 승온하는 승온 단계 및 상기 승온 단계에서 700℃에서 1시간 동안 유지시키는 등온 단계를 거쳐 제조된 것이다.The first activated carbon (RCW) is put into a U-shaped reactor 5g of straw straw (RC), the temperature rising step of injecting nitrogen gas with a water content of 40% at 50ml / min and raising the temperature to 700 ℃ at 5 ℃ / min at room temperature And it is prepared through an isothermal step to maintain for 1 hour at 700 ℃ in the temperature increase step.

또한 제 2 활성탄(RCK)을 제조하는 화학적 활성화 방법은 염기성 용액에 함침법을 이용하여 볏짚 촤(RC)와 섞어 혼합하는 함침 혼합 단계와;In addition, the chemical activation method for producing the second activated carbon (RCK) comprises an impregnation mixing step of mixing with a straw straw (RC) by using an impregnation method in a basic solution;

상기 함침 혼합 단계를 거쳐 혼합된 혼합물을 건조하는 제 1 건조 단계와;A first drying step of drying the mixed mixture through the impregnation mixing step;

상기 제 1 단계로 건조된 혼합물을 반응기 내에 넣고, 반응기 내의 온도를 승온시키는 승온 단계와;A temperature raising step of putting the mixture dried in the first step into a reactor and raising the temperature in the reactor;

승온 단계로 승온된 온도가 유지되는 등온 단계와;An isothermal step in which the temperature raised in the temperature rising step is maintained;

상기 등온 단계를 거친 혼합물에서 염기성 이온을 산성 용액으로 세척하는 제 1 세척 단계와;A first washing step of washing basic ions with an acidic solution in the mixture subjected to the isothermal step;

상기 제 1 세척 단계에서 잔류된 산성 이온을 세척하여 제거하는 제 2 세척 단계와;A second washing step of washing and removing the acidic ions remaining in the first washing step;

상기 제 2 세척 단계로 제조된 활성탄을 건조하는 제 2 건조 단계를 포함한다.And a second drying step of drying the activated carbon prepared in the second washing step.

상기 화학적 활성화 방법으로 제 2 활성탄(RCK)을 제조한 과정을 더 상세히 설명하면 하기와 같다. Hereinafter, a process of manufacturing second activated carbon (RCK) by the chemical activation method will be described in detail.

상기 염기성 용액은 수산화 칼륨(KOH)용액을 사용하며 상기 산성 용액은 염화 수소(HCL) 용액을 사용한다.The basic solution uses potassium hydroxide (KOH) solution and the acidic solution uses hydrogen chloride (HCL) solution.

일단 상기 함침 혼합 단계는 볏짚 촤(RC) 5g과 수산화 칼륨 용액을 과량 용 액 함침법을 이용하여 1:1(중량비:W/W)로 섞은 후 60℃에서 2시간 혼합한 것이다.In the impregnation mixing step, 5 g of rice straw (RC) and potassium hydroxide solution were mixed in a 1: 1 (weight ratio: W / W) using an excess solution impregnation method, followed by mixing at 60 ° C. for 2 hours.

또 상기 제 1 건조 단계는 상기 함침 혼합 단계를 거친 혼합물을 오븐 내에서 110℃로 하루 정도 가열하여 건조한 것이다.In addition, the first drying step is to dry the mixture passed through the impregnation mixing step to 110 ℃ in the oven for about one day.

상기 승온 단계는 상기 제 1 건조 단계를 거친 혼합물을 U자형 반응기에 넣고, 수증기 함량이 40%인 질소 가스를 50ml/min으로 주입하여 상온에서 5℃/min으로 700℃로 승온한 것이다.The temperature raising step is to put the mixture passed through the first drying step into a U-shaped reactor, the nitrogen gas having a water content of 40% is injected at 50ml / min and heated up to 700 ℃ at 5 ℃ / min at room temperature.

상기 등온 단계는 상기 승온 단계에서 승온된 700℃에서 1시간 유지시킨 것이다.The isothermal step is to maintain 1 hour at 700 ℃ heated in the temperature increase step.

상기 제 1 세척 단계는 5몰(M)의 염화 수소(HCL) 용액을 사용하여 혼합물 중에 남아 있는 K+를 제거하는 것이다.The first washing step is to remove K + remaining in the mixture using 5 molar (M) hydrogen chloride (HCL) solution.

또 제 2 세척 단계는 증류수를 사용하여 Cl-를 제거한 것이다.The second washing step is to remove Cl- using distilled water.

또한, 상기 제 2 건조 단계는 Cl-가 제거된 활성탄을 오븐 내에서 110℃로 하루 정도 가열하여 건조한 것이다.In addition, the second drying step is dried by heating the activated carbon from which Cl- removed to 110 ℃ for about one day.

상기한 바와 같이 물리적 활성화법으로 제조된 제 1 활성탄(RCW), 화학적 활성화법으로 제조된 제 2 활성탄(RCK), 활성화하지 않은 볏짚 촤(RC)를 비교하여 볏짚 촤의 활성화 정도를 설명하면 하기와 같다.When the first activated carbon (RCW) manufactured by the physical activation method, the second activated carbon (RCK) manufactured by the chemical activation method, compared with the unactivated rice straw RC (RC) as described above to explain the degree of activation of rice straw 하면 Same as

일단 도 1은 전자 주사 현미경으로 볏짚 촤(RC)의 표면을 100,000배로 확대하여 찍은 사진이고, 도 2는 상기 제 1 활성탄(RCW)의 표면을 100,000배로 확대하여 찍은 사진이고, 도 3은 상기 제 2 활성탄(RCK)의 표면을 의 표면을 100,000배로 확대하여 찍은 사진인 것이다.1 is an enlarged picture of the surface of the straw straw (RC) by 100,000 times with an electron scanning microscope, Figure 2 is a picture taken by expanding the surface of the first activated carbon (RCW) 100,000 times, Figure 3 is the agent 2 The surface of the activated carbon (RCK) is a picture taken by expanding the surface of 100,000 times.

도 1 내지 도 3에서 보는 바와 같이 볏짚 촤(RC), 제 1 활성탄(RCW), 제 2 활성탄(RCK)의 표면에 각각 50nm 정도의 작은 돌기 모양의 기공들이 형성된 것을 확인할 수 있는 것이다.As shown in Figures 1 to 3 it can be seen that small pores of about 50nm each formed on the surface of rice straw (RC), the first activated carbon (RCW), the second activated carbon (RCK).

그리고, 기공분포정도는 RC < RCW < RCK 순이다. 열분해(Slow pyrolysis) 과정을 통해 볏짚 촤에는 돌기 모양의 기공들이 형성되며, 이러한 기공들은 고온 활성화 과정을 거치면서 더 많이 발생하였고, 화학적 활성화 방법으로 제조된 제 2 활성탄(RCK)이 물리적 활성화 방법으로 제조된 제 1 활성탄(RCW)에 비해 많은 기공을 갖는 것을 확인 할 수 있는 것이다. The pore distribution is in the order RC <RCW <RCK. Through the process of slow pyrolysis, straw-shaped pores are formed in the projections, and these pores are more generated during the high temperature activation process, and the second activated carbon (RCK) manufactured by the chemical activation method is a physical activation method. Compared to the first activated carbon (RCW) manufactured it can be confirmed that it has a lot of pores.

또 제 2 활성탄(RCK)에서 기공과 기공사이의 골 깊이 또한 깊어진 모습을 관찰할 수 있으며, 이를 통해 화학적 활성화 방법에 의한 제 2 활성탄(RCK)은 울퉁불통한 표면구조를 갖고, 많은 기공을 갖고 있어 활성탄으로 활용 시 반응할 수 있는 반응공간을 많이 제공할 수 있는 것이다.In addition, the depth of bone and pores deep in the second activated carbon (RCK) can be observed, through which the second activated carbon (RCK) by the chemical activation method has a rugged surface structure, has many pores It can provide a lot of reaction space that can react when used as activated carbon.

한편, 도 4는 77K에서 볏짚 촤(RC), 제 1 활성탄(RCW), 제 2 활성탄(RCK)의 질소의 흡착 곡선을 나타낸 것이다.4 shows adsorption curves of nitrogen of rice straw (RC), first activated carbon (RCW), and second activated carbon (RCK) at 77K.

흡착 곡선의 형태는 BDDT(Brunauer, Deming, Deming and Teller)의 구분 방식에 따라 Ⅰ,Ⅱ, Ⅲ, Ⅳ의 형태로 구분되며, 도 4에서 보는 바와 같이 볏짚 촤(RC), 제 1 활성탄(RCW), 제 2 활성탄(RCK) 모두 p/po 값이 0에 가까운 저압에서 질소가 많이 흡착되는 활성탄과 같은 Ⅰ형태를 보인다. Adsorption curves are divided into I, II, III, and IV according to the classification method of Brunauer, Deming, Deming and Teller (BDDT), and as shown in FIG. 4, straw straw (RC) and first activated carbon (RCW). ) And the second activated carbon (RCK) all show the same form as the activated carbon in which nitrogen is adsorbed at a low pressure close to p / po of zero.

이는 미세 기공(micropore) 영역이 많이 존재하는 것을 말해준다. 또한 흡착양이 볏짚 촤(RC) < 제 1 활성탄(RCW) < 제 2 활성탄(RCK) 순으로 증가하는 것을 볼 때 볏짚 촤(RC)를 활성화 하였을 경우 더 많은 미세 기공이 만들어지고 물리적 활성화 방법에 비해 화학적 활성화 방법이 좀 더 많이 미세 기공을 증가시키는 것을 확인 할 수 있는 것이다.This indicates that there are many micropore regions. In addition, when the amount of adsorption increased in the order of rice straw RC (RC) <first activated carbon (RCW) <second activated carbon (RCK), more fine pores were made when activating rice straw 촤 (RC) and physical activation method Compared with the chemical activation method, it can be seen that the micropores increase more.

또한 볏짚 촤(RC), 제 1 활성탄(RCW)에서 볼 수 없었던 메조 기공(mesopore)과 미세 기공(micropore) 영역대에서의 흡착량 증가를 제 2 활성탄(RCK)에서는 볼 수 있는 것이다.In addition, an increase in the amount of adsorption in mesopores and micropore regions, which was not seen in rice straw (RC) and first activated carbon (RCW), can be seen in the second activated carbon (RCK).

그리고, 제 2 활성탄(RCK)의 흡착 곡선은Ⅰ과 Ⅳ의 형태를 모두 가지며, 이를 통해 화학적 활성화 방법은 미세 기공(micropore)의 현격한 증가뿐만 아니라 메조 기공(mesopore)와 미세 기공(micropore) 영역의 기공을 증가시키는 방법임을 알 수 있다. In addition, the adsorption curves of the second activated carbon (RCK) have the form of I and IV, and the chemical activation method enables mesopores and micropore regions as well as a dramatic increase in micropores. It can be seen that the method of increasing the pore of.

활성탄의 기상촉매 적용 시 메조 기공(mesopore)와 미세 기공(micropore)을 가지고 많은 미세 기공(micropore)을 가지면서 넓은 비표면적을 갖는 것은 반응가스의 원활한 흐름과 작용점의 확장이란 측면에서 매우 중요한 것이다.It is very important in terms of smooth flow of reaction gas and expansion of working point, which have mesopores and micropores, many micropores, and a large specific surface area when applying activated carbon.

한편, 도 5는 77K에서 볏짚 촤(RC), 제 1 활성탄(RCW), 제 2 활성탄(RCK)의 질소 흡탈착법에 의해 측정된 질소 탈착량을 BJH(Barret-Joyner-Halenda)법을 이용해 해석하고 기공 크기 분포도를 나타낸 것이다.Meanwhile, FIG. 5 shows the nitrogen desorption amount measured by nitrogen adsorption and desorption of straw straw (RC), first activated carbon (RCW) and second activated carbon (RCK) at 77 K using Barrett-Joyner-Halenda (BJH) method. Interpretation and pore size distribution.

도 5에서 보는 바와 같이 볏짚 촤(RC), 제 1 활성탄(RCW), 제 2 활성탄(RCK)은 모두 3.7nm의 기공이 선택적으로 확장된 것을 알 수 있었으며 특히 물리적으로나 화학적으로나 촤를 활성화한 촉매에서 3.7nm의 기공이 많이 열린 것을 관찰할 수 있는 것이다. As shown in FIG. 5, the straw straw (RC), the first activated carbon (RCW), and the second activated carbon (RCK) were all selectively enlarged in pores of 3.7 nm, and in particular, a catalyst which activated 촤 physically and chemically. You can see that the pores of 3.7nm opened a lot.

또한 볏짚 촤(RC)의 경우도 열분해(slow pyrolysis) 과정을 통해 작지만 선택적인 기공이 열린것을 확인할 수 있는 것으며, 이는 볏짚이 갖고 있는 휘발성 유기물질들이 열분해 과정에서 열을 받아 cracking 되고 증기화 되어 시료 밖으로 빠져나오면서 열린 기공인 것이다.Also, in case of rice straw (RC), small but selective pores were opened through the slow pyrolysis process, which means that volatile organic substances in rice straw are cracked and vaporized by heat during the pyrolysis process. Open pores as they exit the sample.

상기 제 1 활성탄(RCW), 제 2 활성탄(RCK)은 같은 영역대의 기공이 확장되어진 것으로 보아 고온 활성화 과정을 통해 좀 더 많은 기공이 열린 것으로 판단된다.Since the pores of the same area of the first activated carbon (RCW) and the second activated carbon (RCK) are expanded, it is determined that more pores are opened through the high temperature activation process.

또, 제 2 활성탄(RCK)의 경우 3.7nm의 기공 뿐 아니라 보다 큰 메조 기공(mesopore) 영역과 미세 기공(micropore) 영역의 기공이 많이 열린 것을 관찰할 수 있으며, 이는 물리적 활성화 방법에 비해 화학적 활성화 방법이 메조 기공(mesopore) 영역과 미세 기공(micropore) 영역에서도 넓은 기공분포도를 나타내는 것을 흡착곡선에서 뿐 아니라 BJH(Barret-Joyner-Halenda)법에 의한 탈착곡선에서도 알 수 있는 것이다.In addition, in the case of the second activated carbon (RCK), it can be observed that not only 3.7 nm pores but also large pores in the mesopore region and the micropore region are opened, which is chemical activation compared to the physical activation method. It can be seen from the adsorption curve as well as the desorption curve by the Barrett-Joyner-Halenda (BJH) method, which shows a wide pore distribution in the mesopore region and the micropore region.

한편, 하기 표 1은 77K에서 볏짚 촤(RC), 제 1 활성탄(RCW), 제 2 활성탄(RCK)의 질소 흡착양을 BET식(1938년 Brunauer, Emmett, Teller에 의해 정립되어진 다분자 층 흡착식)에 의거하여 BET-표면적, 기공의 부피, 기공의 평균 크기를 측정한 것이다. On the other hand, Table 1 is a multi-molecular layer adsorption formula established by the BET equation (Brunauer, Emmett, Teller in 1938) the nitrogen adsorption amount of rice straw (RC), first activated carbon (RCW), second activated carbon (RCK) at 77K ), The BET-surface area, pore volume, and average pore size were measured based on.

그리고, 분석대상이 대부분의 탄소로 이루어진 탄소원이므로 C값이 100이상이고, 상관 계수(Correlation coefficient) 값이 0.9998이상이며, p/po 값이 0.05~0.35 인 구간에서 시작점과 끝점을 잡아 BET 도면(plot)을 해석한 것이다. In addition, since the analysis target is a carbon source made up of most carbons, CET is 100 or more, Correlation coefficient value is 0.9998 or more, and the p / po value is 0.05 ~ 0.35 in the section where the start point and the end point are captured and the BET drawing ( plot).

구분division BET-표면 면적
(m2/g)
BET-surface area
(m 2 / g)
기공의 부피
(cm3/g)
Pore volume
(cm 3 / g)
기공의 평균 크기
(nm)
Average size of pores
(nm)
볏짚 촤(RC)Rice straw (RC) 139.5139.5 0.0920.092 2.6422.642 제 1 활성탄(RCW)Primary activated carbon (RCW) 363.0363.0 0.1640.164 1.8091.809 제 2 활성탄(RCK)Second activated carbon (RCK) 772.3772.3 0.4220.422 2.1852.185

상기 표 1에서 보는 바와 같이 볏짚 촤인 RC에 비해 고온 활성 촤인 제 1 활성탄(RCW)과 제 2 활성탄(RCK)이 넓은 비표면적을 가졌으며, 특히 화학적 활성화 방법에 따른 제 2 활성탄(RCK)이 772.3㎡/g 이라는 넓은 비표면적을 가졌다. As shown in Table 1, the first activated carbon (RCW) and the second activated carbon (RCK), which are high-temperature activated carbons, have a larger specific surface area than the RC, which is rice straw, especially the second activated carbon (RCK) according to the chemical activation method is 772.3. It had a large specific surface area of m 2 / g.

이는 고온 활성화 방법에서 물리적 활성화 방법에 비해 화학적 활성화 방법이 비표면적을 더 증가시키는 것을 보여주는 것이다. This shows that the chemical activation method increases the specific surface area more than the physical activation method in the high temperature activation method.

또한, 기공 부피 또한 비표면적이 넓은 제 2 활성탄(RCK)이 가장 크고, 흡착곡선과 탈착곡선에 의한 BJH 도면(Plot)에서도 확인 할 수 있듯이 볏짚 촤(RC)의 기공 평균 크기는 가장 높은 기공분포 빈도를 보이는 3.7nm 보다 작은 미세 기공(micropore) 영역의 기공이 조금 열려 2.642nm이고, 제 1 활성탄(RCW)의 기공 평균 크기는 물리적 활성화 과정에서 보다 많은 미세 기공(micropore) 영역을 갖게 되어 가장 높은 기공분포 빈도를 보이는 3.7nm 보다 작아진 1.809nm이며, 제 2 활성탄(RCK)의 기공 평균 크기는 화학적 활성화 과정에서 미세 기공(micropore) 및 메조 기공(mesopore)를 골고루 많이 갖게 되어 가장 높은 기공분포 빈도를 보이는 3.7nm 보다 작은 2.185nm이고, 선택적인 기공이 열린것을 확인할 수 있는 것이다.In addition, the pore volume also has the largest specific surface area of the second activated carbon (RCK), and the average pore size of the straw straw (RC) has the highest pore distribution as can be seen in the BJH plot based on the adsorption curve and the desorption curve. The pores of the micropore region smaller than 3.7 nm showing a frequency are slightly open to 2.642 nm, and the average pore size of the first activated carbon (RCW) has more micropore regions during physical activation. It is 1.809 nm, which is smaller than 3.7 nm showing the pore distribution frequency. The average pore size of the second activated carbon (RCK) has many micropores and mesopores even during chemical activation. It is 2.185nm smaller than 3.7nm, which shows that the selective pores are open.

상기한 바와 같이 본 발명은 상기한 화학적 활성화 방법으로 볏짚 촤를 활성화하여 제조하는 것이 더 바람직함을 확인할 수 있는 것이다.As described above, the present invention can confirm that it is more preferable to prepare by activating rice straw 으로 by the chemical activation method described above.

본 발명은 바이오 매스를 열분해하여 신재생에너지로써 활용되는 바이오 매스 오일 및 바이오 매스 가스를 생산한 후 폐부산물인 바이오 매스 열분해 촤, 즉, 볏짚 촤를 활성탄 탄소원으로 활용하여 활성탄의 제조 원가를 절감하고, 바이오 매스 촤를 재활용할 수 있게 한 것이다.The present invention is to reduce the production cost of activated carbon by thermally decomposing biomass to produce biomass oil and biomass gas utilized as renewable energy, and then use biomass pyrolysis 인, that is, rice straw 으로 as activated carbon carbon source, In other words, the biomass can be recycled.

본 발명은 상기한 실시 예에 한정되는 것이 아니라, 본 발명의 요지에 벗어나지 않는 범위에서 다양하게 변경하여 실시할 수 있으며 이는 본 발명의 구성에 포함됨을 밝혀둔다. The present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention, which is understood to be included in the configuration of the present invention.

도 1은 본 발명의 탄소원으로 사용한 볏짚 촤(RC)의 전자 주사 현미경 사진1 is an electron scanning micrograph of rice straw (RC) used as a carbon source of the present invention

도 2는 도 1의 볏짚 촤를 물리적 활성법으로 활성화한 활성탄(RCW)의 전자 주사 현미경 사진FIG. 2 is an electron scanning micrograph of activated carbon (RCW) obtained by physically activating the rice straw of FIG.

도 3은 도 1의 볏짚 촤(char)를 화학적 활성법으로 활성화한 활성탄(RCK)의 주사 현미경 사진FIG. 3 is a scanning micrograph of activated carbon (RCK) obtained by chemically activating rice straw char of FIG. 1.

도 4는 흡착 곡선 분석 결과를 나타낸 그래프4 is a graph showing the results of adsorption curve analysis

도 5는 기공 크기 분포도를 나타낸 그래프5 is a graph showing the pore size distribution

Claims (7)

농업 부산물을 열분해한 바이오 촤(Char)로 제조된 것을 특징으로 하는 활성탄.Activated carbon, characterized in that produced by bio-char (pyrolysis) of agricultural by-products. 청구항 2에 있어서,The method according to claim 2, 상기 바이오 촤(Char)는 볏짚을 열분해한 볏짚 촤인 것을 특징으로 하는 활성탄.The bio char (Char) is activated charcoal, characterized in that the straw straw pyrolysis of rice straw. 농업 부산물을 열분해하는 열분해 공정과;A pyrolysis process for pyrolyzing agricultural byproducts; 상기 열분해 공정을 통해 열분해된 바이오 촤(char)를 활성화하는 활성화 공정을 포함한 것을 특징으로 하는 활성탄 제조 방법.Activated carbon production method characterized in that it comprises an activation process for activating the bio-char (py) pyrolyzed through the pyrolysis process. 청구항 3에 있어서,The method according to claim 3, 상기 열분해 공정은 농업 부산물인 볏짚을 열분해하여 볏짚 촤를 제조하는 것을 특징으로 하는 활성탄 제조 방법.The pyrolysis process is a method of producing activated carbon, characterized in that to produce rice straw by pyrolysis of rice straw which is an agricultural by-product. 청구항 3에 있어서,The method according to claim 3, 상기 활성화 공정은 화학적 활성화 방법으로 활성화한 것을 특징으로 하는 활성탄 제조 방법.The activation process is activated carbon production method characterized in that the activation by a chemical activation method. 청구항 5에 있어서, The method according to claim 5, 화학적 활성화 방법은 염기성 용액에 함침법을 이용하여 볏짚 촤(RC)와 섞어 혼합하는 함침 혼합 단계와;Chemical activation method comprises the impregnation mixing step of mixing and mixing with rice straw (RC) using an impregnation method in a basic solution; 상기 함침 혼합 단계를 거쳐 혼합된 혼합물을 건조하는 제 1 건조 단계와;A first drying step of drying the mixed mixture through the impregnation mixing step; 상기 제 1 단계로 건조된 혼합물을 반응기 내에 넣고, 반응기 내의 온도를 승온시키는 승온 단계와;A temperature raising step of putting the mixture dried in the first step into a reactor and raising the temperature in the reactor; 승온 단계로 승온된 온도가 유지되는 등온 단계와;An isothermal step in which the temperature raised in the temperature rising step is maintained; 상기 등온 단계를 거친 혼합물에서 염기성 이온을 산성 용액으로 세척하는 제 1 세척 단계와;A first washing step of washing basic ions with an acidic solution in the mixture subjected to the isothermal step; 상기 제 1 세척 단계에서 잔류된 산성 이온을 세척하여 제거하는 제 2 세척 단계와;A second washing step of washing and removing the acidic ions remaining in the first washing step; 상기 제 2 세척 단계로 제조된 활성탄을 건조하는 제 2 건조 단계를 포함한 것을 특징으로 하는 활성탄 제조 방법.Activated carbon manufacturing method comprising a second drying step of drying the activated carbon prepared in the second washing step. 청구항 6에 있어서, The method according to claim 6, 상기 염기성 용액은 수산화 칼륨(KOH)용액을 사용하며 상기 산성 용액은 염화 수소(HCL) 용액을 사용하며, 제 2 세척 단계에서 증류수를 사용한 것을 특징으로 하는 활성탄 제조 방법.The basic solution is a potassium hydroxide (KOH) solution, the acidic solution is a hydrogen chloride (HCL) solution, the method of producing activated carbon, characterized in that using distilled water in the second washing step.
KR1020090036701A 2009-04-27 2009-04-27 Activated carbon and the manufacturing method thereof KR20100117954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090036701A KR20100117954A (en) 2009-04-27 2009-04-27 Activated carbon and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090036701A KR20100117954A (en) 2009-04-27 2009-04-27 Activated carbon and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20100117954A true KR20100117954A (en) 2010-11-04

Family

ID=43404391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090036701A KR20100117954A (en) 2009-04-27 2009-04-27 Activated carbon and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20100117954A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309305B1 (en) * 2011-06-30 2013-09-17 서울시립대학교 산학협력단 Method of producing catalyst for selective catalytic reduction using refuse derived fuel char
KR101399129B1 (en) * 2013-10-17 2014-05-30 순천대학교 산학협력단 An apparatus and method of manufacturing biochar for waste water processing
KR101418702B1 (en) * 2014-03-20 2014-07-14 경상대학교산학협력단 An Apparatus for Manufacturing Biochar of Waste Heat Circulating Type
KR101485293B1 (en) * 2014-04-25 2015-01-22 경상대학교산학협력단 An Apparatus and Method of Manufacturing Sulfur Impregnated Biochar for wastewater processing
KR20150133919A (en) * 2014-05-20 2015-12-01 강원대학교산학협력단 Activation method of biochar using acid treatment, acid activated biochar and preparing method thereof
CN105478080A (en) * 2015-12-25 2016-04-13 常州大学 Preparation method of biological charcoal
WO2017188465A1 (en) * 2016-04-26 2017-11-02 한일시멘트(주) High-early-strength low-carbon blended cement composition containing aluminate-based mineral using waste by-products
CN108315354A (en) * 2018-03-23 2018-07-24 上海大学 The application of the method for charcoal and its charcoal of preparation is prepared using straw saccharification residue
CN108928820A (en) * 2018-09-30 2018-12-04 淮阴师范学院 A kind of rice straw based super capacitor active carbon and preparation method thereof
KR20190099808A (en) 2018-02-20 2019-08-28 한국해양대학교 산학협력단 Manufacturing method of nano-metal biochar for removing phosphorus and nano-metal biochar manufactured using the method
KR20190102927A (en) 2018-02-27 2019-09-04 한국해양대학교 산학협력단 Manufacturing method of nano-metal pine biochar for removing phosphorus and nano-metal pine biochar manufactured using the method
CN114988396A (en) * 2022-05-11 2022-09-02 淮阴工学院 Preparation and application of graphene structure biochar for enhancing anaerobic digestion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309305B1 (en) * 2011-06-30 2013-09-17 서울시립대학교 산학협력단 Method of producing catalyst for selective catalytic reduction using refuse derived fuel char
KR101399129B1 (en) * 2013-10-17 2014-05-30 순천대학교 산학협력단 An apparatus and method of manufacturing biochar for waste water processing
KR101418702B1 (en) * 2014-03-20 2014-07-14 경상대학교산학협력단 An Apparatus for Manufacturing Biochar of Waste Heat Circulating Type
KR101485293B1 (en) * 2014-04-25 2015-01-22 경상대학교산학협력단 An Apparatus and Method of Manufacturing Sulfur Impregnated Biochar for wastewater processing
KR20150133919A (en) * 2014-05-20 2015-12-01 강원대학교산학협력단 Activation method of biochar using acid treatment, acid activated biochar and preparing method thereof
CN105478080A (en) * 2015-12-25 2016-04-13 常州大学 Preparation method of biological charcoal
WO2017188465A1 (en) * 2016-04-26 2017-11-02 한일시멘트(주) High-early-strength low-carbon blended cement composition containing aluminate-based mineral using waste by-products
KR20190099808A (en) 2018-02-20 2019-08-28 한국해양대학교 산학협력단 Manufacturing method of nano-metal biochar for removing phosphorus and nano-metal biochar manufactured using the method
KR20190102927A (en) 2018-02-27 2019-09-04 한국해양대학교 산학협력단 Manufacturing method of nano-metal pine biochar for removing phosphorus and nano-metal pine biochar manufactured using the method
CN108315354A (en) * 2018-03-23 2018-07-24 上海大学 The application of the method for charcoal and its charcoal of preparation is prepared using straw saccharification residue
CN108315354B (en) * 2018-03-23 2022-01-07 上海大学 Method for preparing biochar by utilizing straw saccharification residues and application of biochar prepared by same
CN108928820A (en) * 2018-09-30 2018-12-04 淮阴师范学院 A kind of rice straw based super capacitor active carbon and preparation method thereof
CN114988396A (en) * 2022-05-11 2022-09-02 淮阴工学院 Preparation and application of graphene structure biochar for enhancing anaerobic digestion

Similar Documents

Publication Publication Date Title
KR20100117954A (en) Activated carbon and the manufacturing method thereof
Kong et al. Self‐purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon‐rich biochar for methylene blue adsorption
Chakraborty et al. Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications
Philip et al. Adsorption characteristics of microporous carbons from apricot stones activated by phosphoric acid
Kumar et al. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation
Girgis et al. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation
Cai et al. Hydrothermal carbonization of tobacco stalk for fuel application
Vernersson et al. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation
JP7236391B2 (en) Method for producing activated carbon
Nahil et al. Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks
Horikawa et al. Characteristics and humidity control capacity of activated carbon from bamboo
Zhong et al. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption
US20160031713A1 (en) Activated carbon with high percentage mesoporosity, surface area, and total pore volume
KR100886365B1 (en) Activated carbon with ultra-high specific surface area from corn and Production method of thereof
Zeng et al. Preparation of microporous carbon from Sargassum horneri by hydrothermal carbonization and KOH activation for CO2 capture
Adeniyi et al. One-step chemical activation for the production of engineered orange peel biochar
KR101140990B1 (en) Method for producing activated carbons using sewage sludge
CN111960416A (en) Method for preparing sulfur-doped carbon material from biomass
Pawar et al. A comparative study on morphology, composition, kinetics, thermal behaviour and thermodynamic parameters of Prosopis Juliflora and its biochar derived from vacuum pyrolysis
Kumar et al. Activated carbon production from coconut leaflets through chemical activation: Process optimization using Taguchi approach
Premchand et al. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste
Yek et al. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: an innovative single-step approach to convert waste palm shell into activated carbon
CN111591987A (en) Activated carbon prepared from highland barley straws and preparation method thereof
CN110302748B (en) Preparation method of sludge-based biochar
KR101917778B1 (en) pine-leaf biochar catalyst, Montmorillonite-pine-leaf biochar catalyst and upgrading method of crude oil derived from lignin using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application