KR20100071213A - Non-directional electrical steel sheets having low anisotropy and manufacturing method thereof - Google Patents

Non-directional electrical steel sheets having low anisotropy and manufacturing method thereof Download PDF

Info

Publication number
KR20100071213A
KR20100071213A KR1020080129846A KR20080129846A KR20100071213A KR 20100071213 A KR20100071213 A KR 20100071213A KR 1020080129846 A KR1020080129846 A KR 1020080129846A KR 20080129846 A KR20080129846 A KR 20080129846A KR 20100071213 A KR20100071213 A KR 20100071213A
Authority
KR
South Korea
Prior art keywords
steel sheet
electrical steel
iron loss
oriented electrical
annealing
Prior art date
Application number
KR1020080129846A
Other languages
Korean (ko)
Other versions
KR101089305B1 (en
Inventor
배병근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080129846A priority Critical patent/KR101089305B1/en
Publication of KR20100071213A publication Critical patent/KR20100071213A/en
Application granted granted Critical
Publication of KR101089305B1 publication Critical patent/KR101089305B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A non-oriented electric steel sheet and the manufacturing method thereof in which anisotropy smalls are provided to reduce manufacturing method by increasing the magnetism. CONSTITUTION: A non-oriented electric steel sheet comprises Si 1.0~4.0 weight%, Mn 0.1~0.5 weight%, P 0.01~0.1 weight%, Al 0.1~1.0 weight%, C+S+Ti+N 0.004~0.011 weight%, Sn 0.01~0.10 weight%, the rest Fe and other inevitable impurities. A grain size of a steel sheet is smaller than (Si+Al)x45.

Description

이방성이 작은 무방향성 전기강판 및 그 제조방법{Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof}Non-directional Electrical Steel Sheets Having Low Anisotropy and Manufacturing Method

본 발명은 모터, 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는, 자성이 우수한 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a method for manufacturing non-oriented electrical steel sheet used as an iron core of an electric device such as a motor, a transformer, and more particularly, to a non-oriented electrical steel sheet excellent in magnetic properties and a method for manufacturing the same.

무방향성 전기강판은 모터 및 발전기 등의 회전기기와 정지기중 소형 변압기의 철심용 재료로 사용되고 있으며, 전기에너지를 회전에너지로 바꾸는데 있어서 에너지손실이 가장 커질 수 있는 부품이어서 전기제품 설계에서 가장 중요한 부품이 된다. 철심은 전기를 부가하여 자기장을 걸어줄 때 자기장의 크기를 크게 하여 주기 때문에 사용하며, 무방향성 전기강판의 철손이 낮으면 전기손실도 줄일 수 있다. 최근 전기자동차를 구동하는 모터용 전기강판에 관심이 집중되고 있는데, 가장 중요한 재료가 무방향성 전기강판이기 때문이다.  Non-oriented electrical steel is used as a core material for small transformers in rotating machines and motors such as motors and generators.The most important component in the design of electrical products is that the energy loss can be the largest in converting electrical energy into rotational energy. do. The iron core is used because it increases the size of the magnetic field when the electric field is applied to the magnetic field. If the iron loss of the non-oriented electrical steel sheet is low, the electrical loss can be reduced. Recently, attention has been focused on electric steel sheets for motors driving electric vehicles, since the most important material is non-oriented electrical steel sheets.

철손은 두께를 낮추거나 합금원소를 많이 첨가하면 낮아질 수도 있지만, 불순 물이 적은 청정강으로 제조하거나, 추가적인 원소를 첨가하여 자성을 향상할 수 있는 강으로 제조하기도 하였다. 전자의 경우 제조공정에서 추가공정에 대한 원가가 증가되며, 후자의 경우 추가로 첨가하는 원소에 대한 비용이 증가하게 된다. Iron loss may be lowered by lowering the thickness or by adding a large amount of alloying elements. However, iron loss may be made of clean steel with less impurity, or may be made of steel that can improve magnetism by adding additional elements. In the former case, the cost of the additional process is increased in the manufacturing process, and in the latter case, the cost of additional elements is increased.

무방향성 전기강판에서 요구되는 주요 자기적 특성은 철손이 낮고 자속밀도가 높으며, 압연방향과 압연수직방향 및 원주방향으로의 자기적 특성에 편차가 적어야 한다. 무방향성 전기강판은 압연 방향 또는 압연방향 대비 기타의 방향과의 편차가 작아야 하며, 결국 이방성이 낮아야 회전이 용이하기 때문이다. 그 중에서도 철손은 이방성이 낮아야 회전이 용이하기 때문에 중요한 인자로 판단된다. The main magnetic properties required for non-oriented electrical steel sheets are low iron loss, high magnetic flux density, and small deviations in magnetic properties in the rolling direction, the rolling vertical direction and the circumferential direction. The non-oriented electrical steel sheet should have a small deviation from the rolling direction or other directions compared to the rolling direction, and, in the end, rotation is easy when the anisotropy is low. Among them, iron loss is considered to be an important factor because it is easy to rotate only when the anisotropy is low.

자기적 특성에 영향을 미치는 인자로는 첨가 및 불가피하게 첨가되는 불순물성분, 재료의 결정립크기 등이 있으며, 일본특허공보 제2700505호는 Sn, Ni 및 Cu가 첨가되는 문제가 있다.Factors affecting the magnetic properties include impurity components added and inevitably added, grain size of materials, and the like, and Japanese Patent No. 2700505 has a problem in that Sn, Ni, and Cu are added.

이방성에 대해서는 일본공개특허 2008-127659 은 압연방향 대비 55도 각도에서의 이방성 특성이 우수한 소재를 요구하고 있다. 일본공개특허 2006-045613 는 압연 방향 대비 45도에서의 자기특성이 우수한 소재를 요구하고 있다. As for anisotropy, Japanese Laid-Open Patent Publication No. 2008-127659 demands a material having excellent anisotropy at an angle of 55 degrees relative to the rolling direction. Japanese Laid-Open Patent Publication 2006-045613 requires a material having excellent magnetic properties at 45 degrees relative to the rolling direction.

본 발명은 상기한 종래기술의 문제점을 해결하고, 이방성이 작고 자기특성이 우수한 무방향성 전기강판을 제공하는 것을 목적으로 한다.An object of the present invention is to solve the above problems of the prior art and to provide a non-oriented electrical steel sheet having low anisotropy and excellent magnetic properties.

상기 목적을 달상하기 위한 본 발명은. 중량%로 Si:1.0~4.0%, Mn:0.1~0.5%, P:0.01~0.1%, Al:0.1~1.0%, (C+S+Ti+N): 0.004~0.011%, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되고, 강판의 결정립 크기(㎛)가 (Si+Al)x45 보다 작고, 강판의 압연방향의 철손(L)과 압연방향의 직각방향의 철손(C)으로 구성되는 철손 편차가 (C-L)x100/(C+L)=10%를 만족하는 것을 특징으로 한다. The present invention for achieving the above object. By weight% Si: 1.0 ~ 4.0%, Mn: 0.1 ~ 0.5%, P: 0.01 ~ 0.1%, Al: 0.1 ~ 1.0%, (C + S + Ti + N): 0.004 ~ 0.011%, balance Fe and others It is composed of impurity added unavoidably, and the grain size (μm) of the steel sheet is smaller than (Si + Al) x 45, and the iron loss is composed of iron loss (L) in the rolling direction and iron loss (C) in the right direction in the rolling direction. Deviation satisfies (CL) x100 / (C + L) = 10%.

또한, 상기 강판은, Sn: 0.01~0.10%를 더 포함하는 것을 특징으로 한다. In addition, the steel sheet is characterized in that it further comprises Sn: 0.01 ~ 0.10%.

본 발명의 이방성이 작은 무방향성 전기강판의 제조방법은, 상기 성분조성으로 된 슬라브를 재가열하고 열간압연한 후, 열연판 소둔을 행하거나 생략하고, 냉간압연한 다음, 1단 소둔로와 2단 소둔로로 구분된 소둔로에서 최종 소둔하는 것을 특징으로 한다. In the method for producing a non-oriented electrical steel sheet having a small anisotropy of the present invention, after reheating and hot rolling the slab of the composition, hot rolled sheet annealing or omitting, cold rolling, and then one stage annealing furnace and two stages The final annealing is characterized in that the annealing furnace divided into annealing furnace.

여기서, 상기 슬라브는 Sn:0.01~0.10%를 더 포함하는 것을 특징으로 하고, 상기 1단 소둔로의 온도는 800~1050oC로 하고, 2단 소둔로의 온도는 850~1,100oC의 온도범위로 하는 것을 특징으로 하며, 상기 1단 소둔로와 2단 소둔로 사이에는 연결통로로 연결되어 연속 소둔되는 것을 특징으로 한다.Here, the slab is characterized in that it further comprises Sn: 0.01 ~ 0.10%, the temperature of the first stage annealing furnace is 800 ~ 1050 o C, the temperature of the two stage annealing furnace is the temperature of 850 ~ 1,100 o C It characterized in that the range, between the first stage annealing path and the second stage annealing path is characterized in that the continuous connection is connected by a connecting passage.

본 발명은 무방향성 전기강판에서 이방성이 작아지도록 불순물원소의 양과 첨가하는 (Si+Al)의 원소의 양을 적절히 조합하여 철손의 편차를 감소시켜 자성을 향 상시키는 방법을 제공한다. 따라서 불순물원소의 양을 과도하게 낮추지 않고도 자성을 향상시킬 수 있어서 원가도 절감할 수 있는 강판을 제공한다.The present invention provides a method of improving magnetic properties by reducing iron loss by appropriately combining the amount of impurity elements and the amount of (Si + Al) added to reduce anisotropy in non-oriented electrical steel sheets. Therefore, it is possible to improve the magnetism without excessively reducing the amount of impurity elements to provide a steel sheet that can reduce the cost.

본 발명은 중량%로 Si:1.0~4.0%, Mn:0.1~0.5%, P:0.01~0.10%, Al:0.1~1.0%, (C+S+Ti+N): 0.004~0.011%, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되고, 열간압연, 열연판 소둔 또는 생략하고, 냉간압연하고 소둔하여 제조하는 강판에서 성분과 결정립계의 수식(1): (Si+Al)x45=강판의 결정립 크기(GS), 및 강판의 압연방향의 철손 (L)과 압연방향의 직각방향의 철손(C)으로 구성되는 철손편차수식(2): (C-L)x100/(C+L)=10%를 만족하는 이방성이 작은 무방향성 전기강판을 제공한다.The present invention is Si: 1.0 ~ 4.0%, Mn: 0.1 ~ 0.5%, P: 0.01 ~ 0.10%, Al: 0.1 ~ 1.0%, (C + S + Ti + N): 0.004 ~ 0.011%, remainder Formula (1): (Si + Al) x 45 = crystal grains Iron loss deviation equation (2) consisting of size (GS) and iron loss (L) in the rolling direction of the steel plate and iron loss (C) in the right direction in the rolling direction: (CL) x100 / (C + L) = 10% It provides a non-oriented electrical steel sheet with a small anisotropy to satisfy.

또한 상기한 성분에서 Sn:0.01~0.10%를 더 포함하는 이방성이 작은 무방향성 전기강판을 제공한다.In addition, it provides a non-oriented electrical steel sheet having a small anisotropy further comprises Sn: 0.01 ~ 0.10% in the above components.

또한 상기 성분 및 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되는 강판에서 열간압연, 열연판 소둔 또는 생략하고, 냉간압연하고 최종 소둔하는 무방향성 전기강판 제조공정에서, 최종 소둔할 때 소둔로는 1단소둔로와 2단소둔로로 구분하며, 1단소둔로의 온도는 800~1050℃로 하고 2단소둔로의 온도는 850~1100℃의 온도범위로 하는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판의 제조방법을 제공한다. In the non-oriented electrical steel sheet manufacturing process of hot rolling, hot-rolled sheet annealing or omitting, cold rolling and final annealing in the steel sheet composed of the above components and the balance Fe and other unavoidable impurities, annealing furnace when the final annealing 1 Single annealing furnace and two stage annealing furnace, the temperature of the first stage annealing furnace is 800 ~ 1050 ℃ and the temperature of the second stage annealing furnace is characterized in that the temperature range of 850 ~ 1100 ℃ small anisotropic small It provides a method for manufacturing electrical steel sheet.

무방향성 전기강판에서 압연방향 대비 다른 방향의 편차가 적으려면 결정립 크 기가 작은 것이 필요한 것으로 조사되었다. 그런데 또한 무방향성 전기강판은 결정립이 과도하게 작으면 철손이 증가되는 문제도 발생하였는데, 철손 중에서 특히 이력손실이 증가되는 현상으로 나타났다. 평균자성값을 향상시키기 위해서는 결정립을 성장시켜야 하나 압연방향 대비 자성의 편차를 감소시키기 위해서는 결정립을 작게 하는 것이 요구되었다. 그런데 Si과 Al의 합금원소가 많이 첨가되면 결정립이 크게 성장되며, 또한 불순물원소 C, S, Ti 및 N 의 량이 감소되어도 결정립이 크게 성장되는 것으로 조사되었다. 그런데 결정립이 과도하게 크면 자성의 편차가 발생되고 자성도 나빠지는 것으로 나타났다. 또한 첨가원소중에서 Sn은 결정립계에 편석하여 결정립을 조정할 수 있도록 하기 위하여 첨가하였다. It was investigated that a small grain size is required for the non-oriented electrical steel sheet to have a small deviation in the other direction from the rolling direction. However, the non-oriented electrical steel sheet also had a problem that the iron loss is increased when the grain is excessively small, especially hysteresis loss among the iron loss. In order to improve the average magnetic value, grains have to be grown, but in order to reduce the variation of magnetism in the rolling direction, it is required to make the grains small. However, when a large amount of alloying elements of Si and Al was added, grains were greatly grown. Also, grains were greatly grown even when the amounts of impurity elements C, S, Ti, and N were reduced. However, excessively large grains resulted in deviations of magnetism and deterioration of magnetism. In addition, Sn was added in order to adjust the grains by segregation in the grain boundary.

불순물원소 (C+S+Ti+N)의 량을 줄이고, 합금원소 중에서 합금원소의 양과 결정립 크기를 적절히 함으로써 철손편차를 줄일 수 있는 것으로 나타났다. It was shown that the iron loss deviation can be reduced by reducing the amount of impurity elements (C + S + Ti + N) and by appropriately adjusting the amount and grain size of the alloying elements in the alloying elements.

발명의 구성 성분에서 Si과 Al을 합한 성분과 결정립 크기가 어떤 수식 관계(1)가 있는 것으로 나타났는데, Si과 Al은 본 발명의 성분계에서 결정립을 성장시키는 대표적인 원소로 조사되어 결정립 크기가 아래와 같이 나타났다. 결정립을 보다 크게 성장시킬 수 있지만 불순물원소를 이용하여 본 발명의 범위로 성장시키고 자성의 편차를 감소시키는 것이 바람직하다. (Si+Al)에 45를 곱한 값 보다 결정립이 크면 이방성이 증가되는 것으로 나타났고, 작으면 이방성이 작은 것으로 조사되었다.In the constituents of the present invention, it was found that there is a certain relationship between the sum of Si and Al and the grain size (1) .Si and Al are irradiated as representative elements for growing grains in the component system of the present invention. appear. Although it is possible to grow crystal grains larger, it is preferable to use impurity elements to grow within the scope of the present invention and to reduce the deviation of magnetic properties. When the grain size was larger than the product of (Si + Al) times 45, the anisotropy increased.

(1): (Si+Al)x45=강판의 결정립 크기 (단위:㎛)(1): (Si + Al) x 45 = grain size of the steel sheet (unit: 탆)

또한 본 발명에서는 강판의 압연방향의 철손(L)과 압연방향과 직각 방향의 철손(C)으로 구성되는 철손편차 수식(2)을 이용하였다. 압연방향과 압연방향과 수직방향은 쉽게 방향을 측정할 수 있으며, 압연방향은 자성이 가장 좋으며 압연방향의 수직방향은 자성이 나빴기 때문에 이방성을 측정할 수 있는 잣대로 사용되었다.In the present invention, the iron loss deviation formula (2) consisting of iron loss (L) in the rolling direction of the steel sheet and iron loss (C) in the direction perpendicular to the rolling direction was used. The rolling direction and the rolling direction and the vertical direction can easily measure the direction. The rolling direction is the best magnetic and the vertical direction of the rolling direction is the bad magnet.

(2): (C-L)x100/(C+L)=10%(2): (C-L) x100 / (C + L) = 10%

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

불순물원소 (C+S+Ti+N)의 양을 줄이고, 합금원소 중에서 비저항을 증가시켜 와류손실을 낮추는 (Si+Al)의 양과 결정립 크기를 적절히 함으로써 철손편차를 줄일 수 있도록 하기 위하여 성분원소를 적절히 조정하였다. In order to reduce iron loss by appropriately reducing the amount of impurity element (C + S + Ti + N) and increasing the specific resistance among alloying elements to reduce the eddy current loss and the grain size, It was adjusted appropriately.

먼저, 본 발명의 성분제한 이유부터 살펴본다.First, look at the reasons for limiting the components of the present invention.

(C+S+Ti+N): 0.004~0.011%,(C + S + Ti + N): 0.004-0.011%,

C, S, Ti, N는 불가피하게 첨가될 수 있는 불순물원소이다. 4개의 원소는 적어도 0.011%이하로 함유되도록 한다. 과도하게 낮아도 자성의 편차가 커져서 자성이 나빠지는 것으로 조사되었다. 0.004%이하로 되면 결정립이 과도하게 커져서 자성편차가 커지며, 0.0011%이상으로 첨가되면 결정립이 과도하게 작아져서 자성이 나빠지는 것으로 조사되었다. 각각의 원소별 상한치는 다음과 같다. C, S, Ti and N are impurity elements that can be added unavoidably. The four elements should be contained at least 0.011%. Even if it is excessively low, the magnetism is worsened because the deviation of the magnetism increases. If it is less than 0.004%, the grain size becomes excessively large and the magnetic deviation increases, and if it is added more than 0.0011%, the grain size becomes excessively small and the magnetism deteriorates. The upper limit for each element is as follows.

C은 최종제품에서 자기시효를 일으키며, 탄화물도 형성하여 사용 중 철손을 높임으로 가능한한 0.004%이하로 함유한다.   C causes self-aging in the final product, and also forms carbides, which contain less than 0.004% as much as possible by increasing iron loss during use.

S는 미세한 석출물인 MnS를 형성하여 철손을 높임으로 가능한 낮게 관리하 는 것이 유리하기 때문에 0.004중량%를 초과하지 않도록 한다.S should not exceed 0.004% by weight because it is advantageous to form MnS, a fine precipitate, to be managed as low as possible by increasing iron loss.

N는 미세하고 긴 AlN석출물을 형성하여 결정립성장을 억제하므로 적게 함유시키며, 본 발명에서는 0.004중량% 이하로 제한하는 것이 바람직하다.Since N forms fine and long AlN precipitates to suppress grain growth, the content of N is less. In the present invention, N is preferably limited to 0.004% by weight or less.

Ti는 미세한 TiN, TiC 의 석출물을 만들어 결정립성장을 억제하기 때문에 본 발명에서는0.001%~0.005%이하로 한다. 또한 이 보다 많이 첨가되면 과도하게 많은 미세한 석출물이 발생되어 집합조직을 열화시켜 철손을 증가시킨다. Ti is less than 0.001% to 0.005% in the present invention because fine precipitates of TiN and TiC are made to suppress grain growth. In addition, when more than this is added, too many fine precipitates are generated to deteriorate the texture and increase iron loss.

Si: 1.0~4.0중량% Si: 1.0-4.0 wt%

상기 Si는 비저항을 증가시켜서 철손중 와류손실을 낮추는 성분이기 때문에 첨가하며, Al과 합하여 결정립을 성장시키서 자성을 결정하는 중요한 원소이다. 4.0중량%를 초과하여 첨가되면 냉간압연성이 떨어져 판파단이 일어나기 때문에1.0~4.0중량%로 제한하는 것이 바람직하다. Since Si is a component that increases the specific resistance and lowers the eddy current loss during iron loss, Si is an important element that determines the magnetism by growing crystal grains in combination with Al. If it is added in excess of 4.0% by weight, cold rolling property is lowered and plate breaking occurs, so it is preferable to limit it to 1.0 to 4.0% by weight.

P: 0.01%~0.1중량%P: 0.01% to 0.1% by weight

상기 P는 비저항을 증가시켜 철손을 낮추므로 첨가하기도 하지만, P는 과다하면 냉간압연성이 나빠짐으로 0.1중량% 이하로 제한하는 것이 바람직하다. 그런데 0.01% 이하로 결정립이 과도 증가되어 자성편차가 커짐으로 0.01% 이상 첨가한다. The P is added to increase the specific resistance to lower the iron loss, but if P is excessively limited to 0.1 wt% or less due to poor cold rolling. However, the crystal grains are excessively increased to 0.01% or less and the magnetic deviation increases, so 0.01% or more is added.

Mn: 0.1~0.5중량% Mn: 0.1-0.5 wt%

상기Mn은 집합조직을 발달시키며, 미세한 석출물인 MnS의 발생을 어제하기 때문에 첨가하며, 0.01%이하로 첨가시 집합조직이 나빠지며, 0.5% 이상 첨가하면 첨가량에 비해 철손의 감소량이 작으며 냉간압연성을 해친다. 따라서 Mn은 0.1~0.5 중량% 첨가하는 것이 바람직하다.The Mn develops the texture of the texture, and is added since yesterday to the generation of fine precipitates, MnS, and when added to less than 0.01%, the texture becomes worse, and when 0.5% or more is added, the decrease in iron loss is small compared to the amount of addition and cold rolling. Harms the castle. Therefore, Mn is preferably added 0.1 to 0.5% by weight.

Al: 0.1~1.0중량%Al: 0.1-1.0 wt%

상기 Al은 비저항을 증가시켜 와류손실을 낮추는데 유효한 성분이어서 첨가하며, 또한0.1%이하로 첨가하면 결정립성장을 억제하는 석출물인 AlN이 발생되며, 또한 1.0중량%를 초과하여 첨가되면 첨가량에 비해 자성향상의 정도가 떨어지므로, 1.0중량%로 제한하는 것이 바람직하다. 따라서 Al은 0.1~1.0%로 첨가한다. The Al is an effective ingredient to increase the specific resistance and lower the eddy current loss, and when added below 0.1%, AlN is a precipitate that inhibits grain growth, and when it is added in excess of 1.0% by weight, the magnetism is improved compared to the added amount. Since the degree of falls, it is preferable to limit to 1.0% by weight. Therefore, Al is added in 0.1 ~ 1.0%.

Sn: 0.01~0.1중량% Sn: 0.01-0.1 wt%

상기 Sn은 결정립계에 편석하여 결정립의 성장을 억제하며 집합조직을 개선하기 때문에 첨가하며 0.01%이하로 첨가되면 그 효과가 없으며, 0.1%이상 첨가하면 압연성상이 나빠지기 때문에 0.01~0.1%로 한다.The Sn is added to the grain boundary to suppress the growth of grains and improve the texture of the grains. If Sn is added at 0.01% or less, the Sn is not more than 0.01%.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다. In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

상기와 같이 조성되는 강 슬라브를 통상의 조건인 1200℃이하로 재가열한 다음 열간압연한다. 열간압연하는 방법은, 조압연하고 사상압연을 실시하며, 사상압연의 마무리압연은 페라이트상에서 종료하며 판형상 교정을 위하여 최종 합하율은 40%이하로 실시한다. The steel slab formed as described above is reheated to 1200 ° C. or lower under normal conditions, and then hot rolled. The hot rolling method is rough rolling and finishing rolling, finishing finishing of finishing rolling is finished on ferrite, and final loading rate is 40% or less for straightening of plate.

상기와 같이 제조된 열연판은 680℃이하에서 권취하고, 공기중에서 냉각한다. 열연판소둔은 900~1100℃의 범위로 할 수 있다. The hot rolled sheet prepared as described above is wound up at 680 ° C. or lower and cooled in air. Hot-rolled sheet annealing can be made into the range of 900-1100 degreeC.

상기 권취된 열연판은 소둔 및 산세후 냉간압연한다. 냉간압연은 0.10mm에서 0.70mm의 두께로 최종 압연한다. 필요시 1차 냉간압연후 중간소둔후 2차 냉간압연할 있으며, 최종 압하율은 50~95%의 범위로 한다. 최종 냉간압연된 강판은 2단소 둔한다. 1단소둔과 2단소둔은 소둔로를 분리하며, 1단소둔하고 2단소둔한다. 1단소둔온도는 2단소둔온도보다 같거나 낮게 한다.The wound hot rolled sheet is cold rolled after annealing and pickling. Cold rolling is finally rolled to a thickness of 0.10mm to 0.70mm. If necessary, the first cold rolling may be followed by the second cold rolling after the intermediate annealing, and the final rolling rate may be in the range of 50 to 95%. The final cold rolled steel sheet is blunt two stages. The first stage annealing and the second stage annealing separate the annealing path, and the first stage annealing and the second stage annealing are performed. The first stage annealing temperature is equal to or lower than the second stage annealing temperature.

본 발명에서 1단소둔의 온도는 800~1050℃로 하고 2단소둔의 온도는 850~1100℃의 온도범위로 한다. 1단소둔과 2단소둔을 구분하는 것은 2단 소둔에서 안정된 균열온도를 확보하여 자성의 편차를 감소하기 위함이며, 그 구분은 1단소둔과 2단소둔의 소둔로를 구분하여야 하며, 소둔로 사이에 연결통로를 만들어 연속소둔할 수 있도록 한다. 1단소둔의 온도가 과다하게 높으면 압연방향과 압연수직방향의 자성의 편차가 커지기 때문에 1단소둔의 온도는 800~1050℃로 한다. 2단소둔의 온도는 결정립을 성장시키고 자성의 편차를 감소시키기 위하여 1단소둔과 구분하며, 850~1100℃로 소둔한다. In the present invention, the temperature of the first stage annealing is 800 ~ 1050 ℃ and the temperature of the second stage annealing is set to a temperature range of 850 ~ 1100 ℃. The distinction between 1-stage annealing and 2-stage annealing is to reduce the magnetic deviation by securing stable cracking temperature in 2-stage annealing. Create a connecting passage between them so that they can be continuously annealed. If the temperature of the one-stage annealing is excessively high, the deviation of the magnetism in the rolling direction and the rolling vertical direction increases, so the temperature of the one-stage annealing is set to 800 to 1050 ° C. The temperature of the two-stage annealing is separated from the one-stage annealing in order to grow the grains and reduce the deviation of the magnetic, and anneal at 850 ~ 1100 ℃.

상기 소둔판은 절연피막처리 후 고객사로 출하된다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다. 고객사는 강판을 가공 후 그대로 사용할 수 있다. The annealing plate is shipped to the customer after the insulation coating treatment. The insulating coating may be treated with an organic, inorganic and organic-inorganic composite coating, and may be treated with other insulating coating. The customer can use the steel plate as it is after processing.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1]Example 1

하기 표 1과 같이 조성되는 강 슬라브를 1150℃에서 가열하고, 열간압연시 마무리압연을 880℃에서 하였다. 열간압연의 사상압연시 마지막 스탠드에서의 압하율은 15%이었고, 2.2mm의 두께로 압연한후, 620℃에서 권취하였다. 공기중에서 권취 냉각한 열연강판은 1000℃에서 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 소둔하되 1단소둔온도 및 2단소둔온도는 각각 980℃와 1020℃로 하였고 2단소둔로에서 1분간 유지하였다. 상기 소둔판은 절단 후 철손측정 및 결정립을 측정하였으며, 그 결과는 하기 표 2와 같다.The steel slab, as shown in Table 1 below, was heated at 1150 ° C., and finish rolling at hot rolling was performed at 880 ° C. The rolling reduction in the last stand during filamentous rolling of hot rolling was 15%, rolled to a thickness of 2.2 mm, and wound up at 620 ° C. The hot rolled steel sheet wound and cooled in air is annealed at 1000 ℃, pickled, cold rolled to 0.35mm thickness, and annealed, but the first stage annealing temperature and the second stage annealing temperature are 980 ℃ and 1020 ℃, respectively. Hold for 1 minute. The annealing plate was measured after the iron loss measurement and grains, the results are shown in Table 2.

강명칭Gang name CC SiSi SS PP MnMn AlAl NN TiTi SnSn C+S+Ti+NC + S + Ti + N 비교강AComparative Steel A 0.0035 0.0035 2.73 2.73 0.0045 0.0045 0.030.03 0.250.25 0.70 0.70 0.00250.0025 0.0009 0.0009 0.0250.025 0.0114 0.0114 비교강BComparative Steel B 0.0015 0.0015 2.71 2.71 0.0005 0.0005 0.020.02 0.260.26 0.20 0.20 0.00090.0009 0.0009 0.0009 -- 0.0038 0.0038 발명강AInventive Steel A 0.0015 0.0015 2.70 2.70 0.0015 0.0015 0.030.03 0.270.27 0.30 0.30 0.00120.0012 0.0017 0.0017 -- 0.0059 0.0059 발명강BInventive Steel B 0.0030 0.0030 2.72 2.72 0.0020 0.0020 0.060.06 0.270.27 0.51 0.51 0.00110.0011 0.0035 0.0035 0.0250.025 0.0076 0.0076 발명강CInvention Steel C 0.0026 0.0026 2.73 2.73 0.0010 0.0010 0.040.04 0.250.25 0.70 0.70 0.00120.0012 0.0030 0.0030 0.030.03 0.0078 0.0078 발명강DInventive Steel D 0.0021 0.0021 1.60 1.60 0.0025 0.0025 0.090.09 0.450.45 0.84 0.84 0.00110.0011 0.0016 0.0016 0.050.05 0.0073 0.0073 발명강EInventive Steel E 0.0026 0.0026 3.20 3.20 0.0020 0.0020 0.070.07 0.290.29 0.71 0.71 0.00110.0011 0.0016 0.0016 0.0250.025 0.0073 0.0073 비교강CComparative Steel C 0.0045 0.0045 3.21 3.21 0.0035 0.0035 0.020.02 0.290.29 0.71 0.71 0.00210.0021 0.0023 0.0023 0.0250.025 0.0124 0.0124

구분division 강명칭Gang name (Si+Al)(Si + Al) (Si+Al)
x 45
(Si + Al)
x 45
결정립 크기(㎛)Grain size (㎛) 철손 (W15/50)Iron loss (W15 / 50) 철손편차
(C-L)x100/ (C+L)
Iron loss
(CL) x100 / (C + L)
자속밀도
(B50)
Magnetic flux density
(B50)
비교재1Comparative Material 1 비교강AComparative Steel A 3.43 3.43 154 154 6060 2.50 2.50 88 1.67 1.67 비교재2Comparative Material 2 비교강BComparative Steel B 2.91 2.91 131 131 160160 2.45 2.45 1414 1.68 1.68 발명재1Invention 1 발명강AInventive Steel A 3.00 3.00 135 135 110110 2.10 2.10 66 1.69 1.69 발명재2Invention 2 발명강BInventive Steel B 3.23 3.23 145 145 125125 2.15 2.15 55 1.70 1.70 발명재3Invention 3 발명강CInvention Steel C 3.43 3.43 154 154 115115 2.15 2.15 44 1.72 1.72 발명재4Invention 4 발명강DInventive Steel D 2.44 2.44 110 110 7575 2.32 2.32 44 1.70 1.70 발명재5Invention 5 발명강EInventive Steel E 3.91 3.91 176 176 150150 1.95 1.95 55 1.69 1.69 비교재3Comparative Material 3 비교강CComparative Steel C 3.92 3.92 176 176 5050 2.36 2.36 1212 1.66 1.66

1) 철손(W15/50)은50Hz주파수에서1.5Tesla의 자속밀도가 유기되었을 때의 손실(W/kg)임.1) Iron loss (W 15/50 ) is the loss (W / kg) when the magnetic flux density of 1.5 Tesla is induced at 50 Hz frequency.

2) 자속밀도(B50)은 5,000A/m로 유기하였을 때 유도되는 자기장의 강도임 2) The magnetic flux density (B50) is the strength of the magnetic field induced at 5,000 A / m

상기 표 2에 나타난 바와 같이, 본 발명의 성분범위를 만족하는 발명강 (A~E)를 이용하여 본 발명의 제조조건으로 제조한 발명재(1~5)는 철손이 낮으면서 철손의 편차도 낮고 자속밀도도 비교적 높게 나타났음을 알 수 있다. 비교재1은 S를 비롯하여 불순물이 많아서 결정립은 과도하게 작아졌고 자성이 나쁜 것으로 조사되었다. 비교재2는 과도한 청정강은 결정립이 과도하게 성장되어 편차가 커질 수도 있음을 나타낸다. 비교재3은 (C+S+N+Ti)량이 높으며, 그 중에서 C이 0.0045%로 높아서 결정립이 작은 것으로 나타나 전체 자성이 저하되었고 자기편차도 커진 것으로 조사되었다. As shown in Table 2, the invention materials (1 to 5) manufactured using the inventive steels (A to E) satisfying the component range of the present invention under the manufacturing conditions of the present invention, the degree of iron loss while the iron loss is low It can be seen that the magnetic flux density is relatively high. Comparative Material 1 was found to have a large amount of impurities including S, so that the grains were excessively small and the magnetism was bad. Comparative material 2 indicates that excessive clean steel may result in excessive grain growth and large deviations. In Comparative Material 3, the amount of (C + S + N + Ti) was high, and among them, C was 0.0045%, indicating that the grains were small, indicating that the total magnetism was lowered and the magnetic deviation was also increased.

[실시예2] Example 2

중량%로, C: 0.0025%, Si: 3.1%, Mn:0.15%, P: 0.015%, S: 0.0011%, Al: 0.60%, N: 0.0015%, Ti: 0.0015%, Sn: 0.025%나머지Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1120℃로 재가열한 다음 열간압연시 사상압연의 마무리압연온도는 800℃로 하고, 압하율은 19%로 하여2.0mm 두께의 열연강판을 제조하였다. 상기 열연강판을 600℃에서 권취한 다음 공냉하고, 열연판소둔은 950℃에서 5분간 연속소둔하고 산세하고, 0.20mm의 두께로 냉간압연하였다. 냉간압연된 판은 표3과 같이 소둔하고 자성측정 및 결정립 크기를 조사하였다. C+S+Ti+N=0.0066% 이고, (Si+Al)=3.70%이며, (Si+Al)x45=167이었다. 비교재4는 1단 소둔온도가 2단소둔온도 보다 과도하게 높은 것이 철손이 높고 편차가 큰 원인으로 조사되었는데 특히 1단소둔로와 2단소둔로가 연결되어 있어서 편차가 크게 나타났다. 비교재5는 1단소둔온도가 과도하게 낮아서 강판 내에 응력이 존재하고 결정립이 과도하게 미세한 것이 원인으로 조사되었다. By weight, C: 0.0025%, Si: 3.1%, Mn: 0.15%, P: 0.015%, S: 0.0011%, Al: 0.60%, N: 0.0015%, Ti: 0.0015%, Sn: 0.025% The slab composed of other unavoidable impurities was reheated to 1120 ° C., and then hot rolling was performed at a finishing rolling temperature of 800 ° C. and a reduction ratio of 19% at hot rolling to produce a 2.0 mm thick hot rolled steel sheet. The hot rolled steel sheet was wound at 600 ° C. and then air cooled. The hot rolled sheet annealing was continuously annealed and pickled at 950 ° C. for 5 minutes, and cold rolled to a thickness of 0.20 mm. The cold rolled plate was annealed as shown in Table 3 and examined for magnetic measurements and grain size. C + S + Ti + N = 0.0066%, (Si + Al) = 3.70%, and (Si + Al) x45 = 167. Comparative material 4 was found to be caused by high iron loss and large deviation due to excessively higher one-stage annealing temperature than two-stage annealing temperature. Comparative material 5 was investigated due to the excessively low one-stage annealing temperature due to the presence of stress in the steel sheet and excessively fine grains.

구분division 1단소둔온도(℃)1 stage annealing temperature (℃) 2단소둔온도
(℃)
2-stage annealing temperature
(℃)
결정립 크기(㎛)Grain size (㎛) 철손 (W10/400)Iron loss (W10 / 400) 철손편차
(C-L)x100/ (C+L)
Iron loss
(CL) x100 / (C + L)
자속밀도
(B50)
Magnetic flux density
(B50)
비교재4Comparative Material 4 10501050 10201020 220220 13.5 13.5 1515 1.62 1.62 비교재5Comparative Material 5 750750 10201020 5555 12.5 12.5 99 1.65 1.65 발명재6Invention 6 980980 10201020 9595 10.7 10.7 66 1.68 1.68 발명재7Invention Material7 10201020 10501050 120120 9.8 9.8 55 1.67 1.67

1) 철손(W10/400)은400Hz주파수에서1.0Tesla의 자속밀도가 유기되었을 때의 손실(W/kg)임.1) Iron loss (W 10/400 ) is the loss (W / kg) when the magnetic flux density of 1.0 Tesla is induced at 400 Hz frequency.

2) 자속밀도(B50)은 5,000A/m로 유기하였을 때 유도되는 자기장의 강도임 2) The magnetic flux density (B50) is the strength of the magnetic field induced at 5,000 A / m

Claims (6)

중량%로 Si:1.0~4.0%, Mn:0.1~0.5%, P:0.01~0.1%, Al:0.1~1.0%, (C+S+Ti+N): 0.004~0.011%, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되고, 강판의 결정립 크기(㎛)가 (Si+Al)x45 보다 작고, 강판의 압연방향의 철손(L)과 압연방향의 직각방향의 철손(C)으로 구성되는 철손 편차가 (C-L)x100/(C+L)=10%를 만족하는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판.By weight% Si: 1.0 ~ 4.0%, Mn: 0.1 ~ 0.5%, P: 0.01 ~ 0.1%, Al: 0.1 ~ 1.0%, (C + S + Ti + N): 0.004 ~ 0.011%, balance Fe and others It is composed of impurity added unavoidably, and the grain size of the steel sheet is smaller than (Si + Al) x 45, and the iron loss is composed of iron loss (L) in the rolling direction and iron loss (C) in the right direction in the rolling direction. The non-oriented electrical steel sheet having a small anisotropy, wherein the deviation satisfies (CL) x100 / (C + L) = 10%. 제1항에 있어서, The method of claim 1, 상기 강판은, Sn: 0.01~0.10%를 더 포함하는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판.The steel sheet is a non-oriented electrical steel sheet having a small anisotropy, characterized in that it further comprises Sn: 0.01 ~ 0.10%. 청구항 1의 성분조성으로 된 슬라브를 재가열하고 열간압연한 후 열연판 소둔을 행하거나 생략하고, 냉간압연한 다음, 1단 소둔로와 2단 소둔로로 구분된 소둔로에서 최종 소둔하는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판의 제조방법.The slab of the composition of claim 1 is reheated and hot rolled, and then hot-rolled sheet annealing is omitted or cold-rolled, followed by final annealing in an annealing furnace divided into a first stage annealing furnace and a second stage annealing furnace. Method for producing a non-oriented electrical steel sheet having a small anisotropy. 제3항에 있어서, The method of claim 3, 상기 슬라브는 Sn:0.01~0.10%를 더 포함하는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판의 제조방법.The slab is a method for producing a small anisotropic non-oriented electrical steel sheet, characterized in that it further comprises Sn: 0.01 ~ 0.10%. 제3항 또는 제4항에 있어서, The method according to claim 3 or 4, 상기 1단 소둔로의 온도는 800~1050℃로 하고, 2단 소둔로의 온도는 850~1,100℃의 온도범위로 하는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판의 제조방법.The temperature of the first stage annealing furnace is 800 ~ 1050 ℃, the temperature of the second stage annealing furnace is a manufacturing method of a small anisotropic non-oriented electrical steel sheet, characterized in that the temperature range of 850 ~ 1,100 ℃. 제5항에 있어서,The method of claim 5, 상기 1단 소둔로와 2단 소둔로 사이에는 연결통로로 연결되어 연속 소둔되는 것을 특징으로 하는 이방성이 작은 무방향성 전기강판의 제조방법.The method of manufacturing a non-oriented electrical steel sheet having a small anisotropy, characterized in that connected between the first stage annealing path and the second stage annealing passage is continuous annealing.
KR1020080129846A 2008-12-19 2008-12-19 Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof KR101089305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080129846A KR101089305B1 (en) 2008-12-19 2008-12-19 Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080129846A KR101089305B1 (en) 2008-12-19 2008-12-19 Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof

Publications (2)

Publication Number Publication Date
KR20100071213A true KR20100071213A (en) 2010-06-29
KR101089305B1 KR101089305B1 (en) 2011-12-02

Family

ID=42368742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080129846A KR101089305B1 (en) 2008-12-19 2008-12-19 Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof

Country Status (1)

Country Link
KR (1) KR101089305B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147407A1 (en) * 2012-03-27 2013-10-03 박경순 (100)[ovw] non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
WO2017056383A1 (en) * 2015-10-02 2017-04-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method of same
KR20200035765A (en) * 2018-09-27 2020-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet
KR20200055799A (en) 2017-12-22 2020-05-21 데이진 가부시키가이샤 Thermosetting resin composition
WO2023008510A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902438B1 (en) 2016-12-19 2018-09-28 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101901313B1 (en) 2016-12-19 2018-09-21 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR20240085927A (en) * 2022-12-08 2024-06-18 주식회사 포스코 Hot-rolled non-oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100237159B1 (en) * 1995-12-14 2000-01-15 이구택 The manufacturing method for non orient electric steel sheet
JP4259350B2 (en) * 2004-02-26 2009-04-30 Jfeスチール株式会社 Non-oriented electrical steel sheet for switched reluctance (SR) motor and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147407A1 (en) * 2012-03-27 2013-10-03 박경순 (100)[ovw] non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
WO2017056383A1 (en) * 2015-10-02 2017-04-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method of same
JPWO2017056383A1 (en) * 2015-10-02 2017-10-05 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR20200055799A (en) 2017-12-22 2020-05-21 데이진 가부시키가이샤 Thermosetting resin composition
KR20200035765A (en) * 2018-09-27 2020-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet
WO2023008510A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor
JP7243937B1 (en) * 2021-07-30 2023-03-22 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method

Also Published As

Publication number Publication date
KR101089305B1 (en) 2011-12-02

Similar Documents

Publication Publication Date Title
KR101089305B1 (en) Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof
KR101648334B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101634092B1 (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
KR20140133100A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR101633249B1 (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR20150016434A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101286245B1 (en) Semiprocess non-oriented electrical steel sheets with superior magnetic properties and method for manufacturing the same
KR101596448B1 (en) Non-oriented electrical steel steet and preparation method thereof
KR101892231B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20160021164A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101141278B1 (en) method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties
KR20150062245A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150062246A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101632890B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20140133681A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR20150074930A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR20150015308A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150016435A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20140133101A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101308726B1 (en) Non-oriented electrical steel sheet with low core-loss and high strength and method for manufacturing the same
KR20150125637A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150075250A (en) Non-oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 9