KR20100111545A - Process for preparing orange color phosphor - Google Patents

Process for preparing orange color phosphor Download PDF

Info

Publication number
KR20100111545A
KR20100111545A KR1020090030032A KR20090030032A KR20100111545A KR 20100111545 A KR20100111545 A KR 20100111545A KR 1020090030032 A KR1020090030032 A KR 1020090030032A KR 20090030032 A KR20090030032 A KR 20090030032A KR 20100111545 A KR20100111545 A KR 20100111545A
Authority
KR
South Korea
Prior art keywords
firing
phosphor
weight
yellow
activator
Prior art date
Application number
KR1020090030032A
Other languages
Korean (ko)
Other versions
KR101129442B1 (en
Inventor
오충봉
Original Assignee
오충봉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오충봉 filed Critical 오충봉
Priority to KR1020090030032A priority Critical patent/KR101129442B1/en
Publication of KR20100111545A publication Critical patent/KR20100111545A/en
Application granted granted Critical
Publication of KR101129442B1 publication Critical patent/KR101129442B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: A manufacturing method of an orange color phosphor is provided to use the phosphor for a high color rendering illumination by applying a UV excitation light and an AC power source. CONSTITUTION: A manufacturing method of an orange color phosphor comprises the following steps: mixing silver as a main part activator, and copper and aluminum as a collaboration activator, to a zinc sulfide parent(S10); and calcinating the mixture after adding 0.158 parts of AgNO3 by weight, 0.325 parts of Cu by weight, 2.082 parts of Al(NO3)3 by weight, and 0.28 parts of CaO by weight(S30,S40).

Description

황색 발광 형광체의 제조 방법{PROCESS FOR PREPARING ORANGE COLOR PHOSPHOR}Production method of yellow luminescent phosphor {PROCESS FOR PREPARING ORANGE COLOR PHOSPHOR}

본 발명은 황색 발광 형광체의 제조 방법에 관한 것으로, 보다 상세하게는 UV여기광 및 교류전원 인가에 의해 고연색성 및 우수한 발광 휘도를 갖도록 발광함으로써 고연색성 조명에 이용할 수 있는 황색 발광 형광체를 제조할 수 있는 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a yellow light emitting phosphor, and more particularly, by emitting light to have high color rendering and excellent light emitting luminance by applying UV excitation light and AC power, it is possible to manufacture a yellow light emitting phosphor that can be used for high color rendering. It relates to a manufacturing method.

형광체는 외부로부터 에너지를 받아 가시광선을 내는 물질로서, 광 일렉트로닉스에 없어서는 안되는 중요한 재료이다. 이와 같은 형광체는 정보소자로서 LED 백색광원을 내는 데 중요하게 사용되고 있으며 고효율 LED는 액정 TV의 백라이트, 자동차의 헤드램프, 일반조명등으로 광원분야가 크게 확대되고 있는 추세이다.Phosphor is a material that emits visible light by receiving energy from the outside and is an important material indispensable in photoelectronics. Such phosphors are used to produce LED white light as an information element, and high efficiency LEDs are being widely expanded in the light source field such as backlights of liquid crystal TVs, headlamps of automobiles, and general lighting.

고효율 고연색성 LED는 2007년에 백열등을 대체한 것을 시작으로 하여 현재 상용화된 백색 LED는 청색 LED와 황색의 형광체를 조합시켜 백색으로 변환시키는 방식이며 청색 LED의 투과광을 이용할 수 있고 또한 단일 형광체만으로 빛을 고효율로 변환시킬 수 있는 장점이 있으나 이 보색계의 백색 LED는 광의 3원색으로 되어있는 청, 녹, 적색광 중에서 적색 성분이 크게 부족하기 때문에 적색을 가진 물 체를 볼 때에는 어둡게 보이는 단점이 있으며 6000K 정도로 상관 색온도(CCT)가 높고 연색지수(CRI: Color Rendering Index)는 대략 65∼80 정도 낮기 때문에 눈이 쉽게 피로하고 사물의 자연색이 제대로 재현되지 않아 일반조명으로는 적합하지 않다.The high efficiency high color rendering LED began replacing the incandescent lamp in 2007, and the currently commercially available white LED converts the blue LED and yellow phosphor into white color, and can use the transmitted light of the blue LED. It has the advantage of converting high efficiency into high efficiency, but this complementary white LED has a shortcoming that it looks dark when seeing an object with red color because of lack of red component among blue, green and red light which are three primary colors of light. Because of its high correlation color temperature (CCT) and low color rendering index (CRI) of about 65-80, eyes are easily tired and natural colors of objects are not properly reproduced, making them unsuitable for general lighting.

이러한 Blue LED는 일반적으로 효율성이 높으면서 연색지수가 떨어지고, 반대로 연색지수가 높으면 효율성이 낮아져 LED의 조명기구 적용에 한계를 가지고 있어, 백색 LED를 백라이트 및 조명용으로 사용하기 위해서는 LED 백색광의 빛의 양, 비춰지는 빛의 범위, 빛의 색온도 및 연색성 등의 질적 개선이 이루어 져야만 한다.Such blue LEDs generally have high efficiency and low color rendering index, and conversely, high color rendering index has low efficiency, which limits the application of LED lighting fixtures.In order to use white LEDs for backlight and lighting, the amount of light of LED white light, Qualitative improvements, such as the range of light shining, the color temperature and color rendering of light, must be made.

이를 개선하기 위해, UV LED 칩을 여기광원으로 사용하는 백색 LED 방식은 칩위에, 청, 녹, 적색의 다층 형광체를 도포하여 매우 넓은 영역의 스펙트럼을 갖게 함으로써 우수한 색 안정성을 확보할 수 있으며, CCT와 CRI를 조절할 수 가 있어서 조명용 백색 LED 구현을 위한 차세대 방식으로 주목받고 있으며 이를 실현하기 위해서 UV 및 교류전원에 의해 여기되는 형광체 개발이 요구되어지고 있다.In order to improve this, the white LED method using the UV LED chip as an excitation light source can secure excellent color stability by applying a blue, green, and red multilayer phosphor on the chip to have a very broad spectrum, and CCT Since it is possible to control and CRI, it is attracting attention as a next-generation method for realizing a white LED for lighting, and to realize this, it is required to develop phosphors excited by UV and AC power.

형광체는 각각의 여기원(excited source)에 따라 발광특성이 다르게 나타나며 특히, 음극 발광(CL, Cathodeluminescence)용 형광체를 전계 발광(EL, Electroluminescence)용 형광체로 사용할 경우에는 발광이 되지 않거나 발광이 되더라도 낮은 휘도와 짧은 반감기로 인해 EL용 형광체로서는 적합하지 못하다. UV LED에 RGB 또는 RGBOY(red, green, blue, orange, yellow) 형광체를 조합하면 UV에 의해 자극된 형광체에서 다색광이 방출되고 방출된 다색광들의 혼합으로 백색이 만 들어지며 OY(orange, yellow)의 추가 혼합으로 색온도와 연색성을 자유롭게 조절이 가능할 뿐만 아니라 황색 형광체 조합을 사용하는 것이 그 자체로 광질을 조절할 수 있는 변수가 많아지게 된다. 따라서 황색형광체는 높은 연색지수를 갖는 UV LED 소자가 차세대 광원소자의 핵심분야이다.Phosphor shows different emission characteristics according to each excitation source. Especially, when the phosphor for cathodeluminescence (CL) is used as the phosphor for electroluminescence (EL), the phosphor does not emit light or is low even if it emits light. Luminance and short half-life are not suitable as phosphors for EL. Combining RGB or RGBOY (red, green, blue, orange, yellow) phosphors with UV LEDs emits multicolored light from the UV-stimulated phosphors and creates a white color with a mixture of emitted multicolored lights. In addition to the free mixing of color temperature and color rendering, the use of a combination of yellow phosphors increases the number of parameters that can be controlled by itself. Therefore, the yellow phosphor has a high color rendering index UV LED device is the core field of the next-generation light source device.

CL용 형광체로는 유로피움(Eu)을 활성제로 사용한 희토류계인 YVO4:Eu Y2O3:Eu 형광체가 대표적이며 발광파장범위는 611~626nm 이다. 이러한 형광체는 칼라TV(clolor picture tube)나 단색표시장치(monochrome display) 진공형광 표시장치 (vacuum fluorescent display)등은 사용되어지고 있으나. EL에 적용하기 위해서는 고전압 인가에도 견딜 수 있는 내구성과 고휘도를 가져야 하기 때문에 상기 표시장치에만 사용되며 차세대 EL소자에는 적용되지 못하고 있다.Typical phosphors for CL include YVO 4 : Eu Y 2 O 3 : Eu phosphors, which are rare earths using europium (Eu) as an activator, and have a light emission wavelength range of 611 to 626 nm. Such phosphors are used for color TV (clolor picture tube), monochrome display (monochrome display) and vacuum fluorescent display (vacuum fluorescent display). In order to be applied to the EL, it must have durability and high brightness that can withstand high voltage application, and thus is used only for the display device, and is not applied to the next generation EL device.

지금까지 알려진 황색 형광체로써는 네모토사의 YAG Nemoto-00902 및YAG nemoto-432가 개발되어진 상태이며 발광파장은 570~590nm에서 주요peak를 나타내며 700nm까지 점점 줄어드는 넓은 발광 스펙트럼을 가진다. 이 외에 상용화된 EL용 형광체로써는 황색인 ZnS:Mn(Kasei optonix, KX-605A)가 있다.저전압에서도 좋은 발광특성을 나타내는 무기EL용 형광체로는 망간(Mn)이 활성제(activator)로 첨가된 ZnS:Mn 파우더에 구리(Cu)와 염소(Cl)을 첨가하여 직류 및 저전압에서도 발광하는 것으로 보고된바 있으며(A Vecht et al 1969 J. Phys. D: Appl. Phys. 2 953-966) 최근에는 교류및 직류에 의한 발광특성(G.Neunert et al 2003 Acta. Phys. Pol. A vol. 104)이 새롭게 검증되었지만 발광파장은 580nm의 황색형광체이다. As known yellow phosphors, Nemoto's YAG Nemoto-00902 and YAG nemoto-432 have been developed, and the emission wavelength shows a major peak at 570 to 590 nm and has a broad emission spectrum gradually decreasing to 700 nm. In addition, commercially available EL phosphors are yellow ZnS: Mn (Kasei optonix, KX-605A). Inorganic EL phosphors exhibiting good luminescent properties even at low voltages include ZnS in which manganese (Mn) is added as an activator. It has been reported to emit light at direct current and low voltage by adding copper (Cu) and chlorine (Cl) to Mn powder (A Vecht et al 1969 J. Phys. D: Appl. Phys. 2 953-966). The luminescence properties by AC and DC (G.Neunert et al 2003 Acta. Phys. Pol. A vol. 104) have been newly verified, but the emission wavelength is 580nm yellow phosphor.

본 발명은 황색 발광 형광체의 제조 방법에 관한 것으로, 보다 상세하게는 UV여기광 및 교류전원 인가에 의해 고연색성 및 우수한 발광 휘도를 갖도록 발광함으로써 고연색성 조명에 이용할 수 있는 황색 발광 형광체를 제조하는 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a yellow light emitting phosphor, and more particularly, to produce a yellow light emitting phosphor that can be used for high color rendering by emitting light to have high color rendering and excellent light emitting brightness by applying UV excitation light and AC power. It is about a method.

본 발명에 따른 황색 발광 형광체의 제조 방법은, 황화아연(ZnS) 파우더 모체에 주활성제로 은(Ag)과 공동활성제로 구리(Cu) 및 알루미늄(Al)을 혼합하는 혼합단계와, 상기 혼합단계에서의 혼합물을 소성시키는 소성단계를 포함하여 구성된 것을 특징으로 한다.The method of manufacturing a yellow light emitting phosphor according to the present invention includes a mixing step of mixing copper (Cu) and aluminum (Al) with a zinc sulfide (ZnS) powder matrix as a main active agent and silver (Ag) as a co-activator, and the mixing step It characterized in that it comprises a firing step of firing the mixture in.

또한, 본 발명에 따른 황색 발광 형광체의 제조 방법은, 상기 소성단계는 상기 혼합물을 900 ~ 1200℃의 온도로 소성시키는 단계를 포함하는 것을 특징으로 한다.In addition, the method of manufacturing a yellow light emitting phosphor according to the present invention, the firing step is characterized in that it comprises the step of firing the mixture at a temperature of 900 ~ 1200 ℃.

또한, 본 발명에 따른 황색 발광 형광체의 제조 방법은, 상기 혼합단계는, ZnS 1000중량부 대하여 AgNO3 0.158중량부, Cu 0.325g중량부, Al(NO3)3 2.082중량부 및 융제로 CaO를 0.28중량부를 첨가하여 혼합하고, 상기 소성단계는, 진공상태에서 상기 혼합물을 500℃의 온도로 소성시키는 예비소성단계와, 환원성 분위기에서 예비소성된 소성물을 900 ~ 1200℃의 온도로 소성시키는 1차소성단계와, 1차소성된 소성물을 실온으로 냉각시킨 후 500℃의 온도로 소성시키는 2차소성단계를 포함하여 구성된 것을 특징으로 한다.In addition, the method of manufacturing a yellow light emitting phosphor according to the present invention, the mixing step, 0.158 parts by weight of AgNO 3 , 0.325 g by weight of Cu, 2.082 parts by weight of Al (NO 3 ) 3 and CaO with a flux to 1000 parts by weight of ZnS 0.28 parts by weight is added and mixed, and the firing step includes a prefiring step of firing the mixture at a temperature of 500 ° C. in a vacuum state, and a firing of the prefired firing material at a temperature of 900 to 1200 ° C. in a reducing atmosphere. It is characterized in that it comprises a secondary firing step, and the secondary firing step of firing the first fired calcined product to room temperature and then to a temperature of 500 ℃.

상기와 같은 구성에 의하여 본 발명에 따른 황색 발광 형광체의 제조 방법은 UV여기광 및 교류전원 인가에 의해 고연색성 및 우수한 발광 휘도를 갖도록 발광함으로써 고연색성 조명에 이용할 수 있는 황색 발광 형광체를 제조할 수 있는 장점을 갖는다.According to the above configuration, the method of manufacturing a yellow light emitting phosphor according to the present invention can produce a yellow light emitting phosphor that can be used for high color rendering by emitting light to have high color rendering and excellent light emitting brightness by applying UV excitation light and AC power. That has the advantage.

본 발명에 따라 제조된 황색 발광 형광체를 이용한 고연색 UV LED 및 EL 조명은 기존 CCFL방식 조명에 비해 전력소모가 50% 줄어들며 전기요금에서 71%, 유지보수비에서 75%를 절감할 수 있고, 또 사응하는 전기소모로 인하여 발전소 건설 유지에 드는 약 8조원의 경비를 절감하는 효과를 기대할 수 있다.High color rendering UV LED and EL lighting using the yellow light emitting phosphor produced according to the present invention can reduce the power consumption by 50%, 71% in the electricity bill, 75% in maintenance costs compared to the existing CCFL-type lighting, and adapt The electricity consumption can reduce the cost of about 8 trillion won to maintain the power plant construction.

또한 고연색을 갖는 UV LED 및 EL조명은 전량 수입에 의존하는 네온 및 백열등 광고판을 대체하는 소재로써 약 2조원 규모의 광고시장용 광원으로 사용되어 질 수 있고, 2012년 기존광원 10% 대체시 2,000억원의 수입대체 효과를 기대할 수 있다.In addition, UV LED and EL lighting with high color rendering are used to replace neon and incandescent billboards that depend on imports, and can be used as a light source for the advertising market of about 2 trillion won. We expect to see an import replacement effect of W100bn.

이하에서는 도면 및 실시예를 참조하여 본 발명에 따른 황색 발광 형광체의 제조 방법을 보다 상세하게 설명하기로 한다.Hereinafter, a method of manufacturing a yellow light emitting phosphor according to the present invention will be described in detail with reference to the drawings and examples.

본 발명의 일실시예에 따른 황색 발광 형광체의 방법은 다음과 같다.The method of the yellow light emitting phosphor according to the embodiment of the present invention is as follows.

본 발명에 따라 ZnS:Ag,Cu,Al 형광체를 제조하기 위해서는 모체인 ZnS 분말 상의 원료에 활성화제(activator)로 Ag가 함유된 화합물, Cu가 함유 화합물, 조활성화제로(co-activator)로 알루미늄(Al)을 혼합하며 융제로서 CaO, KI, NaI 중 어느 하나 이상을 혼합하여 첨가한다. 우선 활성화제로 Ag가 함유된 화합물로는 AgNO3 또는 Ag2SO4 등이 이용되고, 조활성화제로서 알루미늄이 함유된 화합물로는 Al2(So4)3 ·18H2O 또는 Al(NO3)3 ·9H2O 등의 알루미늄 화합물이 이용된다.In order to prepare a ZnS: Ag, Cu, Al phosphor according to the present invention, a compound containing Ag as an activator, a Cu-containing compound, and a co-activator as aluminum in the raw material on the parent ZnS powder (Al) is mixed and at least one of CaO, KI and NaI is mixed and added as a flux. AgNO 3 or Ag 2 SO 4 is used as a compound containing Ag as an activator, and Al 2 (So 4 ) 3 · 18H 2 O or Al (NO 3 ) is used as a compound containing aluminum as a co-activator. 3, aluminum compounds such as 9H 2 O is used.

그리고 이들을 3 내지 24시간 혼합한 후, 이를 알루미나 또는 석영도가니에 넣고 원료 조성물 위에 활성탄과 황의 혼합물이 놓여지게 한 후, 뚜껑을 덮고 질소 또는 수소의 환원 분위기 하에서 소성한다. 소성시에는 승온속도가 2내지 20℃/min 이 되도록 하고, 소성온도는 900℃ 내지 1200℃ 범위를 유지하도록 한다. 이와 같은 방법으로 얻어진 구형의 황색 ZnS:Ag,Cu,Al 형광체는 수세 후 평균입도가 8 내지 20㎛이고, CIE 1931로 표시된 색좌표는 x는 0.541~0.558, y는 0.450~0.461를 갖는다.After mixing them for 3 to 24 hours, the mixture is placed in an alumina or quartz crucible and a mixture of activated carbon and sulfur is placed on the raw material composition, and then the lid is covered and calcined under a reducing atmosphere of nitrogen or hydrogen. During firing, the temperature increase rate is 2 to 20 ° C / min, and the firing temperature is maintained at 900 ° C to 1200 ° C. The spherical yellow ZnS: Ag, Cu, Al phosphor obtained by the above method has an average particle size of 8 to 20 µm after washing with water, and the color coordinates represented by CIE 1931 have 0.541 to 0.558 and y is 0.450 to 0.461.

도 1에 도시된 실시예를 참조하여 본 발명의 일실시예에 따른 ZnS:Ag,Cu,Al 형광체의 제조를 위한 과정을 보다 상세하게 설명하기로 한다.Referring to the embodiment shown in Figure 1 will be described in more detail the process for the production of ZnS: Ag, Cu, Al phosphor according to an embodiment of the present invention.

<실시예1>Example 1

1. 혼합단계(S10)1. Mixing step (S10)

황화아연(ZnS) 파우더 모체에 주활성제로 은(Ag)과 공동활성제로 구리(Cu) 및 알루미늄(Al)을 혼합하는 단계이다.The zinc sulfide (ZnS) powder is mixed with silver (Ag) as a main activator and copper (Cu) and aluminum (Al) as a co-activator.

형광체 제조를 위한 성분 및 그 합량은 ZnS : 1000g, AgNO3 : 0.158g, Cu : 0.325g, Al(NO3)3 : 2.082g, CaO : 0.28g이다.The components for producing the phosphor and the total amount thereof are ZnS: 1000g, AgNO 3 : 0.158g, Cu: 0.325g, Al (NO 3 ) 3 : 2.082g, CaO: 0.28g.

우선 활성화제인 AgNO3 은화합물과 구리(Cu), 조활성화제로서 Al(NO3)3 ·9H2O 알루미늄 화합물을 혼합하고, 여기에 융제로서 CaO를 첨가한다.First, an AgNO 3 silver compound as an activator, copper (Cu), and an Al (NO 3 ) 3 9H 2 O aluminum compound as a co-activator are mixed, and CaO is added as a flux.

활성제와 융제를 혼합한 원료 혼합물을 볼밀을 사용하여 혼합한다.The raw material mixture which mixed the active agent and the flux is mixed using a ball mill.

2. 예비소성단계(S20)2. Pre-firing step (S20)

원료 혼합물을 석영도가니에 충진 후 진공로에 넣고 로타리 펌프를 이용하여 진공상태를 유지하면서 전기로에서 500℃에서 1시간 이상 소성한다. 이것은 혼합된 파우더 입자들 사이에 존재하는 수분과 산소가스들을 제거함으로써 불순물의 의한 형광체 휘도가 저하되는 것을 막고 융제인 CaO가 초기에 안정적으로 반응할 수 있는 충분한 시간을 얻기 위함이다. 이때 진공상태를 유지하는 것은 일반 대기압 상태에서 수분을 제거하는 것보다는 훨씬 효과적이기 때문이다. 600℃ 이상 온도에서는 융제인 CaO등이 녹아 석출물을 생성하되어 적절한 화합물을 얻기가 힘들므로 500℃이하에서 예비소성 하는 것이 바람직하다.After filling the raw material mixture in a quartz crucible, the raw material mixture is put into a vacuum furnace and baked in an electric furnace at 500 ° C. for at least 1 hour while maintaining a vacuum state using a rotary pump. This is to prevent the phosphor brightness caused by impurities from being lowered by removing moisture and oxygen gases present between the mixed powder particles and to obtain sufficient time for the flux CaO to be stably reacted at an early stage. This is because maintaining the vacuum is much more effective than removing moisture at normal atmospheric pressure. At a temperature of 600 ° C. or higher, CaO, which is a flux, melts to form precipitates, so that it is difficult to obtain an appropriate compound.

3. 1차소성단계(S30)3. First firing step (S30)

예비소성이 끝난 후 혼합물을 내열성 도가니에 충전하고 혼합물의 상부에 황(S)분말을 덮은 후 뚜껑을 덮고 환원성 분위기 하에서 2 내지 3시간 동안 900 ~1200℃ 온도로 소성한다. 600℃ 이상 온도가 올라가면 황화아연(ZnS)중 아연(Zn)과 황(S)성분에 서로 다른 증기압(vapor pressure)로 인한 황(S)성분의 이탈현상이 일어나며 이로 인해 모체인 황화아연(ZnS)의 결함(defect)가 발생되게 되어 활성화제로 첨가된 백금(Ag), 동(Cu), 알루미나(Al)의 원료들이 유효하게 주입되기 어려워지게 된다. 이를 방지하기 위해 황(S)분말을 덮어 황화아연의 결함발생을 억제하게 된다. 이렇게 반응이 끝난 후 실온까지 자연냉각 후 ZnS:Ag,Cu,Al 황색 형광체를 얻을 수 있다.After the prefiring is finished, the mixture is charged into a heat-resistant crucible, and covered with sulfur (S) powder on top of the mixture, and then capped and calcined at 900-1200 ° C. for 2 to 3 hours under a reducing atmosphere. When the temperature rises above 600 ° C, zinc (Zn) and sulfur (S) in zinc sulfide (ZnS) are separated from sulfur (S) due to different vapor pressures, resulting in the parent zinc sulfide (ZnS). Defects are generated, and it becomes difficult to effectively inject raw materials of platinum (Ag), copper (Cu), and alumina (Al) added as an activator. To prevent this, the sulfur (S) powder is covered to suppress the occurrence of defects of zinc sulfide. After the reaction is completed, the natural cooling to room temperature and ZnS: Ag, Cu, Al yellow phosphor can be obtained.

이때, 구리(Cu)만 활성제로 첨가하였을 경우에는 황화아연(ZnS) 표면에 침상형(needle-like)의 황화동(CuxS)이 생성되어 청색발광에 기여하지만 활성화제 및 조활성화제로 첨가된 백금(Ag)및 알루미나(Al)는 Ag2+ 이온의 확산속도가 Cu2+ 이온 보다 빠르게 진행되어 불안정한 Cu2+ 이온주위에 전계장(electric field)을 형성을 차단하고 Cu2+이온이 Zn2+이온과 치환(subsutitution)되는 것을 방해한다. 이러한 조활성화제의 첨가로 인해 Cu2+이온에 의한 국부적 청색발광을 억제하게 되는 것으로 보여진다. 이후, Ag2+ 이온이 여기(excite)된 상태에서 광자(photon)를 방출하며 에너지를 잃는 복사천이(radiative transitions)가 아닌 충분히 주입된 Ag2+이온으로 인한 비복사천이(non-radiative transitions)가 잃어나면서 에너지를 잃지 않고 Cu2+ 및 A12+ 이온에 속박된 정공(hole)을 여기(excite) 시킴으로서 발광에 기여하는 것으로 보여진다. In this case, when only copper (Cu) is added as an activator, needle-like copper sulfide (Cu x S) is formed on the surface of zinc sulfide (ZnS), contributing to blue light emission, but added as an activator and coactivator. platinum (Ag) and the alumina (Al) is formed to block the entire instrumentation (electric field) around the Ag 2+ ions the rate of diffusion is faster than Cu 2+ ions unstable Cu 2+ ions, and the Cu 2+ ions Zn Interferes with the substitution with 2+ ions. The addition of such co-activators has been shown to inhibit local blue light emission by Cu 2+ ions. Since, Ag 2+ ions are here (excite) emission of a photon (photon) in the state transition copies (radiative transitions) the sural sacheon the (non-radiative transitions) resulting in a fully implanted Ag 2+ ions, not to lose energy Is shown to contribute to luminescence by excitating holes bound to Cu 2+ and A1 2+ ions without losing energy.

4. 2차소성단계(S40)4. Second firing step (S40)

합성된 구형 황색 형광체의 특성 향상을 위해 실온까지 냉각한 후 2차소성단계로 재열처리를 한다. N2+H2(10%) 800℃ 에서 5℃/min 1시간 재열처리 하였다. 이는 이미 생성된 화합물을 활성화 시키기 위한 작업으로써 ZnS에 산소공공(oxygen vacancy)에 의한 결함증대로 활성제의 역할을 방해하기 때문이다. 이는 ZnS 화합물인 Zn원자의 위치에 산소가 치환 되는 경우와 다른 불순물에 의한 다른 에너지 준위(complex defect)를 형성하게 된다. 특히, 백금(Ag)의 경우 녹는 온도가 1700℃ 이상 높고 온도가 높아짐에 따라 수소 및 산소의 흡수량이 증가하게 되어 산화환원 반응을 일으키는 주요한 원인으로 작용하게 된다. 이를 제거하기 위하여 불활성 가스인 질소(N2)와 반응성 가스(H2)을 첨가하여 ZnS내에 존재하는 산소공공들을 수소와 반응시켜 제거함으로써 형광체의 휘도를 증가할 수 있다. In order to improve the characteristics of the synthesized spherical yellow phosphor, it is cooled to room temperature and then reheated in a secondary firing step. N 2 + H 2 (10%) was reheated at 800 ° C. for 5 hours / min. This is because the work for activating the already produced compound interferes with the role of the active agent due to the increase of defects due to oxygen vacancy in ZnS. This results in a different energy level (complex defect) due to different impurities than when oxygen is substituted at the position of the Zn atom of the ZnS compound. Particularly, in the case of platinum (Ag), as the melting temperature is higher than 1700 ° C. and the temperature is increased, the absorption of hydrogen and oxygen is increased, thereby acting as a main cause of the redox reaction. In order to remove this, it is possible to increase the luminance of the phosphor by adding nitrogen (N 2 ), which is an inert gas, and reactive gas (H 2 ) to remove oxygen pores present in ZnS by reacting with hydrogen.

5. 분급단계(S50)5. Classification step (S50)

마지막으로 완료된 소성물을 분급한다. 일반적인 형광체 제조에서는 소성 후 잔존하는 융제및 반응물을 제거하기 위해 세정하여 건조할 필요가 있지만 본 발명에서 첨가된 CaO 융제는 반응물로 제거할 필요가 없기 때문에 고순도의 화합물을 얻어 낼 수가 있다.Finally classify the completed firing. In general phosphor preparation, it is necessary to wash and dry to remove the flux and reactant remaining after firing, but the CaO flux added in the present invention does not need to be removed with the reactant, thereby obtaining a high purity compound.

6. 결과6. Results

도 2는 상기 제1실시예에 따라 제조된 황색 발광 형광체의 UV여기에 의한 색좌표를 예시한 그래프이다. 도 2를 참조하면 상기의 ZnS:Ag,Cu,Al 황색 형광체는 CIE x=0.543, y=0.454의 색좌표를 갖는다.FIG. 2 is a graph illustrating color coordinates by UV excitation of a yellow light emitting phosphor manufactured according to the first embodiment. Referring to FIG. 2, the ZnS: Ag, Cu, Al yellow phosphor has a color coordinate of CIE x = 0.543 and y = 0.454.

도 3은 제1실시예에 따라 제조된 황색 발광 형광체의 발광파장을 예시한 그래프이다. 도 3을 참조하면 본 발명에 따른 황색 발광 형광체는 질소(N2) 레이저를 이용한 337nm대의 UV파장에 의한 여기에 의해 575nm의 황색영역의 파장을 나타내었다 3 is a graph illustrating the light emission wavelength of the yellow light-emitting phosphor prepared according to the first embodiment. Referring to FIG. 3, the yellow light emitting phosphor according to the present invention exhibited a wavelength of 575 nm in the yellow region due to excitation by UV wavelength in the 337 nm band using a nitrogen (N 2 ) laser.

도 4는 EL 디바이스 구조를 예시한 그래프이다. 도 4를 참조하면 얇고 투명한 PET필름(5)위에 0.1㎛의 두께를 가지는 산화주석(ITO)로 만들어진 배면전극(4), 산화티탄바륨(BaTiO3)로 만들어진 제1절연층(3), 및 3㎛의 두께를 가진 형광체(ZnS:Ag,Cu,Al)인 발광층(2)을 도포하고, 0.2 ㎛의 산화주석(ITO)로 만들어진 투명전극(1)으로 구성하였다. 이렇게 구성된 소자에 400hz, 250V의 교류전압을 인가하여 575nm의 황색영역대 파장을 얻을 수 있었다.4 is a graph illustrating an EL device structure. Referring to Figure 4, a thin transparent PET film 5 made on the back electrode (4), titanium barium oxide (BaTiO 3) made of tin oxide (ITO) having a 0.1㎛ thickness of the first insulating layer 3, and The light emitting layer 2, which is a phosphor (ZnS: Ag, Cu, Al) having a thickness of 3 mu m, was applied, and composed of a transparent electrode 1 made of 0.2 mu m tin oxide (ITO). The yellow band of 575nm was obtained by applying AC voltage of 400hz and 250V to the device thus constructed.

이하에서는 본 발명에 따른 황색 발광 형광체 제조에 관한 구체적인 실시예를 대비하여 설명하기로 한다.Hereinafter will be described in preparation for a specific embodiment of the yellow light emitting phosphor according to the present invention.

<실시예2>Example 2

<대조군 1><Control 1>

실시예1에서와 같이 분말상의 ZnS(일본 Sakai사 제조) 모에 1000g에 AgNO3을 0.158g 첨가하고 조활성화제로 Al(N03)3 2.082g 및 Cu 0.325g을 첨가해 습식혼합 후 900~1200℃ 사이에서 환원성 분위기 하에 2시간 소성하여 형광체를 제조하고, 이렇게 제조된 형광체를 수차례 세정하여 완제품을 얻었다.As in Example 1, 0.158 g of AgNO 3 was added to 1000 g of powdered ZnS (manufactured by Sakai Co., Ltd.), and 2.082 g of Al (N0 3 ) 3 and 0.325 g of Cu were added as a co-activator, followed by wet mixing. The mixture was calcined under a reducing atmosphere for 2 hours to prepare a phosphor, and the thus prepared phosphor was washed several times to obtain a finished product.

<대조군 2><Control 2>

대조군 1에서와 동일한 방법으로 수행하되 AgNO3와 Al(N03)3변화량을 1:5 몰비로 변화하여 황색형광체를 제조하였다. 이상의 실시예에 따른 형광체의 발광특성을 비교하여 표 1에 나타내었다.The yellow phosphor was prepared in the same manner as in Control 1 except that AgNO 3 and Al (N0 3 ) 3 were changed in a 1: 5 molar ratio. Table 1 shows the luminescence properties of the phosphors according to the above embodiments.

<대조군 3><Control Group 3>

대조군 1에서와 동일한 방법으로 수행하되 AgNO3와 Al(N03)3변화량을 1:2 몰비로 변화하여 황색형광체를 제조하였다. 이상의 실시예에 따른 형광체의 발광특성을 비교하여 표 1에 나타내었다.The yellow phosphor was prepared by the same method as in Control 1 but changing the AgNO 3 and Al (N0 3 ) 3 changes in a 1: 2 molar ratio. Table 1 shows the luminescence properties of the phosphors according to the above embodiments.

<대조군 4><Control 4>

대조군 1에서와 동일한 방법으로 수행하되 AgNO3와 Al(N03)3 변화량을 2:1 몰비로 변화하여 황색형광체를 제조하였다. 이상의 실시예에 따른 형광체의 발광특성 을 비교하여 표 1에 나타내었다.The yellow phosphor was prepared in the same manner as in Control 1 except that AgNO 3 and Al (N0 3 ) 3 were changed in a 2: 1 molar ratio. Table 1 shows the luminescence properties of the phosphors according to the above embodiments.

<대조군 5><Control 5>

대조군 1에서와 동일한 방법으로 수행하되 AgNO3와 Al(N03)3변화량을 4:1 몰비로 변화하여 황색형광체를 제조하였다. 이상의 실시예에 따른 형광체의 발광특성을 비교하여 표 1에 나타내었다.The yellow phosphor was prepared in the same manner as in Control 1 except that AgNO 3 and Al (N0 3 ) 3 were changed in a 4: 1 molar ratio. Table 1 shows the luminescence properties of the phosphors according to the above embodiments.

1Khz, 600V1Khz, 600V CIE xCIE x CIE yCIE y cd/m2 cd / m 2 대조군 1 0.54 0.45 300
대조군 2 0.55 0.46 240
대조군 3 0.51 0.43 180
대조군 4 0.50 0.44 90
대조군 5 0.49 0.48 34
Control 1 0.54 0.45 300
Control 2 0.55 0.46 240
Control 3 0.51 0.43 180
Control 4 0.50 0.44 90
Control group 5 0.49 0.48 34

표 1에서 알 수 있는 바와 같이 활성제와 조활성화제의 혼합비 변화에 따라서 UV 여기광에 의한 휘도및 색좌표가 변화됨을 알수 있다. As can be seen from Table 1, it can be seen that the luminance and color coordinates due to UV excitation light are changed according to the mixing ratio of the activator and the coactivator.

도 2에서 알 수 있는 바와 같이 본 발명에 따른 황색 발광 형광체(대조군 1)는 색좌표가 CIE x=0.5433 y=0.4540(도면부호 1이 가리키는 좌표)임을 알 수 있으며, 도 3으로부터 알 수 있는 바와 같이, 본 발명에 따른 황색 발광 형광체는 교류전원 인가 및 UV에 의한 여기에서 575nm파장대의 높은 휘도를 얻는것이 가능하므로 실용적인 면에서 매우 가치가 있음을 알 수 있다.As can be seen in FIG. 2, the yellow light-emitting phosphor (control 1) according to the present invention can be seen that the color coordinate is CIE x = 0.5433 y = 0.4540 (coordinate indicated by reference numeral 1), as can be seen from FIG. The yellow light-emitting phosphor according to the present invention can be obtained from the AC power supply and UV excitation, so that it is possible to obtain a high luminance of 575 nm wavelength.

이상에서 설명하는 바와 같이, 본 발명에 의한 ZnS:Ag,Cu,Al 형광체는 UV 여기광에 의해 우수한 발광피크를 나타내므로 실용상 어려움이 없으며 고전류 밀도하에서도 작동하여 고휘도를 발광하는 황색 형광체를 얻었다.본 발명의 형광체는 실용적인 면에서 그 가치가 매우 크다고 할 수 있다.As described above, the ZnS: Ag, Cu, Al phosphors according to the present invention exhibit excellent emission peaks by UV-excited light, and thus have no practical difficulty and obtain yellow phosphors that operate under high current density and emit high luminance. The phosphor of the present invention can be said to be very valuable in practical terms.

앞에서 설명되고 도면에 도시된 황색 발광 형광체의 제조 방법은 본 발명을 실시하기 위한 하나의 실시예에 불과하며, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 이하의 특허청구범위에 기재된 사항에 의해서만 정하여지며, 본 발명의 요지를 벗어남이 없이 개량 및 변경된 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속한다고 할 것이다.The manufacturing method of the yellow light-emitting phosphor described above and shown in the drawings is only one embodiment for carrying out the present invention, and should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is defined only by the matters set forth in the claims below, and the embodiments which have been improved and changed without departing from the gist of the present invention will be apparent to those skilled in the art. It will be said to belong to the protection scope of the present invention.

도 1은 본 발명의 일실시예에 따른 황색 발광 형광체의 제조 과정을 도시한 흐름도1 is a flowchart illustrating a manufacturing process of a yellow light emitting phosphor according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따른 황색 발광 형광체의 UV여기광에 의한 색좌표를 도시한 그래프Figure 2 is a graph showing the color coordinates of the yellow light-emitting phosphor according to the UV excitation light according to an embodiment of the present invention

도 3은 본 발명의 일실시예에 따른 황색 발광 형광체의 발광파장을 도시한 그래프3 is a graph showing the light emission wavelength of a yellow light emitting phosphor according to an embodiment of the present invention

도 4는 본 발명의 일실시예에 따른 황색 발광 형광체를 이용한 조명장치의 구조를 도시한 단면도4 is a cross-sectional view showing the structure of a lighting apparatus using a yellow light-emitting phosphor according to an embodiment of the present invention

Claims (3)

황화아연(ZnS) 파우더 모체에 주활성제로 은(Ag)과 공동활성제로 구리(Cu) 및 알루미늄(Al)을 혼합하는 혼합단계와,A mixing step of mixing zinc sulfide (ZnS) powder matrix with silver (Ag) as a main activator and copper (Cu) and aluminum (Al) as a co-activator; 상기 혼합단계에서의 혼합물을 소성시키는 소성단계를 포함하여 구성된 것을 특징으로 하는 황색 발광 형광체의 제조 방법.And a firing step of firing the mixture in the mixing step. 제1항에 있어서,The method of claim 1, 상기 소성단계는 상기 혼합물을 900 ~ 1200℃의 온도로 소성시키는 단계를 포함하는 것을 특징으로 하는 황색 발광 형광체의 제조 방법.The firing step includes the step of firing the mixture at a temperature of 900 ~ 1200 ℃ method of producing a yellow light emitting phosphor. 제1항에 있어서,The method of claim 1, 상기 혼합단계는, ZnS 1000중량부 대하여 AgNO3 0.158중량부, Cu 0.325g중량부, Al(NO3)3 2.082중량부 및 융제로 CaO를 0.28중량부를 첨가하여 혼합하고,In the mixing step, 0.158 parts by weight of AgNO 3 , 0.325 g by weight of Cu, 2.082 parts by weight of Al (NO 3 ) 3 , and 0.28 parts by weight of CaO are added and mixed with the flux, 상기 소성단계는, 진공상태에서 상기 혼합물을 500℃의 온도로 소성시키는 예비소성단계와, 환원성 분위기에서 예비소성된 소성물을 900 ~ 1200℃의 온도로 소성시키는 1차소성단계와, 1차소성된 소성물을 실온으로 냉각시킨 후 500℃의 온도로 소성시키는 2차소성단계를 포함하여 구성된 것을 특징으로 하는 황색 발광 형광체의 제조 방법.The firing step may include a pre-firing step of firing the mixture at a temperature of 500 ° C. in a vacuum state, and a first firing step of firing the fired product pre-fired in a reducing atmosphere at a temperature of 900 to 1200 ° C., and primary firing. And a secondary firing step of cooling the calcined product to room temperature and then calcining at a temperature of 500 ° C.
KR1020090030032A 2009-04-07 2009-04-07 Process for preparing orange color phosphor KR101129442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090030032A KR101129442B1 (en) 2009-04-07 2009-04-07 Process for preparing orange color phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090030032A KR101129442B1 (en) 2009-04-07 2009-04-07 Process for preparing orange color phosphor

Publications (2)

Publication Number Publication Date
KR20100111545A true KR20100111545A (en) 2010-10-15
KR101129442B1 KR101129442B1 (en) 2012-03-26

Family

ID=43131776

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090030032A KR101129442B1 (en) 2009-04-07 2009-04-07 Process for preparing orange color phosphor

Country Status (1)

Country Link
KR (1) KR101129442B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766275B2 (en) * 1987-12-25 1998-06-18 株式会社東芝 X-ray image tube
KR19980019749A (en) * 1996-09-03 1998-06-25 손욱 Method for producing ZnS-based small particle phosphor

Also Published As

Publication number Publication date
KR101129442B1 (en) 2012-03-26

Similar Documents

Publication Publication Date Title
US8168085B2 (en) White light phosphors for fluorescent lighting
KR101947348B1 (en) Light source comprising a luminescent substance and associated illumination unit
JP2013536264A (en) Phosphor and light source having such phosphor
JPWO2006025259A1 (en) Phosphor, method for producing the same, and light emitting device using the same
KR101072576B1 (en) Red phosphor and its forming method for use in solid state lighting
JP2005179498A (en) Red phosphor material, white light-emitting diode using the same, and illuminator using the white light-emitting diode
JP4309242B2 (en) Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode
KR100846483B1 (en) Ba-sr-ca containing compound and white light emitting device including the same
KR100716069B1 (en) Preparation method of white phosphor materials
KR20160059598A (en) Electroluminescent element of metal-organic coordination polymers
US8092714B2 (en) Phosphors and lighting apparatus using the same
EP1676899B1 (en) Electroluminescent phosphor
CN107163943B (en) Spectrum-adjustable fluorescent powder suitable for near ultraviolet excitation and preparation method thereof
CN101012375A (en) Rare earth red fluorescent powder and preparing method thereof
KR100443257B1 (en) Red phosphor for UV LED and active matrix LCD
KR101129442B1 (en) Process for preparing orange color phosphor
KR20110004884A (en) Red phosphor and its forming method for use in solid state lighting
CN100490192C (en) Light-emitting diode
KR20180003523A (en) Garnet phosphor and light emitting diodes comprising the garnet phosphor for solid-state lighting applications
JP4330475B2 (en) Method for producing electroluminescent phosphor
KR102113044B1 (en) Lithium-based garnet phosphor, preparing method of the same, and luminescent property of the same
KR20170125218A (en) Garnet phosphor and light emitting diodes comprising the garnet phosphor for solid-state lighting applications
KR101457056B1 (en) Electroluminescence panel and method for the production thereof using sintered ceramic phosphor sheet
CN102020989A (en) Flourescent material and manufacturing method thereof as well as luminous device containing flourescent material
JP2007238815A (en) Phosphor for light emitting device and light emitting device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150502

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160311

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180402

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190328

Year of fee payment: 8