KR20100061183A - Organometallic precursors for deposition of metallic cobalt and cobalt containing ceramic films, and deposition process of the thin films - Google Patents
Organometallic precursors for deposition of metallic cobalt and cobalt containing ceramic films, and deposition process of the thin films Download PDFInfo
- Publication number
- KR20100061183A KR20100061183A KR1020080120087A KR20080120087A KR20100061183A KR 20100061183 A KR20100061183 A KR 20100061183A KR 1020080120087 A KR1020080120087 A KR 1020080120087A KR 20080120087 A KR20080120087 A KR 20080120087A KR 20100061183 A KR20100061183 A KR 20100061183A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- cobalt
- precursor compound
- represented
- formula
- Prior art date
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 85
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 82
- 239000010941 cobalt Substances 0.000 title claims abstract description 82
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000010409 thin film Substances 0.000 title claims abstract description 74
- 125000002524 organometallic group Chemical group 0.000 title claims abstract description 37
- 239000000919 ceramic Substances 0.000 title claims abstract description 23
- 230000008021 deposition Effects 0.000 title claims description 23
- 239000010408 film Substances 0.000 title description 10
- 238000005137 deposition process Methods 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 58
- 238000000151 deposition Methods 0.000 claims abstract description 41
- 239000000126 substance Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 238000010992 reflux Methods 0.000 claims abstract description 6
- 238000004821 distillation Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 239000012454 non-polar solvent Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 39
- 239000000758 substrate Substances 0.000 claims description 30
- 239000001257 hydrogen Substances 0.000 claims description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims description 27
- 238000000231 atomic layer deposition Methods 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 19
- 238000005229 chemical vapour deposition Methods 0.000 claims description 18
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 claims description 9
- -1 ethyl (ethyl) group Chemical group 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000012495 reaction gas Substances 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 230000005587 bubbling Effects 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 238000007736 thin film deposition technique Methods 0.000 claims 5
- 238000000427 thin-film deposition Methods 0.000 claims 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 7
- DFKQZGGRMRQWSM-UHFFFAOYSA-N 2-iminoethenamine Chemical compound NC=C=N DFKQZGGRMRQWSM-UHFFFAOYSA-N 0.000 abstract 1
- 150000001728 carbonyl compounds Chemical class 0.000 abstract 1
- ZSEHKBVRLFIMPB-UHFFFAOYSA-N cobalt;cyclopenta-1,3-diene Chemical compound [Co].C=1C=C[CH-]C=1 ZSEHKBVRLFIMPB-UHFFFAOYSA-N 0.000 abstract 1
- 230000006837 decompression Effects 0.000 abstract 1
- 229910021332 silicide Inorganic materials 0.000 description 13
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 13
- 229910000428 cobalt oxide Inorganic materials 0.000 description 11
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 11
- 239000003446 ligand Substances 0.000 description 9
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 8
- 101150065749 Churc1 gene Proteins 0.000 description 8
- 102100038239 Protein Churchill Human genes 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- DTJSYSWZBHHPJA-UHFFFAOYSA-N n,n'-di(propan-2-yl)ethane-1,2-diimine Chemical compound CC(C)N=CC=NC(C)C DTJSYSWZBHHPJA-UHFFFAOYSA-N 0.000 description 4
- 229910021341 titanium silicide Inorganic materials 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 3
- KYMVBVBRCRFHIE-UHFFFAOYSA-N ethane-1,2-diimine Chemical compound N=CC=N KYMVBVBRCRFHIE-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- HZEIHKAVLOJHDG-UHFFFAOYSA-N boranylidynecobalt Chemical compound [Co]#B HZEIHKAVLOJHDG-UHFFFAOYSA-N 0.000 description 1
- CVCSGXJPONFHRC-UHFFFAOYSA-N carbon monoxide;cobalt;nitroxyl anion Chemical group [Co].[O+]#[C-].[O+]#[C-].[O+]#[C-].O=[N-] CVCSGXJPONFHRC-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- MQIKJSYMMJWAMP-UHFFFAOYSA-N dicobalt octacarbonyl Chemical group [Co+2].[Co+2].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] MQIKJSYMMJWAMP-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/06—Cobalt compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/42—Silicides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 반도체 소자에 적용되는 금속 코발트나 코발트 실리사이드와 같은 코발트가 함유된 금속 박막 또는 코발트 산화물과 같은 코발트가 함유된 세라믹 박막 증착을 위한 유기 금속 전구체에 관한 것으로서, 보다 상세하게는 원자층 증착법 (Atomic Layer Deposition, ALD) 또는 유기 금속 화학 증착법 (Metal Organic Chemical Vapor Deposition, MOCVD)에 사용되는 코발트를 함유하는 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 제조 방법에 관한 것이다. The present invention relates to an organic metal precursor for depositing a metal thin film containing cobalt such as metal cobalt or cobalt silicide or a ceramic thin film containing cobalt such as cobalt oxide, which is applied to a semiconductor device. The present invention relates to an organic metal precursor compound for depositing a metal thin film or ceramic thin film containing cobalt used in Atomic Layer Deposition (ALD) or Metal Organic Chemical Vapor Deposition (MOCVD), and a method for manufacturing a thin film using the same.
현재 금속 산화물 반도체 소자(MOS 소자)에 있어서 컨택 플러그를 형성할 때, 저항이 낮은 타이타늄 실리사이드막(TiSi2)을 오믹층(ohmic layer)으로 사용하 고 있다. 그러나 상기 티타늄 실리사이드막은 콘택홀 크기가 작아지거나 고온의 열이 가해질 경우 저항이 증가하는 단점이 있으며, 특히 100nm 공정 이하에서는 p형 MOS 소자(p-type PMOS)에 있어서 타이타늄과 p형 접합(p type juction) 영역의 보론(B)과의 높은 반응성으로 인하여 타이타늄보라이드(TiB2)가 형성됨으로써 컨택 저항이 크게 증가하는 문제가 발생한다. Currently, when forming a contact plug in a metal oxide semiconductor device (MOS device), a low-resistance titanium silicide film (TiSi 2 ) is used as an ohmic layer. However, the titanium silicide layer has a disadvantage in that the resistance increases when the contact hole size decreases or when high temperature heat is applied. In particular, the titanium silicide layer has a titanium-p-type junction (p type) in a p-type MOS device (p-type PMOS) under 100 nm process. Titanium boride (TiB 2 ) is formed due to high reactivity with boron (B) in the juction region, which causes a problem of greatly increasing contact resistance.
이에 금속 코발트의 경우 타이타늄과 비교하였을 때 보론과의 반응성이 매우 낮아 코발트보라이드(CoB) 형성으로 인한 컨택 저항 증가의 문제가 없을 뿐만 아니라 코발트 실리사이드막 형성시 타이타늄 실리사이드막보다 비저항이 낮고(10 ~ 18μΩ·cm) 열적 안정성이 우수하여 차세대 반도체 공정에서의 오믹 컨택층으로 코발트실리사이드를 사용하려는 연구가 진행되고 있다. 특히 반도체 소자의 집적도가 높아지고 그 구조가 점점 복잡해짐에 따라서, 높은 종횡비(high aspect ratio)를 가지는 구조에 우수한 단차피복성(step coverage)을 가지는 박막을 증착하기 위해서는 유기금속화학증착법(Metal Organic Chemical Vapor Deposition; MOCVD) 혹은 원자층 증착법(Atomic Layer Deposition; ALD)을 사용하여 코발트실리사이드 박막을 증착하여야 한다. Accordingly, metal cobalt has very low reactivity with boron compared to titanium, so that there is no problem of increasing contact resistance due to cobalt boride (CoB) formation, and lower resistivity than titanium silicide film when forming cobalt silicide film (10 ~ 18μΩ · cm) excellent thermal stability has been studied to use cobalt silicide as an ohmic contact layer in the next-generation semiconductor process. In particular, as the degree of integration of semiconductor devices increases and the structure thereof becomes more complicated, in order to deposit a thin film having excellent step coverage on a structure having a high aspect ratio, the organic organic chemical vapor deposition method (Metal Organic Chemical) Cobalt silicide thin films must be deposited using Vapor Deposition (MOCVD) or Atomic Layer Deposition (ALD).
이러한 코발트 산화물 박막은 자기 검출기 (magnetic detector), 습기 및 산소 센서 등의 광범위한 응용분야에 연구되고 있고 특히 CoO 및 Co3O4 박막은 High-Tc 초전도체 (superconductor)와 같은 페로브스카이트층의 완충막(buffer layer) 로 역할을 하여 큰 관심의 대상이 되고 있다. Such cobalt oxide thin films are being studied in a wide range of applications such as magnetic detectors, moisture and oxygen sensors, and especially CoO and Co 3 O 4 thin films are buffer films of perovskite layers such as high-Tc superconductors. It acts as a (buffer layer) and is of great interest.
한편, 차세대 반도체 배선 공정 적용에 있어서 구리 금속을 배선에 적용하는데 있어서 가장 큰 문제점 중의 하나는 배선층의 구리 박막과 확산 방지막과의 접착성이 떨어진다는 것이다. 특히 비아(via) 등을 형성하기 위한 CMP(Chemical Mechanical Polishing) 공정을 거치게 되면 구리박막과 확산 방지막과의 낮은 접착성으로 인하여 구리 배선의 층간 분리(delamination)가 일어나는 문제가 발생하게 된다. 이러한 문제점은 금속 코발트 박막을 접착층(glue layer)으로 사용하여 구리박막과 확산 방지막과의 접착성을 향상시킴으로써 해결할 수 있는데, 이와 같이 금속 코발트 박막을 접착층으로 사용하기 위해서는 역시 MOCVD 혹은 ALD 공정을 이용하여 균일한 박막을 증착시켜야 한다. On the other hand, one of the biggest problems in applying copper metal to wiring in the next-generation semiconductor wiring process is that the adhesion between the copper thin film of the wiring layer and the diffusion barrier is poor. In particular, when a CMP (Chemical Mechanical Polishing) process for forming vias or the like occurs, a problem arises that delamination of copper wiring occurs due to low adhesion between the copper thin film and the diffusion barrier. This problem can be solved by using a metal cobalt thin film as an adhesive layer to improve adhesion between the copper thin film and the diffusion barrier, and in order to use the metal cobalt thin film as an adhesive layer, a MOCVD or ALD process is also used. A uniform thin film should be deposited.
이러한 금속 코발트, 코발트 실리사이드, 코발트 산화물과 같은 박막을 MOCVD 혹은 ALD 공정을 이용하여 박막을 증착하는데 사용된 기존의 코발트 전구체들은 대표적으로 Co2(CO)8(dicobalt octacarbonyl), Cp2Co(biscyclopentadienylcobalt), Co(CO)3(NO)(cobalt tricarbonyl nitrosyl), CpCo(CO)2(cabalt dicarbonyl cyclopentadienyl) 등이 알려져 있다. Conventional cobalt precursors used to deposit thin films such as metal cobalt, cobalt silicide, and cobalt oxide using MOCVD or ALD processes are typically Co 2 (CO) 8 (dicobalt octacarbonyl) and Cp 2 Co (biscyclopentadienylcobalt). , Co (CO) 3 (NO) (cobalt tricarbonyl nitrosyl), CpCo (CO) 2 (cabalt dicarbonyl cyclopentadienyl) and the like are known.
그러나, 상기 Co(CO)3(NO), CpCo(CO)2 화합물은 액체이고 증기압이 상당히 높은 장점이 있지만, 상온에서 열분해가 발생하는 등 열적으로 불안정하기 때문에 공정상에서 많은 어려움을 초래할 수 있는 문제점이 있었다. 특히, CpCo(CO)2 화합물은 Co(CO)3(NO)보다는 열적안정성 우수하지만 140 ℃에서 분해가 시작되어 최종 박막 내에 카본 및 산소 등의 오염이 일어난다고 알려져 있다.However, although Co (CO) 3 (NO) and CpCo (CO) 2 compounds are liquid and have a high vapor pressure, they may cause a lot of difficulties in the process due to thermal instability such as pyrolysis at room temperature. There was this. In particular, the CpCo (CO) 2 compound has better thermal stability than Co (CO) 3 (NO), but it is known that decomposition starts at 140 ° C., causing contamination of carbon and oxygen in the final thin film.
또한, 상기 Co2(CO)8, Cp2Co 화합물은 실온에서 고체일 뿐만 아니라 증기압도 비교적 낮고, 그 중에서도 Co2(CO)8의 경우에는 상온에서도 어느 정도 분해 반응이 일어난다고 알려져 있으며, 70 ℃ 이상에서는 분해되어 Co2(CO)7 와 Co4(CO)11 과 같은 기상에서 원하지 않는 부반응으로 인하여 최종 박막의 단차 피복성이 떨어지고 박막 내에 탄소 및 산소 등의 오염이 심한 것으로 보고되고 있다.In addition, the Co 2 (CO) 8 and Cp 2 Co compounds are not only solid at room temperature but also relatively low in vapor pressure, and in particular, Co 2 (CO) 8 is known to occur to a certain degree of decomposition reaction at room temperature. It is reported that decomposed above the ℃, the step coverage of the final thin film due to undesired side reactions in the gas phase such as Co 2 (CO) 7 and Co 4 (CO) 11 and severe contamination of carbon and oxygen in the thin film.
이와 같이 기존까지 알려진 코발트 전구체들은 상온에서 열분해가 발생하는 등 열적으로 불안정하기 때문에 공정상에서 어려움이 있었으며, 이에 따라 넓은 공정온도에서 원자층 증착에 의한 코발트를 함유하는 금속박막 또는 금속산화물이나 금속질화물과 같은 세라믹 박막 증착이 가능한 전구체가 필요한 실정이다. As described above, cobalt precursors are known to have thermal difficulties due to thermal instability such as pyrolysis at room temperature. Thus, cobalt-containing thin films or metal oxides or metal nitrides containing cobalt by atomic layer deposition at a wide range of process temperatures are present. There is a need for a precursor capable of depositing the same ceramic thin film.
따라서 본 발명은 상기와 같이 언급된 기존의 코발트 전구체의 문제점을 해결하기 위한 것으로, 열적으로 안정하면서, 휘발성을 높이며 실온에서 액체 상태로 존재하는 코발트를 함유하는 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체 화합물을 제공하는데 그 목적이 있다. Accordingly, the present invention is to solve the problems of the conventional cobalt precursors mentioned above, and is an organic metal precursor for depositing a metal thin film or ceramic thin film containing cobalt that is thermally stable, increases volatility, and exists in a liquid state at room temperature. The purpose is to provide a compound.
또한, 본 발명은 상기한 유기 금속 전구체를 이용하여 유기 금속 화학 증착법 또는 원자층 증착법을 통하여 금속 코발트, 코발트 실리사이드, 코발트 산화물 박막을 제조하는 방법을 제공하는데 있다. In addition, the present invention is to provide a method for producing a metal cobalt, cobalt silicide, cobalt oxide thin film by the organic metal chemical vapor deposition method or atomic layer deposition method using the above-described organometallic precursor.
상기와 같은 목적을 달성하기 위하여 본 발명은, According to an aspect of the present invention,
코발트가 함유된 금속 박막 및 코발트가 함유된 세라믹 박막을 증착하는데 사용되는 유기 금속 전구체 화합물이 하기 화학식 1로 정의되는 유기 금속 전구체 화합물인 것을 특징으로 하는 코발트 금속 박막 또는 코발트 함유 세라믹 박막 증착용 유기 금속 전구체 화합물을 제공한다.Organic metal precursor for cobalt metal thin film or cobalt-containing ceramic thin film, characterized in that the organometallic precursor compound used for depositing the cobalt-containing metal thin film and the cobalt-containing ceramic thin film is an organic metal precursor compound It provides a precursor compound.
<화학식 1> <Formula 1>
상기 화학식 1에서 R1 내지 R9 은 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기(alkyl), (CH2)nSiR10R11R12로 표현되는 트라이알킬실릴알킬(trialkylsilylalkyl), -(CH2)nOR13로 표시되는 알콕시알킬기(alkoxyalkyl), -(CH2)nNR14R15로 표현되는 다이알킬아미노알킬기(dialkylaminoalkyl) 중에서 선택되어진다. 여기서 n은 1 내지 4의 정수 값이고, R10 내지 R15 는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기를 의미한다. In Formula 1 R 1 to R 9 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, trialkylsilylalkyl represented by (CH 2 ) n SiR 10 R 11 R 12 , and — (CH 2 ) n OR 13 . alkoxy group represented (alkoxyalkyl), - (CH 2 ) are selected from among n NR 14 R 15 dialkylamino group (dialkylaminoalkyl) represented by. N is an integer value of 1 to 4, and R 10 to R 15 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms.
아울러, 본 발명은 상기한 유기 금속 전구체를 이용하여 유기 금속 화학 증착법 또는 원자층 증착법을 통하여 금속 코발트, 코발트 실리사이드, 코발트 산화물 박막을 제조하는 방법을 제공한다. In addition, the present invention provides a method for producing a metal cobalt, cobalt silicide, cobalt oxide thin film using an organometallic chemical vapor deposition method or an atomic layer deposition method using the above-described organometallic precursor.
상술한 바와 같이 본 발명의 유기 금속 전구체 화합물은 코발트 금속, 코발트 실리사이드 등의 코발트가 함유된 금속 박막 및 코발트 산화물, 코발트 질화물 등의 코발트가 함유된 세라믹 박막을 증착하는데 적합함을 실험적으로 확인할 수 있었으며, 특히 본 발명에서 개발된 전구체 화합물들이 지속적인 가온에도 특성이 열화 되지 않는 높은 열적 안정성과 함께 높은 증기압을 가짐으로써 유기 금속 화학 증착(MOCVD) 및 원자층 증착법(ALD)을 이용한 금속 코발트, 코발트 실리사이드 등의 코발트를 함유한 금속 박막 및 코발트 산화물, 코발트 질화물 등의 코발트를 함유한 세라믹 박막을 증착하는 반도체 제조공정에 유용하게 적용될 수 있다는 효과를 가져온다.As described above, it was confirmed experimentally that the organometallic precursor compound of the present invention is suitable for depositing cobalt-containing metal thin films such as cobalt metal and cobalt silicide and ceramic thin films containing cobalt oxide and cobalt nitride. In particular, the precursor compounds developed in the present invention have a high vapor pressure with high thermal stability that does not deteriorate even under continuous heating, so that metal cobalt, cobalt silicide, etc. using organic metal chemical vapor deposition (MOCVD) and atomic layer deposition (ALD) Cobalt-containing metal thin film and cobalt oxide, cobalt nitride and the like can be useful in the semiconductor manufacturing process of depositing a ceramic thin film containing cobalt.
이하에서는 본 발명에 대하여 좀 더 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
본 발명에서는 금속 코발트, 코발트 실리사이드(Cobalt silicide, CoSi 및 CoSi2) 및 코발트 산화물(Cobalt oxide)과 같은 코발트를 함유하는 금속박막이나 세라믹 박막을 증착하기 위한 유기 금속 전구체 화합물이 하기 화학식 1로 정의되는 유기 금속 화합물이다.In the present invention, an organic metal precursor compound for depositing a metal thin film or a ceramic thin film containing cobalt such as metal cobalt, cobalt silicide (Cobalt silicide, CoSi and CoSi 2 ) and cobalt oxide (Cobalt oxide) is defined by the following formula (1) Organometallic compound.
상기 화학식 1에서 R1 내지 R9 은 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기(alkyl), (CH2)nSiR10R11R12로 표현되는 트라이알킬실릴알킬(trialkylsilylalkyl), -(CH2)nOR13로 표시되는 알콕시알킬기(alkoxyalkyl), -(CH2)nNR14R15로 표현되는 다이알킬아미노알킬기(dialkylaminoalkyl) 중에서 선택되어진다. 여기서 n은 1 내지 4의 정수 값이고, R10 내지 R15 는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기를 의미한다. In Formula 1 R 1 to R 9 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, trialkylsilylalkyl represented by (CH 2 ) n SiR 10 R 11 R 12 , and — (CH 2 ) n OR 13 . alkoxy group represented (alkoxyalkyl), - (CH 2 ) are selected from among n NR 14 R 15 dialkylamino group (dialkylaminoalkyl) represented by. N is an integer value of 1 to 4, and R 10 to R 15 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms.
상기 화학식 1로 표현되는 본 발명의 유기 금속 전구체 화합물은 금속 코발트 이온과 강하게 결합될 수 있는 싸이클로펜타디에닐(cyclopentadienyl)계 리간드를 도입함으로써 열적안정성을 향상시킬 수 있다. 특히 싸이클로펜타디에닐계 리간드의 수소 한 개를 전자를 공여(donation)할 수 있는 알킬기를 비롯한 전자공여 치환체 (electron donation substituent)를 도입함으로써 금속 코발트 이온과 리간드 와의 결합성을 더욱 강하게 하여준다. The organometallic precursor compound of the present invention represented by Chemical Formula 1 may improve thermal stability by introducing a cyclopentadienyl-based ligand capable of strongly binding to metal cobalt ions. In particular, by incorporating an electron donation substituent including an alkyl group capable of donating electrons with one hydrogen of a cyclopentadienyl ligand, the binding between metal cobalt ions and the ligand is enhanced.
또한 중성 리간드로 도입된 1,4-다이아자-1,3-부타다이엔(1,4-diaza-1,3-butadiene ; R6NCR8CR9NR7)계 리간드는 킬레이팅(chelating) 리간드로서 금속이온과 강하게 결합시켜 줄 뿐만 아니라 리간드 자체 내에 낮은 에너지 준위의 π* 오비탈을 가지고 있어 낮은 산화수를 가지는 코발트와 같은 금속이온을 안정화시켜 줄 수 있어 유기 금속 전구체 화합물의 화학적 안정성 및 열정안정성을 향상시켜 주게 되어 기존의 코발트 전구체가 갖고 있던 문제점을 해결 할 수 있는 이상적인 화학 증착 혹은 원자층 증착용 전구체이다.In addition, 1,4-diaza-1,3-butadiene (1,4-diaza-1,3-butadiene; R 6 NCR 8 CR 9 NR 7 ) -based ligands introduced as neutral ligands are chelating. As a ligand, it not only binds strongly to metal ions but also has a low energy level π * orbital in the ligand itself, which can stabilize metal ions such as cobalt having a low oxidation number. It is the ideal precursor for chemical vapor deposition or atomic layer deposition that can solve the problems of the existing cobalt precursor.
또한, 상기 화학식 1로 표현되는 유기 금속 전구체 화합물 중에서 최종 박막 내에 불순물의 오염 없이 화학 증착 혹은 원자층 증착에 용이하게 적용하기 위하여 높은 휘발성을 갖게 하기 위해서는 R2 내지 R5 가 각각 수소(H)인 하기 화학식 2로 표현되는 유기 금속 전구체 화합물이 바람직하다.In addition, R 2 to R 5 are each hydrogen (H) in order to have high volatility in order to easily apply to chemical vapor deposition or atomic layer deposition without contamination of impurities in the final thin film among the organometallic precursor compounds represented by Formula 1 The organometallic precursor compound represented by the following formula (2) is preferred.
상기 화학식 2에서 R1 및 R6 내지 R9는 각각 서로 독립적으로 수소 또는 탄소 수 1 내지 4의 알킬기(alkyl), (CH2)nSiR10R11R12로 표현되는 트라이알킬실릴알킬(trialkylsilylalkyl), -(CH2)nOR13로 표시되는 알콕시알킬기(alkoxyalkyl), -(CH2)nNR14R15로 표현되는 다이알킬아미노알킬기(dialkylaminoalkyl) 중에서 선택되어진다. 여기서 n은 1 내지 4의 정수 값이고, R10 내지 R15 는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기를 의미한다. In
또한, 상기 화학식 2의 유기 금속 전구체 화합물 중에서 R1 이 에틸(ethyl)기인 하기 화학식 3으로 표현되는 유기 금속 전구체 화합물이 바람직하다.In addition, among the organometallic precursor compounds of
상기 화학식 3에서 R6 내지 R9는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기(alkyl), (CH2)nSiR10R11R12로 표현되는 트라이알킬실릴알 킬(trialkylsilylalkyl), -(CH2)nOR13로 표시되는 알콕시알킬기(alkoxyalkyl), -(CH2)nNR14R15로 표현되는 다이알킬아미노알킬기(dialkylaminoalkyl) 중에서 선택되어진다. 여기서 n은 1 내지 4의 정수 값이고, R10 내지 R15 는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기를 의미한다. R 6 to R 9 in
또한, 상기 화학식 3의 화합물에서 R6 및 R7이 모두 아이소프로필(isopropyl)기이고, R8 및 R9 이 모두 수소(H)인 하기 화학식 4로 표현되는 유기 화합물이 코발트를 함유하는 금속 박막 또는 세라믹 박막을 증착하기 위하여 사용되는 유기금속 전구체 화합물로서 더욱 바람직하다.In addition, in the compound represented by
또한, 상기 화학식 2의 유기 금속 전구체 화합물 중에서 R1 이 아이소프로필(isopropyl)기인 하기 화학식 5로 표현되는 유기 금속 화합물이 바람직하게 사용 된다. In addition, among the organometallic precursor compounds of
상기 화학식 5에서 R6 내지 R9는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기(alkyl), (CH2)nSiR10R11R12로 표현되는 트라이알킬실릴알킬(trialkylsilylalkyl), -(CH2)nOR13로 표시되는 알콕시알킬기(alkoxyalkyl), -(CH2)nNR14R15로 표현되는 다이알킬아미노알킬기(dialkylaminoalkyl) 중에서 선택되어진다. 여기서 n은 1 내지 4의 정수 값이고, R10 내지 R15 는 각각 서로 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기를 의미한다. In Formula 5, R 6 to R 9 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms, (CH 2 ) n SiR 10 R 11 R 12, and a trialkylsilylalkyl,-( CH 2) alkoxyalkyl group (alkoxyalkyl) represented by n OR 13, - are selected from (CH 2) n NR 14 R 15 dialkylamino group (dialkylaminoalkyl) represented by. N is an integer value of 1 to 4, and R 10 to R 15 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms.
또한, 상기 화학식 5의 화합물에서 R6 및 R7이 모두 아이소프로필(isopropyl)기이고, R8 및 R9 이 모두 수소기인 하기 화학식 6으로 표현되는 유기 화합물이 코발트를 함유하는 금속 박막 또는 세라믹 박막을 증착하기 위하여 사용되는 유기금 속 전구체 화합물로서 더욱 바람직하다.In addition, in the compound represented by Chemical Formula 5, R 6 and R 7 are both isopropyl groups, and R 8 and R 9 are all hydrogen or organic compounds represented by the following Chemical Formula 6, wherein the cobalt-containing metal thin film or ceramic thin film It is more preferable as a precursor compound in the organic metal used for depositing.
이상과 같이 전술한 화학식 1로 표현되는 화학 증착용 혹은 원자층 증착용 유기 금속 전구체 화합물은 다양한 방법으로 제조가 가능하나, 본 발명에서는 대표적으로 하기 반응식 1에서 보는 바와 같이 비극성 용매 또는 약한 극성의 용매 하에서 싸이클로펜타디에닐코발트다이카보닐(R1R2R3R4C5HC5Co(CO)2) 화합물 용액에 1,4-다이아자-1,3-부타다이엔(R6NCR8CR9NR7)계 리간드를 실온에서 첨가한 후 환류 교반 반응을 한 후 감압 증류 하면 용이하게 얻을 수 있다. As described above, the organometallic precursor compound for chemical vapor deposition or atomic layer deposition represented by Chemical Formula 1 may be prepared by various methods, but in the present invention, as shown in Scheme 1, a nonpolar solvent or a solvent having a weak polarity is represented. 1,4-diaza-1,3-butadiene (R 6 NCR 8 ) in a cyclopentadienyl cobalt dicarbonyl (R 1 R 2 R 3 R 4 C 5 HC 5 Co (CO) 2 ) compound solution The CR 9 NR 7 ) -based ligand can be easily obtained by adding a ligand at room temperature, followed by reflux stirring, and distillation under reduced pressure.
이때 용매로는 벤젠(benzene), 헥산(hexane), 톨루엔(toluene), 에틸싸이클로헥산(ethylcyclohexane) 등을 사용할 수 있으며, 환류 반응시 반응도중의 습기 또는 산소 등에 의한 분해 반응을 억제하기 위하여 질소(N2) 또는 아르곤(Ar)기류 하에서 반응을 진행하는 것이 바람직하다.In this case, benzene, hexane, toluene, ethylcyclohexane, and the like may be used as a solvent. In order to suppress the decomposition reaction due to moisture or oxygen during the reaction, nitrogen ( It is preferable to proceed with the reaction under N 2 ) or argon (Ar) stream.
[반응식 1]Scheme 1
상기 반응식 1에서 R1 내지 R9는 화학식 1에서 정의한 바와 같다.R 1 to R 9 in Scheme 1 are as defined in Chemical Formula 1.
본 발명에 의해 합성된 상기 화학식 1로 정의되는 화합물은 열적, 화학적 안정성이 우수하고 실온에서 액체로 존재하며 휘발성이 높은 유기 코발트 금속 화합물로서 유기 금속 화학 증착법이나 원자층 증착 방법의 전구체로 사용하여 금속 코발트, 코발트 실리사이드, 코발트 산화물 및 코발트 질화물 박막을 제조하는데 유용하게 사용될 수 있다. The compound defined by Chemical Formula 1 synthesized by the present invention is an organic cobalt metal compound having excellent thermal and chemical stability, present as a liquid at room temperature, and having high volatility, and is used as a precursor of an organic metal chemical vapor deposition method or an atomic layer deposition method. Cobalt, cobalt silicide, cobalt oxide and cobalt nitride thin film can be usefully used.
상기한 본 발명에 따른 화학식 1로 정의 되는 유기 금속 전구체 화합물을 이용하여 기판 상에 박막을 증착시 증착온도가 150~700 ℃ 사이가 되도록 하면 된다. 이때 유기 금속 전구체 화합물을 기화시키기 위하여 아르곤(Ar) 또는 질소(N2) 가스로 버블링하거나 열에너지 또는 플라즈마를 이용하거나 기판 상에 바이어스를 인가할 수 있다. 아울러 본 발명에 따른 유기 금속 전구체 화합물을 공정에 공급하는 전달 방식은 버블링 방식, 기체상(vapor phase) 엠에프씨(MFC: mass flow controller), 직접 액체 주입(DLI : Direct Liquid Injection) 이나 전구체 화합물을 유기 용매에 녹여 이송하는 액체 이송방법을 포함하여 다양한 공급방식이 적용될 수 있다. When the thin film is deposited on the substrate by using the organometallic precursor compound defined by Chemical Formula 1 according to the present invention, the deposition temperature may be 150 ° C to 700 ° C. In this case, in order to vaporize the organometallic precursor compound, bubbling with argon (Ar) or nitrogen (N 2 ) gas, using thermal energy or plasma, or applying a bias on the substrate. In addition, the delivery method for supplying the organometallic precursor compound according to the present invention to a process may include a bubbling method, a vapor phase mass flow controller (MFC), a direct liquid injection (DLI), or a precursor compound. Various feeding methods may be applied, including a liquid transfer method for dissolving and dissolving it in an organic solvent.
상기 전구체를 공정에 공급하기 위한 운송가스 또는 희석 가스로 아르곤(Ar), 질소(N2), 헬륨(He) 또는 수소(H2) 중에서 하나 또는 그 이상의 혼합물을 사용할 수 있다. 아울러 원자층 증착법(ALD: Atomic Layer Deposition) 및 화학 기상 증착법(CVD : Chemical Vapor Deposition)으로 코발트 산화물 박막을 증착하기 위해서 반응가스로 수증기(H2O), 산소(O2) 및 오존(O3)을 사용할 수 있으며, 원자층 증착법(ALD: Atomic Layer Deposition) 및 화학 기상 증착법(CVD : Chemical Vapor Deposition)으로 코발트 질화물 박막을 증착하기 위해서 반응가스로 암모니아(NH3) 또는 하이드라진(N2H4)을 사용할 수 있다. 또한 원자층 증착법(ALD: Atomic Layer Deposition) 및 화학 기상 증착법(CVD : Chemical Vapor Deposition)으로 금속 코발트, 코발트실리사이드와 같은 코발트가 함유된 금속 박막을 증착하기 위하여 반응가스로 수소(H2) 또는 실란(Silane)류의 화합물을 사용할 수 있다. One or more mixtures of argon (Ar), nitrogen (N 2 ), helium (He), or hydrogen (H 2 ) may be used as a carrier gas or a diluent gas for supplying the precursor to the process. In addition, in order to deposit cobalt oxide thin films by atomic layer deposition (ALD) and chemical vapor deposition (CVD), steam (H 2 O), oxygen (O 2 ) and ozone (O 3 ) are used as reaction gases. ) And ammonia (NH 3 ) or hydrazine (N 2 H 4 ) as a reaction gas to deposit cobalt nitride thin films by atomic layer deposition (ALD) and chemical vapor deposition (CVD). ) Can be used. In addition, hydrogen (H 2 ) or silane is used as a reaction gas to deposit a thin metal film containing cobalt such as metal cobalt and cobalt silicide by atomic layer deposition (ALD) and chemical vapor deposition (CVD). (Silane) type compounds can be used.
이하 본 발명에 따른 코발트를 함유하는 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체 화합물에 대하여 하기 실시예를 통하여 보다 상세하게 설명하기로 하되, 이는 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐, 본 발명이 하기 실시예로 한정되는 것은 아니다.Hereinafter, the organic metal precursor compound for depositing a cobalt-containing metal thin film or ceramic thin film according to the present invention will be described in more detail with reference to the following examples, which are only presented to aid the understanding of the present invention. This is not limited to the following examples.
<실시예 1><Example 1>
-EtCpCo(iPr2-DAD) 의 제조-Preparation of Et CpCo ( i Pr 2 -DAD)
EtCpCo(CO)2 20g(0.1mol)을 에틸싸이클로헥산(ethylcyclohexane) 200mL 에 희석시킨 후 이 용액에 N,N'-다이아이소프로필-1,4-다이아자-1,3-부타다이엔(N,N'-diisopropyl-1,4-diaza-1,3-butadiene, iPr2-DAD) 14.02g (0.1mol)을 실온에서 첨가한 후 혼합 용액을 교반한 뒤 환류 콘덴서를 이용하여 4일 동안 환류 반응을 시킨다. 반응 종료 후 감압하에서 용매 및 휘발성 부반응물을 제거한 뒤 노말헥산(n-hexane, C6H14)으로 추출 한 뒤 글래스필터를 이용해 여과하여 얻은 용액층을 감압하에서 용매 및 휘발성 부반응물을 제거 하면 점성이 높은 진한 적갈색 액체를 얻는다. 이 액체를 감압 증류 하여 점성이 높은 적갈색의 액체 화합물인 EtCpCo(iPr2-DAD) 18.7 g(수율 : 63.97%)을 얻었다.20 g (0.1 mol) of Et CpCo (CO) 2 is diluted in 200 mL of ethylcyclohexane, and the solution is diluted with N, N' -diisopropyl-1,4-diaza-1,3-butadiene ( 14.02g (0.1mol) of N, N'-diisopropyl-1,4-diaza-1,3-butadiene, i Pr 2 -DAD) was added at room temperature, followed by stirring the mixed solution for 4 days using a reflux condenser. During reflux reaction. After completion of the reaction, the solvent and volatile side reactions were removed under reduced pressure, extracted with normal hexane (n-hexane, C 6 H 14 ), and filtered through a glass filter to remove the solvent and volatile side reactions under reduced pressure. You get this high dark reddish brown liquid. This liquid was distilled under reduced pressure to obtain 18.7 g (yield: 63.97%) of Et CpCo ( i Pr 2 -DAD) as a highly viscous reddish brown liquid compound.
Elemental Analysis : cacld. for C15H25N2Co : C, 61.63; H, 8.62; N, 9.58. found : C, 61.67; H, 8.59; N, 9.56.Elemental Analysis: cacld. for C 15 H 25 N 2 Co: C, 61.63; H, 8.62; N, 9.58. found: C, 61.67; H, 8.59; N, 9.56.
끓는점 (b.p) : 84℃ at 0.19torr.Boiling Point (b.p): 84 ° C at 0.19torr.
밀도 (density) : 1.299g/ml at 25℃Density: 1.299g / ml at 25 ℃
1H-NMR(C6D6) : δ 1.195 ([C H 3 CH2C5H4]-Co, t, 3H), 1 H-NMR (C 6 D 6 ): δ 1.195 ([C H 3 CH 2 C 5 H 4 ] -Co, t, 3H),
δ 1.504, 1.521 ([(C H 3 )2CH-N=CHCH=N-CH(C H 3 )2]-Co, d, 12H),δ 1.504, 1.521 ([(C H 3 ) 2 CH-N = CHCH = N-CH (C H 3 ) 2 ] -Co, d, 12H),
δ 2.516, 2.534 ([CH3C H 2 C5H4]-Co, q, 2H),δ 2.516, 2.534 ([CH 3 C H 2 C 5 H 4 ] -Co, q, 2H),
δ 4.326, 4.510 ([CH3CH2C5 H 4 ]-Co, br, br, 2H, 2H),δ 4.326, 4.510 ([CH 3 CH 2 C 5 H 4 ] -Co, br, br, 2H, 2H),
δ 5.068 ([(CH3)2C H -N=CHCH=N-C H (CH3)2]-Co, sept, 2H),δ 5.068 ([(CH 3 ) 2 C H —N═CHCH = NC H (CH 3 ) 2 ] —Co, sept, 2H),
δ 6.966 ([(CH3)2CH-N=C H C H =N-CH(CH3)2]-Co, s, 2H).δ 6.966 ([(CH 3 ) 2 CH—N═C H C H = N—CH (CH 3 ) 2 ] —Co, s, 2H).
13C-NMR(C6D6) : δ 16.737 ([ C H3CH2C5H4]-Co), 13 C-NMR (C 6 D 6 ): δ 16.737 ([ C H 3 CH 2 C 5 H 4 ] -Co),
δ 21.423 ([CH3 C H2C5H4]-Co),δ 21.423 ([CH 3 C H 2 C 5 H 4 ] -Co),
δ 24.234 ([[( C H3)2CH-N=CHCH=N-CH( C H3)2]-Co), δ 24.234 ([[( C H 3 ) 2 CH-N = CHCH = N-CH ( C H 3 ) 2 ] -Co),
δ 63.418 ([(CH3)2 C H-N=CHCH=N- C H(CH3)2]-Co),δ 63.418 ([(CH 3 ) 2 C H-N = CHCH = N- C H (CH 3 ) 2 ] -Co),
δ 74.132 ([(CH3)2CH-N= C H C H=N-CH(CH3)2]-Co),δ 74.132 ([(CH 3 ) 2 CH-N = C H C H = N-CH (CH 3 ) 2 ] -Co),
δ 98.769, 132.802 ([CH3CH2 C 5H4]-Co),δ 98.769, 132.802 ([CH 3 CH 2 C 5 H 4 ] -Co),
<실시예 2><Example 2>
-iPrCpCo(iPr2-DAD) 의 제조-Preparation of iPr CpCo ( i Pr 2 -DAD)
iPrCpCo(CO)2 10g(0.045 mol)을 에틸싸이클로헥산(ethylcyclohexane) 150mL 에 희석시킨 후 이 용액에 N,N'-다이아이소프로필-1,4-다이아자-1,3-부타다이엔(N,N'- diisopropyl-1,4-diaza-1,3-butadiene, iPr2-DAD) 6.3g (0.045mol)을 실온에서 첨가한 후 혼합 용액을 교반한 뒤 환류 콘덴서를 이용하여 4일 동안 환류 반응을 시킨다. 반응 종료 후 감압하에서 용매 및 휘발성 부반응물을 제거한 뒤 노말헥산(n-hexane, C6H14)으로 추출 한 뒤 글래스필터를 이용해 여과하여 얻은 용액층을 감압하에서 용매 및 휘발성 부반응물을 제거 하면 점성이 높은 진한 적갈색 액체를 얻는다. 이 액체를 감압 증류 하여 점성이 높은 적갈색의 액체 화합물인 iPrCpCo(iPr2-DAD) 7.2g(수율 : 52.23%)을 얻었다.Dilute 10 g (0.045 mol) of iPr CpCo (CO) 2 to 150 mL of ethylcyclohexane and add N, N' -diisopropyl-1,4-diaza-1,3-butadiene ( After adding 6.3 g (0.045 mol) of N, N'- diisopropyl-1,4-diaza-1,3-butadiene, i Pr 2 -DAD) at room temperature, the mixed solution was stirred and then refluxed for 4 days. During reflux reaction. After completion of the reaction, the solvent and volatile side reactions were removed under reduced pressure, extracted with normal hexane (n-hexane, C 6 H 14 ), and filtered through a glass filter to remove the solvent and volatile side reactions under reduced pressure. You get this high dark reddish brown liquid. This liquid was distilled under reduced pressure to obtain 7.2 g (yield: 52.23%) of iPr CpCo ( i Pr 2 -DAD) as a viscous reddish brown liquid compound.
Elemental Analysis : cacld. for C16H22N2Co : C, 62.73; H, 8.88; N, 9.14. found : C, 63.21; H, 8.98; N, 9.14.Elemental Analysis: cacld. for C 16 H 22 N 2 Co: C, 62.73; H, 8.88; N, 9.14. found: C, 63.21; H, 8.98; N, 9.14.
끓는점 (b.p) : 78℃ at 0.16torr.Boiling Point (b.p): 78 ° C at 0.16torr.
밀도 (density) : 1.105g/ml at 25℃Density: 1.105g / ml at 25 ℃
1H-NMR(C6D6) : δ 1.269, 1.285 ([(C H 3 )2CHC5H4]-Co, d, 6H), 1 H-NMR (C 6 D 6 ): δ 1.269, 1.285 ([(C H 3 ) 2 CHC 5 H 4 ] -Co, d, 6H),
δ 1.505, 1.522 ([(C H 3 )2CH-N=CHCH=N-CH(C H 3 )2]-Co, d, 12H),δ 1.505, 1.522 ([(C H 3 ) 2 CH-N = CHCH = N-CH (C H 3 ) 2 ] -Co, d, 12H),
δ 2.821 ([(CH3)2C H C5H4]-Co, sept, 1H),δ 2.821 ([(CH 3 ) 2 C H C 5 H 4 ] -Co, sept, 1H),
δ 4.292, 4.506 ([(CH3)2CHC5 H 4 ]-Co, br, br, 2H, 2H),δ 4.292, 4.506 ([(CH 3 ) 2 CHC 5 H 4 ] -Co, br, br, 2H, 2H),
δ 5.105 ([(CH3)2C H -N=CHCH=N-C H (CH3)2]-Co, sept, 2H),δ 5.105 ([(CH 3 ) 2 C H —N═CHCH = NC H (CH 3 ) 2 ] —Co, sept, 2H),
δ 6.962 ([(CH3)2CH-N=C H C H =N-CH(CH3)2]-Co, s, 2H).δ 6.962 ([(CH 3 ) 2 CH—N═C H C H = N—CH (CH 3 ) 2 ] —Co, s, 2H).
13C-NMR(C6D6) : δ 24.304 ([( C H3)2CHC5H4]-Co), 13 C-NMR (C 6 D 6 ): δ 24.304 ([( C H 3 ) 2 CHC 5 H 4 ] -Co),
δ 25.276 ([[( C H3)2CH-N=CHCH=N-CH( C H3)2]-Co), δ 25.276 ([[( C H 3 ) 2 CH-N = CHCH = N-CH ( C H 3 ) 2 ] -Co),
δ 27.088 ([(CH3)2 C HC5H4]-Co), δ 27.088 ([(CH 3 ) 2 C HC 5 H 4 ] -Co),
δ 63.420 ([(CH3)2 C H-N=CHCH=N- C H(CH3)2]-Co),δ 63.420 ([(CH 3 ) 2 C H-N = CHCH = N- C H (CH 3 ) 2 ] -Co),
δ 72.926, 72.954 ([(CH3)2CH-N= C H C H=N-CH(CH3)2]-Co),δ 72.926, 72.954 ([(CH 3) 2 CH-N = C H C H = N-CH (CH 3) 2] -Co),
δ 73.478, 132.786 ([CH3CH2 C 5H4]-Co),δ 73.478, 132.786 ([CH 3 CH 2 C 5 H 4 ] -Co),
<실험예 1>Experimental Example 1
상기한 실시예 1(EtCpCo(iPr2-DAD)) 및 실시예 2(iPrCpCo(iPr2-DAD))에서 제조한 코발트 전구체 화합물들의 기초 열특성 분석을 위하여 TG/DTA 분석을 실시하였다. 이 때 각 전구체 샘플의 무게는 약 10mg 정도를 취하여 알루미나 시료용기에 넣은 후 10oC/min의 승온속도로 300oC 까지 측정한 결과를 도 1 및 도 2에 나타내었다. TG / DTA analysis was performed for basic thermal characterization of cobalt precursor compounds prepared in Example 1 ( Et CpCo ( i Pr 2 -DAD)) and Example 2 ( iPr CpCo ( i Pr 2 -DAD)). It was. At this time, the weight of each precursor sample is about 10mg taken into the alumina sample container and measured to 300 o C at a temperature increase rate of 10 o C / min is shown in Figures 1 and 2.
도 1 및 도 2에서 확인 할 수 있듯이 본 발명의 신규한 코발트 전구체 화합물들은 화합물들의 열분해에 기인한 DTA 그래프에서의 발열피크가 나타나지 않고 TG 그래프에서 최종 잔류량이 5% 미만으로 기화과정에서의 분해가 거의 없이 기화하는 특성을 가지는 화합물임을 확인할 수 있었다.As can be seen in FIGS. 1 and 2, the novel cobalt precursor compounds of the present invention do not exhibit exothermic peaks in the DTA graph due to thermal decomposition of the compounds and decompose during vaporization with a final residual amount of less than 5% in the TG graph. It was confirmed that the compound has a characteristic of almost no vaporization.
<실험예 2>Experimental Example 2
상기한 실시예 1(EtCpCo(iPr2-DAD)) 및 실시예 2(iPrCpCo(iPr2-DAD))에서 제조코발트 전구체 화합물들의 시간에 따른 열적안정성을 평가하기 위하여 등온(isothermal) TG 분석을 실시하였다. 이 때 각 전구체 샘플의 무게는 약 10mg 정도를 취하여 알루미나 시료용기에 넣은 후 80oC, 100oC, 120oC 및 150oC 온도까지 10oC/min. 의 승온속도로 가열하여 각 온도에 도달 후 2시간을 유지하여 얻은 결과를 도 3 및 도 4에 나타내었다. In order to evaluate the thermal stability over time of the cobalt precursor compounds prepared in Example 1 ( Et CpCo ( i Pr 2 -DAD)) and Example 2 ( iPr CpCo ( i Pr 2 -DAD)). TG analysis was performed. At this time, the weight of each precursor sample is about 10mg, put into the alumina sample container, and then 10o C / min. To 80 o C, 100 o C, 120 o C and 150 o C temperature. 3 and 4 show the results obtained by heating at a heating rate of and maintaining 2 hours after reaching each temperature.
도 3 및 도 4에서 확인 할 수 있듯이 본 발명에서 제조된 코발트 전구체 화합물들은 모두 80oC, 100oC, 120oC 및 150oC 의 각 온도에서 시간에 따라 일정한 기울기를 가지고 무게가 감소하는 것으로 확인 되어 150oC 이하의 온도에서 특별한 전구체의 열분해 없이 기화되는 것을 확인 할 수 있었다. 따라서 본 발명의 코발트 유기 금속 전구체 화합물은 열적 안정성이 우수하면서 실온에서 액체이고 기화특성이 우수한 유기 코발트 화합물들로써 유기 금속 화학 증착 및 원자층 증착에 유용한 전구체로 사용될 수 있을 것으로 기대된다. As can be seen in Figures 3 and 4, the cobalt precursor compounds prepared in the present invention are all reduced in weight with a constant slope with time at each temperature of 80 o C, 100 o C, 120 o C and 150 o C It was confirmed that the evaporation without pyrolysis of a special precursor at a temperature below 150 o C. Therefore, the cobalt organometallic precursor compound of the present invention is expected to be used as a precursor useful for organometallic chemical vapor deposition and atomic layer deposition as organic cobalt compounds having excellent thermal stability and liquid at room temperature and excellent vaporization properties.
<실험예 3> Experimental Example 3
본 발명을 따르는 신규 코발트 전구체들 중에서 실시예 1에 따라 제조된 EtCpCo(iPr2-DAD) 전구체를 이용하여 CVD 공정에 의한 성막 평가를 수행하였다. 증착에 사용된 기판은 Si substrate위에 TiN 막이 30nm 입혀진 기판과 SiO2 가 100nm 입혀진 기판, 그리고 Si 기판이 사용되었다. 증착장비는 내경 5cm 길이 30cm인 파이렉스(pyrex) 관을 사용하였고, 한쪽 끝은 신규 코발트 소스를 채웠고 다른 쪽 끝은 진공( 10-2torr) 펌프와 연결되도록 구성하였다. 파이렉스 튜브는 진공펌프를 이용하여 120~300mtorr의 압력 유지하였고, 전구체의 온도는 100℃로 일정하게 유지하면서 기질온도에 따른 성막특성을 평가하기 위하여 하기 표 1의 증착조건과 같이 (a)기판온도에 따른 성막특성과, (b)증착시간에 따른 성막특성을 평가하여 하기 표 2와 도 5 내지 7에 그 결과를 나타내었다. Film formation evaluation by CVD process was performed using Et CpCo ( i Pr 2 -DAD) precursor prepared according to Example 1 among novel cobalt precursors according to the present invention. The substrate used for the deposition was a substrate coated with a 30 nm TiN film, a substrate coated with 100 nm SiO 2 , and a Si substrate on a Si substrate. The deposition equipment used a pyrex tube with an inner diameter of 5 cm and a length of 30 cm, one end filled with a fresh cobalt source and the other end connected to a vacuum ( 10-2 torr) pump. Pyrex tube was maintained at a pressure of 120 ~ 300mtorr using a vacuum pump, while the temperature of the precursor is maintained at 100 ℃ constant to evaluate the film-forming properties according to the substrate temperature (a) substrate temperature as shown in Table 1 According to the deposition characteristics according to (b) and the deposition characteristics according to the deposition time, the results are shown in Table 2 and FIGS. 5 to 7.
(℃)Substrate temperature
(℃)
(min)Deposition time
(min)
상기 표 2에서 나타낸 바와 같이, EtCpCo(iPr2-DAD)을 전구체로 사용했을 경우 전구체의 온도 100 oC, 기질온도 275 oC 이상에서 코발트 박막이 형성됨을 확인할 수 있었다. 도 5는 각각의 substrate 위 소스 온도 100℃, 기질온도 275, 300, 350℃에서 1시간 증착한 코발트 박막의 SEM 이미지로서, 기질온도의 증가 및 증착 시간의 증가에 의해 막의 두께가 증가됨을 확인할 수 있었고, 도 6의 증착온도에 따른 증착된 박막의 두께변화 그래프에서 보여주는 바와 같이 기판별 증착 두께 특성을 확인한 결과 온도가 높아질수록 Si기판에서 증착이 잘 되는 것을 확인할 수 있었다. 또한, 도 7은 AFM을 이용하여 표면의 거칠기를 확인한 결과로서, TiN 표면에서는 3.633nm, SiO2 표면에선 4.409nm, Si 표면에서는 2.587nm(전구체 온도 100℃, 기질 온도 350℃, 증착시간 1시간)로 상당히 smooth한 surface를 보임을 확인할 수 있었다. As shown in Table 2, when Et CpCo ( i Pr 2 -DAD) was used as a precursor, it was confirmed that the cobalt thin film was formed at a temperature of 100 o C and a substrate temperature of 275 o C or more. FIG. 5 is an SEM image of a cobalt thin film deposited at a source temperature of 100 ° C., a substrate temperature of 275, 300, and 350 ° C. for 1 hour on each substrate, and the thickness of the film is increased by increasing the substrate temperature and the deposition time. As shown in the thickness change graph of the deposited thin film according to the deposition temperature of FIG. 6, the deposition thickness characteristic of each substrate was confirmed, and as the temperature increased, the deposition on the Si substrate was confirmed. 7 shows the surface roughness using AFM, 3.633 nm on TiN surface, 4.409 nm on SiO 2 surface, 2.587 nm on Si surface (
이로써 본 발명의 실시예 1에 따르는 EtCpCo(iPr2-DAD) 전구체는 별도의 plasma의 사용없이 열분해만으로도 막 형성 성능이 우수함을 확인 할 수 있었으며, 기질에 대한 선택적 증착의 가능성을 보여주었다.As a result, the Et CpCo ( i Pr 2 -DAD) precursor according to Example 1 of the present invention was able to confirm that the film formation performance was excellent only by thermal decomposition without the use of a separate plasma, and showed the possibility of selective deposition on the substrate.
도 1은 본 발명의 실시예 1 에서 제조한 EtCpCo(iPr2-DAD) 전구체 화합물의 TG/DTA 그래프를 나타낸다.Figure 1 shows a TG / DTA graph of the Et CpCo ( i Pr 2 -DAD) precursor compound prepared in Example 1 of the present invention.
도 2는 본 발명의 실시예 2 에서 제조한 iPrCpCo(iPr2-DAD) 전구체 화합물의 TG/DTA 그래프를 나타낸다.Figure 2 shows the TG / DTA graph of the iPr CpCo ( i Pr 2 -DAD) precursor compound prepared in Example 2 of the present invention.
도 3은 본 발명의 실시예 1 에서 제조한 EtCpCo(iPr2-DAD) 전구체 화합물의 등온 (isothermal) TG 그래프를 나타낸다.Figure 3 shows an isothermal TG graph of the Et CpCo ( i Pr 2 -DAD) precursor compound prepared in Example 1 of the present invention.
도 4는 본 발명의 실시예 2 에서 제조한 iPrCpCo(iPr2-DAD) 전구체 화합물의 등온 (isothermal) TG 그래프를 나타낸다.Figure 4 shows an isothermal TG graph of the iPr CpCo ( i Pr 2 -DAD) precursor compound prepared in Example 2 of the present invention.
도 5는 실험예 3에 의해 실시된 증착된 박막의 SEM 이미지이다.5 is an SEM image of the deposited thin film carried out by Experimental Example 3.
도 6은 실험예 3에 의해 실시된 증착온도에 따른 증착된 박막의 두께변화 그래프이다.6 is a graph showing a thickness change of the deposited thin film according to the deposition temperature performed by Experimental Example 3. FIG.
도 7은 실험예 3에 의해 실시된 증착된 박막의 AFM 이미지이다.7 is an AFM image of the deposited thin film carried out by Experimental Example 3. FIG.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080120087A KR20100061183A (en) | 2008-11-28 | 2008-11-28 | Organometallic precursors for deposition of metallic cobalt and cobalt containing ceramic films, and deposition process of the thin films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080120087A KR20100061183A (en) | 2008-11-28 | 2008-11-28 | Organometallic precursors for deposition of metallic cobalt and cobalt containing ceramic films, and deposition process of the thin films |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100061183A true KR20100061183A (en) | 2010-06-07 |
Family
ID=42361999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080120087A KR20100061183A (en) | 2008-11-28 | 2008-11-28 | Organometallic precursors for deposition of metallic cobalt and cobalt containing ceramic films, and deposition process of the thin films |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100061183A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012176988A1 (en) * | 2011-06-24 | 2012-12-27 | Up Chemical Co., Ltd. | Organometallic compound, preparing method of the same, and preparing method of thin film using the same |
US20130164456A1 (en) * | 2010-08-24 | 2013-06-27 | Wayne State University | Thermally stable volatile precursors |
CN103298971A (en) * | 2010-11-17 | 2013-09-11 | Up化学株式会社 | Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same |
US9157149B2 (en) | 2013-06-28 | 2015-10-13 | Wayne State University | Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate |
US9249505B2 (en) | 2013-06-28 | 2016-02-02 | Wayne State University | Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate |
US9758866B2 (en) | 2013-02-13 | 2017-09-12 | Wayne State University | Synthesis and characterization of first row transition metal complexes containing α-imino alkoxides as precursors for deposition of metal films |
US9822446B2 (en) | 2010-08-24 | 2017-11-21 | Wayne State University | Thermally stable volatile precursors |
KR102123331B1 (en) | 2018-12-19 | 2020-06-17 | 주식회사 한솔케미칼 | Cobalt precursors, preparation method thereof and process for the formation of thin films using the same |
KR20220014227A (en) | 2020-07-28 | 2022-02-04 | 주식회사 한솔케미칼 | Cobalt compounds, precursor composition including the same, and preparing method of thin film using the same |
KR20220089044A (en) | 2020-12-21 | 2022-06-28 | 주식회사 한솔케미칼 | Novel compounds, precursor composition including the same, and preparing method of thin film using the same |
WO2024144090A1 (en) * | 2022-12-28 | 2024-07-04 | 에스케이트리켐 주식회사 | Precursor for forming metal-containing thin film, method for forming thin film using same, and device comprising thin film |
-
2008
- 2008-11-28 KR KR1020080120087A patent/KR20100061183A/en not_active Application Discontinuation
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9822446B2 (en) | 2010-08-24 | 2017-11-21 | Wayne State University | Thermally stable volatile precursors |
US20130164456A1 (en) * | 2010-08-24 | 2013-06-27 | Wayne State University | Thermally stable volatile precursors |
US9982344B2 (en) | 2010-08-24 | 2018-05-29 | Wayne State University | Thermally stable volatile precursors |
US9255327B2 (en) * | 2010-08-24 | 2016-02-09 | Wayne State University | Thermally stable volatile precursors |
CN103298971A (en) * | 2010-11-17 | 2013-09-11 | Up化学株式会社 | Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same |
CN103298971B (en) * | 2010-11-17 | 2015-07-08 | Up化学株式会社 | Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same |
US9353437B2 (en) | 2010-11-17 | 2016-05-31 | Up Chemical Co., Ltd. | Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same |
WO2012176988A1 (en) * | 2011-06-24 | 2012-12-27 | Up Chemical Co., Ltd. | Organometallic compound, preparing method of the same, and preparing method of thin film using the same |
US9758866B2 (en) | 2013-02-13 | 2017-09-12 | Wayne State University | Synthesis and characterization of first row transition metal complexes containing α-imino alkoxides as precursors for deposition of metal films |
US9249505B2 (en) | 2013-06-28 | 2016-02-02 | Wayne State University | Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate |
US9157149B2 (en) | 2013-06-28 | 2015-10-13 | Wayne State University | Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate |
US10533023B2 (en) | 2013-06-28 | 2020-01-14 | Wayne State University | Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate |
KR102123331B1 (en) | 2018-12-19 | 2020-06-17 | 주식회사 한솔케미칼 | Cobalt precursors, preparation method thereof and process for the formation of thin films using the same |
WO2020130215A1 (en) * | 2018-12-19 | 2020-06-25 | 주식회사 한솔케미칼 | Cobalt precursor, method for preparing same, and method for preparing thin film using same |
CN113242861A (en) * | 2018-12-19 | 2021-08-10 | 韩松化学株式会社 | Cobalt precursor, method of preparing the same, and method of manufacturing thin film using the same |
JP2022512154A (en) * | 2018-12-19 | 2022-02-02 | ハンソル ケミカル カンパニー リミテッド | Cobalt precursor, its manufacturing method and thin film manufacturing method using it |
US11401290B2 (en) | 2018-12-19 | 2022-08-02 | Hansol Chemical Co., Ltd. | Cobalt precursor, method of preparing same and method of manufacturing thin film using same |
CN113242861B (en) * | 2018-12-19 | 2023-10-27 | 韩松化学株式会社 | Cobalt precursor, method for producing the same, and method for producing thin film using the same |
KR20220014227A (en) | 2020-07-28 | 2022-02-04 | 주식회사 한솔케미칼 | Cobalt compounds, precursor composition including the same, and preparing method of thin film using the same |
KR20220089044A (en) | 2020-12-21 | 2022-06-28 | 주식회사 한솔케미칼 | Novel compounds, precursor composition including the same, and preparing method of thin film using the same |
WO2024144090A1 (en) * | 2022-12-28 | 2024-07-04 | 에스케이트리켐 주식회사 | Precursor for forming metal-containing thin film, method for forming thin film using same, and device comprising thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20100061183A (en) | Organometallic precursors for deposition of metallic cobalt and cobalt containing ceramic films, and deposition process of the thin films | |
US10914001B2 (en) | Volatile dihydropyrazinly and dihydropyrazine metal complexes | |
US8263795B2 (en) | Copper precursors for thin film deposition | |
US7750173B2 (en) | Tantalum amido-complexes with chelate ligands useful for CVD and ALD of TaN and Ta205 thin films | |
KR20100071463A (en) | Organometallic precursors for deposition of metal or metal oxide thin films, and deposition process of the thin films | |
US9187511B2 (en) | Titanium-aluminum alloy deposition with titanium-tetrahydroaluminate bimetallic molecules | |
KR20120053479A (en) | Diazadiene metal compound, preparing method of the same, and preparing method of thin film using the same | |
JP2020504903A (en) | Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using them | |
TWI727091B (en) | Metal complexes containing allyl ligands | |
US9034761B2 (en) | Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films | |
EP3397789B1 (en) | Manganese-containing film forming compositions, their synthesis, and use in film deposition | |
KR20220014227A (en) | Cobalt compounds, precursor composition including the same, and preparing method of thin film using the same | |
KR100936490B1 (en) | Organic metal precursors compound for deposition of metal oxide, metal nitride and pure metal thin films and, method for preparing the same and, deposition process of the thin films using the same | |
US20130337192A1 (en) | Bis-pyrroles-2-aldiminate manganese precursors for deposition of manganese containing films | |
EP3397790B1 (en) | Cobalt-containing film forming compositions, their synthesis, and use in film deposition | |
US11401290B2 (en) | Cobalt precursor, method of preparing same and method of manufacturing thin film using same | |
KR101546319B1 (en) | Tungsten precursors and the method for depositing tungsten-containg films | |
KR102489662B1 (en) | Ruthenium precursor compositions, preparation method thereof, and method for forming ruthenium-containing films using the same | |
KR100900272B1 (en) | Organometallic precursors for deposition of metal and ceramic films, and deposition process of the thin films | |
KR102211654B1 (en) | A tungsten precursor compound and tungsten containing thin film prepared by using the same | |
WO2024107593A1 (en) | Intramolecular stabilized group 13 metal complexes with improved thermal stability for vapor phase thin-film deposition techniques | |
CN112652519A (en) | Composition for thin film deposition, method for producing thin film, and semiconductor device | |
CN118284616A (en) | Depositing noble metal islands or films for use in electrochemical catalysts with improved catalytic activity | |
EP2060577A1 (en) | Copper precursors for thin film deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |