KR20100082915A - Method for fabricating cigs thin layer by ald - Google Patents

Method for fabricating cigs thin layer by ald Download PDF

Info

Publication number
KR20100082915A
KR20100082915A KR1020090002206A KR20090002206A KR20100082915A KR 20100082915 A KR20100082915 A KR 20100082915A KR 1020090002206 A KR1020090002206 A KR 1020090002206A KR 20090002206 A KR20090002206 A KR 20090002206A KR 20100082915 A KR20100082915 A KR 20100082915A
Authority
KR
South Korea
Prior art keywords
copper
formula
thin film
cigs thin
reaction chamber
Prior art date
Application number
KR1020090002206A
Other languages
Korean (ko)
Other versions
KR101071544B1 (en
Inventor
장혁규
이주영
Original Assignee
주식회사 메카로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메카로닉스 filed Critical 주식회사 메카로닉스
Priority to KR1020090002206A priority Critical patent/KR101071544B1/en
Publication of KR20100082915A publication Critical patent/KR20100082915A/en
Application granted granted Critical
Publication of KR101071544B1 publication Critical patent/KR101071544B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for manufacturing a CIGS thin film by an atomic layer depositing method is provided to easily manufacture a thin film with high quality and large area by successively supplying precursors like copper, indium, gallium, and selenium to a chamber with a pulse type. CONSTITUTION: A substrate(S) is positioned inside a reactive chamber(10) and maintains the substrate with a specific reaction temperature. A copper precursor compound is supplied and reacted to the reactive chamber. A pursing process is performed to remove non-reactive materials and byproducts. An indium precursor compound is supplied and reacted to a reactive chamber. A gallium precursor compound is supplied and reacted to the reactive chamber. The pursing process is performed to remove the non-reactive materials and the byproducts. A selenium precursor is supplied and reacted to the reactive chamber. The pursing is performed to remove the non-reactive materials and byproducts.

Description

원자층 증착법에 의한 CIGS 박막 제조방법{METHOD FOR FABRICATING CIGS THIN LAYER BY ALD}CIS thin film manufacturing method by atomic layer deposition method {METHOD FOR FABRICATING CIGS THIN LAYER BY ALD}

본 발명은 각 전구체를 챔버 내부에 순차적으로 펄스 형태로 공급하면서 CIGS 박막을 원자층 증착 방법으로 제조하는 CIGS 박막 제조방법에 관한 것이다. The present invention relates to a CIGS thin film manufacturing method for producing a CIGS thin film by an atomic layer deposition method while supplying each precursor sequentially in the form of a pulse inside the chamber.

일반적으로 Ⅰ-Ⅲ-Ⅵ2족(Ⅰ: Ag, Cu ; Ⅲ:Al, Ga, In; Ⅵ:S, Se,Te) 화합물 반도체는 상온 대기압 하에서 켈코파이라이트(chalcopyrite) 구조를 가지고 있으며, 그 구성원소를 달리함에 따라 다양한 물성을 보여주기 때문에 폭넓은 분야에서 응용되고 있다. In general, the group I-III-VI group 2 (I: Ag, Cu; III: Al, Ga, In; VI: S, Se, Te) compound semiconductor has a chalcopyrite structure at room temperature atmospheric pressure, It is applied in a wide range of fields because it shows various physical properties according to different member elements.

이러한 Ⅰ-Ⅲ-Ⅵ2족 화합물 반도체는 1953년 Hahn 등에 의하여 처음 합성되었고, Goodman 등에 의하여 반도체로서 이용가능성이 제시된 이후, 적외선 검출기를 비롯하여 발광다이오드, 비선형광학소자 및 태양전지 등에 응용되고 있다. These Ⅰ-Ⅲ-Ⅵ 2 group compound semiconductor was first synthesized by the like 1953 Hahn, is used and the application possibilities such as presented later, light-emitting diodes, as well as an infrared detector, a nonlinear optical device and a solar cell as a semiconductor or the like by Goodman.

이중에서 태양 전지에는, 상온에서 에너지 띠 간격이 약 1 ~ 2.5 eV 이고, 선형 광흡수계수가 다른 반도체에 비하여 10 ~ 100배 정도 크기 때문에, CuInSe2(이하, "CIS"라고 함) 또는 CuIn1-xGaxSe2(이하, "CIGS"라고 함) 화합물 반도 체가 많이 사용되고 있다. Among them, CuInSe 2 (hereinafter referred to as “CIS”) or CuIn 1 because the energy band spacing is about 1 to 2.5 eV at room temperature and the linear light absorption coefficient is about 10 to 100 times larger than other semiconductors. -x Ga x Se 2 (hereinafter referred to as "CIGS") compound semiconductors are frequently used.

특히, CIGS 박막을 사용하는 박막형 태양전지는 기존의 실리콘 결정을 사용하는 태양전지와는 달리 10㎛ 이하의 두께로 제작 가능하고 장시간 사용시에도 안정적인 특성을 갖고 있으며, 최근 박막형 태양 전지 중 가장 높은 19.5%의 에너지 변환 효율을 보임에 따라 실리콘 결정질 태양 전지를 대체할 수 있는 저가형 고효율 박막형 태양전지로 상업화 가능성이 아주 높은 것을 알려져 있다. In particular, thin film solar cells using CIGS thin films can be manufactured with a thickness of 10 μm or less unlike conventional solar cells using silicon crystals, and have stable characteristics even when used for a long time. As it shows the energy conversion efficiency of, it is known that it is highly commercialized as a low-cost, high-efficiency thin-film solar cell that can replace the silicon crystalline solar cell.

그런데 이러한 우수한 특성을 가지는 CIGS 박막 태양전지는 양질의 박막을 경제적인 방법으로 제조하기가 어려워서 폭넓게 활용되지 못하고 있다. 기존에 CIGS 박막을 제조하기 위한 방법으로는 진공 분위기에서 각각의 원소를 동시에 증발시켜 기판에 증착시키는 물리적 증착방법이 많이 사용되고 있다. 그러나 이러한 물리적 증착 방법은 대량 생산이 어려울뿐만 아니라, 막질의 특성이 나쁜 문제점이 있다. However, CIGS thin film solar cells having such excellent characteristics have not been widely used because they are difficult to manufacture high quality thin films in an economical manner. Conventionally, as a method for manufacturing a CIGS thin film, a physical vapor deposition method in which each element is simultaneously evaporated and deposited on a substrate in a vacuum atmosphere is used. However, the physical vapor deposition method is not only difficult to mass-produce, but also has a problem of poor film quality.

본 발명이 해결하고자 하는 기술적 과제는 각 전구체를 순차적 펄스 형태로 공급하여 원자층 증착법으로 CIGS 박막을 제조함으로써, 막질이 우수하고 제조 단가가 낮으며 대면적 박막을 형성할 수 있는 CIGS 박막 제조방법을 제공하는 것이다. The technical problem to be solved by the present invention is to provide a CIGS thin film manufacturing method capable of forming a large-area thin film with excellent film quality, low manufacturing cost by supplying each precursor in a sequential pulse form to produce a CIGS thin film by atomic layer deposition method To provide.

전술한 기술적 과제를 달성하기 위한 본 발명에 따른 CIGS 박막 제조방법은, 원자층 증착법을 이용하여 기판 상에 CIGS 박막을 제조하는 방법에 있어서, 1) 반응 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계; 2) 반응 챔버 내부로 구리 전구체 화합물을 공급하고 반응시키는 단계; 3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계; 4) 반응 챔버 내부로 인듐 전구체 화합물을 공급하고 반응시키는 단계; 5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계; 6) 반응 챔버 내부로 갈륨 전구체 화합물을 공급하고 반응시키는 단계; 7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계; 8) 반응 챔버 내부로 셀레늄 전구체 화합물을 공급하고 반응시키는 단계; 9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함한다. In the method for manufacturing a CIGS thin film according to the present invention for achieving the above technical problem, in the method for producing a CIGS thin film on a substrate using an atomic layer deposition method, 1) to position the substrate inside the reaction chamber, Maintaining at a specific reaction temperature; 2) supplying and reacting a copper precursor compound into the reaction chamber; 3) a first purging step to remove unreacted material and byproducts; 4) supplying and reacting the indium precursor compound into the reaction chamber; 5) a second purging step to remove unreacted material and by-products; 6) supplying and reacting a gallium precursor compound into the reaction chamber; 7) third purging step to remove unreacted material and by-products; 8) supplying and reacting the selenium precursor compound into the reaction chamber; 9) a fourth purging step of removing unreacted material and by-products.

본 발명의 2), 4), 6), 8) 단계에서, 구리, 인듐, 갈륨, 셀레늄 전구체 화합물을 순차적으로 공급하고 각각 퍼지하는 것으로 기술하였으나, 이들 전구체의 공급순서는 변경가능하며 또한 이중의 하나 또는 그 이상의 전구체가 반복되어 공급 되는 것이 가능하다. In steps 2), 4), 6), and 8) of the present invention, the copper, indium, gallium, and selenium precursor compounds are sequentially supplied and purged, respectively, but the order of supplying these precursors is changeable and double It is possible for one or more precursors to be supplied repeatedly.

그리고 상기 2), 4), 6), 8) 단계에서, 상기 구리, 인듐, 갈륨, 셀레늄 전구체 화합물을 공급시에 각각 0.1 ~ 200초 동안 상기 반응 챔버 내부로 기화된 상태로 공급하는 것이 바람직하다. And in steps 2), 4), 6), and 8), the copper, indium, gallium, and selenium precursor compounds are preferably supplied into the reaction chamber in a vaporized state for 0.1 to 200 seconds, respectively. .

또한 상기 3), 5), 7), 9) 단계에서, 불황성 가스인 N2 또는 Ar 가스를 1sccm ~ 1000slm의 유량으로 약 0.1 ~ 200초간 주입하고 펌프로 배출하는 것이 바람직하다. In addition, in steps 3), 5), 7), and 9), it is preferable to inject N2 or Ar gas, which is an inert gas, at a flow rate of 1 sccm to 1000 slm for about 0.1 to 200 seconds and discharge the same to a pump.

그리고 본 발명에서 상기 구리 전구체 화합물은, Bis(acetylacetonato)copper, Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (vinyltrimethylsilyl)(hexafluoroacetylacetonato)copper, (vonyltrimethylsilyl)(acetylacetonato)copper, (Vinyltrimethylsilyl)(2,2,6,6-tetramethylheptandionato)copper, (Vinyltriethylsilyl)-(acetylacetonato)copper, (Vinyltriethylsilyl)-(2,2,6,6-teramethylheptandionato)copper, (Vinyltriethylsilyl)-(hexafluoroacetylacetonato)copper 로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다. In the present invention, the copper precursor compound is Bis (acetylacetonato) copper, Bis (2,2,6,6-tetramethylheptandionato) copper, Bis (hexafluoroacetylacetonato) copper, (vinyltrimethylsilyl) (hexafluoroacetylacetonato) copper, (vonyltrimethylsilyl) (acetylacetonato) copper, (Vinyltrimethylsilyl) (2,2,6,6-tetramethylheptandionato) copper, (Vinyltriethylsilyl)-(acetylacetonato) copper, (Vinyltriethylsilyl)-(2,2,6,6-teramethylheptandionato) copper, (Vinyltriethylsilyl)-(hexafluoroacetylacetonato It is characterized in that any one or a mixture of two or more selected from the group consisting of) copper.

한편 상기 인듐 전구체 화합물은, 아래의 화학식 1의 구조를 가지는 것을 특징으로 한다. On the other hand, the indium precursor compound is characterized by having the structure of formula (1) below.

< 화학식 1 ><Formula 1>

Figure 112009001639406-PAT00001
Figure 112009001639406-PAT00001

(화학식 1에서 상기 R1, R2, R3는 methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec-buthoxy 중의 어느 한 작용기임.)In Formula 1, R1, R2, and R3 are methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec is a functional group of -buthoxy.)

구체적으로 상기 인듐 전구체 화합물은, Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, Dimethyltertiarybutylindium 으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 구성될 수 있다. Specifically, the indium precursor compound is selected from trimethylindium, triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diindium ethyltitidium, which is selected from the group consisting of two or more of diethylisopropylindium; Can be configured.

또한 상기 갈륨 전구체 화합물은, 아래의 화학식 2의 구조를 가지는 것을 특징으로 한다. In addition, the gallium precursor compound is characterized by having the structure of formula (2) below.

< 화학식 2 ><Formula 2>

Figure 112009001639406-PAT00002
Figure 112009001639406-PAT00002

(화학식 1에서 상기 R1, R2, R3는 methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec-buthoxy 중의 어느 한 작용기임.)In Formula 1, R1, R2, and R3 are methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec is a functional group of -buthoxy.)

구체적으로 상기 갈륨 전구체 화합물은, Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, Dimethyltertiarybutylgallium 으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 구성될 수 있다. Specifically, the gallium precursor compound is trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, or a group consisting of two or more of diethylisopropylgallium, Can be configured.

그리고 상기 셀레늄 전구체 화합물은, 아래의 화학식 3 또는 화학식 4의 구조를 가지는 것을 특징으로 한다. And the selenium precursor compound is characterized by having the structure of formula (3) or formula (4) below.

< 화학식 3 ><Formula 3>

Figure 112009001639406-PAT00003
Figure 112009001639406-PAT00003

(상기 화학식 3에서 R1, R2는 H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl 중의 어느 한 작용기임.)(In Formula 3, R1, R2 is any one of H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl.)

< 화학식 4 ><Formula 4>

Figure 112009001639406-PAT00004
Figure 112009001639406-PAT00004

(상기 화학식 3에서 R1, R2는 H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl 중의 어느 한 작용기임.)(In Formula 3, R1, R2 is any one of H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl.)

구체적으로 상기 셀레늄 전구체는, Dimethylselenide, Diethylselenide, Diisoprylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, Tertiarybutylselenol 로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 구성될 수 있다. Specifically, the selenium precursor may be composed of any one or two or more selected from the group consisting of Dimethylselenide, Diethylselenide, Diisoprylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, Tertiarybutylselenol.

본 발명에서 상기 구리 전구체 또는 인듐 전구체 또는 갈륨 전구체는, 캐니스터 온도를 -40 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것이 효율적으로 전구체를 반응 챔버로 공급할 수 있어서 바람직하다. In the present invention, the copper precursor, the indium precursor, or the gallium precursor is preferably supplied while maintaining the canister temperature at -40 to 200 ° C and the supply line temperature at room temperature to 400 ° C, so that the precursor can be efficiently supplied to the reaction chamber.

한편 상기 셀레늄 전구체는, 캐니스터 온도를 -60 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것이 바람직하다. Meanwhile, the selenium precursor is preferably supplied while maintaining the canister temperature at -60 to 200 ° C and the supply line temperature at room temperature to 400 ° C.

그리고 본 발명의 공정이 진행되는 동안 상기 기판의 온도를 상온 ~ 600℃로 유지하는 것이, 효율적인 박막 증착을 유도할 수 있어서 바람직하다. And while maintaining the temperature of the substrate at room temperature ~ 600 ℃ during the process of the present invention, it is preferable to induce efficient thin film deposition.

본 발명에서 상기 구리, 인듐, 갈륨, 셀레늄 전구체 화합물을 챔버로 공급시 에, 반응을 돕기위해 수소(H2), 암모니아(NH3), 산소(O2), 오존(O3), 아산화질소(N2O) 등을 반응 가스로 동시 또는 순차적으로 챔버에 공급할 수 있다. In the present invention, when supplying the copper, indium, gallium, selenium precursor compound to the chamber, to assist the reaction hydrogen (H 2 ), ammonia (NH 3 ), oxygen (O 2 ), ozone (O 3 ), nitrous oxide (N2O) and the like can be supplied to the chamber simultaneously or sequentially as a reaction gas.

본 발명에서 상기 제1, 2, 3, 4 퍼징 단계에서는, 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 암모니아(NH3) 로 이루어지는 군에서 선택되는 어느 하나의 퍼징가스를 상기 반응 챔버 내부로 주입하고, 반응 챔버에 마련되는 진공 펌프를 이용하여 반응 챔버 내에 존재하는 가스를 흡입하여 제거하는 것이, 미반응가스와 반응 부산물을 효과적으로 배출하여 우수한 막질을 얻을 수 있으므로 바람직하다. In the first, 2, 3, 4 purging step in the present invention, any one selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), ammonia (NH 3 ) Injecting one purge gas into the reaction chamber and sucking and removing gas present in the reaction chamber by using a vacuum pump provided in the reaction chamber effectively discharges unreacted gas and reaction by-products to obtain excellent membrane quality. It is preferable because it can.

본 발명에 따르면 원자층 증착법을 사용하여 구리, 인듐, 갈륨, 셀레늄 등의 전구체를 펄스 형태로 순차적으로 챔버에 공급하여 CIGS 박막을 제조하므로, 막질이 우수하고 대면적 박막을 용이하게 제조할 수 있으며, 대량 생산이 가능한 효과가 있다. According to the present invention, a precursor of copper, indium, gallium, selenium, and the like is sequentially supplied to the chamber using an atomic layer deposition method to manufacture a CIGS thin film, so that the film quality is excellent and a large area thin film can be easily manufactured. It is effective in mass production.

이하에서는 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a specific embodiment of the present invention.

본 실시예에 따른 CIGS 박막 제조방법에는 도 1에 도시된 바와 같은, 일반적인 원자층 증착 장치가 사용될 수 있다. 이러한 원자층 증착 장치에는 내부를 진공 상태로 유지할 수 있는 반응 챔버(10)가 구비되고, 이 반응 챔버(10) 내부의 하측 에는 기판(S)이 장착될 수 있는 기판척(20)이 구비된다. In the CIGS thin film manufacturing method according to the present embodiment, a general atomic layer deposition apparatus as shown in FIG. 1 may be used. The atomic layer deposition apparatus includes a reaction chamber 10 capable of maintaining an interior in a vacuum state, and a substrate chuck 20 on which a substrate S is mounted is provided below the reaction chamber 10. .

기판(S)은 반응 챔버(10) 일측에 구비되어 있는 게이트(도면에 미도시)을 통하여 반응 챔버 (10) 내부로 반입되고, 기판척(20)에 놓여진 후 고정된다. 기판(S)이 반응 챔버(10) 내부로 반입된 후 게이트가 밀폐되고, 반응 챔버(10) 내부는 감압되는데, 반응 챔버 내부의 압력이 0.01 mtorr ~ 대기압 정도로 유지되는 것이 바람직하다. The substrate S is loaded into the reaction chamber 10 through a gate (not shown) provided on one side of the reaction chamber 10, placed on the substrate chuck 20, and then fixed. After the substrate S is loaded into the reaction chamber 10, the gate is sealed, and the inside of the reaction chamber 10 is decompressed, and the pressure inside the reaction chamber is preferably maintained at 0.01 mtorr to atmospheric pressure.

그리고 반응 챔버(10)의 상부에는 공정 가스 및 퍼징 가스가 공급될 수 있는 샤워헤드(30)가 구비되는데, 이 샤워헤드(30)에는 직경 0.5 ~ 1 mm 정도의 미세한 홀이 무수하게 형성되어 있다. 따라서 이 샤워헤드(30)를 통하여 공정가스 및 퍼징 가스가 기판 전체적으로 균일하게 공급될 수 있는 것이다. In addition, the upper portion of the reaction chamber 10 is provided with a shower head 30 through which a process gas and a purging gas can be supplied, and the shower head 30 has a myriad of minute holes having a diameter of about 0.5 to 1 mm. . Therefore, the process gas and the purging gas may be uniformly supplied to the entire substrate through the shower head 30.

그리고 이 샤워헤드(30)는 도 1에 도시된 바와 같이, 외부에 배치되어 있는 다수개의 캐니스터(40, 50, 60, 70)와 연결되어 있으며, 각 캐니스터로부터 공정 가스를 공급받을 수 있는 구조를 가진다. As shown in FIG. 1, the shower head 30 is connected to a plurality of canisters 40, 50, 60, and 70 disposed outside, and has a structure capable of receiving process gas from each canister. Have

이러한 상태로 반응 챔버(10) 내부에 기판(S)이 장착된 상태에서 상기 샤워헤드(30)를 통하여 공정가스 즉, 구리 전구체, 인듐 전구체, 갈륨 전구체 및 셀레늄 전구체를 펄스 형태로 순차적으로 공급하여 원자층 증착 방법으로 신속하고 효율적으로 CIGS 박막을 제조한다. In this state, the process gas, that is, the copper precursor, the indium precursor, the gallium precursor, and the selenium precursor are sequentially supplied through the shower head 30 while the substrate S is mounted in the reaction chamber 10. Atomic layer deposition methods produce CIGS thin films quickly and efficiently.

여기에서 펄스 형태로 순차적을 공급한다는 것은, 구리 전구체 화합물을 운반가스에 의하여 일정한 짧은 시간 동안 반응 챔버 내부에 공급하여 기판과 반응시킨 후, 퍼징 가스를 챔버 내부로 공급하여 퍼징하는 과정을 한 번 이상 반복하여 구리 전구체 화합물 박막을 기판 상에 성장시키고 나서 인듐 전구체 화합물을 구리 전구체 화합물과 마찬가지로 운반 가스에 의하여 일정한 짧은 시간 동안 반응 챔버 내부에 공급하여 기판과 반응시킨 후, 퍼징 가스를 챔버 내부로 공급하여 퍼징하는 과정을 한 번 이상 반복하여 구리 화합물 박막 상에 인듐 화합물을 반응시키고, 같은 방법으로 갈륨 전구체와 셀레늄 전구체도 진행하는 것을 말한다. Here, the sequential supply in the form of a pulse means that the copper precursor compound is supplied into the reaction chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber to purge at least once. The copper precursor compound thin film is repeatedly grown on the substrate, and then the indium precursor compound, like the copper precursor compound, is supplied into the reaction chamber for a short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber. The process of purging is repeated one or more times to make the indium compound react on the copper compound thin film, and the gallium precursor and the selenium precursor also proceed in the same manner.

즉, 하나의 공정 가스를 연속적으로 공급하는 것이 아니라, 짧은 시간 동안 공급하고 차단하는 단속적인 공급을 말하는 것이며, 공정 가스가 공급되지 않고 차단되는 동안에는 미반응 가스 및 반응 부산물을 제거하여 더 이상 반응이 진행되지 않도록 퍼징하는 공정이 반복되는 것이다. In other words, it refers to an intermittent supply of supplying and shutting off for a short time, rather than supplying a single process gas continuously, while removing unreacted gas and reaction by-products while the process gas is not supplied and no longer reacting. The purging process is repeated so as not to proceed.

이때 퍼징 가스로는 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 암모니아(NH3) 로 이루어지는 군에서 선택되는 어느 하나가 바람직하다. 그리고 퍼징 방법으로는, 퍼징가스를 상기 반응 챔버(10) 내부로 주입하고, 반응 챔버(10)에 마련되는 진공 펌프(도면에 미도시)를 이용하여 반응 챔버 내에 존재하는 가스를 흡입하여 제거하는 방식이 가장 효율적으로 반응 챔버 내부로 퍼징할 수 있어서 바람직하다. At this time, the purging gas is preferably any one selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), ammonia (NH 3 ). In the purging method, a purging gas is injected into the reaction chamber 10, and the gas present in the reaction chamber is sucked and removed by using a vacuum pump (not shown) provided in the reaction chamber 10. The method is preferred because it can be most efficiently purged into the reaction chamber.

한편 상기 인듐 전구체 화합물과 갈륨 전구체 화합물의 경우에는 순차적으로 공급할 수도 있지만, 제조되는 CIGS 박막 내에서 인듐과 갈륨의 비율에 맞게 양 자의 혼합물을 동시에 공급할 수도 있다. Meanwhile, in the case of the indium precursor compound and the gallium precursor compound, they may be sequentially supplied, but a mixture of both may be simultaneously supplied in a ratio of indium and gallium in the CIGS thin film to be manufactured.

그리고 본 실시예에서 구리 전구체를 공급하는 구리 전구체 캐니스터(40)는, 적절한 구리 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 캐니스터(40)를 출발한 구리 전구체가 샤워헤드(30)에 도달하기 위하여 통과하는 공급라인(44)의 온도는 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. In the present embodiment, the copper precursor canister 40 that supplies the copper precursor is preferably maintained at a temperature of about -40 to 200 ° C. in order to supply an appropriate copper precursor. In addition, the temperature of the supply line 44 through which the copper precursor leaving the canister 40 passes to reach the showerhead 30 is preferably maintained at a temperature higher than room temperature to about 400 ° C.

그리고 구리 전구체는 단독으로 챔버 내부로 공급되기 보다는 도 1에 도시된 바와 같이, 제1 운반가스 공급원(42)에 의하여 공급되는 운반 가스에 의하여 챔버 내부로 공급되는 것이 바람직한데, 이러한 운반 가스로는 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등이 바람직하다. The copper precursor is preferably supplied into the chamber by a carrier gas supplied by the first carrier gas source 42, as shown in FIG. 1, rather than into the chamber alone. (Ar), helium (He), nitrogen (N 2 ) gas, etc. are preferable.

또한 상기 구리 전구체는 수소(H2), 암모니아(NH3), 이산화 질소(NO2), 산소(O2) 등의 기체와 혼합되어 공급될 수도 있으며, 구리 전구체 공급 후에, 전술한 기체들이 운반가스와 함께 또는 단독으로 챔버 내부로 공급될 수도 있다. In addition, the copper precursor may be supplied by being mixed with a gas such as hydrogen (H 2 ), ammonia (NH 3 ), nitrogen dioxide (NO 2 ), oxygen (O 2 ), and after the copper precursor is supplied, the aforementioned gases are carried. It may be supplied into the chamber together with the gas or alone.

한편 본 실시예에서는 구리 전구체로, Bis(acetylacetonato)copper, Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (vinyltrimethylsilyl)(hexafluoroacetylacetonato)copper, (vonyltrimethylsilyl)(acetylacetonato)copper, (Vinyltrimethylsilyl)(2,2,6,6-tetramethylheptandionato)copper, (Vinyltriethylsilyl)-(acetylacetonato)copper, (Vinyltriethylsilyl)-(2,2,6,6- teramethylheptandionato)copper, (Vinyltriethylsilyl)-(hexafluoroacetylacetonato)copper 로 이우러지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물 등을 사용할 수 있다. Meanwhile, in the present embodiment, as a copper precursor, Bis (acetylacetonato) copper, Bis (2,2,6,6-tetramethylheptandionato) copper, Bis (hexafluoroacetylacetonato) copper, (vinyltrimethylsilyl) (hexafluoroacetylacetonato) copper, (vonyltrimethylsilyl) (acetylacetonato) copper , (Vinyltrimethylsilyl) (2,2,6,6-tetramethylheptandionato) copper, (Vinyltriethylsilyl)-(acetylacetonato) copper, (Vinyltriethylsilyl)-(2,2,6,6-teramethylheptandionato) copper, (Vinyltriethylsilyl)-(hexafluoroacetylacetonato) Any one or a mixture of two or more selected from the group consisting of copper may be used.

다음으로 인듐 전구체를 공급하는 캐니스터(50)도 전술한 구리 전구체와 마찬가지로 효율적인 인듐 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(54)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 인듐 전구체도 구리 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반 가스에 의하여 운반되는 것이 바람직하다. Next, the canister 50 for supplying the indium precursor may also maintain the temperature of the canister at about −40 to 200 ° C. for the efficient supply of the indium precursor like the copper precursor described above. In addition, the temperature of the supply line 54 is also slightly higher than the temperature of the canister, it is preferable to maintain at about room temperature ~ 400 ℃. In addition, like the copper precursor, the indium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.

본 실시예에서는 인듐 전구체로 아래의 화학식 1의 구조를 가지는 화합물을 사용하는 것이 바람직하다. In the present embodiment, it is preferable to use a compound having the structure of Formula 1 below as an indium precursor.

< 화학식 1 ><Formula 1>

Figure 112009001639406-PAT00005
Figure 112009001639406-PAT00005

(화학식 1에서 상기 R1, R2, R3는 methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec-buthoxy 중의 어느 한 작용기임.)In Formula 1, R1, R2, and R3 are methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec is a functional group of -buthoxy.)

이러한 인듐 전구체는, 구체적으로, Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, Dimethyltertiarybutylindium 으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물 등이 사용될 수 있다. Such indium precursor, specifically, trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diin methylpropyltidium or any one selected from the group of diethylisopropylindium, This can be used.

다음으로 갈륨 전구체를 공급하는 캐니스터(60)도 전술한 구리 전구체와 마찬가지로 효율적인 갈륨 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(64)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 갈륨 전구체도 구리 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반 가스에 의하여 운반되는 것이 바람직하다. Next, the canister 60 for supplying the gallium precursor is also preferably maintained at the temperature of the canister at about -40 to 200 ° C for the efficient supply of the gallium precursor, similar to the copper precursor described above. In addition, it is preferable that the temperature of the supply line 64 is also slightly higher than the temperature of the canister, and maintained at about room temperature to 400 ° C. Also, like the copper precursor, the gallium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.

본 실시예에서는 갈륨 전구체로 아래의 화학식 2의 구조를 가지는 화합물을 사용하는 것이 바람직하다. In the present embodiment, it is preferable to use a compound having the structure of Formula 2 below as a gallium precursor.

< 화학식 2 ><Formula 2>

Figure 112009001639406-PAT00006
Figure 112009001639406-PAT00006

(화학식 1에서 상기 R1, R2, R3는 methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec-buthoxy 중의 어느 한 작용기임.)In Formula 1, R1, R2, and R3 are methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec is a functional group of -buthoxy.)

구체적으로 갈륨 전구체는, Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, Dimethyltertiarybutylgallium 으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물 등을 사용할 수 있다. Specifically gallium precursor, trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgalaryl group, which is made of two or more diethylisopropylgallium, etc. Can be.

다음으로 셀레늄 전구체를 공급하는 캐니스터(70)도 전술한 구리 전구체와 마찬가지로 효율적인 셀레늄 전구체의 공급을 위하여 캐니스터의 온도를 -60 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(74)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 셀레늄 전구체도 구리 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반 가스에 의하여 운반되는 것이 바람직하다. Next, the canister 70 for supplying the selenium precursor is also preferably maintained at a temperature of about −60 to 200 ° C. for the efficient supply of the selenium precursor, similar to the copper precursor described above. In addition, it is preferable that the temperature of the supply line 74 is also slightly higher than the temperature of the canister, and maintained at about room temperature to 400 ° C. In addition, like the copper precursor, the selenium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.

본 실시예에 따른 셀레늄 전구체는 아래의 화학식 3 또는 화학식 4의 구조를 가지는 화합물인 것이 바람직하다. The selenium precursor according to the present embodiment is preferably a compound having the structure of Formula 3 or Formula 4 below.

< 화학식 3 ><Formula 3>

Figure 112009001639406-PAT00007
Figure 112009001639406-PAT00007

(상기 화학식 3에서 R1, R2는 H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl 중의 어느 한 작용기임.)(In Formula 3, R1, R2 is any one of H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl.)

< 화학식 4 ><Formula 4>

Figure 112009001639406-PAT00008
Figure 112009001639406-PAT00008

(상기 화학식 3에서 R1, R2는 H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl 중의 어느 한 작용기임.)(In Formula 3, R1, R2 is any one of H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl.)

구체적으로 셀레늄 전구체는, Dimethylselenide, Diethylselenide, Diisoprylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, Tertiarybutylselenol 로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물 등이 사용될 수 있다. Specifically, the selenium precursor may be any one or two or more selected from the group consisting of Dimethylselenide, Diethylselenide, Diisoprylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, Tertiarybutylselenol, and the like.

도 1은 본 발명의 일 실시예에 따른 원자층 증착 장치의 예를 도시한 단면도이다. 1 is a cross-sectional view showing an example of an atomic layer deposition apparatus according to an embodiment of the present invention.

Claims (15)

원자층 증착법을 이용하여 기판 상에 CIGS 박막을 제조하는 방법에 있어서, In the method for producing a CIGS thin film on a substrate using an atomic layer deposition method, 1) 반응 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계;1) placing a substrate inside the reaction chamber and maintaining the substrate at a specific reaction temperature; 2) 반응 챔버 내부로 구리 전구체 화합물을 공급하고 반응시키는 단계;2) supplying and reacting a copper precursor compound into the reaction chamber; 3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계;3) a first purging step to remove unreacted material and byproducts; 4) 반응 챔버 내부로 인듐 전구체 화합물을 공급하고 반응시키는 단계;4) supplying and reacting the indium precursor compound into the reaction chamber; 5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계;5) a second purging step to remove unreacted material and by-products; 6) 반응 챔버 내부로 갈륨 전구체 화합물을 공급하고 반응시키는 단계;6) supplying and reacting a gallium precursor compound into the reaction chamber; 7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계;7) third purging step to remove unreacted material and by-products; 8) 반응 챔버 내부로 셀레늄 전구체 화합물을 공급하고 반응시키는 단계;8) supplying and reacting the selenium precursor compound into the reaction chamber; 9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함하는 CIGS 박막 제조방법.9) a fourth purging step of removing unreacted materials and by-products. 제1항에 있어서, 상기 2), 4), 6), 8) 단계에서,The method of claim 1, wherein in steps 2), 4), 6), and 8), 상기 구리, 인듐, 갈륨, 셀레늄 전구체 화합물을 공급시에 각각 0.1 ~ 200초 동안 상기 반응 챔버 내부로 기화된 상태로 공급하는 것을 특징으로 하는 CIGS 박막 제조방법.And supplying the copper, indium, gallium, and selenium precursor compounds in a vaporized state into the reaction chamber for 0.1 to 200 seconds, respectively. 제1항에 있어서, 상기 3), 5), 7), 9) 단계에서, The method of claim 1, wherein in steps 3), 5), 7), and 9), 불황성 가스인 N2 또는 Ar 가스를 1sccm ~ 1000slm의 유량으로 약 0.1 ~ 200초간 주입하고 펌프로 배출하는 것을 특징으로 하는 CIGS 박막 제조방법.A method of producing a CIGS thin film, characterized in that the inert gas N2 or Ar gas is injected for about 0.1 to 200 seconds at a flow rate of 1 sccm to 1000 slm and discharged to a pump. 제1항에 있어서, 상기 구리 전구체 화합물은, The method of claim 1, wherein the copper precursor compound, Bis(acetylacetonato)copper, Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (vinyltrimethylsilyl)(hexafluoroacetylacetonato)copper, (vonyltrimethylsilyl)(acetylacetonato)copper, (Vinyltrimethylsilyl)(2,2,6,6-tetramethylheptandionato)copper, (Vinyltriethylsilyl)-(acetylacetonato)copper, (Vinyltriethylsilyl)-(2,2,6,6-teramethylheptandionato)copper, (Vinyltriethylsilyl)-(hexafluoroacetylacetonato)copper 로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.Bis (acetylacetonato) copper, Bis (2,2,6,6-tetramethylheptandionato) copper, Bis (hexafluoroacetylacetonato) copper, (vinyltrimethylsilyl) (hexafluoroacetylacetonato) copper, (vonyltrimethylsilyl) (acetylacetonato) copper, (Vinyltrimethylsilyl) (2,2, 6,6-tetramethylheptandionato) copper, (Vinyltriethylsilyl)-(acetylacetonato) copper, (Vinyltriethylsilyl)-(2,2,6,6-teramethylheptandionato) copper, (Vinyltriethylsilyl)-(hexafluoroacetylacetonato) copper Or a mixture of two or more CIGS thin films. 제1항에 있어서, 상기 인듐 전구체 화합물은, The method of claim 1, wherein the indium precursor compound, 아래의 화학식 1의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized by having a structure of the formula (1) below. < 화학식 1 ><Formula 1>
Figure 112009001639406-PAT00009
Figure 112009001639406-PAT00009
(화학식 1에서 상기 R1, R2, R3는 methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec-buthoxy 중의 어느 한 작용기임.)In Formula 1, R1, R2, and R3 are methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec is a functional group of -buthoxy.)
제5항에 있어서, 상기 인듐 전구체 화합물은, The method of claim 5, wherein the indium precursor compound, Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, Dimethyltertiarybutylindium 으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, Dimethyltertiary group is selected from the group consisting of two or more compounds selected from the group . 제1항에 있어서, 상기 갈륨 전구체 화합물은, The method of claim 1, wherein the gallium precursor compound, 아래의 화학식 2의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized by having a structure of the formula (2) below. < 화학식 2 ><Formula 2>
Figure 112009001639406-PAT00010
Figure 112009001639406-PAT00010
(화학식 1에서 상기 R1, R2, R3는 methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec-buthoxy 중의 어느 한 작용기임.)In Formula 1, R1, R2, and R3 are methyl, ethyl, buthyl, tert-buthyl, iso-buthyl, sec-buthyl, methoxy, ethoxy, propoxy, iso-propoxy, buthoxy, tert-buthoxy, iso-buthoxy, sec is a functional group of -buthoxy.)
제7항에 있어서, 상기 갈륨 전구체 화합물은, The method of claim 7, wherein the gallium precursor compound, Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, Dimethyltertiarybutylgallium 으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethyltertiyl is made of a mixture of two or more compounds made of CImethylgaltigalyl group, which is made of a mixture of two or more of the methyl methyl . 제1항에 있어서, 상기 셀레늄 전구체 화합물은, The method of claim 1, wherein the selenium precursor compound, 아래의 화학식 3의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized by having a structure of the formula (3) below. < 화학식 3 ><Formula 3>
Figure 112009001639406-PAT00011
Figure 112009001639406-PAT00011
(상기 화학식 3에서 R1, R2는 H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl 중의 어느 한 작용기임.)(In Formula 3, R1, R2 is any one of H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl.)
제1항에 있어서, 상기 셀레늄 전구체 화합물은, The method of claim 1, wherein the selenium precursor compound, 아래의 화학식 4의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized by having a structure of the formula (4) below. < 화학식 4 ><Formula 4>
Figure 112009001639406-PAT00012
Figure 112009001639406-PAT00012
(상기 화학식 3에서 R1, R2는 H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl 중의 어느 한 작용기임.)(In Formula 3, R1, R2 is any one of H, metyl, ethyl, propyl, iso-propyl, butyl, tert-butyl, sec-butyl.)
제1항에 있어서, 상기 셀레늄 전구체는, The method of claim 1, wherein the selenium precursor, Dimethylselenide, Diethylselenide, Diisoprylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, Tertiarybutylselenol 로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.Dimethylselenide, Diethylselenide, Diisoprylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, Tertiarybutylselenol, characterized in that the CIGS thin film manufacturing method characterized in that the mixture. 제1항에 있어서, The method of claim 1, 상기 구리 전구체 또는 인듐 전구체 또는 갈륨 전구체는, The copper precursor or indium precursor or gallium precursor, 캐니스터 온도를 -40 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized in that the supply while maintaining the canister temperature -40 ~ 200 ℃, supply line temperature at room temperature ~ 400 ℃. 제1항에 있어서, 상기 셀레늄 전구체는,The method of claim 1, wherein the selenium precursor, 캐니스터 온도를 -60 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized in that the supply while maintaining the canister temperature -60 ~ 200 ℃, supply line temperature at room temperature ~ 400 ℃. 제1항에 있어서, The method of claim 1, 상기 기판의 온도를 상온 ~ 600℃로 유지하는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized in that the temperature of the substrate is maintained at room temperature ~ 600 ℃. 제1항에 있어서, 상기 제1, 2, 3 퍼징 단계에서는, The method of claim 1, wherein in the first, second and third purging steps, 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 암모니아(NH3) 로 이루어지는 군에서 선택되는 어느 하나의 퍼징가스를 상기 반응 챔버 내부로 주입하고, 반응 챔버에 마련되는 진공 펌프를 이용하여 반응 챔버 내에 존재하는 가스를 흡입하여 제거하는 것을 특징으로 하는 CIGS 박막 제조방법.A purging gas selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), and ammonia (NH 3 ) is injected into the reaction chamber, and the reaction chamber is injected into the reaction chamber. CIGS thin film manufacturing method, characterized in that for removing the gas present in the reaction chamber by using a vacuum pump provided.
KR1020090002206A 2009-01-12 2009-01-12 Method for fabricating cigs thin layer by ald KR101071544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090002206A KR101071544B1 (en) 2009-01-12 2009-01-12 Method for fabricating cigs thin layer by ald

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090002206A KR101071544B1 (en) 2009-01-12 2009-01-12 Method for fabricating cigs thin layer by ald

Publications (2)

Publication Number Publication Date
KR20100082915A true KR20100082915A (en) 2010-07-21
KR101071544B1 KR101071544B1 (en) 2011-10-10

Family

ID=42642819

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090002206A KR101071544B1 (en) 2009-01-12 2009-01-12 Method for fabricating cigs thin layer by ald

Country Status (1)

Country Link
KR (1) KR101071544B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245572A (en) * 2012-02-27 2014-12-24 日本麦可罗尼克斯股份有限公司 Method for fabricating alloy for CIGS solar cell
KR20150004651U (en) * 2014-06-20 2015-12-30 어플라이드 머티어리얼스, 인코포레이티드 Plasma process chamber with separated gas feed lines
KR20160001346A (en) * 2014-06-27 2016-01-06 신웅철 The method for forming the igzo thin layer and the igzo thin layer formed thereby
US9281094B2 (en) 2013-03-27 2016-03-08 Korea University Research And Business Foundation Method of forming copper film on Mo/SUS flexible substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115304B2 (en) * 2004-02-19 2006-10-03 Nanosolar, Inc. High throughput surface treatment on coiled flexible substrates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245572A (en) * 2012-02-27 2014-12-24 日本麦可罗尼克斯股份有限公司 Method for fabricating alloy for CIGS solar cell
CN104245572B (en) * 2012-02-27 2016-02-17 日本麦可罗尼克斯股份有限公司 The making method of CIGS alloy used for solar batteries
US9281094B2 (en) 2013-03-27 2016-03-08 Korea University Research And Business Foundation Method of forming copper film on Mo/SUS flexible substrate
KR20150004651U (en) * 2014-06-20 2015-12-30 어플라이드 머티어리얼스, 인코포레이티드 Plasma process chamber with separated gas feed lines
KR20160001346A (en) * 2014-06-27 2016-01-06 신웅철 The method for forming the igzo thin layer and the igzo thin layer formed thereby

Also Published As

Publication number Publication date
KR101071544B1 (en) 2011-10-10

Similar Documents

Publication Publication Date Title
FI123594B (en) Apparatus and Method for Atomic Layer Cultivation in Far Plasma Using DC-Bia
US20080305269A1 (en) Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment
WO2009042052A3 (en) Process for forming thin film encapsulation layers
KR20140003776A (en) Preparation of a high resistivity zno thin film
WO2000063956A1 (en) Method and apparatus for thin-film deposition, and method of manufacturing thin-film semiconductor device
KR20130092352A (en) Doping method of atomic layer deposition
KR101071544B1 (en) Method for fabricating cigs thin layer by ald
US20130069207A1 (en) Method for producing a deposit and a deposit on a surface of a silicon substrate
CN109786502A (en) A kind of graphite boat saturation process for polycrystalline solar cell
CN109536921A (en) A method of regulating and controlling silicon oxide film stoichiometric ratio using plasma enhanced atomic layer deposition
Ozgit-Akgun et al. Plasma-enhanced atomic layer deposition of III-nitride thin films
KR101623923B1 (en) Method for fabricating buffer layer of thin film type solar cell
KR101071545B1 (en) Method for fabricating cigs thin layer
KR101472409B1 (en) Preparation of CIS thin film solar cells using chemical vapor depositions
KR101867310B1 (en) Chalcopyrite Thin Film Solar Cell Manufacturing Method
KR20110116354A (en) Cigt thin layer and method for fabricating thereof
WO2011111889A1 (en) Method for manufacturing a cigs thin film
KR100455070B1 (en) METHOD FOR GROWING C-AXIS ORIENTED ZnO FILM USING ATOMIC LAYER DEPOSITION AND OPTICAL DEVICE USING THE SAME
WO2010126274A2 (en) Cigt thin film and method for fabricating same
KR20110046433A (en) Method of preparing CIGT-based chalcopyrite compound semiconductor thin-film
CN108977887B (en) Method for growing single crystal indium nitride
KR20180056676A (en) A solar cell comprising a CIGS light absorbing layer and a method for manufacturing the same
KR20100118625A (en) Cigt-based cahlcopyrite compound semiconductor thin-film and method of preparing thereof
CN1811018A (en) Epitaxial growth process of high-crystallinity monocrystal indium nitride film
EP4340047A1 (en) Method for manufacturing cigs light absorption layer for solar cell through chemical vapor deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160805

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170926

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 8