KR20100107571A - A preparation method of zinc oxide based oxide thin film and transparent electroconductive film - Google Patents

A preparation method of zinc oxide based oxide thin film and transparent electroconductive film Download PDF

Info

Publication number
KR20100107571A
KR20100107571A KR1020090025696A KR20090025696A KR20100107571A KR 20100107571 A KR20100107571 A KR 20100107571A KR 1020090025696 A KR1020090025696 A KR 1020090025696A KR 20090025696 A KR20090025696 A KR 20090025696A KR 20100107571 A KR20100107571 A KR 20100107571A
Authority
KR
South Korea
Prior art keywords
thin film
zinc oxide
transparent conductive
substrate
conductive film
Prior art date
Application number
KR1020090025696A
Other languages
Korean (ko)
Other versions
KR101108126B1 (en
Inventor
이승이
강민호
임선권
양승호
윤원규
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to KR1020090025696A priority Critical patent/KR101108126B1/en
Publication of KR20100107571A publication Critical patent/KR20100107571A/en
Application granted granted Critical
Publication of KR101108126B1 publication Critical patent/KR101108126B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Abstract

PURPOSE: A manufacturing method of zinc oxide-based thin film and a transparent oxide conductive film is provided to apply the thin film or the conductive film to a transparent electrode of a flat panel display by a polycrystalline structure. CONSTITUTION: A manufacturing method of zinc oxide-based thin film and a transparent oxide conductive film comprises the following steps: adding 0.01~0.5% of oxide selected from the group consisting of divalent metals; dispersing 0.5~10% of more than two oxides selected form the group consisting of trivalent metals including Al2O3, Ga2O3, In2O3; adding the balance of zinc oxide-based sintered material with the density of 5.6~5.74g/cubic centimeter; heating a substrate and forming a thin film on the substrate by sputtering using the zinc oxide-based sintered material; and heat-processing the thin film.

Description

산화아연계 박막 및 투명전도막의 제조방법 {A Preparation Method of Zinc Oxide Based Oxide Thin Film and Transparent Electroconductive Film}A preparation method of zinc oxide based oxide thin film and transparent electroconductive film

본 발명은 고밀도 산화아연계 스퍼터링 타겟을 스퍼터링 방법을 통하여 저저항과 고투과율 및 우수한 내환경성의 투명전도성 박막으로 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a high density zinc oxide based sputtering target into a transparent conductive thin film having low resistance, high transmittance and excellent environmental resistance through a sputtering method.

투명전도막은 평판 디스플레이, 태양전지 등 다양한 분야에 사용되고 있으며, 그 수요 또한 크게 증가하고 있는 추세이다. 투명전도막의 재료설계에 따른 특성 변화를 연구함으로써 우수한 전기적, 광학적 특성을 구현할 수 있는 재료의 연구가 활발히 이루어지고 있으며, 그 중에서도 전기 전도도가 가장 높은 ITO가 주로 사용되고 있다. 그러나, ITO의 주재료인 Indium의 경우 희귀자원으로 단가가 높고, 한정된 자원량으로 인해 고갈의 위험을 갖고 있다. 이러한 이유로 ITO를 대체할 수 있는 새로운 투명전도막용 재료로 ZnO와 SnO2의 연구가 활발히 이루어지고 있으나, ITO와 비교하여 전기 전도성이 낮다는 단점을 극복하지 못하고 있다. 이 중 ZnO의 경우, 첨가원소에 따라 다양한 특성 구현이 가능하며 가시 광 영역에서의 높은 광투과 특성을 가지기 때문에 ITO를 대체할 투명전도막 재료로써 주목받고 있다. ZnO 박막은 bandgap이 3.3 eV 정도이며, direct bandgap을 가지고 있다. ZnO 박막은 성장시에 일반적으로 oxygen deficiency나 Zn interstitial에 의해 n-type conductivity를 나타낸다. 기존에 Al, Ga, B, Y, In, Sc, Si, Ge 등 여러가지 원소들을 첨가하였을 경우의 전기적, 광학적 특성 변화 결과가 보고되어 있다. 그 중에서도 Al, Ga 첨가시에 우수한 전기적 특성을 얻을 수 있음이 밝혀져 있다. 투명전도막을 제조하는 방법은 스프레이 코팅(spray coating), 스핀 코팅(spin coating), 딥코팅(dip coating), 화학기상증착(chemical vapor deposition, CVD)과 같은 화학적 방법과, 스퍼터링(sputtering), 펄스레이저 증착(pulsed laser deposition), 이온빔 증착(ion beam deposition)과 같은 물리적 방법 등 다양한 증착 방법이 있다. 이러한 방법들 중 스퍼터링과 같은 물리적 방법이 좀 더 선호되고 있으며, 물리적 증착 방식에는 플라즈마를 이용하기 때문에 높은 입자 에너지를 가진 막을 성장시킬 수 있어, 다른 방식보다 높은 밀도를 가지는 우수한 박막을 얻을 수 있다는 장점이 있다. Transparent conductive films are used in various fields such as flat panel displays and solar cells, and the demand is also increasing. By studying the characteristic change of the transparent conductive film according to the material design, the research on the material which can realize the excellent electrical and optical properties is actively conducted, and among them, ITO, which has the highest electrical conductivity, is mainly used. However, Indium, the main ingredient of ITO, is a rare resource and has a high unit cost, and there is a risk of exhaustion due to limited resources. For this reason, ZnO and SnO 2 have been actively researched as a new transparent conductive film that can replace ITO, but have not overcome the disadvantage of low electrical conductivity compared to ITO. Among them, ZnO is attracting attention as a transparent conductive film material to replace ITO because it is possible to implement a variety of properties depending on the element added and has a high light transmission characteristics in the visible light region. ZnO thin film has a bandgap of about 3.3 eV and has a direct bandgap. ZnO thin films generally exhibit n-type conductivity due to oxygen deficiency or Zn interstitial. Previously, electrical and optical property changes have been reported when various elements such as Al, Ga, B, Y, In, Sc, Si, and Ge are added. Among them, it has been found that excellent electrical properties can be obtained when Al and Ga are added. The method of manufacturing a transparent conductive film includes chemical methods such as spray coating, spin coating, dip coating, chemical vapor deposition (CVD), sputtering, and pulses. There are a variety of deposition methods, including physical methods such as pulsed laser deposition and ion beam deposition. Among these methods, physical methods such as sputtering are more preferred, and since the plasma is used for the physical vapor deposition method, it is possible to grow a film having high particle energy, thereby obtaining an excellent thin film having a higher density than other methods. There is this.

국내특허공개 제2004-99483호에서는 경사 조성 층을 갖는 ITO-Zn 또는 ZnO-Al의 복합 박막 구조를 갖는 투명 전도막을 제안하고 있다. 국내특허공개 제2006-9548호는 펄스 주파수 및 기판 온도 환경에서 ZnO:Al 세라믹을 타겟으로 이용하여 펄스 DC 마그네트론 스퍼터링으로 Al이 첨가된 산화 ZnO 박막을 증착하는 방법을 제안하고 있다.Korean Patent Publication No. 2004-99483 proposes a transparent conductive film having a composite thin film structure of ITO-Zn or ZnO-Al having a gradient composition layer. Korean Patent Laid-Open No. 2006-9548 proposes a method of depositing a ZnO oxide thin film containing Al by pulsed DC magnetron sputtering using ZnO: Al ceramics as a target in a pulse frequency and substrate temperature environment.

본 발명은 상기의 문제점을 해결하기 위해 투명전도막의 높은 캐리어 농도와 이동도 및 저저항을 구현하기 위해서 기판을 가열한 후 박막을 형성하고, 박막 형성 후 열처리를 실시하여 박막을 제조하는 방법을 제공하는데 목적이 있다. The present invention provides a method for manufacturing a thin film by heating the substrate to form a thin film, and heat treatment after the thin film is formed in order to solve the above problems in order to realize a high carrier concentration, mobility and low resistance of the transparent conductive film. The purpose is to.

본 발명은 금속이온이 2가의 원자가를 갖는 CaO, SrO, BaO로 특정지어지는 산화물 중 1 종류를 0.01 ~ 0.5% 의 중량비로 첨가하고, 금속이온이 3가의 원자가를 갖는 Al2O3 , Ga2O3 , In2O3로 특정 지어지는 산화물 중 2종류 이상이 0.5 ~ 10%의 중량비로 동시 분산 첨가되며, 잔부는 산화아연으로 하여 밀도가 5.6~5.74g/cm3 로 제조되는 것을 특징으로 하는 비저항이 1 x 10-3 Ωcm 이하인 산화 아연계 소결체를 스퍼터링 타겟으로 직류 마그네트론 스퍼터링에 의해 기판 상에 투명 전도성 박막을 형성한다. 상기 박막의 두께는 1000 ~ 2000Å의 범위로, 높은 캐리어 농도와 이동도 및 저저항을 구현하기 위해 기판을 25 ~ 300℃에서 가열 후 박막을 형성하고, 박막 형성 후 100 ~ 400℃에서 열처리하여 특성을 향상시킨다. According to the present invention, one kind of oxides of which metal ions are designated as CaO, SrO, or BaO having bivalent valences is added at a weight ratio of 0.01 to 0.5%, and the metal ions are Al 2 O 3 , Ga 2 having trivalent valences. At least two kinds of oxides specified as O 3 and In 2 O 3 are simultaneously dispersed and added in a weight ratio of 0.5 to 10%, and the balance is made of zinc oxide to have a density of 5.6 to 5.54 g / cm 3 . A transparent conductive thin film is formed on a substrate by direct current magnetron sputtering using a zinc oxide-based sintered compact having a specific resistance of 1 x 10 -3 Ωcm or less as a sputtering target. The thickness of the thin film is in the range of 1000 ~ 2000Å, to form a thin film after heating the substrate at 25 ~ 300 ℃ to realize a high carrier concentration, mobility and low resistance, and heat treatment at 100 ~ 400 ℃ after forming the thin film To improve.

본 발명에 따르면, 산화아연계 고밀도 타겟으로 투명전도막을 제조시 높은 캐리어 농도와 이동도 및 저저항을 구현하기 위해서 기판 표면의 산소 및 유기물 제거가 필요하며, 이는 박막 증착 전 기판에 온도를 부여함으로써 영향성을 최소한 으로 하여 우수한 특성의 박막을 제조하는 효과가 있다. 그리고, 상기 박막 증착 후 열처리 공정을 통하여 박막의 결정성 및 결정립 성장을 촉진시켜 전기적 특성을 향상시키는 효과가 있다. According to the present invention, when manufacturing a transparent conductive film with a zinc oxide-based high density target, it is necessary to remove oxygen and organics from the surface of the substrate in order to realize high carrier concentration, mobility and low resistance. There is an effect of producing a thin film of excellent characteristics with a minimum of impact. In addition, through the heat treatment process after the deposition of the thin film has the effect of promoting the crystallinity and grain growth of the thin film to improve the electrical properties.

스퍼터링시 기판의 가열 조건은 상기 온도 범위에 대한 제어가 필수적이며, 이는 투명전도막의 특성에 크게 영향을 기여한다. 즉, 기판의 온도를 증가시킬수록 기판 표면에 흡착된 산소와 유기물들의 제거되며, 스퍼터링 타겟으로부터 나온 입자가 안정된 격자 위치로 도달할 수 있는 충분한 에너지가 공급되어 제조되는 투명전도막의 결정립 증가와 결정성이 향상된다. 이에 본 발명에서는 스퍼터링시 상기 기판을 25 ~ 300 ℃, 우수한 특성을 위해서는 80 ~ 120 ℃로 가열한다. 기판의 온도가 50 ℃ 미만인 경우 상기 에너지를 충분히 공급하지 못함에 따라 투명전도성 박막이 안정적으로 형성되지 않는 문제가 발생한다. 이와 반대로 기판의 온도가 300 ℃를 초과하는 경우 과잉 에너지의 공급으로 인해 기판에서의 재스퍼터링(re-sputtering)이 발생하고, Zn의 휘발로 인하여 결정성이 감소되거나, Zn 성분 자체의 높은 증기압 특성으로 인해 투명 전도성 박막 내 Zn의 함량이 감소하여 원하는 수준의 전기 전도도를 얻을 수 없는 문제가 있다. 상기 박막의 열처리 온도는 100 ~ 400℃로 함으로써 결정성과 결정립이 증가하여 막 밀도가 증가하고, 캐리어의 이동도 및 농도의 증가로 인해 전기적 특성이 향상되는 효과가 있다. 만약 열처리 온도가 상기 범위 미만이면 낮은 결정성을 가지는 박막이 형성되고, 이와 반대로 상기 범위를 초과하면 Zn 원자의 휘발이 발생하여 우 수한 전기적 특성을 얻을 수 없다.       The heating condition of the substrate during sputtering is essential to control the temperature range, which contributes greatly to the characteristics of the transparent conductive film. That is, as the temperature of the substrate is increased, oxygen and organic substances adsorbed on the surface of the substrate are removed, and grain growth and crystallinity of the transparent conductive film manufactured by supplying sufficient energy for the particles from the sputtering target to reach a stable lattice position are provided. This is improved. Thus, in the present invention, the substrate is heated to 25 to 300 ℃ for sputtering, 80 to 120 ℃ for excellent properties. When the temperature of the substrate is less than 50 ° C., the transparent conductive thin film may not be stably formed due to insufficient energy supply. On the contrary, when the substrate temperature exceeds 300 ° C., re-sputtering occurs in the substrate due to the supply of excess energy, crystallinity is reduced due to the volatilization of Zn, or high vapor pressure characteristics of the Zn component itself. Due to this, there is a problem in that the content of Zn in the transparent conductive thin film is reduced to obtain a desired level of electrical conductivity. Since the heat treatment temperature of the thin film is 100 to 400 ° C., crystallinity and grains are increased to increase the film density, and electrical characteristics are improved due to an increase in carrier mobility and concentration. If the heat treatment temperature is lower than the above range, a thin film having low crystallinity is formed. On the contrary, if the heat treatment temperature exceeds the above range, volatilization of Zn atoms occurs and excellent electrical characteristics cannot be obtained.

이하 실시예 및 비교예를 통하여 본 발명을 상세히 설명한다.      Hereinafter, the present invention will be described in detail through Examples and Comparative Examples.

[실시예 1]Example 1

소결체를 210 × 200으로 절단 및 평면 연마 가공하고 세정 건조하여 구리로 된 냉각판에 인듐을 접착제로 하여 4분할로 부착하였다. 420 × 400의 크기로 제작된 스퍼터링 타겟을 제작하고, 직류 마그네트론 스퍼터링 장치를 이용하여 220 × 220 × 0.7mm 크기의 유기 기판에 투명전도막을 형성하였다.       The sintered body was cut into 210 x 200, subjected to plane polishing, washed and dried, and then attached to the copper cooling plate in four portions using indium as an adhesive. A sputtering target fabricated in a size of 420 × 400 was fabricated, and a transparent conductive film was formed on an organic substrate having a size of 220 × 220 × 0.7mm using a DC magnetron sputtering apparatus.

드라이 진공 펌프 (Dry Vacuum Pump)와 터보 분자 펌프 (Turbo molecular pump)를 사용하여 챔버 내의 진공 상태를 유지하였다. 챔버 내의 진공도를 5 × 10-5 Torr로 유지하면서, 아르곤 유량 100sccm에서 기판을 100 ℃로 가열하면서 1000W의 직류 전력을 인가하여 스퍼터링에 사용할 플라즈마를 형성한다. 그리고, 기판 상에 1500 Å의 두께로 박막을 제조하였다. 표 1에서 볼 수 있듯이, 상기 투명전도막은 높은 캐리어 농도와 이동도 및 저저항의 우수한 전기적 특성을 나타내었다.A dry vacuum pump and a turbo molecular pump were used to maintain vacuum in the chamber. While maintaining the vacuum degree in the chamber at 5 × 10 −5 Torr, 1000 W DC power is applied while heating the substrate to 100 ° C. at an argon flow rate of 100 sccm to form a plasma to be used for sputtering. And the thin film was manufactured on the board | substrate with the thickness of 1500 kPa. As can be seen from Table 1, the transparent conductive film exhibited excellent electrical properties of high carrier concentration, mobility and low resistance.

[실시예 2][Example 2]

실시예1과 동일한 조성의 스퍼터링 타겟을 이용하여 챔버 내의 진공도를 5 × 10-5 Torr로 유지하면서, 아르곤 유량 100 sccm에서 1000 W의 직류 전력을 인가 하여 스퍼터링에 사용할 플라즈마를 형성하고, 기판 상에 1500 Å의 두께로 박막을 제조한 다음, 2 × 10-6 Torr에서 300 ℃에서 20분 동안 열처리를 수행하여 투명전도막을 제조하였다. 표 1에서 볼 수 있듯이, 상기 투명전도막은 높은 캐리어 농도와 이동도 및 저저항의 우수한 전기적 특성을 나타내었다.Using a sputtering target having the same composition as in Example 1, while maintaining the vacuum degree in the chamber at 5 × 10 −5 Torr, a plasma to be used for sputtering was formed by applying a DC power of 1000 W at an argon flow rate of 100 sccm, and on the substrate After preparing a thin film with a thickness of 1500 Å, a transparent conductive film was prepared by performing a heat treatment for 20 minutes at 300 ℃ at 2 × 10 -6 Torr. As can be seen from Table 1, the transparent conductive film exhibited excellent electrical properties of high carrier concentration, mobility and low resistance.

[비교예 1]Comparative Example 1

실시예 1과 동일한 조성의 스퍼터링 타겟을 이용하여 챔버 내의 진공도를 5 × 10-5 Torr로 유지하면서, 아르곤 유량 100 sccm에서 1000 W의 직류 전력을 인가하여 스퍼터링에 사용할 플라즈마를 형성하고, 기판 상에 1500 Å의 두께로 투명전도막을 제조하였다. 표 1과 같이, 상기 투명전도막은 낮은 캐리어 농도와 이동도 및 고저항의 저하된 전기적 특성을 나타내었다.Using a sputtering target having the same composition as in Example 1, while maintaining the vacuum in the chamber at 5 x 10 -5 Torr, a plasma to be used for sputtering was formed by applying a DC power of 1000 W at an argon flow rate of 100 sccm, and on the substrate A transparent conductive film was prepared to a thickness of 1500 kPa. As shown in Table 1, the transparent conductive film exhibited low carrier concentration, mobility, and high electrical resistance.

[표 1] TABLE 1

Figure 112009018148050-PAT00001
Figure 112009018148050-PAT00001

도 1은 기판 온도에 따른 박막의 X-선 회절 패턴을 나타내는 그래프이다. 1 is a graph showing an X-ray diffraction pattern of a thin film according to substrate temperature.

도 2는 기판 온도에 따른 박막의 주사전자현미경 사진이다.2 is a scanning electron micrograph of a thin film according to the substrate temperature.

도 3은 기판 온도에 따른 투명 전도성 박막의 캐리어 농도 변화를 보여주는 그래프이다. 3 is a graph showing carrier concentration change of the transparent conductive thin film according to the substrate temperature.

도 4은 기판 온도에 따른 투명 전도성 박막의 캐리어 이동도 변화를 보여주는 그래프이다.4 is a graph showing a change in carrier mobility of the transparent conductive thin film according to the substrate temperature.

도 5은 열처리 온도에 따른 박막의 X-선 회절 패턴을 나타내는 그래프이다. 5 is a graph showing the X-ray diffraction pattern of the thin film according to the heat treatment temperature.

도 6은 열처리 온도에 따른 투명 전도성 박막의 캐리어 이동도 변화를 보여주는 그래프이다.6 is a graph showing a change in carrier mobility of the transparent conductive thin film according to the heat treatment temperature.

도 7은 열처리 온도에 따른 투명 전도성 박막의 캐리어 농도 변화를 보여주는 그래프이다.7 is a graph showing carrier concentration change of the transparent conductive thin film according to the heat treatment temperature.

Claims (5)

산화아연계 박막 및 투명전도막의 제조방법에 있어서,In the method for producing a zinc oxide thin film and a transparent conductive film, 금속이온이 2가의 원자가를 갖는 CaO, SrO, BaO로 특정 지어지는 산화물 중 1 종류를 0.01~0.5 %의 중량비로 첨가하고, 금속이온이 3가의 원자가를 갖는 Al2O3 , Ga2O3 , In2O3로 특정지어지는 산화물 중 2종류 이상을 0.5 ~ 10 %의 중량비로 동시 분산 첨가하며 잔부는 산화아연으로 구성된, 밀도 5.6 ~ 5.74 g/cm3, 비저항 1 x 10-3Ωcm 이하인 산화 아연계 소결체를 사용하고,One of the oxides specified as CaO, SrO, BaO having a divalent valence is added at a weight ratio of 0.01 to 0.5%, and the metal ion has Al 2 O 3 , Ga 2 O 3 , At least two kinds of oxides specified as In 2 O 3 are simultaneously dispersed and added at a weight ratio of 0.5 to 10%, and the remainder is oxidized to a density of 5.6 to 5.74 g / cm 3 and resistivity of 1 x 10 -3 Ωcm or less, which is composed of zinc oxide. Using zinc-based sintered body, 기판을 가열하고, 상기 산화 아연계 소결체를 이용하여 스퍼터링에 의해 상기 기판 상에 박막을 형성하는 단계 및 상기 박막을 열처리하는 단계를 포함하는 것을 특징으로 하는 산화아연계 박막 및 투명전도막의 제조방법.Heating a substrate, forming a thin film on the substrate by sputtering using the zinc oxide-based sintered body, and heat-treating the thin film. 제1항에 있어서,      The method of claim 1, 상기 기판을 25 ~ 300 ℃로 가열하는 것을 특징으로 하는 산화아연계 박막 및 투명전도막의 제조방법.      The method of manufacturing a zinc oxide thin film and a transparent conductive film, characterized in that the substrate is heated to 25 ~ 300 ℃. 제1항에 있어서,       The method of claim 1, 상기 스퍼터링은 직류 마그네트론 스퍼터링인 것을 특징으로 하는 산화아연 계 박막 및 투명전도막의 제조방법.        The sputtering is a method of manufacturing a zinc oxide thin film and a transparent conductive film, characterized in that the direct current magnetron sputtering. 제1항에 있어서,       The method of claim 1, 상기 열처리는 100 ~ 400 ℃에서 수행하는 것을 특징으로 하는 산화아연계 박막 및 투명전도막의 제조방법.       The heat treatment is a method for producing a zinc oxide thin film and a transparent conductive film, characterized in that performed at 100 ~ 400 ℃. 제1항에 있어서,       The method of claim 1, 상기 박막은 캐리어 농도가 5.0 × 1020 ~ 2.0 × 1021cm-3이고, 캐리어 이동도가 4.0 ~ 12.0 cm2/Vs인 것을 특징으로 하는 산화아연계 박막 및 투명전도막의 제조방법.The thin film has a carrier concentration of 5.0 × 10 20 ~ 2.0 × 10 21 cm -3 , the carrier mobility is 4.0 ~ 12.0 cm 2 / Vs characterized in that the zinc oxide based thin film and the method of manufacturing a transparent conductive film.
KR1020090025696A 2009-03-26 2009-03-26 A Preparation Method of Zinc Oxide Based Oxide Thin Film and Transparent Electroconductive Film KR101108126B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090025696A KR101108126B1 (en) 2009-03-26 2009-03-26 A Preparation Method of Zinc Oxide Based Oxide Thin Film and Transparent Electroconductive Film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090025696A KR101108126B1 (en) 2009-03-26 2009-03-26 A Preparation Method of Zinc Oxide Based Oxide Thin Film and Transparent Electroconductive Film

Publications (2)

Publication Number Publication Date
KR20100107571A true KR20100107571A (en) 2010-10-06
KR101108126B1 KR101108126B1 (en) 2012-02-08

Family

ID=43129248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090025696A KR101108126B1 (en) 2009-03-26 2009-03-26 A Preparation Method of Zinc Oxide Based Oxide Thin Film and Transparent Electroconductive Film

Country Status (1)

Country Link
KR (1) KR101108126B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128499B1 (en) * 2011-10-25 2012-03-27 희성금속 주식회사 A preparation method of high density zinc oxide based sputtering target and transparent electroconductive film
CN111484319A (en) * 2020-03-27 2020-08-04 宁波南海泰格尔陶瓷有限公司 Preparation method of polycrystalline semitransparent alumina ceramic with directionally arranged crystal grains

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596017B1 (en) * 2004-04-29 2006-07-03 장민수 transparent conductive film and their manufacturing method
KR100862593B1 (en) * 2007-02-01 2008-10-09 한양대학교 산학협력단 Transparent conductive thin film and method of fabricating thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128499B1 (en) * 2011-10-25 2012-03-27 희성금속 주식회사 A preparation method of high density zinc oxide based sputtering target and transparent electroconductive film
CN111484319A (en) * 2020-03-27 2020-08-04 宁波南海泰格尔陶瓷有限公司 Preparation method of polycrystalline semitransparent alumina ceramic with directionally arranged crystal grains
CN111484319B (en) * 2020-03-27 2022-07-05 宁波南海泰格尔陶瓷有限公司 Preparation method of polycrystalline semitransparent alumina ceramic with directionally arranged crystal grains

Also Published As

Publication number Publication date
KR101108126B1 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5005772B2 (en) Conductive laminate and manufacturing method thereof
KR20100007605A (en) Conductive laminate and manufacturing method thereof
US20100258433A1 (en) Film forming method and film forming apparatus for transparent electrically conductive film
JP2001007026A (en) Semiconductor material equipped with wide conductivity band gap of transparency and chemical stability, and deposition method
Chen et al. Fabrication of transparent conducting ATO films using the ATO sintered targets by pulsed laser deposition
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
Li et al. The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target
CN107910094A (en) Nesa coating and preparation method, sputtering target and transparent conductive substrate and solar cell
KR101236039B1 (en) Conductive laminate and manufacturing method thereof
Li et al. Preparation and properties of tungsten-doped indium oxide thin films
KR101251134B1 (en) Transparent conductive oxide film and method for preparing the same and indium-tin composite oxide and sintered material
KR101108126B1 (en) A Preparation Method of Zinc Oxide Based Oxide Thin Film and Transparent Electroconductive Film
KR20120062341A (en) Indium zinc oxide transparent condutive layer for an electrode and the preparing method thereof
KR100862593B1 (en) Transparent conductive thin film and method of fabricating thereof
Liu et al. A transparent and conductive film prepared by RF magnetron cosputtering system at room temperature
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
KR101005973B1 (en) Conductive laminate and manufacturing method thereof
CN101834009B (en) Low-indium doping amount zinc oxide transparent conducting film and preparation method thereof
CN105908127A (en) P-type doped tin dioxide transparent conductive film and preparation method thereof
JP2005126758A (en) Method of producing transparent electroconductive film
KR20120071100A (en) Method for fabricating transparent conductive film and transparent conductive film by thereof
KR20090035908A (en) Method for preparing zinc oxide based transparent conductive thin film
CN102465273B (en) Multielement composite transparent conductive film and preparation method and application thereof
KR100806681B1 (en) Fabrication of highly conductive zno using low temperature rapid thermal annealing
Mao-Shui et al. Effect of RF power on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181113

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 9