KR20100104799A - Lithium secondary battery using electrolyte additive including pyrazole - Google Patents
Lithium secondary battery using electrolyte additive including pyrazole Download PDFInfo
- Publication number
- KR20100104799A KR20100104799A KR1020090023441A KR20090023441A KR20100104799A KR 20100104799 A KR20100104799 A KR 20100104799A KR 1020090023441 A KR1020090023441 A KR 1020090023441A KR 20090023441 A KR20090023441 A KR 20090023441A KR 20100104799 A KR20100104799 A KR 20100104799A
- Authority
- KR
- South Korea
- Prior art keywords
- pyrazole
- lithium secondary
- electrolyte
- secondary battery
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 리튬이차전지에 관한 것으로서, 특히 전해액에 피라졸(pyrazole) 유도체를 첨가하여 리튬이차전지의 안전성을 향상시키고, 전지의 수명개선 및 신뢰성을 높인 전해액 첨가제로 피라졸을 사용한 리튬이차전지에 관한 것이다.The present invention relates to a lithium secondary battery, and in particular, to a lithium secondary battery using pyrazole as an electrolyte additive which improves the safety of the lithium secondary battery by adding a pyrazole derivative to the electrolyte, and improves the life and reliability of the battery. It is about.
지금까지의 리튬이차전지 시장은 소형 가전 제품위주의 운반 가능한 전지를 중심으로 발전하였다. 이들 시장의 주요 관심사는 획기적인 소재 개발을 통하여 동일 부피의 전지에 더 큰 용량의 에너지를 공급하는 데에 초점이 맞추어졌었다.Until now, the lithium secondary battery market has developed around portable batteries that focus on small household appliances. The main focus of these markets has been to focus on delivering larger capacity energy to cells of the same volume through breakthrough materials development.
하지만, 전지 소재의 발전 속도는 일정한 한계를 맞이하였을 뿐아니라, 단지 더 큰 용량을 주는 에너지 저장장치로서의 리튬이차전지로서의 효용보다는 다양한 용도에 사용이 가능한 전지로서의 관심이 옮겨졌다. 이들이 대표적인 예가 하이브리드 자동차, 분산형전원의 대형에너지 저장장치, 신재생에너지와 통합된 에너지 시스템으로서의 요구 등이다.However, the development speed of the battery material has not only reached a certain limit, the interest as a battery that can be used for a variety of applications, rather than the utility as a lithium secondary battery as an energy storage device giving a larger capacity has shifted. Typical examples of these are hybrid vehicles, large-scale energy storage devices for distributed power supplies, and demands as integrated energy systems with renewable energy.
이러한 대형전지의 완성에 선결되어야 하는 조건은 그 전지의 신뢰성, 안전성이다. 매체를 통하여 휴대용 가전기기속의 리튬이차전지의 화재나 폭발사고 소식 을 종종 접하게 되는데, 이러한 소형전지를 사용할 때의 사고에 비해 대형전지에 의한 사고는 그 전지 규모를 훨씬 능가하는 위험성을 내포한다. 이러한 이유로 새로운 전지 개발 시에 전지의 설계, 소재의 개발을 통하여 조그마한 위험인자라도 제거하거나, 안전성을 향상시키는 노력을 꾸준하게 기울이고 있다.The conditions that must be precondition for the completion of such a large battery are the reliability and safety of the battery. The media often encounter news of fire or explosion accidents of lithium secondary batteries in portable home appliances, and accidents caused by large batteries are far more dangerous than those of small batteries. For this reason, efforts are being made to remove even the smallest risk factors or to improve safety by developing battery designs and materials when developing new batteries.
전지의 안전성 향상을 위해서 대규모의 투자가 되고 있는 곳은 주로 전극소재 분야이며, Battery management system(BMS)등 전자부품의 회로를 이용한 능동적인 안전장치 개발도 활발하다. 이러한 대규모 투자에 비해, 다소 적은 투자로서 의미 있는 효과를 기대할 수 있는 분야가 첨가제이며, 특히 전해액 첨가제가 그 대표적인 예이다.In order to improve battery safety, large-scale investments are mainly in the electrode material field, and active safety devices using circuits of electronic components such as battery management systems (BMS) are also active. Compared to such large-scale investment, additives are a field in which a meaningful effect can be expected with a little investment, and an electrolyte additive is a representative example.
안전성에 기여도가 높은 첨가제로는 과충전 방지, 전기분해 지연, 난연성 첨가제 등이 있는데, 본 발명에서는 전지의 화재나 폭발을 방지하는 마지막 단계의 안전장치인 난연성 첨가제를 다루고자한다. 상기 난연성 첨가제는 전지에 의한 화재나 폭발과 같은 격렬한 사고를 방지하는 기능뿐만 아니라, 전지의 성능을 개선시키는 다기능을 보유하고 있어서 전지소재의 단점을 보완하고 나아가 적극적인 개선을 할 수 있는 기능을 포함하고 있다.Additives with a high contribution to safety include overcharge prevention, electrolysis delay, flame retardant additives, etc. The present invention intends to deal with the flame retardant additive which is a safety device of the last stage to prevent the fire or explosion of the battery. The flame retardant additive has a function of preventing the violent accidents such as fire or explosion caused by the battery, as well as having a multifunction to improve the performance of the battery to include the function of supplementing the disadvantages of the battery material and further active improvement have.
이러한 난연성 첨가제로서 활발하게 연구되고 있는 소재들은 유기인 화합물과 유기 불소 화합물들이다. 이들은 실제 전지화재외에 생활화재에도 적용되는 난연성 소재 또는 소화물질로도 사용이 되므로, 난연성 첨가제로 사용될 확률이 높은 물질 군이다. 하지만, 전지용 난연성 첨가제로 개발되고 있는 제품들중에는 아직 가격, 난연성, 전지성능을 모두 동시에 만족해주는 물질이 개발되지 않고 있기 때 문에, 난연성 첨가제가 전지에 적용이 되고 있는 예가 드물다.Materials actively being studied as such flame retardant additives are organic phosphorus compounds and organic fluorine compounds. They are used as a flame retardant material or a fire extinguishing material that is applied to living fires in addition to the actual fire, and thus are a group of substances that are highly likely to be used as flame retardant additives. However, among the products that are being developed as flame retardant additives for batteries, a material that satisfies both price, flame retardancy, and battery performance at the same time has not been developed, and thus, flame retardant additives are rarely applied to batteries.
본 발명은 상기 문제점을 해결하기 위한 것으로, 난연성을 가지고 있는 물질인 피라졸(pyrazole) 유도체를 전해액 첨가제로 사용함으로서 전지의 발화성을 낮추며, 아울러 전지 성능을 개선시키는 전해액 첨가제로 피라졸을 사용한 리튬이차전지의 제공을 그 목적으로 한다.The present invention is to solve the above problems, by using a pyrazole (pyrazole) derivative which is a flame retardant material as an electrolyte additive to lower the ignition of the battery, and also to improve the battery performance lithium secondary using pyrazole as an electrolyte additive It is an object to provide a battery.
상기 목적을 달성하기 위해 본 발명은, 양극, 음극 및 전해액을 포함하여 이루어진 리튬이차전지에 있어서, 피라졸(pyrazole) 유도체를 전해액 첨가제로 사용하는 것을 특징으로 하는 전해액 첨가제로 피라졸을 사용한 리튬이차전지를 기술적 요지로 한다.In order to achieve the above object, the present invention, in a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte solution, lithium using pyrazole as an electrolyte additive, characterized in that the pyrazole (pyrazole) derivative is used as an electrolyte additive The battery cell is a technical subject matter.
또한, 상기 피라졸(pyrazole) 유도체는, 상기 전해액에 대해 2~10중량부로 첨가되는 것이 바람직하다.In addition, the pyrazole derivative is preferably added in an amount of 2 to 10 parts by weight based on the electrolyte.
여기에서, 상기 피라졸(pyrazole) 유도체는, 피라졸(pyrazole)에 알킬기 R = -(CH2)nCH3(n≥0) 인 알킬 유도체인 것이며, 상기 피라졸(pyrazole) 유도체는, 상기 알킬기의 일부에 불소(F)가 치환된 물질인 것이 바람직하다.Here, the pyrazole derivative is an alkyl derivative having an alkyl group R =-(CH 2 ) n CH 3 (n≥0) in pyrazole, wherein the pyrazole derivative is It is preferable that it is a substance by which fluorine (F) was substituted by a part of alkyl group.
또한, 상기 피라졸(pyrazole) 유도체는 상기 알킬기에 불소(F)가 치환된 물질 중에 TFMP(3-(trifluoromethyl)pyrazole) 또는 BTFMP(3,5-Bis(trifluoromethyl)pyrazole)인 것이 바람직하다.In addition, the pyrazole derivative is preferably TFMP (3- (trifluoromethyl) pyrazole) or BTFMP (3,5-Bis (trifluoromethyl) pyrazole) in a substance in which fluorine (F) is substituted in the alkyl group.
상기 구성에 의해 본 발명은 전해액에 피라졸(pyrazole) 유도체를 첨가제로 첨가하므로서, 리튬이차전지의 안전성을 향상시키고, 전지의 수명개선 및 신뢰성의 개선을 주어, 대형 전지의 발전에 크게 기여할 수 있는 효과가 있다.By the above configuration, the present invention adds a pyrazole derivative to the electrolyte as an additive, thereby improving the safety of the lithium secondary battery, improving the lifespan and reliability of the battery, and contributing to the development of large batteries. It works.
본 발명은 양극, 음극 및 전해액을 포함하여 이루어진 리튬이차전지에 있어서, 피라졸(pyrazole) 유도체를 전해액 첨가제로 사용하여 리튬이차전지의 안정성과 성능을 개선시키고자 하는 것으로, 상기 피라졸(pyrazole) 유도체는, 상기 전해액에 대해 0.05~10중량부로 첨가되도록 한다.The present invention is to improve the stability and performance of a lithium secondary battery using a pyrazole derivative (pyrazole) as an electrolyte additive in a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte solution, the pyrazole (pyrazole) The derivative is added to 0.05 to 10 parts by weight based on the electrolyte.
일반적으로 리튬이차전지는 양극, 음극, 전해액을 핵심 구성효소로 하며, 양극과 음극 사이에 격리막과 케이싱 등으로 구성된다. 양극과 음극이 전해액을 사이에 두고 동일한 케이싱 내에 위치되며, 이들 전극은 외부부하와 연결됨으로 전류의 흐름이 이루어질 수 있는 구성을 갖는다. 양극 및 음극을 이루는 활물질 그리고 전해액 및 격리막과 케이싱 등은 공지된 물질 또는 형태를 갖도록 구성된다.In general, a lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte as a core constituent enzyme, and is composed of a separator and a casing between the positive electrode and the negative electrode. The positive electrode and the negative electrode are positioned in the same casing with the electrolyte interposed therebetween, and these electrodes have a configuration in which a current can flow by being connected to an external load. The active material constituting the positive electrode and the negative electrode, the electrolyte solution, the separator and the casing are configured to have a known material or form.
상기 전해액에 첨가되는 첨가제로 본 발명에서는 난연성 화합물인 피라졸(pyrazole) 유도체가 사용되며, 상기 피라졸(pyrazole) 유도체는, 피라졸(pyrazole)에 알킬기 R = -(CH2)nCH3(n≥0) 인 알킬 유도체를 말한다. 이를 도 1에 도시하였으며, 도 1(A)는 피라졸(pyrazole)을 나타낸 것이다.In the present invention, an additive is added to the electrolyte flame retardant compound is a pyrazole (pyrazole) and derivatives thereof are used, the pyrazole (pyrazole) derivatives, pyrazole in group R = (pyrazole) - (CH 2) n CH 3 ( n≥0). This is shown in Figure 1, Figure 1 (A) shows a pyrazole (pyrazole).
또한, 상기 피라졸(pyrazole) 유도체는 상기 알킬기의 일부에 불소(F)가 치 환된 물질로써, 안정성 및 수명을 더욱 개선시키기 위해 TFMP(3-(trifluoromethyl)pyrazole) 또는 BTFMP(3,5-Bis(trifluoromethyl)pyrazole)를 사용한다. 이를 도 1(B),(C)에 도시하였다.In addition, the pyrazole derivative is a substance in which fluorine (F) is substituted for a part of the alkyl group, and TFMP (3- (trifluoromethyl) pyrazole) or BTFMP (3,5-Bis) to further improve stability and lifespan. (trifluoromethyl) pyrazole) is used. This is illustrated in FIGS. 1 (B) and (C).
이하에서는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하고자 한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.
준비된 난연성 첨가제의 난연 성능과 전지성능의 향상여부를 관찰하기 위해서 코인셀이 만들어 졌다. 사용된 활물질은 LiMn1/3Ni1/3Co1/3O2와 메소카본 마이크로비드(Mesocarbon microbeads(MEMB))이며, 이들은 각각 양극과 음극의 재료로 사용되고, 이들로 풀셀(full cell)이 구성되었다.Coin cells were made to observe the improvement of flame retardant performance and battery performance of the prepared flame retardant additives. The active materials used are LiMn 1/3 Ni 1/3 Co 1/3 O 2 and Mesocarbon microbeads (MEMB), which are used as materials for the positive and negative electrodes, respectively. Configured.
양극 극판의 제작순서는 다음과 같다. 도전제와 바인더는 수퍼P블랙(Super-P Black)과 PVDF(polyvinylidene fluoride)가 사용되었다. 활물질: 도전재: 바인더의 무게비는 85: 8: 7이다. 먼저 바인더를 적당량의 NMP(NMethyl-pyrrolidone)와 컨디셔닝 믹서(conditioning mixer)에 10분간 교반하고 여기에 활물질과 도전제를 혼합하고, NMP를 조금 더 첨가하여 점도를 맞추어준다. 컨디셔닝 믹서(conditioning mixer)에 30분 동안 교반한다.The manufacturing procedure of the positive electrode plate is as follows. Super-P Black and polyvinylidene fluoride (PVDF) were used as the conductive agent and the binder. The weight ratio of the active material: conductive material: binder is 85: 8: 7. First, the binder is stirred in an appropriate amount of NMP (Nethylethylpyrrolidone) and a conditioning mixer for 10 minutes, the active material and the conductive agent are mixed therein, and NMP is further added to adjust the viscosity. Stir for 30 minutes in a conditioning mixer.
그 다음, 유리판에 Al 집전체를 깔고 Al 집전체에 준비된 슬러리(slurry)를 닥터블레이드(doctor blade) 방법으로 캐스팅(casting)하고 난 후, 100℃에서 오브나이트(overnight) 건조를 한다. 이렇게 건조된 전극은 120℃의 롤프레스기(roll press machine)로 20~25%의 압착률로 압착시켜 전극을 완성한다. 아울러 음극은 활물질:도전재:바인더의 무게비가 70:15:15이다.Then, the Al current collector is placed on the glass plate, and the slurry prepared on the Al current collector is cast by a doctor blade method, followed by overnight drying at 100 ° C. The electrode thus dried is squeezed at a compression rate of 20 to 25% with a roll press machine at 120 ° C. to complete the electrode. In addition, the negative electrode has a weight ratio of active material: conductive material: binder is 70:15:15.
제작되어진 전극의 특성을 평가하기 위해 코인셀(coin cell)을 제작하였다. 코인셀(coin cell)은 2032규격을 사용하였다. 전해액은 1.0M LiPF6, EC/EMC(4:6)를 사용하였으며, 전해액에 첨가되는 첨가제로 피라졸(pyrazole), TFMP(3-(trifluoromethyl)pyrazole) 또는 BTFMP(3,5-Bis(trifluoromethyl)pyrazole)를 사용하였다. 충방전기는 TOYO사의 TOSCAT-3100U 모델을 사용하여 각각의 피라졸(pyrazole) 유도체에 대해 실험을 진행하였다.A coin cell was fabricated to evaluate the characteristics of the manufactured electrode. Coin cell (coin cell) used 2032 standard. The electrolyte was 1.0M LiPF 6 , EC / EMC (4: 6), and the additives added to the electrolyte were pyrazole, TFMP (3- (trifluoromethyl) pyrazole) or BTFMP (3,5-Bis (trifluoromethyl). pyrazole) was used. Charging and discharging was conducted for each pyrazole derivative using TOYO's TOSCAT-3100U model.
도 2는 상기 첨가제가 포함된 전해액의 난연성을 측정한 것으로, 첨가제가 포함된 전해액을 점화하여 소화되는 시간을 측정하여 상대적 난연성을 측정하였으며, 소화시간을 전해액의 단위무게로 표시하였다. 도시된 바와 같이, 각 첨가제가 포함된 농도별 소화시간에 의하면 첨가가 소량이라도 포함되면 난연성을 보여주는 것으로 관찰되었고, 1~5% 범위에서는 난연성의 변화가 미미한 것으로 판단된다.2 is to measure the flame retardancy of the electrolyte solution containing the additive, the relative flame retardance was measured by measuring the time to ignite the electrolyte solution containing the additive is digested, the digestion time is expressed as the unit weight of the electrolyte. As shown, according to the digestion time for each concentration containing the additive was observed to show the flame retardancy if the addition is included in a small amount, it is judged that the change in flame retardancy is insignificant in the range of 1 to 5%.
그리고, 열적안정성을 관찰하기 위하여 준비된 코인셀을 10회 충방전을 하고, 충전된 상태의 양극물질을 회수하여 DSC(differential scanning calorimeter)로 측정하였다. 온도를 상승시키면, 적정온도에서 자가 발열 현상이 일어나는데, 예를 들면, 200℃나 그 이상에서 양극 활물질이 분해되면서 산소를 배출하는 자가 발열반응 등이다. 이 발열반응은 전지의 오용 및 권장사용 조건 이외의 조건에서 발생하는 화재 및 폭발의 주요요인 중의 하나이다. 난연성 첨가제의 사용에 의하여 이와 같은 자가 발열의 시작온도를 지연하거나, 발열량을 감소시키는 정도를 난연성의 척도로 삼고자 한다.In addition, the coin cell prepared for observing thermal stability was charged and discharged ten times, and the cathode material in the charged state was recovered and measured by DSC (differential scanning calorimeter). When the temperature is increased, self-heating phenomenon occurs at an appropriate temperature, for example, a self-heating reaction that releases oxygen while the cathode active material is decomposed at 200 ° C or higher. This exothermic reaction is one of the major causes of fires and explosions that occur under conditions of battery misuse and recommended use. The use of a flame retardant additive is intended to delay the onset of such self-heating or to reduce the amount of heat generated as a measure of flame retardancy.
일반적으로 난연성과 함께, 전지성능의 저하는 첨가제의 단점이기도 한데, 본 발명에 따라 사용된 첨가제는 성능의 저하를 보여주지 않는 것으로 판단된다.In general, with the flame retardancy, the degradation of the battery performance is also a disadvantage of the additive, it is believed that the additive used according to the present invention does not show a decrease in performance.
도 3은 상기 첨가제에 따른 리튬이차전지의 양극활물질이 상대적 열안정성을 측정한 데이타를 나태낸 것으로, 전체 전해액에 대해 첨가제가 각각 3중량부가 포함된 전해질과 첨가제가 없는 경우의 자가 발열반응이다. 도시된 바와 같이, 첨가제가 없는 전해액을 사용한 양극활물질의 자가발열 반응은 약 270℃ 부근에서 예리한 자가 발열 반응 곡선을 보여주고 있다. 이와 비교하여 피라졸(Pyrazole) 유도체들은 모두 발열 속도가 낮을 뿐 아니라 발열온도도 지연되어서 270℃ 이상의 온도에서 발열하는 것을 보여준다. 그중에서 BTFMP의 발열온도 지연 및 속도지연 효과가 가장 뛰어난 것으로 관찰되었다.Figure 3 shows the data measured the relative thermal stability of the positive electrode active material of the lithium secondary battery according to the additive, it is a self-exothermic reaction when there is no electrolyte and additives each containing 3 parts by weight of the additive to the total electrolyte. As shown, the self-heating reaction of the positive electrode active material using the electrolyte without additives shows a sharp self-exothermic curve at about 270 ° C. In comparison, all pyrazole derivatives show a low exothermic rate as well as delayed exothermic temperature, resulting in exothermic temperatures above 270 ° C. Among them, BTFMP showed the most exothermic temperature delay and speed delay effect.
도 4는 상기 첨가제에 따른 리튬이차전지의 전지수명을 측정한 것으로, 피라졸(pyrazole)은 1회의 충방전도 성공하지 못하여 도면에서 표시되지 않았다. 그 외의 다른 첨가제는 전지의 성능을 저해하지 않아서 첨가제로서 사용가능함을 보여주었다. 특히 불소가 많이 치환된 BTFMP는 초기 용량은 다소 좋지 않았으나 용량유지율이 좋아서 30 cycle 이후부터는 다른 전해액보다 높은 용량을 보여 주었다.4 is a measurement of the battery life of the lithium secondary battery according to the additive, pyrazole (pyrazole) is not shown in the drawing did not succeed even one charge and discharge. Other additives have been shown to be usable as additives without compromising battery performance. In particular, BTFMP, which had a lot of fluorine substitution, showed a slightly lower initial capacity, but had a higher capacity retention ratio, and showed higher capacity than other electrolytes after 30 cycles.
상기와 같이 피라졸(pyrazole) 첨가제는 난연성 및 전지의 열안전성에 기여하는 것을 보여주었다. 특히 불소가 첨가된 피라졸(pyrazole)은 전지의 성능도 유 지/개선하므로 첨가제로서의 높은 가능성을 보여주었다.As described above, pyrazole additives have been shown to contribute to flame retardancy and thermal stability of the battery. In particular, fluorine-added pyrazole showed a high potential as an additive because it also maintains / improves the performance of the battery.
도 1 - 본 발명의 실시예에 따라 사용된 첨가제를 나타낸 도((A)피라졸, (B)TFMP), (C)BTFMP).1-Figures ((A) pyrazole, (B) TFMP), (C) BTFMP) showing additives used according to an embodiment of the invention.
도 2 - 본 발명의 실시예에 따른 첨가제를 포함한 전해액의 난연성을 측정한 데이타를 나타낸 도.Figure 2 is a view showing the data measured the flame resistance of the electrolyte solution containing an additive according to an embodiment of the present invention.
도 3 - 본 발명의 실시예에 따른 리튬이차전지의 양극활물질의 상대적 열안정성을 측정한 데이타를 나타낸 도.Figure 3 is a view showing the data measured the relative thermal stability of the positive electrode active material of a lithium secondary battery according to an embodiment of the present invention.
도 4 - 본 발명의 실시예에 따른 리튬이차전지의 전지수명을 측정한 데이타를 나타낸 도.4 is a view showing data measured the battery life of a lithium secondary battery according to an embodiment of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090023441A KR20100104799A (en) | 2009-03-19 | 2009-03-19 | Lithium secondary battery using electrolyte additive including pyrazole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090023441A KR20100104799A (en) | 2009-03-19 | 2009-03-19 | Lithium secondary battery using electrolyte additive including pyrazole |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100104799A true KR20100104799A (en) | 2010-09-29 |
Family
ID=43009017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090023441A KR20100104799A (en) | 2009-03-19 | 2009-03-19 | Lithium secondary battery using electrolyte additive including pyrazole |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100104799A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012102162A1 (en) * | 2012-03-14 | 2013-09-19 | Westfälische Wilhelms-Universität Münster Körperschaft des öffentlichen Rechts | Ion-conducting polymeric compound for electrochemical cells |
WO2023022544A1 (en) * | 2021-08-20 | 2023-02-23 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
-
2009
- 2009-03-19 KR KR1020090023441A patent/KR20100104799A/en not_active Application Discontinuation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012102162A1 (en) * | 2012-03-14 | 2013-09-19 | Westfälische Wilhelms-Universität Münster Körperschaft des öffentlichen Rechts | Ion-conducting polymeric compound for electrochemical cells |
WO2023022544A1 (en) * | 2021-08-20 | 2023-02-23 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
US12027668B2 (en) | 2021-08-20 | 2024-07-02 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7833661B2 (en) | Electrolytes for lithium ion secondary batteries | |
EP2683014B1 (en) | Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery | |
JP3959774B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
CN101673852B (en) | Electrolyte additive and electrolyte and lithium ion battery containing same | |
JP6569735B2 (en) | Batteries, battery cans, battery packs, electronic devices, electric vehicles, power storage devices, and power systems | |
JP2009123474A (en) | Nonaqueous electrolyte battery | |
JP2005183384A (en) | Electrochemical active material for positive electrode of lithium rechargeable electrochemical cell | |
JP2012227068A (en) | Lithium-ion secondary battery and battery pack system | |
Kise et al. | Relation between composition of the positive electrode and cell performance and safety of lithium-ion PTC batteries | |
EP2683013B1 (en) | Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery | |
Wang et al. | Effects of 3-fluoroanisol as an electrolyte additive on enhancing the overcharge endurance and thermal stability of lithium-ion batteries | |
Zhang et al. | Temperature characteristics of lithium iron phosphatepower batteries under overcharge | |
JP2010015719A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
Song et al. | Thermoeletrochemical study on LiNi 0.8 Co 0.1 Mn 0.1 O 2 with in situ modification of Li 2 ZrO 3 | |
CN103887560B (en) | A kind of nonaqueous electrolytic solution and the lithium ion battery containing this nonaqueous electrolytic solution | |
JP5205863B2 (en) | Non-aqueous electrolyte secondary battery | |
CN102779977B (en) | Polymer lithium ion battery and manufacturing method of positive plate of battery | |
Adler et al. | Investigations of a new family of alkaline− fluoride− carbonate electrolytes for zinc/nickel oxide cells | |
KR20100104799A (en) | Lithium secondary battery using electrolyte additive including pyrazole | |
KR20090029569A (en) | Electrolyte for lithium secondary battery and lithium secondary battery having the same | |
KR100909289B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery having same | |
US20140242454A1 (en) | Electrolyte with solid electrolyte interface promoters | |
CN110600805A (en) | Electrolyte, method for constructing negative electrode interface film, and lithium ion battery | |
KR101264326B1 (en) | Lithium Secondary Battery using electrolyte additive including ethylmethylpiperidinium TFSI | |
CN116759574B (en) | Negative electrode material, negative electrode plate, preparation method of negative electrode plate and lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |