KR20100108862A - Solar cell panel having by-pass unit - Google Patents
Solar cell panel having by-pass unit Download PDFInfo
- Publication number
- KR20100108862A KR20100108862A KR1020090027130A KR20090027130A KR20100108862A KR 20100108862 A KR20100108862 A KR 20100108862A KR 1020090027130 A KR1020090027130 A KR 1020090027130A KR 20090027130 A KR20090027130 A KR 20090027130A KR 20100108862 A KR20100108862 A KR 20100108862A
- Authority
- KR
- South Korea
- Prior art keywords
- unit
- signal
- bypass
- battery cell
- cell
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 19
- 238000010248 power generation Methods 0.000 claims description 18
- 238000004092 self-diagnosis Methods 0.000 claims description 10
- 230000007257 malfunction Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000013154 diagnostic monitoring Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02021—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
본 발명은 태양전지 셀을 가지고 태양 전지판을 조립, 생산하는 모든 분야에서 사용 가능한 것으로 셀에 병렬 연결된 바이패스(by-pass) 유닛을 더 구성하되, 전지 셀과 병렬로 바이패스 회로를 부착하여 형성되는 태양 전지 셀 및 태양 전지판 조립 구성 및 바이패스 회로 구현에 관한 것이다.The present invention can be used in all fields of assembling and producing a solar panel with a solar cell, and further comprises a bypass unit connected in parallel to the cell, but formed by attaching a bypass circuit in parallel with the battery cell. Solar cell and solar panel assembly configuration and bypass circuit implementation.
태양광 발전기의 구성에 있어서 태양 전지판이 가지는 비용 부분은 통상 60% 이상을 상회하며 가장 핵심적인 부분이다. 태양광 발전은 태양광을 직접 전기로 변환하는 발전방식으로 그 핵심은 태양전지이다. 이러한 태양전지는 필요에 따라서 직렬 병렬로 연결하여 장기간 자연환경 및 외부 충격에 견딜 수 있는 구조로 만들어 사용하게 되는데, 그 최소 단위를 태양광 모듈이라 한다. 그리고 실제 사용 부하에 맞추어 모듈을 어레이 형태로 구성하여 설치하게 된다.In the construction of a solar generator, the cost portion of the solar panel is usually more than 60% and is the most important part. Photovoltaic power generation is a power generation method that converts sunlight directly into electricity. At its core is solar cells. These solar cells are connected in series and parallel as needed to make a structure that can withstand natural environment and external shock for a long time, the minimum unit is called a solar module. The module is installed in an array form according to the actual load.
이 때, 태양광모듈은 대부분 다수 셀이 직접된 태양전지판을 사용하게 되는데, 여러 개의 전지 셀을 직렬 또는 병렬로 연결하여 원하는 용량으로 조합하여 사용한다. 그리고, 대부분의 태양전지판은 주문자의 사양에 맞추어 정해진 조립공정 에 따라 여러 개의 전지 셀을 조합하여 제작한다. 따라서 조립된 태양전지판은 전지 셀의 고장 시 부분 교체 및 교환이 불가능하게 된다. At this time, the photovoltaic module is to use a large number of direct solar panels, a plurality of battery cells connected in series or in parallel to use a combination of the desired capacity. In addition, most solar panels are manufactured by combining a plurality of battery cells according to an assembly process determined according to the specifications of the orderer. Therefore, the assembled solar panel is unable to replace and replace the parts of the battery cell failure.
그리고 태양전지판을 구성하는 각각의 모든 전지 셀의 수명은 동일하지 않다. 이러한 각각의 전지 셀 고장 발생 시 전체 또는 고장 셀이 포함된 집합부분의 발전효율이 현격히 저하된다. 또한 고장 셀의 발열은 전지판 전체에 대한 2차 고장의 원인이 되기도 한다.And the life of each of the battery cells constituting the solar panel is not the same. When each of the battery cell failure occurs, the power generation efficiency of the whole or the aggregate part including the failed cell is significantly reduced. In addition, heat generation of the faulty cell may be a cause of secondary failure of the entire panel.
태양전지(solar cell, photovoltaic cell)는 햇빛에 노출되었을 때, 그 빛 에너지를 직접 전기에너지로 변환하는 반도체 소자의 일종이다. 최근 들어서 태양전지(solar cell)보다 태양광 발전 전지(photovoltaic cell)라는 용어를 사용하는 추세이다.Solar cells (photovoltaic cells) are a type of semiconductor device that converts light energy directly into electrical energy when exposed to sunlight. Recently, the term photovoltaic cell is used rather than solar cell.
태양광 발전(PV, Photovoltaic)은 무한정, 무공해의 태양에너지를 직접 전기에너지로 변환하는 발전방식으로서 태양전지, 태양전지 모듈, 태양전지패널, 태양전지 어레이(array), 전력변환 장치(PCS : Power Conditioning System), 축전장치 등으로 구성된다.Photovoltaic (PV) is a power generation method that converts solar energy of no limit and no pollution directly into electrical energy. Solar cells, solar modules, solar panels, solar arrays, power converters (PCS: Power) Conditioning System) and power storage device.
태양광 발전시스템은 크게 빛을 받아서 전기로 전환해 주는 부분(모듈)과 생산된 전기를 수요에 맞도록 교류로 변환하고 계통에 연결해 주는 부분(PCS)으로 구분된다. The photovoltaic power generation system is divided into a part (module) that receives light and converts it into electricity, and a part (PCS) that converts the produced electricity into alternating current and connects it to the system to meet demand.
여기에서, 태양전지의 최소단위를 셀(cell)이라고 하며, 보통 셀 1개로부터 나오는 전압이 약 0.5V로 매우 작으므로 다수의 태양전지를 직병렬로 연결하여 사용범위에 따라 실용적인 범위의 전압과 출력을 얻을 수 있도록 1매로 패키징하여 제작된 발전장치를 사용하게 되는데, 이는 보통 태양전지모듈(PV Module)이라고 한다.Here, the minimum unit of the solar cell is called a cell, and since the voltage from one cell is usually about 0.5V, it is very small, so that a plurality of solar cells are connected in series and in parallel to the practical range of voltage depending on the range of use. The generator is packaged into one sheet to obtain output, which is usually called a PV module.
또한 여러 개의 모듈을 태양광선을 잘 쪼이도록 남쪽을 향해서 일정한 각도로 프레임 등에 설치한 것을 태양전지 어레이라고 한다. 통상 태양전지 어레이의 발전전력은 직류 출력이며, 이 경우 부하가 교류 전력을 필요로 하는 경우에는 직류를 교류로 변환하는 인버터가 필요하다.In addition, a solar cell array is a device in which several modules are installed in a frame or the like at a predetermined angle toward the south so that sunlight can be well scattered. Normally, the generated power of a solar cell array is a direct current output. In this case, when a load requires AC power, an inverter for converting direct current into alternating current is required.
일반적으로, 태양전지판을 구성하는 전지 셀의 연결방식에 따른 장단점을 기술하면 다음과 같다.In general, the advantages and disadvantages according to the connection method of the battery cells constituting the solar panel are as follows.
먼저, 직렬 구성에 있어서 장점은, 생성전압을 높게 만들 수가 있어서 인버터 효율을 높이기 용이하며 배선의 구성이 용이하다. 단점은, 전지 셀 간 및 배선의 절연성을 유지해야 하고 광량에 따른 생성 전압의 변동 범위가 크다.First, an advantage in series configuration is that the generated voltage can be made high, so that the inverter efficiency can be easily increased and the wiring can be easily configured. The disadvantage is that the insulation between the battery cells and the wiring must be maintained, and the variation range of the generated voltage according to the amount of light is large.
반면에, 병렬 구성의 장점은, 배선의 전류가 커서 굵어지며 별도의 배선이 필요하다. 전지 셀 간 및 배선의 절연성에 유리하다. 단점은, 생성 전압이 낮아서 인버터의 효율을 높이기가 용이하지 않으며, 광량에 따른 생성 전류의 변동 범위가 크다는 점이다.On the other hand, the advantage of the parallel configuration is that the current in the wiring is large, so that the separate wiring is necessary. It is advantageous for insulation between battery cells and wiring. The disadvantage is that it is not easy to increase the efficiency of the inverter because the generated voltage is low, and the variation range of the generated current according to the amount of light is large.
전지 셀의 고장내용은, 직렬 구성인 경우, 단락(합선) 방식에서, 단락 상태에 따른 저항성으로 열이 발생, 단선(절연) 방식에서는, 단선으로 다른 전지 셀의 전류를 흐르지 못하게 하므로 직렬 연결된 전지 셀 모두의 전류생성을 무효화하게 된다.In the case of a series configuration, the battery cell has a short circuit (short circuit), and heat is generated due to resistance according to a short circuit condition. In the short circuit (insulation) system, the current of other battery cells does not flow in a single circuit. This invalidates the current generation of all cells.
병렬 구성인 경우, 단락(합선) 방식에서, 같은 전선에 연결된 전지 셀의 생 성전류에 대한 루프회로가 구성되어 많은 열이 발생 하며, 단선(절연) 방식에서는, 단지 해당 전지 셀만의 생성전력 감소만 있으며 나머지 운용에 영향은 없게 된다. In the case of a parallel configuration, a short circuit (short circuit) generates a loop circuit for the generated current of battery cells connected to the same wire and generates a lot of heat. It will not affect the rest of the operation.
상기한 병렬 구성에서의 고장 내용은 기존 일반적인 방법대로 순방향 다이오드를 적용하면 된다. 기존의 태양전지판에서 전지 셀의 부분적 고장으로부터 운용 안전성을 담보하기 위해 사용되었던 순방향 다이오드 결합 방식에 있어서도 여전히 한계점을 내재하고 있었다. In the parallel configuration, the forward diode may be applied in a conventional manner. In the conventional solar panel, there is still a limitation in the forward diode coupling method used to ensure operational safety from partial failure of the battery cell.
하지만, 상기 직렬 구성에서의 고장 내용을 해결할 수 있는 방법은 기존에는 어려움이 있었으나, 본 발명에서는 전지 셀과 병렬로 바이패스 유닛을 부착하고 바이패스 유닛의 동작범위를 지정하여 고장 발생 시 자동 동작이 되도록 하여 전지 셀의 부분적 고장을 극복하고 전체 발전운용을 유지시켜서 전력생산을 극대화할 수 있도록 하고 있다.However, the conventional method for solving the fault content in the serial configuration has been difficult, but in the present invention, by attaching a bypass unit in parallel with the battery cell and specifying the operating range of the bypass unit, automatic operation is performed when a fault occurs. By overcoming partial failure of the battery cell and maintaining the entire power generation operation to maximize the power production.
상기한 각각의 전지 셀 연결 방식에 따른 장단점 내재로 전력 변환 효율의 최적화를 위하여 직렬 방식과 병렬 방식을 적절히 혼용하고 있는 것이 일반적인 모습이다.Due to the advantages and disadvantages of the respective battery cell connection methods, it is common to use a combination of a series method and a parallel method in order to optimize power conversion efficiency.
상기한 종래의 문제점을 해결하기 위한 본 발명에 따른 목적은, 단위 직렬 구성에서의 고장 전지 셀을 전기적으로 바이패스하여 나머지 부분의 운용을 정상적으로 유지할 수가 있도록 하여 전지 셀의 부분적 고장을 극복하고 전체 발전 운용을 유지시켜서 전력 생산을 극대화하는 것이다.SUMMARY OF THE INVENTION An object of the present invention for solving the above-mentioned problems is to overcome the partial failure of the battery cell and to generate a total power generation by electrically bypassing the failed battery cell in a unit series configuration so that the operation of the remaining part can be maintained normally. Maintaining operation maximizes power generation.
본 발명으로 태양전지판을 구성하고 있는 다수의 태양전지 셀 중 일부의 전지 셀 고장 시에도 태양전지판 전체 운용 영향을 최소화하고, 전력을 지속적으로 생산할 수 있도록 하기 위한 방법으로 전지 셀과 병렬로 바이패스 회로를 부착한 형태를 제공하고, 이에 대한 동작 회로를 제공하는 데 있다. In the present invention, a bypass circuit in parallel with the battery cell is a method for minimizing the overall operation effect of the solar panel and continuously producing power even when a battery cell failure of some of the plurality of solar cells constituting the solar panel is performed. To provide a form attached, and to provide an operation circuit for this.
상기한 종래 문제점을 해결하고 본 발명에 따른 목적을 해결하기 위한 구성은, 다수의 전지 셀(cell)로 구성되는 태양전지판에 있어서, 상기 셀에 병렬 연결된 바이패스(by-pass) 유닛을 더 구성하되, 상기 바이패스 유닛은 단위 직렬 구조에 맞추어 1:1 구조를 유지하도록 하거나, 단위 병렬 구조를 1개로 보고 (A2-1), (A2-2) 2개를 설치하며, 상기 MOSFET 스위치(1) 용량은 단위 병렬 구조의 전류에 따라 바뀌도록 구성한 것을 특징으로 한다.In order to solve the above-mentioned conventional problems and to solve the object according to the present invention, the solar panel is composed of a plurality of battery cells, the configuration further comprises a bypass unit (by-pass) connected in parallel to the cell However, the bypass unit maintains a 1: 1 structure in accordance with the unit series structure, or installs two (A2-1) and (A2-2) units as one unit parallel structure, and the MOSFET switch (1). The capacity is configured to vary according to the current of the unit parallel structure.
이 때, 상기 셀에 병렬 연결된 바이패스(by-pass) 유닛을 더 구성하되, 상기 바이패스 유닛은, 태양전지판 전지 셀에 1:1 병렬로 배치, 결선되는 스위치로서 전지 셀의 고장판별에 따른 스위치 구동으로 전지 셀로의 전류 흐름을 바이패스하는 MOSFET 스위치와, 1:1로 연결된 상기 전지 셀의 발전 전원과 직렬 연결된 전지 셀의 집합 출력으로부터의 발전 전원을 받아서 바이패스 유닛의 자체 전원으로 변환 공급하는 전원장치 자체 전원부와, 1:1로 연결된 상기 전지 셀의 발전 전압을 검출하는 부분인 신호검출부와, 상기 신호검출부로부터 입력된 전압의 범위를 가지고 정상 유무를 판별하고 상기 MOSFET 스위치의 구동 및 LED 표시 및 신호 출력부의 구동을 결정하는 아날로그 신호처리부인 비교/판단 연산부와, 상기 비교/판단 연산 부로부터 받은 신호를 가지고 LED를 구동하고, 외부에 신호를 보내기 위한 부분인 LED 표시 및 신호처리부와, 상기 바이패스 유닛의 전기 셀 고장 판독시 동작 신호를 외부로 전송하기 위한 LED 신호출력단자와, 상기 MOSFET스위치의 용량에 따른 GATE 구동회로 및 EN신호에 따른 보호회로로 구성되는 스위치 구동부(Driver) 및 오동작으로 인한 전지 셀의 바이패스를 자체 진단하고 감시 제어하기 위한 자체진단부;로 구성하는 것을 특징으로 한다.In this case, a bypass unit connected in parallel to the cell may be further configured, wherein the bypass unit is a switch that is arranged and connected to the solar panel battery cell in parallel in a 1: 1 manner according to a failure determination of the battery cell. A MOSFET switch that bypasses the current flow to the battery cells by switching the switch, and receives the generated power from the aggregate output of the battery cells connected in series with the generated power of the battery cells connected in a 1: 1 manner, and converts the power into its own power supply of the bypass unit. The power supply unit has a power supply unit, a signal detection unit that detects the power generation voltage of the battery cell connected in a 1: 1 manner, and whether or not it is normal with a range of the voltage input from the signal detection unit to drive the LED and switch the MOSFET. A comparison / decision calculation unit which is an analog signal processing unit that determines driving of the display and signal output unit, and L having a signal received from the comparison / decision calculation unit LED display and signal processing unit for driving ED and sending a signal to the outside, an LED signal output terminal for transmitting an operation signal to the outside when an electric cell failure of the bypass unit is read, and a capacity of the MOSFET switch. And a self-diagnostic unit configured to self-diagnose and monitor and control a bypass of a battery cell due to a malfunction and a switch driver configured as a GATE driving circuit and a protection circuit according to an EN signal.
여기에서, 상기 MOSFET 스위치는 전지판 수리 후에는 자동으로 복구하여 정상적 전지 셀의 구동을 위해 스위치를 개방하는 것을 특징으로 한다.Here, the MOSFET switch is automatically restored after the repair of the panel, characterized in that to open the switch to drive the normal battery cell.
여기에서, 상기 자체 진단부는, S1, S2, S3 의 입력을 감시하여 출력 EN 신호를 생성하고 상기 스위치 구동부(8)의 구동을 결정하며, 바이패스 유닛의 오동작을 방지하는 별도의 자체진단 감시 제어부를 포함하는 것을 특징으로 한다.Here, the self-diagnostic unit monitors the inputs of S1, S2, and S3 to generate an output EN signal, determine the driving of the
또한, 상기 바이패스 유닛은, 육안으로 판별하기 위한 표시부분 LED를 더 포함하는 것을 특징으로 한다.The bypass unit may further include a display portion LED for visually discriminating.
또한, 상기 바이패스 유닛을 구성하는 구동회로의 단위 전지 셀로의 부착은 F-PCB 형태 또는 단일 반도체 칩 형태로 구현한 것을 특징으로 한다.In addition, the attachment of the driving circuit constituting the bypass unit to the unit battery cell may be implemented in the form of an F-PCB or a single semiconductor chip.
이상에서와 같이, 본 발명에 따르면, 종래 순방향 다이오드 적용시 문제점을 극복하기 위한 바이패스 장치의 부착에 따라서 최적의 발전 운용을 유지시켜 전력 생산을 극대화할 수 있게 한다. As described above, according to the present invention, it is possible to maximize the power production by maintaining the optimal power generation operation according to the attachment of the bypass device for overcoming the problems in the conventional forward diode application.
또한, 본 발명으로 태양전지판을 구성하고 있는 다수의 태양전지 셀 중 일부 의 전지 셀 고장 시에도 태양전지판 전체 운용 시 그 영향을 최소화하고, 전력을 지속적으로 생산할 수 있도록 하여 발전 전력 생산량을 늘려 수익을 늘리는데 큰 효과를 가지게 된다.In addition, the present invention minimizes the effects of the entire operation of the solar panel even in the event of a failure of some of the plurality of solar cells constituting the solar panel, and by continuously producing electricity to increase the power generation output to increase profits This will have a big effect.
이하, 본 발명에 따른 바이패스 유닛 구성 및 동작에 대하여 상세하게 설명한다. Hereinafter, the configuration and operation of the bypass unit according to the present invention will be described in detail.
도 3은 본 발명에 따른 단위 직렬 구조에서의 바이패스 유닛 개별 부착 설명도, 도 4는 본 발명에 따른 바이패스 유닛 각각의 회로 및 단자 구성도, 도 5는 본 발명에 따른 병렬 구조와 직렬 구조의 혼합 방식에서의 바이패스 유닛 개별 부착 설명도이다. 3 is an explanatory view of individual attachment of bypass units in a unit series structure according to the present invention, FIG. 4 is a circuit and terminal configuration diagram of each bypass unit according to the present invention, and FIG. 5 is a parallel structure and a series structure according to the present invention. Is an explanatory diagram of individual attachment of bypass units in the mixing method.
먼저, 태양전지 셀(300)의 기본적인 연결 방식으로 가장 일반적인 직렬 연결에 있어서 바이패스 유닛(200)의 부착 위치를 설명한다.First, the attachment position of the
이 경우, 도 3에 도시된 바와 같이, 각각 전지 셀(300)에 바이패스 유닛(200)을 1:1로 부착을 한다. In this case, as shown in FIG. 3, the
설명의 편의를 위하여 도시된 부분은 solar cell(300) 어느 하나에 바이패스 유닛(200)을 부착할 때 배선의 연결 방법을 보여준다.For convenience of description, the illustrated part shows a connection method of wiring when attaching the
본 발명에 따른 회로 구성에서, P는 positive의 약자로, 바이패스 구동 대상 전지 셀의 +방향에 연결된 부분을, N은 negative의 약자로, 바이패스 구동 대상 전지 셀의 -방향에 연결된 부분을, Pn은 전지 셀이 직렬 연결된 최상단부 전지셀 +방 향(단위 직렬 셀 집합의 출력 +)을, N0는 전지 셀이 직렬 연결된 최상단부 전지셀 -방향(단위 직렬 셀 집합의 출력 -)을 나타낸다. In the circuit configuration according to the present invention, P stands for positive, a portion connected to the + direction of the bypass driving target battery cell, N stands for negative, a portion connected to the-direction of the bypass driving target battery cell, Pn represents the top battery cell + direction in which the battery cells are connected in series (output of the unit series cell set +), and N 0 represents the top battery cell in the direction in which the battery cells are connected in series (the output of the unit series cell set). .
도 4에서는 바이패스 유닛(200)의 내부 구조도를 설명하고 있다4 illustrates the internal structure of the
여기에서 LED 는 바이패스 유닛(200)의 동작 상태를 표시하며, signal output(출력신호)은 바이패스 유닛이 전지 셀이 고장으로 판단되어 sw1을 구동시켰을 때 외부로 바이패스 유닛(200)의 구동 상태를 알려주는 신호선 출력선을 설명하고 있다.Herein, the LED indicates an operating state of the
이하, 도 4를 참조하여 상기 바이패스 유닛(200)을 구성하는 각각의 회로 소자를 설명하면 다음과 같다. Hereinafter, each circuit element constituting the
먼저 식별번호 210은 MOSFET switch를 나타내며, 입력은 P, N, 출력은 GATE DRV로 표시되며, 여기에서 GATE DRV=MOSFET GATE를 의미한다. 이는, 태양전지판 전지 셀에 1:1 병렬로 배치, 결선되는 스위치로서 전지 셀의 고장 판별에 따른 스위치 구동으로 전지 셀로의 전류 흐름을 바이패스하는 주 스위부이며, 전지판 수리 후에는 자동으로 복구하여 정상적 전지 셀의 구동을 위해 스위치는 개방된다.First, the
식별번호 220은 전원장치 자체전원부를 나타내며, 입력은 P, Pn, N, N0, 출력은 DC, S3로 표시되며, 여기에서 DC=전원공급기 출력(직류전압), S3=자체진단 신호의 출력을 의미한다. 이는 1:1로 연결된 해당 전지 셀(300)의 발전전원과 직렬 연결된 전지 셀의 집합출력으로부터의 발전전원을 받아서 바이패스 유닛(200)의 자체전원으로 변환 공급하는 전원장치이다.Identification number 220 indicates the power supply unit's own power supply, input is P, Pn, N, N 0 , output is DC, S 3 , where DC = power supply output (DC), S 3 = self-diagnosis signal Means output. This is a power supply device that receives the generated power from the collective output of the battery cells connected in series with the generated power of the
이 경우, 바이패스 유닛(200)의 자체소비 전력은 매우 적어서 전원공급장치의 크기도 매우 작아진다. In this case, the self-power consumption of the
태양전지판(100)의 제작 시 바이패스 유닛(200)의 크기는 제작공정 및 비용에 영향을 주기 때문에 바이패스 유닛(200)의 크기를 작고 얇게 제작이 가능해야 하는데 상기 자체전원부(220)의 크기 및 환경 특성은 바이패스 유닛(200)의 전체 크기의 결정에 매우 중요하다.Since the size of the
식별번호 230은 전지 셀(300)의 전압 검출부인 신호검출부를 나타내며, 입력은 P, N, DC, 출력은 OUT, S2로 표시되며, 여기에서 OUT=검출전압 출력, S2=자체진단 신호의 출력을 의미한다. 이는 1:1로 연결된 해당 전지 셀의 발전전압을 검출하는 부분으로, 전지 셀의 종류에 따라 발전전압은 일정한 규격을 가지므로 전압의 검출이 용이하다. The
식별번호 240은 아날로그 신호처리부인 비교/판단 연산부를 나타내며, 입력은 V-DETECT, DC, 출력은 DRV, SIG ,S1로 표시되며, 여기에서, DRV=스위치 구동부(280) 구동용 고장판별 출력, SIG=LED표시 및 신호 출력부(250) 구동용 출력, S1=자체진단 신호의 출력을 의미한다. 이는 셀 전압 검출부로부터 입력된 전압의 범위를 가지고 정상 유무를 판별하고 MOSFET 스위치(210)의 구동 및 LED 표시 및 신호 출력부(250)의 구동을 결정하는 부분으로, 전지 셀의 특성에 따른 고장 판별 기준을 가지고 있다.The
식별번호 250은 LED 표시 및 신호 출력부를 나타내며, 이는 상기 비교/판단 연산부(240)로부터의 신호를 가지고 LED를 구동하고, 외부에 신호를 보내기 위한 부분이다.
식별번호 260은 신호 출력선을 나타내며, 이는 상기 바이패스 유닛의 전기 셀 고장 판독시 동작 신호를 외부로 전송하기 위한 구성이다. 즉, 바이패스 유닛(200)이 전지 셀(300)이 고장으로 판단되어 sw1을 구동시켰을 때 외부로 바이패스 유닛(200)의 구동 상태를 알려주는 신호선 출력선을 의미한다.Identification number 260 denotes a signal output line, which is a configuration for transmitting an operation signal to the outside when the electric cell failure of the bypass unit is read. That is, the
식별번호 270은 LED 표시를 위한 상태를 나타내기 위한 기본 회로 구성을 나타내며, 이는 사용자가 육안으로 판별하기 위한 표시부인 상기 LED 표시 및 신호 출력부(250)와 연결되어 구성한다. 여기에서, 도시하지는 않았지만, 태양전지판(100) 외부 일측에는 사용자가 용이하게 볼 수 있는 위치에 LED를 설치하도록 함이 바람직하다.
식별번호 280은 스위치 구동부(Driver)를 나타내며, 입력은 DRV, EN, 출력은 GATE DRV로 표시되며, 여기에서 EN=자체진단부(290)의 출력, SIG=LED표시 및 신호 출력부(250)의 구동용 출력, S1=자체진단 신호의 출력을 의미한다. 이는 상기 MOSFET 스위치(210)의 용량에 따른 GATE 구동회로 및 EN신호에 따른 보호회로를 말한다.
식별번호 290은 자체 진단부를 나타내며, 입력은 S1, S2, S3, 출력은 EN으로 표시되며, 여기에서, EN=자체진단 출력, S1, S2, S3,=자체진단 신호의 입력을 의미한다. 이는 바이패스 유닛의 오동작으로 인한 전지 셀의 바이패스가 또 다른 고장 의 원인이 되므로 이를 방지하기 위한 구성이다. 따라서 어떠한 경우에도 오동작을 방지하는 별도의 자체진단 감시 제어부가 필요하다. 이 경우, S1, S2, S3의 입력을 감시하여 출력 EN 신호를 생성하고 상기 스위치 구동부(280)의 구동을 결정하게 된다.
이하, 상기 바이패스 유닛(200) 부착 방법을 설명하면 다음과 같다.Hereinafter, the attachment method of the
먼저, 도 3은 병렬 구조와 직렬 구조의 혼합 방식에서의 바이패스 유닛(200) 개별 부착방법을 도시하고 있다. 이 경우, 먼저 단위 직렬 구조에 맞추어 1:1 구조를 유지하도록 할 수 있다. First, FIG. 3 illustrates a method for attaching
또는, 도 5에서와 같이, 단위 병렬 구조를 1개로 보고 (A2-1), (A2-2) 2개를 설치하는 것이 가능하며, 이러한 실시 모습이 더욱 바람직하며, 이 때의 MOSFET 스위치(210) 용량은 단위 병렬 구조의 전류에 따라 바뀌게 된다.Alternatively, as shown in FIG. 5, it is possible to view the unit parallel structure as one and install two (A2-1) and (A2-2), and this embodiment is more preferable, and at this time, the
그리고 상기 구성을 갖는 바이패스 유닛(200)을 구성하는 구동회로의 단위 전지 셀로의 부착은 F-PCB 형태 또는 단일 반도체 칩 형태로 구현이 가능하다. 이는, 태양 전지판(100)을 구성하는 각각의 셀(300) 형성에 있어서 소형화 및 집적화가 가능하도록 한 구성이다. The attachment of the driving circuit constituting the
기존에는, 태양 전지판의 일반적 제작 과정으로 정해진 전압, 전류에 따른 다수 개 전지 셀의 연결 및 배치, 결선 후 한꺼번에 보호 필름을 덮어서 라미네이팅을 하는 공정 및 제작으로 인하여 셀 1 개 고장 시 이에 대한 직접적인 수리가 어렵고 고장 개소를 파악하기가 힘들다. Conventionally, the solar panel is manufactured and repaired in the event of a single cell failure due to the process and fabrication of a plurality of battery cells according to a predetermined voltage and current, and the laminating by covering the protective film at once after connection. Difficult and difficult to identify fault points.
이러한 경우, 상기한 바이패스 유닛을 태양 전지판에 설치하게 되면, 태양 전지판에 일정 조광을 하여 정상적 구동 조건을 만들어주어 바이패스 유닛의 신호선 감지를 통한 전지 셀 고장 위치의 자동 판별이 가능하다. 따라서 고장 위치를 즉시 알 수가 있고, 고장 수리에 따른 시간 및 비용을 줄일 수 있다. In such a case, when the bypass unit is installed in the solar panel, the solar panel may be controlled by dimming the solar panel to generate a normal driving condition, thereby automatically determining a battery cell failure position by detecting a signal line of the bypass unit. Therefore, the location of the failure can be immediately known, and the time and cost of troubleshooting can be reduced.
또한 태양 전지판의 일부 전지 셀의 고장으로 발전 효율이 감소되었을 때 발전 계통의 이상 유무가 자동으로 판별되는데, 이 때, 바이패스 유닛의 고장 감지 자동 구동 개수를 계통 제어기가 감지할 수 있다면 발전 효율의 자동 판별 및 정상 운전 가부 판정에 도움을 줄 수가 있다. In addition, when the power generation efficiency is reduced due to the failure of some battery cells of the solar panel, whether there is an abnormality in the power generation system is automatically determined. At this time, if the system controller can detect the number of automatic detection of the failure of the bypass unit, It can help automatic discrimination and normal operation.
대부분의 태양광 발전소의 위치는 자연환경의 최적 조건 지역에 설치 운용되므로 태양 전지판의 유지 보수를 위한 자동 전산화 지원 정보의 기본 정보를 제공하고 태양 전지판 유지 보수 자동 콜센터의 운용이 가능하다. 즉 원격제어 감시 및 유지보수 지원 등의 종합 전산화의 기본 정보 제공이 가능하다. Since the location of most solar power plants is installed and operated in the optimal conditions of the natural environment, it provides basic information of automatic computerization support information for the maintenance of solar panels and the operation of the automatic call center maintenance of solar panels. That is, it is possible to provide basic information of comprehensive computerization such as remote control monitoring and maintenance support.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention will be described by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.
도 1은 종래 일반적인 태양 발전 시스템 구성도1 is a configuration diagram of a conventional general solar power system
도 2는 종래 일반적인 태양 전지판 정면도 및 배면도2 is a front view and a rear view of a conventional general solar panel
도 3은 본 발명에 따른 단위 직렬 구조에서의 바이패스 유닛 개별 부착 설명도3 is an explanatory view of attaching bypass units individually in a unit series structure according to the present invention.
도 4는 본 발명에 따른 바이패스 유닛 각각의 회로 및 단자 구성도4 is a circuit and terminal configuration diagram of each bypass unit according to the present invention;
도 5는 본 발명에 따른 병렬 구조와 직렬 구조의 혼합 방식에서의 바이패스 유닛 개별 부착 설명도5 is an explanatory view of attaching bypass units individually in a mixing method of a parallel structure and a serial structure according to the present invention.
*** 도면의 주요 부분에 대한 설명 ****** Description of the main parts of the drawing ***
100: 태양전지판 200: 바이패스 유닛100: solar panel 200: bypass unit
210: MOSFET 스위치 220: 자체 전원부 210: MOSFET switch 220: self power supply
230: 신호 검출부 240: 비교판단 연산부230: signal detection unit 240: comparison determination operation unit
250: LED 표시 및 신호처리부 260: 신호출력250: LED display and signal processing unit 260: signal output
270: LED 280: 스위치 구동부(Driver)270: LED 280: switch driver
290: 자체진단부 300: 셀290: self-diagnosis 300: cell
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090027130A KR101055616B1 (en) | 2009-03-30 | 2009-03-30 | Solar panel with bypass unit |
PCT/KR2010/001906 WO2010114268A2 (en) | 2009-03-30 | 2010-03-30 | Solar cell panel having a bypass unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090027130A KR101055616B1 (en) | 2009-03-30 | 2009-03-30 | Solar panel with bypass unit |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100108862A true KR20100108862A (en) | 2010-10-08 |
KR101055616B1 KR101055616B1 (en) | 2011-08-09 |
Family
ID=42828827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090027130A KR101055616B1 (en) | 2009-03-30 | 2009-03-30 | Solar panel with bypass unit |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101055616B1 (en) |
WO (1) | WO2010114268A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101413692B1 (en) * | 2013-03-11 | 2014-07-01 | 주식회사 삼광산전 | Monitoring and control device for solar power |
KR20150036356A (en) * | 2012-07-06 | 2015-04-07 | 샌디아 코포레이션 | Photovoltaic power generation system free of bypass diodes |
KR102454597B1 (en) * | 2021-10-20 | 2022-10-17 | (주)에스케이솔라에너지 | Bypass troubleshooting method and apparatus for improving the output of aging solar module |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102510612B (en) * | 2011-10-24 | 2014-07-02 | 深圳市天微电子有限公司 | Transmission method of LED drive data |
KR101306527B1 (en) | 2012-04-26 | 2013-09-09 | 엘지이노텍 주식회사 | Photovoltaic apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4175249A (en) | 1978-06-19 | 1979-11-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self-reconfiguring solar cell system |
JP2000174308A (en) * | 1998-12-01 | 2000-06-23 | Toshiba Corp | Solar battery power generation module |
JP3432795B2 (en) * | 2000-10-05 | 2003-08-04 | 関西電力株式会社 | Solar power system |
DE10107600C1 (en) | 2001-02-17 | 2002-08-22 | Saint Gobain | Method for operating a photovoltaic solar module and photovoltaic solar module |
KR100702223B1 (en) * | 2004-11-23 | 2007-04-03 | 한전케이피에스 주식회사 | solar photovoltaic system and method |
-
2009
- 2009-03-30 KR KR1020090027130A patent/KR101055616B1/en not_active IP Right Cessation
-
2010
- 2010-03-30 WO PCT/KR2010/001906 patent/WO2010114268A2/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150036356A (en) * | 2012-07-06 | 2015-04-07 | 샌디아 코포레이션 | Photovoltaic power generation system free of bypass diodes |
KR101413692B1 (en) * | 2013-03-11 | 2014-07-01 | 주식회사 삼광산전 | Monitoring and control device for solar power |
KR102454597B1 (en) * | 2021-10-20 | 2022-10-17 | (주)에스케이솔라에너지 | Bypass troubleshooting method and apparatus for improving the output of aging solar module |
Also Published As
Publication number | Publication date |
---|---|
WO2010114268A2 (en) | 2010-10-07 |
KR101055616B1 (en) | 2011-08-09 |
WO2010114268A3 (en) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101023445B1 (en) | Reomte control and monitoring system for solar module | |
KR101326253B1 (en) | Photovoltaic power generator connection board and its control method | |
JP5335151B2 (en) | Solar power system | |
KR101266346B1 (en) | Method to monitor electric power generation and detect the trouble of each photovoltaic module | |
KR102187383B1 (en) | The solar energy generation system using generation current of the unit module | |
JP2000174307A (en) | Solar battery power generation module and device for diagnosing number of connected modules | |
KR101055616B1 (en) | Solar panel with bypass unit | |
US20240097452A1 (en) | Photovoltaic power generation system | |
KR101297078B1 (en) | Photovoltaic monitoring device that can be default diagnosis each module and method of diagnosing Photovoltaic power generator | |
US20210091718A1 (en) | Method of diagnosing malfunctioning of bypass diode in solar photovoltaic battery | |
US10992257B2 (en) | State of health mechanisms for energy generation systems | |
JP2015226459A (en) | Solar battery panel monitoring control system | |
JP2008091807A (en) | Apparatus for diagnosing solar photovoltaic system | |
KR20140071825A (en) | The Device of Detecting the Error condition of the Solar module | |
WO2014012270A1 (en) | Solar power system and communication apparatus | |
CN104170202A (en) | Renewable energy unit having simplified connector technology | |
JP6332244B2 (en) | Photovoltaic power generation system, circuit switch between solar cell modules, and solar cell module | |
JP6575633B2 (en) | Photovoltaic power generation system, electric circuit connection method between solar cell modules, and electric circuit release method between solar cell modules | |
KR101360401B1 (en) | Photovoltaic power generation | |
US20220255500A1 (en) | Solar power generation system | |
JP6281118B2 (en) | Power storage system or power storage system display device or display method | |
KR20240008584A (en) | Solar power generation device | |
JP2016152737A (en) | Power conditioner | |
US9899869B1 (en) | Photo voltaic (PV) array-shedding and storage system | |
JP7307922B2 (en) | solar module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140801 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150803 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |