KR20100058647A - 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측 전자부품 및 그 방법 - Google Patents

유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측 전자부품 및 그 방법 Download PDF

Info

Publication number
KR20100058647A
KR20100058647A KR1020107008537A KR20107008537A KR20100058647A KR 20100058647 A KR20100058647 A KR 20100058647A KR 1020107008537 A KR1020107008537 A KR 1020107008537A KR 20107008537 A KR20107008537 A KR 20107008537A KR 20100058647 A KR20100058647 A KR 20100058647A
Authority
KR
South Korea
Prior art keywords
residue
threshold
vibration response
flowmeter assembly
frequency
Prior art date
Application number
KR1020107008537A
Other languages
English (en)
Inventor
그래메 랄프 더프필
앤드류 티모시 패턴
마크 제임스 벨
Original Assignee
마이크로 모우션, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크로 모우션, 인코포레이티드 filed Critical 마이크로 모우션, 인코포레이티드
Publication of KR20100058647A publication Critical patent/KR20100058647A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

본 발명에 따른, 유량계 어셈블리(10) 내의 잔여물을 탐지하기 위한 계측 전자부품(20) 및 방법이 제공된다. 상기 계측 전자부품(20)은 유량계(5)가 상기 유량계 어셈블리(10)를 진동하도록 지시하고 상기 유량계 어셈블리(10)로부터의 진동 응답(31)을 수신하도록 구성된 프로세싱 시스템(22)을 포함한다. 또한, 상기 계측 전자부품(20)은 유동 계측 파라미터 및 데이터를 저장하도록 구성된 저장 시스템(24)을 더 포함한다. 상기 계측 전자부품(20)은, 상기 프로세싱 시스템(22)이 상기 진동 응답(31)을 미리 정해진 잔여물 한계치(30)에 비교하여 잔여물을 탐지하도록 구성된 것을 특징으로 한다.

Description

유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측 전자부품 및 그 방법{METER ELECTRONICS AND METHOD FOR DETECTING A RESIDUAL MATERIAL IN A FLOW METER ASSEMBLY}
본 발명은 유량계 분야에 관한 것으로, 특히 유량계의 유량계 어셈블리 내의 잔여물 탐지에 관한 것이다.
유량계는 질량 유동률, 밀도 및 기타 유동 물질의 특징을 측정하도록 사용된다. 유동 물질은 액체, 기체, 액체와 기체의 혼합물, 액체 내에 매달린 고체 및 기체와 매달린 고체를 포함하는 액체를 포함할 수 있다. 예를 들어, 유량계는 유동률을 측정함으로써 (즉, 유량계를 통한 질량 유동을 측정함으로써) 구성 요소들 및 결과물의 수량을 측정하기 위한 공업 처리에서 사용된다.
유량계의 한 종류는 코리올리 유량계(Coriolis flow meter)이다. 코리올리 질량 유량계를 사용하여 파이프라인을 통하여 유동하는 물질의 질량 유동 및 기타 정보를 측정하는 것은, 1985.1.1.에 공보된 J.E.Smith 등에 의한 미국 특허 제 4,491,025호 및 1982.2.11.의 J.E.Smith의 Re.31,450에 개시되어 공지된다. 이러한 유량계는 상이한 구조의 하나 또는 그 이상의 유동 튜브를 갖는다. 각각의 도관 구성은, 예를 들어 단순 굽힘(bending) 모드, 비틀림(torsional) 모드, 방사상(radial) 모드 및 연결된 모드를 포함하는 일련의 자연의 진동 모드(vibration mode)를 갖는 것으로 보일 수 있다. 전형적인 코리올리 질량 유량 측정 실시에 있어서, 도관 구성은, 물질이 도관을 통해 유동함에 따라 하나 또는 그 이상의 진동 모드 내에서 이루어지며, 도관의 모션은 도관을 따라 이격된 지점에서 측정된다. 시스템을 채운 물질의 진동 모드들은 유동 튜브와 상기 유동 튜브 내의 물질의 혼합된 질량으로 부분적으로 규정된다. 유량계를 통해 유동하는 물질이 없는 경우, 유동 튜브를 따른 모든 지점은 동일한 위상으로 진동한다. 물질이 유동 튜브를 통해 유동함에 따라, 코리올리 가속계가 유동 튜브를 따른 각각의 지점들이 유동 튜브를 따른 다른 지점들과 상이한 위상을 갖도록 한다. 유동 튜브의 입구측 위상은 구동기보다 지연되고, 출구측 위상이 구동기에 앞선다. 센서가 유동 튜브 상의 상이한 지점에 배치되어, 상이한 지점에서의 유동 튜브의 모션에 따라 각각 사인 신호를 제공한다. 센서로부터 수신된 신호의 위상차는 시간 단위로 계산된다. 센서 신호들 사이의 위상차는 유동 튜브를 통해 유동하는 물질 또는 유동 튜브의 질량 유동률에 비례한다.
종래 기술에서는, 유량계 내에 잔여물이 남아있는지 여부가 문제된다. 유량계가 자체-배수(self-drain)하도록 허용될 경우, 일부 습기가 유동 튜브 내에 남을 수 있다. 이는 폐쇄 환경에서 특히 그러하다. 유량계는, 일정량의 잔여물이 유동 튜브 기기 내에 남아서 배수되지 않을 수 있는 직선형 유동 튜브 기기를 채택한 유량계를 포함할 수 있다. 대안적으로, 유량계는 원호(arc)형 또는 루프(loop)형 유동 튜브 기기를 채택할 수 있다. 이러한 유동 튜브 기기의 형태는 많은 양의 잔여물을 트랩(trap)할 수 있어서, 처리 유체가 유량계로부터 완전히 배수될 것을 보장할 추가 대책이 있어야 할 수 있다. 추가로, 유량계의 설치 방향이 잔여물 유지를 도울 수 있어서, 잔여물이 유량계 밖으로 적절하게 또는 완전히 배수되지 않을 수 있다.
일부 실시에 있어서, 특히 제약, 바이오테크, 음식, 식음료 공업에 있어서, 유량계가 완전히 자체-배수되어 유동 매체가 없어야 함을 보장하는 것이 중요하다.
본 발명은, 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측 전자부품(meter electronics) 및 그 방법을 제공함으로써, 상기 문제점을 해결하는데 도움을 준다.
유량계 어셈블리 내의 잔여물을 탐지하도록 구성된 계측 전자부품이 본 발명에 따라서 제공된다. 상기 계측 전자부품은 유량계가 상기 유량계 어셈블리를 진동하도록 지시하고 상기 유량계 어셈블리로부터의 진동 응답을 수신하도록 구성된 프로세싱 시스템을 포함한다. 상기 계측 전자부품은 유동 계측 파라미터 및 데이터를 저장하도록 구성된 저장 시스템을 더 포함한다. 상기 계측 전자부품은, 상기 프로세싱 시스템이 상기 진동 응답을 미리 정해진 잔여물 한계치(threshold)에 비교하여 잔여물을 탐지하도록 구성된 것을 특징으로 한다.
유량계 어셈블리 내의 잔여물을 탐지하는 방법이 본 발명에 따라서 제공된다. 상기 방법은, 상기 유량계 어셈블리를 진동하는 단계 및 상기 유량계 어셈블리의 진동 응답을 측정하는 단계를 포함한다. 상기 방법은, 잔여물을 탐지하도록 상기 진동 응답을 미리 정해진 잔여물 한계치에 비교하는 단계를 더 포함한다.
본 발명의 일 양상에서, 상기 미리 정해진 잔여물 한계치는 사용자에 의해 설정 가능하다.
본 발명의 다른 양상에서, 상기 탐지는 잔여물 질량값을 실질적으로 결정하는 것을 더 포함한다.
본 발명의 다른 양상에서, 상기 프로세싱 시스템은 상기 진동 응답이 상기 미리 정해진 잔여물 한계치를 넘는 경우에 경고 조건(alarm condition)을 생성하도록 구성된다.
본 발명의 다른 양상에서, 상기 프로세싱 시스템은 상기 진동 응답이 상기 미리 정해진 잔여물 한계치를 넘지 않는 경우 상기 유량계 어셈블리 내에 비어 있는 조건(empty condition)을 결정하도록 구성된다.
본 발명의 다른 양상에서, 상기 프로세싱 시스템은 구동 크기(drive amplitude)와 구동 이득(drive gain)을 추가로 비교하여, 상기 진동 응답이 상기 미리 정해진 잔여물 한계치를 넘고 상기 구동 이득이 이득 한계치(gain threshold)만큼 상기 구동 크기를 넘는 경우 잔여물을 탐지하도록 구성된다.
본 발명의 다른 양상에서, 상기 유량계는 코리올리 유량계를 포함한다.
본 발명의 다른 양상에서, 상기 프로세싱 시스템은 상기 유량계 어셈블리를 위한 기본 진동 주파수(fundamental vibration frequency)를 최초에 저장하여 상기 기본 진동 주파수로부터 상기 미리 정해진 잔여물 한계치를 결정하도록 구성되고, 상기 미리 정해진 잔여물 한계치는 상기 기본 진동 주파수로부터의 미리 정해진 주파수 오프셋(predetermined frequency offset)을 포함한다.
본 발명의 다른 양상에서, 상기 프로세싱 시스템은, 상기 진동 응답으로부터 보정된 주파수를 결정하고, 상기 유량계 어셈블리의 기본 진동 주파수와 상기 보정된 주파수 사이의 주파수 차이를 계산하고; 그리고 상기 주파수 차이를 질량-주파수 관련 인자에 곱하여 상기 유량계 어셈블리를 위한 잔여물 질량값을 획득하도록 구성되며, 상기 비교는, 상기 잔여물 질량값을 상기 미리 정해진 잔여물 한계치에 비교하는 것을 포함한다.
본 발명의 다른 양상에서, 상기 미리 정해진 잔여물 한계치는 상기 유량계 어셈블리의 검정 밀도값(calibration density value)을 포함하며, 그리고 상기 프로세싱 시스템은 보정된 밀도값을 제공하도록 상기 진동 응답을 보정하도록 구성되며, 상기 비교는 상기 보정된 밀도값을 상기 검정 밀도값에 비교하는 것을 포함하며, 그리고 상기 탐지는 상기 보정된 밀도값이 상기 검정 밀도값에 실질적으로 맞추어진다면 잔여물을 탐지하는 것을 포함한다.
본 발명의 다른 양상에서, 상기 프로세싱 시스템은, 상기 진동 응답을 보정하여 보정된 밀도값을 제공하고 그리고 상기 보정된 밀도값을 유동 튜브 부피, 유동 매체 점도 커플링 특성을 규정하는 커플링 인자(coupling factor), 및 방향 인자(orientation factor)와 곱하여 잔여물 질량값을 제공하도록 구성된다. 상기 미리 정해진 잔여물 한계치는 미리 정해진 잔여물 질량 한계치를 포함한다. 상기 비교는, 상기 잔여물 질량값을 상기 미리 정해진 잔여물 한계치와 비교하는 것을 포함한다.
본 발명의 다른 양상에서, 상기 보정은, 주변 온도 및 주변 압력을 위해 상기 진동 응답을 보정하는 것을 더 포함한다.
모든 도면에서 유사한 구성요소를 동일한 도면 부호로 나타낸다.
도 1은, 본 발명의 실시예에 따른 유량계 어셈블리 및 계측 전자부품을 포함하는 코리올리 유량계를 도시한다.
도 2는, 본 발명의 실시예에 따른 계측 전자부품의 다이어그램이다.
도 3은, 본 발명의 실시예에 따른 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도이다.
도 4는, 본 발명의 실시예에 따른 계측 전자부품의 다이어그램이다.
도 5는, 본 발명의 실시예에 따른 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도이다.
도 6은, 본 발명의 실시예에 따른 계측 전자부품의 다이어그램이다.
도 7은, 본 발명의 실시예에 따른 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도이다. 그리고
도 8은, 본 발명의 실시예에 따른 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도이다.
도 1~8 및 이하의 설명은, 본 발명의 최적의 모드를 생산하고 사용하는 방법을 당업자에게 설명하는 본 발명의 특정 실시예를 설명한다. 진보한 원리를 설명하기 위한 목적으로, 본 발명에 사용된 종래 기술 상의 양상은 간략화하거나 생략하였다. 당업자는, 이러한 실시예로부터 본 발명의 범위 내의 적정한 변형예들을 예상할 것이다. 당업자는, 이하의 설명된 기재를 다양한 방법으로 혼합하여 본 발명의 다양한 변형예를 형성하는 것을 예상할 것이다. 그 결과, 본 발명은 후술하는 특정 실시예에 제한되지 않으며, 오직 청구범위 및 그 균등한 범위에 제한된다.
유량계 - 도 1
도 1은, 본 발명의 실시예에 따라서 유량계 어셈블리(10) 및 계측 전자부품(20)을 포함하는 코리올리 유량계(5)를 도시한다. 코리올리 유량계(5)가 예시적으로 제공되며, 본 발명이 다른 유량계 구성 및 다른 종류의 유량계에도 적용되는 것을 이해하여야 한다. 유량계 어셈블리(10)는 처리 물질의 질량 유동률 및 밀도에 반응한다. 계측 전자부품(20)은 리드(lead)(100)를 통해 유량계 어셈블리(10)에 연결되어 밀도, 질량 유동률, 온도 정보 및 기타 정보를 경로(26)를 통해 제공한다. 코리올리 유량계 구조는 당업자에게 명백하며, 본 발명에서는 추가적인 측정 능력 없이 코리올리 질량 유량계에 의해 제공되는 진동 튜브 농도계로서 실행된다. 추가하여, 본 발명은 다른 유량계 종류에 적용될 수 있다.
유량계 어셈블리(10)는 한 쌍의 매니폴드(150, 150'), 플랜지 넥(flange neck)(110, 110')을 구비한 플랜지(103, 103'), 한 쌍의 평행한 유동 튜브(130, 130'), 구동 메커니즘(180), 온도 센서(190) 및 한 쌍의 픽오프 센서(pick-off sensor)(170L, 170R)를 포함할 수 있다. 유동 튜브(130, 130')는 2개의 실질적으로 직선형인 입구 레그(inlet leg)(131, 131') 및 출구 레그(output leg)(134, 134')를 구비하며, 이는 유동 튜브 고정 블록(120, 120')에서 서로를 향하여 한 점에 모인다. 유동 튜브(130, 130')는 그 길이를 따라서 2개의 대칭 위치에 있으며 그 길이를 통하여 실질적으로 평행하다. 브레이스 바아(brace bar)(140, 140')는 축(W, W')을 규정하도록 도와서, 그 둘레로 각각의 유동 튜브가 진동한다.
유동 튜브(130, 130')의 측면의 레그들(131, 131' 및 134, 134')은 유동 튜브 고정 블록(120, 120')에 고정적으로 부착되며, 차례로 상기 블록들이 매니폴드(150, 150')에 고정적으로 부착된다. 이는 코리올리 유량계 어셈블리(10)를 통한 연속적 폐쇄 물질 경로를 제공한다.
홀(102, 102')을 구비한 플랜지(103, 103')가 연결되면, 측정되는 처리 물질을 이송시키는 (도시되지 않은) 처리 라인 내에서 입구 단부(104) 및 출구 단부(104')를 통하여, 플랜지(103) 내의 오리피스(101)를 통해 계측기의 단부(104)에 진입한 물질은 매니폴드(150)를 통해 표면(121)을 갖는 유동 튜브 고정 블록(120)에 안내된다. 매니폴드(150) 내에서 물질은 유동 튜브(130, 130')들을 통하도록 나뉘어져서 경로를 결정한다. 처리 물질이 유동 튜브(130, 130')들을 진출함에 따라 매니폴드(150') 내에서의 단일 스트림 내로 다시 혼합되고, 그 이후 볼트 홀(102')을 구비한 플랜지(103')에 의해 (도시되지 않은) 처리 라인에 연결된 단부(104')를 진출하도록 경로를 결정한다.
유동 튜브(130, 130')는, 굽힘축(W-W, W'-W')에 대해 각각 실질적으로 동일한 질량 분배, 관성 모멘트 및 영의 계수(Young's modulus)를 갖도록 선택되고 유동 튜브 고정 블록(120, 120')에 적합하게 고정된다. 상기 굽힘축들은 브레이스 바아(140, 140')를 통한다.
유동 튜브의 영의 계수가 온도에 따라 변하기 때문에, 이러한 변화는 유동 및 질량 계산에 영향을 주며, 저항 온도 탐지기(RTD; resistance temperature detector)와 같은 온도 센서(190)가 유동 튜브의 온도를 측정하도록 유동 튜브(130')에 고정될 수 있다. 유동 튜브의 온도는 유동 튜브를 통과하는 물질의 온도에 의해 지배된다. 측정된 온도는 계측 전자부품(20)에 의해 공지된 방법으로 사용되어, 유동 튜브 온도의 변화로 인한 유동 튜브(130, 130')의 탄성 계수의 변화를 보정한다. 온도 센서(190)는 리드(195)에 의해 계측 전자부품(20)에 연결될 수 있다.
유동 튜브(130, 130') 모두 구동기(180)에 의해 각각의 굽힘축(W, W')의 반대 방향으로 구동되는데, 이를 유량계의 제 1 위상 반전 굽힘 모드(out-of-phase bending mode)로 지칭한다. 이러한 구동 메커니즘(180)은, 유동 튜브(130')에 고정된 자석과 유동 튜브(130)에 고정된 대항 코일과 같은 공지된 배열체를 포함할 수 있으며, 이를 통해 변경된 전류가 유동 튜브 모두를 진동시키도록 이동한다. 적합한 구동 신호는 계측 전자부품(20)에 의해 리드(185)를 통해 구동 메커니즘(180)에 적용된다.
계측 전자부품(20)은 리드(195) 상에서 온도 신호를 수신하며, 좌우 픽오프 신호가 리드(165L, 165R) 상에서 각각 나타난다. 계측 전자부품(20)은 리드(185) 상에 나타난 구동 신호를 구동 부재(180) 및 진동 튜브(130, 130')에 제공한다. 계측 전자부품(20)은 좌우 픽오프 신호 및 온도 신호를 처리하여 유량계 어셈블리(10)를 통하는 물질의 질량 유동률(및 선택적으로 밀도)을 계산한다. 이러한 정보 및 기타 다른 정보가 경로(26)를 통해 계측 전자부품(20)에 적용된다.
계측 전자부품 - 도 2
도 2는 본 발명의 실시예에 따른 계측 전자부품(20)의 다이어그램이다. 계측 전자부품(20)은 프로세싱 시스템(22) 및 상기 프로세싱 시스템(22)에 연결된 저장 시스템(24)을 포함한다. 인터페이스(26)는 계측 전자부품(20) 내에 포함될 수 있으며, 또한 프로세싱 시스템(22)에 연결될 수 있다.
계측 전자부품(20)은 유량계 어셈블리(10)로부터의 유동 계측 신호를 수신하며(도 1 참조), 유량계 어셈블리(10)가 비어 있는지 또는 비어 있지 않은지를 결정한다. 일 실시예에서, 본 발명은 진동 주파수 반응(31)을 포함할 수 있어서, 유량계 어셈블리(10)의 비어 있는 조건인지 또는 비어 있지 않은 조건(non-empty condition)인지를 결정하도록 진동 응답(31)을 주파수 한계치 또는 한계 범위에 비교한다(도 4 및 이에 따른 설명 참조). 다른 실시예에서, 진동 응답(31)은 잔여물 질량을 결정하도록 사용될 수 있으며, 비어 있는 상태인지 또는 비어 있지 않은 상태인지를 결정하도록 잔여물 질량이 질량 한계치 또는 한계 범위에 비교된다(도 4 및 이에 따른 설명 참조). 추가로, 질량은 유량계 어셈블리(10) 내의 잔여 물질의 양을 결정하도록 사용될 수 있다. 추가로, 비어 있는 상태인지 또는 비어 있지 않은 상태인지를 결정하도록 잔여물 밀도가 밀도 한계치 또는 한계 범위에 비교된다(도 6 및 이에 따른 설명 참조).
잔여물 탐지는 여러 가지로 사용된다. 하나의 사용은, 유량계(5)가 유체 핸들링 시스템의 소정의 방법으로 유체 공급원을 측정하도록 사용되는 경우, 유량계 어셈블리(10)가 비어 있는 시기를 결정하는 것이다. 예를 들어, 유량계(5)가 유체 저장부의 출력부를 측정한다면, 계측 전자부품(20) 및 그 방법은 상기 저장부로부터의 유체를 끊는 시기를 결정하도록 사용될 수 있다. 다른 사용은, 유체 유동의 말미를 탐지하고, 이에 따라 언제 저장조가 비는지를 탐지하는 것이다. 또 다른 사용은, 유량계(5)가 비어 있는지를 결정하기 위한 유량계(5)의 순간적인 작동이다.
인터페이스(26)는 다른 장치와 소통한다. 인터페이스(26)는 하나 이상의 유량계와 소통할 수 있는 소정의 장치를 포함한다. 추가로, 인터페이스(26)는 전화 시스템 및/또는 디지털 데이터 네트워크를 통해 소통할 수 있다. 결과적으로, 계측 전자부품(20)은 원격 유량계, 원격 저장 매체, 및/또는 원격 사용자와 소통할 수 있다.
일 실시예에서, 인터페이스(26)는 유량계 어셈블리(10)로부터 신호를 수신하며, 이는 유량계(5)의 진동 응답(31)을 나타내는 신호를 포함한다. 따라서 계측 전자부품(20)은 유량계 어셈블리(10)와 함께 위치하거나 또는 이격될 수 있다. 다른 실시예에서, 인터페이스(26)는 사용자가 계측 전자부품(20)을 작동하도록 할 수 있다. 그 결과, 인터페이스(26)는 사용자 입력부를 포함하고 사용자에게 출력을 전송할 수 있다.
일 실시예에서, 인터페이스(26)는 사용자 입력부를 포함하며, 이는 유량계 어셈블리(10)가 비어 있는지 또는 비어 있지 않은지를 결정하도록 사용되는 잔여물 한계치(30)를 포함한다. 결과적으로, 본 실시예에서 잔여물 한계치(30)는 사용자에 의해 설정 가능하다. 대안적으로, 잔여물 한계치(30)는 고정된 값이거나, 생산 과정에서 설정된 값일 수 있다.
일 실시예에서, 인터페이스(26)는 추가로 사용자에게 출력을 제공한다. 출력은, 유량계 어셈블리(10)가 비어 있는지 또는 비어 있지 않은지의 결정을 포함할 수 있다. 출력은 유량계 어셈블리(10) 내의 잔여물의 적정 질량을 포함할 수 있다. 출력은 사용자에게 유량계 어셈블리(10) 내의 잔여물을 경고하는 경고 조건을 포함할 수 있다. 경고 조건은, 유량계 어셈블리(10) 내의 잔여물이 잔여물 한계치(30)보다 큰 경우 생성된다. 출력은, 시각적, 청각적 또는 글자 정보와 같은 어떠한 방법을 포함할 수 있다.
프로세싱 시스템(22)은 계측 전자부품(20)의 작동을 하도록 한다. 프로세싱 시스템(22)은 일반적인 목적의 컴퓨터, 마이크로프로세싱 시스템, 논리 회로, 또는 다른 방식의 일반적인 목적의 프로세싱 장치를 포함할 수 있다. 프로세싱 시스템(22)은 다수의 프로세싱 장치로 이루어질 수 있다. 프로세싱 시스템(22)은 저장 시스템(24)과 같은 독립적인 전기적 저장 매체 또는 일체화된 저장 매치 중 어떠한 방법이라도 포함할 수 있다.
저장 시스템(24)은 소정의 방식의 디지털 저장 매체를 포함할 수 있다. 저장 시스템(24)은 유동 질량 파라미터 및 데이터, 소프트웨어 루틴(software routine), 상수 및 변수를 저장할 수 있다. 일 실시예에서, 저장 시스템(24)은 잔여물 한계치(30), 진동 응답(31), 잔여물 탐지 루틴(residual material detection routine)(32), 비어 있는 조건(33), 경고 조건(34), 진동 응답 오프셋(vibration response offset)(35), 잔여물 질량값(36), 구동 크기(37), 구동 이득(38) 및 이득 한계치(39)를 포함한다.
프로세싱 시스템(22)은 잔여물 탐지 루틴(32)을 실행시키며, 이에 따라 유량계 어셈블리(10)가 비어 있는지 또는 비어 있지 않은지를 결정한다. 일 실시예에서, 도시된 바와 같이 잔여물 탐지 루틴(32)은 계측 전자부품(20)의 일부분이다. 프로세싱 시스템(22)에 의해 실행되는 잔여물 탐지 루틴(32)은, 진동 응답(31)을 잔여물 한계치(30)에 비교하도록 프로세싱 시스템(22)을 구성한다. 따라서 잔여물 탐지 루틴(32)은, 진동 응답(31)이 잔여물 한계치(30)를 넘는 경우 유량계 어셈블리(10) 내의 잔여물을 탐지한다.
또 다른 실시예에서, 잔여물 탐지 루틴(32)은 (도시되지 않은) 외부 장치 상에서 구동하는 소프트웨어 플랫폼 내에 채택된 데이터 및 지시를 포함한다. 외부 장치는 소통 경로(26)를 통해 계측 전자부품(20)과 소통할 수 있다. 예를 들어, 외부 장치는 ProLinkTM 또는 ProLinkTMⅡ와 같은 소프트웨어를 구동하는 외부 컴퓨터를 포함할 수 있다. ProLinkTM 소프트웨어는 유량계와 소통하고 유량계 출력을 개시 및 조정하도록 디자인된 것으로서, 콜로라도 보울더의 Mircro Motion Inc.로부터 입수 가능하다. ProLinkTM 소프트웨어는 단지 하나의 사용 가능한 소프트웨어 플랫폼일 뿐이며, 본 발명에 따른 잔여물 탐지는 적합한 어떠한 소프트웨어 언어 또는 플랫폼에서 구동 가능하며 어떠한 적합한 외부 장치도 가능함을 이해하여야 한다.
일 실시예에서, 잔여물 한계치(30)는 잔여물 탐지 루틴(32)에 의해 잔여물이 유량계 어셈블리(10) 내에 존재하는지 여부를 결정하도록 사용되는 한계치를 포함한다. 또한, 잔여물 한계치(30)는, 유량계 어셈블리(10) 내의 잔여물이 잔여물로 고려될 만큼 그 양이 매우 충분한지 이에 따라 비어 있지 않은 상태인지를 결정하도록 사용될 수 있다.
일 실시예에서, 잔여물 한계치(30)는 비어 있는 상태의 진동 응답(즉, 유량계 어셈블리(10)의 기본 진동 주파수)으로부터의 오프셋을 포함한다. 비어 있는 상태의 진동 응답은, 특정 주변 공기 온도 및 특정 주변 공기 압력으로 (즉, 표준 검정 조건(standard calibration conditions)으로) 공기가 채워진 경우 유량계 어셈블리(10)의 비어 있는 조건에 대하여 기록된 진동 응답을 포함할 수 있다. 따라서, 유량계 어셈블리(10)가 특정 온도에서 명백히 건조 공기 상태인 경우, 장치의 기본/공진 주파수가 결정될 수 있다. 비어 있는 상태의 진동 응답은, 유량계 어셈블리(10)의 비어 있는 상태 및 비어 있지 않은 상태를 탐지하기 위해 후속적인 진동 응답이 비교될 수 있는 기준으로서의 역할을 한다. 따라서, 적용 상황(application situation)에 있어서, 온도 보정된 공기 상태 공진 주파수로부터의 상당한 편차는 프로세스 물질의 존재를 가리킨다. 결과적으로, 진동 응답(31)이 잔여물 한계치(30)를 넘는 경우, 잔여물이 탐지된 것이다. 대안적으로, 잔여물 한계치(30)가 잔여물 범위를 포함할 수 있어서, 진동 응답이 상기 범위 내에 진입하는 경우 유량계 어셈블리(10)가 비어 있지 않은 상태이거나 그렇지 않은 경우 미량의 잔여물을 포함하는 (즉, 유량계 어셈블리(10)에 가득 차지 않은) 비어 있는 상태이다. 진동 응답이 상기 범위를 넘는 경우, 물질은 정상적인 사용 방법으로서 유량계 어셈블리(10)를 유동하는 것이다.
진동 응답(31)은 유량계 어셈블리(10)로부터 수신된다. 진동 응답(31)은 구동기(180)에 의해 튜브 또는 유동 튜브의 진동으로의 측정된 또는 탐지된 반응을 포함한다. 진동 응답(31)은 유량계 어셈블리(10) 내에 존재하는 물질의 양에 따라 다양할 수 있다. 진동 응답(31)은 하나 또는 그 이상의 픽오프 센서(170)에 의해 측정된 아날로그 주파수 반응으로서 저장될 수 있다.
진동 응답 오프셋(35)은 비어 있는 상태의 진동 응답으로부터의 오프셋을 포함할 수 있다. 따라서 진동 응답 오프셋(35)은 비어 있는 조건으로부터의 오프셋을 포함하며, 진동 응답(31)이 진동 응답 오프셋(35)과 비어 있는 상태의 진동 응답 사이로 진입하는 경우, 유량계 어셈블리(10)가 비어 있지 않은 상태이다. 진동 응답 오프셋(35)은 주파수 오프셋, 밀도 오프셋, 및 예를 들어 전술한 그리고 도 4~8을 참조하여 후술할 질량값 오프셋을 포함할 수 있다.
잔여물을 탐지하기 위한 진동 응답의 사용에 추가하여, 진동 응답(31)은 또한 잔여물 질량값(36)을 측정하도록 사용될 수 있다. 잔여물 질량값(36)은 유량계 어셈블리(10)를 위해 결정된 실질적으로 현재 질량값을 포함한다. 추가로, 잔여물 질량값(36)은 유량계 어셈블리(10)가 비어 있는지 또는 비어 있지 않은지를 결정하는데 사용될 수 있다. 더욱이, 잔여물 질량값(36)은 사용자 등에게 출력될 수 있어서 잔여물의 대략의 질량을 지시한다. 더욱이, 일 실시예에서 잔여물 질량값(36)은 비어 있는 조간 및 비어 있지 않은 조건 동안에 그리고 시간 주기에 따른 질량 유동률의 기록을 저장할 수 있다.
비어 있는 조건(33)은 비어 있는 상태 및 비어 있지 않은 상태를 표시하는 상태 변수를 포함할 수 있으며, 이는 예를 들어 예(true) 및 아니오(false) 상태와 같다. 따라서, 현재 유량계 어셈블리(10)의 진동 응답이 비어 있는 상태를 판단한다면, 비어 있는 조건(33)은 이를 예(true), 1, 또는 다른 비어 있는 상태로 설정할 수 있다. 반대로, 현재 유량계 어셈블리(10)의 진동 응답이 비어 있지 않은 상태로 판단한다면, 비어 있는 조건(33)은 이를 아니오(false), 0, 또는 다른 비어 있지 않은 상태로 설정할 수 있다. 따라서 비어 있는 조건(33)은 유량계 어셈블리(10)의 현재 비어 있는 조건 또는 비어 있지 않은 조건을 나타낸다. 추가로, 일 실시예에서 비어 있는 조건(33)은 시간 주기에 따라 비어 있는 조건 및 비어 있지 않은 조건을 기록할 수 있다.
경고 조건(34)은 잔여물이 잔여물 한계치(30)를 넘는 경우 생성되는 상태 변수를 포함할 수 있다. 따라서 경고 조건(34)은 사용자 또는 작동자에게 유량계 어셈블리(10) 내의 잔여물을 경고하도록 사용될 수 있다. 추가로, 경고 조건(34)은 처리 제어 변수로서 사용될 수 있어서, 경고 조건(34)이 설정된다면 후속 처리 작업이 중단되거나 수정될 수 있다. 일 실시예에서, 경고 조건(34)은 시간 주기에 따라 경고 조건 및 비-경고 조건을 기록할 수 있다. 더욱이, 일 실시예에서 경고 조건(34)은 사용자 설정 가능한 경고 한계치를 포함할 수 있어서, 사용자는 경고 조건이 계측 전자부품(20)에 의해 설정되는 잔여물의 양을 결정할 수 있다.
진동 응답(31)에 추가하여, 본 발명의 실시예에 따라 계측 전자부품(20)은 구동 메커니즘(180)에 적용되는 구동 신호 크기를 추가로 감지할 수 있다. 더욱이, 계측 전자부품(20)은 픽오프(170)로부터 수신된 구동 이득 또한 감지할 수 있으며, 구동 이득은 구동 메커니즘(180)에 공급된 구동 신호 크기와 결과적인 진동 응답(31) 사이의 관계를 포함한다. 크기 및 이득은 잔여물에 의해 흡수된 진동 에너지 양을 지시하며, 잔여물 감지를 더욱 정교하게 하도록 사용될 수 있다. 결과적으로, 구동 신호 이득 및 구동 신호 크기는 잔여물 질량값(36)의 결정을 보다 정교하게 할 수 있다. 따라서 일 실시예에서, 진동 응답(31)이 미리 정해진 잔여물 한계치(30)를 넘는 경우, 그리고 구동 이득(38)이 이득 한계치(39)만큼 구동 크기(37)를 넘는다면, 프로세싱 시스템(22)이 구동 크기(37)와 구동 이득(38)을 추가로 비교하도록 구성된다.
탐지 방법 순서도 - 도 3
도 3은 본 발명의 실시예에 따른 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도(300)이다. (301)단계에서, 유량계 어셈블리(10)는 구동기 진동으로 진동된다. 진동은 유량계 어셈블리(10)의 기본 주파수를 포함할 수 있다. 따라서 구동기 진동은 유량계 어셈블리(10) 내의 질량 유동을 탐지하기 위해 사용되는 전형적인 진동을 포함할 수 있다.
(302)단계에서, 유량계 어셈블리(10)의 진동 응답이 결정된다. 진동 응답은 전형적으로 전기적 신호의 형태로 수신되며, 신호 크기는 유량계 어셈블리(10) 내에 존재하고나 유동하는 물질의 질량과 관련하여 다양하다. 전기적 신호는, 튜브 내의 물질의 질량값 및 밀도값을 획득하도록 처리될 수 있다. 더욱이, 종래 기술과 달리, 전기적 신호는 유량계 어셈블리(10) 내의 잔여물의 대략적인 양의 존재를 결정하도록 처리될 수 있다.
(303)단계에서, 잔여물을 탐지하도록 유량계 어셈블리(10)의 진동 응답이 잔여물 한계치와 비교된다. 일 실시예에서, 잔여물 한계치는 비어 있는 상태의 유동 튜브 진동 응답을 포함할 수 있다. 비어 있는 상태의 유동 튜브 진동 응답은 예를 들어 공장 내에서 유동 튜브를 위해 측정될 수 있다. 비어 있는 상태의 유동 튜브 진동 응답은 전형적으로 표준 온도 및 압력에서 생성된다. 따라서 비어 있는 상태의 유동 튜브 진동 응답 모든 후속 잔여물 탐지 작업을 위한 척도가 될 수 있다. 대안적으로, 전술한 바와 같이 잔여물 한계치는 비어 있는 상태의 유동 튜브 진동 응답으로부터의 오프셋을 포함할 수 있으며, 주파수, 밀도 또는 질량값 및 범위를 포함할 수 있다.
(304)단계에서, 진동 응답이 잔여물 한계치를 넘는 경우, 진동 응답은 비어 있지 않은 상태를 표시하도록 결정되고, (305)단계로 이동한다. 대안적으로, 진동 응답이 잔여물 한계치를 넘지 않는 경우, 유량계 어셈블리(10)는 비어 있는 것으로 결정되어 (308)단계로 이동한다.
(305)단계에서, 진동 응답이 잔여물 한계치를 넘기 때문에, 잔여물이 유량계 어셈블리(10) 내에서 탐지된 것이다. 탐지는 비어 있는 상태를 비어 있지 않은 상태로 조절하는 단계를 포함할 수 있다. 추가로, 탐지는 시간 주기에 따라 비어 있지 않은 조건의 발생을 기록하는 단계를 포함할 수 있다. 그 결과, 비어 있지 않은 조건은 유량계 어셈블리(10)에 관찰, 세정, 유지, 보수 등이 필요한지 여부를 결정하도록 사용될 수 있다.
(306)단계에서, 경고 조건이 선택적으로 생성될 수 있다. 경고 조건은, 전술한 바와 같이 사용자 또는 작동자에게 표시되는 시각적, 청각적 또는 문자 경고를 포함할 수 있다. 경고 조건은 잔여물 탐지의 초기 단계에 이루어지며, 대안적으로 잔여물이 유량계 어셈블리(10) 내에 존재하는 동안 계속될 수 있다.
(307)단계에서, 본 방법은 선택적으로 잔여물 질량값을 결정한다. 잔여물 질량값은 기록될 수 있다. 잔여물 질량값은 유량계(5)가 비어 있는지 아닌지를 결정하도록 사용될 수 있다.
(308)단계에서, 유량계 어셈블리(10)가 비어 있는 것으로 결정되면, 비어 있는 조건 상태가 비어 있는 것으로 설정된다. 추가로, 탐지는 시간 주기에 따른 비어 있는 조건의 기록을 기록하는 단계를 포함할 수 있다.
계측 전자부품 - 도 4
도 4는 본 발명의 일 실시예에 따른 계측 전자부품(20)의 다이어그램이다. 계측 전자부품(20)은 전술한 바와 같이 프로세싱 시스템(422), 저장 시스템(24), 및 인터페이스(426)를 포함한다.
저장 시스템(24)은 잔여물 한계치(30), 주파수 오프셋(41), 보정된 주파수(42), 주파수 차이(43), 질량-주파수 관련 인자(mass-frequency relationship factor)(44), 잔여물 질량값(36), 및 주파수 보정 루틴(40)(frequency compensation routine)을 포함한다. 저장 시스템(24)은 전술한 바와 같이 진동 응답(31), 잔여물 탐지 루틴(32), 비어 있는 조건(33), 경고 조건(34), 구동 크기(37), 구동 이득(38), 및 이득 한계치(39)를 더 포함한다.
작동시, 계측 전자부품(20)은 진동 응답(31)을 수신하여, 진동 응답(31)이 비어 있는 또는 비어 있지 않은 유량계 어셈블리(10)를 지시하는지 여부를 결정한다. 이러한 실시예에서, 계측 전자부품(20)은 진동 응답(31)을 주파수 한계치 또는 범위에 비교함으로써 또는 진동 응답(31)으로부터의 질량값을 결정하여 질량 한계치 또는 범위에 비교함으로써 결정을 제공할 수 있다. 예를 들어, 후자에서, 계측 전자부품(20)은 유량계 어셈블리(10) 내의 잔여물에 관한 잔여물 질량값(36)을 생성하고 잔여물 질량값(36)이 잔여물 수준으로 상승했는지 여부를 결정한다. 잔여물 질량값(36)이 매우 작다면, 잔여물 질량값(36)은 비어 있는 유량계 어셈블리(10)로서 간단히 취급될 수 있음을 주지하여야 한다.
코리올리 유량계의 밀도 측정은 다음 수식에 기초한다.
2πf = 2π/τ = √(k/m)
여기에서,
k = 유량계 어셈블리의 탄성 상수
m = 유량계 어셈블리의 질량
f = (진동 응답의) 진동 주파수, 그리고
τ = 진동 주기
보다 특정적으로, 유량계 어셈블리(10)의 진동 주파수는 유동 튜브 또는 유동 튜브들의 탄성 상수에 비례하며, 질량(즉, 유량계 어셈블리(10)의 질량과 그 안에서 유량계 어셈블리(10)에 연결된 유체 매질의 질량을 더한 질량)에 반비례한다.
잔여물 한계치(30)는 표준 공기 (비어 있는) 조건에서의 유량계 어셈블리(10)의 기본 진동 주파수를 저장한다. 이는 유량계 어셈블리(10)의 비어 있는 조건에 상응한다.
주파수 오프셋(41)은 기본 진동 주파수(즉, 비어 있는 경우의 주파수)로부터의 주파수 오프셋 한계치이다. 주파수 오프셋(41)은 진동 응답(31)이 비어 있는 것으로 고려되는 유량계 어셈블리(10)의 기본 진동 주파수에 충분히 근접하였는지 여부를 결정한다.
보정 주파수(42)는, 진동 응답(31)이 주변 온도 및 주변 공기 압력에 의해 보정된 이후의 유량계 어셈블리(10)의 진동 응답을 포함한다. 보정은 추가로 유동 튜브 기하학적 특성 등과 같은 다른 인자로서 진동 응답(31)을 보정할 수 있다. 이러한 실시예에서 보정은 주파수 보정 루틴(40)에 의해 실행된다(이하 참조).
주파수 차이(43)는 보정된 주파수(42)와 잔여물 한계치(30) 사이의 차이를 포함한다. 주파수 차이(43)는 잔여물 질량값(36)을 결정하기 위한 선행으로써 계산된다.
질량-주파수 관련 인자(44)는 주파수 차이(43)를 질량값으로 지시하는 수학적 모델이다. 질량-주파수 관련 인자(44)는 일 실시예에서 수식을 포함할 수 있다. 다른 실시예에서, 질량-주파수 관련 인자(44)는, 입력 주파수 차이를 출력 질량값으로 지시하는 데이터 테이블과 같은 데이터 구조를 포함할 수 있다. (즉, 이는 잔여물 질량값(36)을 제공한다.)
질량-주파수 관련 인자(44)는 유량계(5)에 의해 측정된 물질에 따라 선택될 수 있다. 따라서, 질량-주파수 관련 인자(44)는 상이한 유체 매체 사이에서 다양할 수 있다. 질량-주파수 관련 인자(44)는, 유동 물질이 변화한다면 사용자에 의해 또는 제조시에 저장 시스템(24) 내에 프로그램될 수 있다.
잔여물 질량값(36)은 현재 진동 응답(31)으로부터 결정된 질량값을 포함한다. 잔여물 질량값(36)은 유량계 어셈블리(10) 내의 잔여물의 대략적인 질량을 나타낸다.
주파수 보정 루틴(40)은 진동 응답(31)에 따라 작동하며 유량계(5)의 정확도를 증가시키도록 진동 응답(31) 상의 보정을 수행한다. 보정은 어떠한 방식의 보정이라도 포함할 수 있다. 일 실시예에서, 보정은 온도 보정 및 압력 보정을 포함하며, 진동 응답(31)은 온도 및 압력 표준 조건의 정확도에 근접시키도록 주변 온도 및 주변 압력을 위해 보정된다. 추가로, 주파수 보정 루틴(40)은 보정 처리를 위해 미리 측정된 또는 미리 저장된 검정 인자 등의 다른 것을 채택할 수 있다.
탐지 방법 순서도 - 도 5
도 5는 본 발명의 실시예에 따라 유량계 내의 잔여물을 탐지하기 위한 방법의 순서도(500)이다. 일 실시예에서 방법(500)은 도 4의 계측 전자부품(20)의 작동 방법을 포함한다. (501)단계에서, 잔여물 한계치가 저장된다. 이러한 방법의 실시예에서, 잔여물 한계치는 기본 진동 주파수를 포함할 수 있다. 잔여물 한계치는 이하의 단계 이전에 어떠한 시간에서도 저장될 수 있다.
(502)단계에서, 전술한 바와 같이 잔여물 존재 여부를 탐지하기 위해 유동 튜브 또는 유동 튜브들이 진동된다.
(503)단계에서, 유량계(5)는 전술한 바와 같이 진동 응답을 측정한다.
(504)단계에서, 보정된 주파수가 진동 응답으로부터 결정된다. 보정된 주파수는 온도, 압력 유동 튜브 기하학적 특성 등에 의해 보정된 진동 주파수를 포함할 수 있다. 추가로, 다른 형식의 보정 또한 진동 응답 상에서 수행될 수 있다.
(505)단계에서, 주파수 차이가 유량계 어셈블리(10)의 보정된 주파수와 기본 진동 주파수 사이에서 계산된다. 이상적으로 유량계 어셈블리(10)가 완전히 비워진다면, 보정된 주파수는 기본 진동 주파수에 맞추어질 것이며, 그 차이는 0이 될 것이다. 그러나 유량계 어셈블리(10)가 실질적으로 비워지는 경우에도 주파수 차이가 0이 안될 가능성이 있다. 따라서 일 실시예에서, 비어 있지 않은 상태가 실질적으로 결정될 수 있기 전에, 주파수 차이가 한계치를 반드시 넘어야 한다.
(506)단계에서, 잔여물 질량값을 결정하기 위해, 보정된 주파수가 질량-주파수 관련 인자와 곱해진다.
(507)단계에서, 잔여물 질량값은 잔여물 한계치와 비교된다. 이러한 실시예에서, 잔여물 한계치는 질량 한계치를 포함하며, 그 아래에서 잔여물 질량값은 비어 있는 것으로 고려된다. 잔여물 질량값이 잔여물 한계치를 넘는다면, 유량계 어셈블리(10)는 비어 있지 않은 것으로 결정된다.
계측 전자부품 - 도 6
도 6은 본 발명의 실시예에 따른 계측 전자부품(20)의 다이어그램이다. 계측 전자부품(20)은 전술한 바와 같이 프로세싱 시스템(622), 저장 시스템(24) 및 인터페이스(626)를 포함한다.
저장 시스템(24)은 잔여물 한계치(30), 밀도 보정 루틴(density compensation routine)(60), 보정된 밀도값(61), 잔여물 질량값(36), 유동 튜브 부피(62), 커플링 인자(63) 및 방향 인자(64)를 포함한다. 저장 시스템(24)은 전술한 바와 같이 진동 응답(31), 잔여물 탐지 루틴(32), 비어 있는 조건(33), 경고 조건(34), 구동 크기(37), 구동 이득(38), 및 이득 한계치(39)를 더 포함한다.
작동시, 계측 전자부품(20)은 진동 응답(31)을 수신하고 유량계 어셈블리(10) 내의 잔여물에 관한 보정된 밀도값(61)을 생성하며, 보정된 밀도값(61)을 밀도 한계치 또는 범위에 비교한다(도 7 참조).
일 실시예에서, 잔여물 한계치(30)는 검정 밀도값 또는 범위를 포함한다. 검정 밀도값은 유량계 어셈블리(10)를 유동하는 물질의 구성을 나타내는 밀도값 또는 밀도 범위를 포함한다. 검정 밀도값은 주어진 물질 및 표준 온도 및 압력 등과 같은 주어진 조건 설정을 위해 제공된다. 검정 밀도값은 전형적으로 제조 시에 또는 검정 동안에서와 같이 미리 저장된 표준 조건 하에서 측정된다. 검정 밀도값으로부터의 변화는 비어 있지 않은 상태를 결정하도록 사용될 수 있으며, 추가로 유량계 어셈블리(10) 내의 예상하지 못하거나 바람직하지 못한 유동 매체의 존재를 탐지하는데 사용될 수 있다. 보정된 밀도값(61)을 산출하도록 처리하는 경우 진동 응답(31)이 잔여물 한계치(30)에 실질적으로 맞추어진다면, 유량계 어셈블리(10)는 비어 있지 않은 것으로 결정될 수 있다.
밀도 보정 루틴(60)은, 유량계(5)의 정확도를 증가시키도록 측정된 밀도 상의 밀도 보정 작업을 수행한다. 밀도 보정 루틴(60)은 보정된 밀도값(61)을 진동 응답(31)으로부터 생성한다. 진동 응답(31)이 주파수 측정 당 밀도 비율(즉, δρ/δf)을 포함하기 때문에, 그리고 밀도(ρ)는 질량을 부피로 나눈 것을 포함하기 때문에, 질량의 주파수 변화 비율(즉, δm/δf)은 이를 대입하여 결정될 수 있다. 따라서 진동 응답(31)은 유량계 어셈블리(10) 내의 물질 질량을 나타내는 주파수를 구비한 전기적 신호를 포함한다.
보정된 밀도값(61)은 전술한 바와 같이 진동 응답(31)으로부터 획득된 보정된 밀도를 포함한다. 보정은 어떠한 방법의 보정이라도 포함할 수 있으며, 유량계(5)의 정확도를 증가시키도록 수행된다. 일 실시예에서, 보정은 온도 보정 및 압력 보정을 포함하며, 진동 응답(31)은 주변 온도 및 주변 압력을 위해 보정된다. 추가로, 밀도 보정 루틴(60)은 보정 처리에 있어서 미리 측정되고 미리 저장된 다른 검정 인자를 채택할 수 있다.
*유량계 어셈블리(10)가 비어 있는지 또는 비어 있지 않은지를 결정하기 위한 밀도의 사용에 추가하여, 밀도는 잔여물 질량값(36)을 결정하도록 사용될 수 있다(도 8). 선택적인 질량 결정은, 존재하는 잔여물의 양을 결정하도록 사용될 수 있으며, 유동 튜브 부피(62), 커플링 인자(63), 및 방향 인자(64)를 더 채택한다. 유동 튜브 부피(62), 커플링 인자(63), 및 방향 인자(64)는 미리 결정되고 및/또는 미리 저장된 인자들을 포함할 수 있다.
유동 튜브 부피(62)는 유량계 어셈블리(10) 내의 유동 튜브 또는 튜브들의 부피를 포함한다. 유동 튜브 부피(62)는 유량계 형식 및 크기에 따라 상이할 수 있으며, 특정 유량계(5)에서 고유하다.
커플링 인자(63)는, 유량계 어셈블리(10)의 내측 표면에 달라붙는 물질 경향과 서로 관련 있는 유동 물질 점성 인자(viscosity factor)를 포함하며, 즉 점성이 보다 많은 물질은 유량계 어셈블리(10)에 보다 달라붙고 유량계 어셈블리 밖으로 배수가 덜 된다. 따라서 커플링 인자(63)는 유동 물질에 따라 상이할 것이다.
방향 인자(64)는 유량계 어셈블리(10)의 설치 방향을 나타내는 인자를 포함한다. 따라서 방향이 유량계 어셈블리(10)의 배수 능력에 영향을 미침에 따라, 방향 인자(64)는 유량계 어셈블리(10)의 설치 방향에 따라 변한다.
탐지 방법 순서도 - 도 7
도 7은, 본 발명의 실시예에 따라 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도(700)이다. 방법(700)은 도 6의 계측 전자부품(20)을 작동시키기 위한 방법 실시예를 포함한다. (701)단계에서, 잔여물 한계치가 저장된다. 이러한 방법 실시예에서, 잔여물 한계치는 검정 밀도값을 포함할 수 있다. 잔여물 한계치는 이하의 단계 이전에 어느 시간에서도 저장될 수 있다.
(702)단계에서, 전술한 바와 같이 유량계 어셈블리(10)가 진동한다.
(703)단계에서, 전술한 바와 같이 유량계(5)가 진동 응답을 측정한다.
(704)단계에서, 전술한 바와 같이 보정된 밀도값이 결정된다.
(705)단계에서, 전술한 바와 같이 상기 보정된 밀도값이 검정 밀도값(즉, 잔여물 한계치)에 비교된다. 보정된 밀도값은 검정 밀도값의 미리 정해진 오프셋을 포함할 수 있으며, 또는 밀도 범위 및 공차를 포함할 수 있다.
(706)단계에서, 보정된 밀도값이 검정 밀도값에 실질적으로 맞추어진다면, 방법은 (707)단계로 진행한다. 그렇지 않다면 (708)단계로 진행한다.
(707)단계에서, 보정된 밀도값이 검정 밀도값에 실질적으로 맞추어진다면, 유동 물질이 유량계 어셈블리(10) 내에 존재하는 것으로 결정될 수 있다. 따라서 전술한 바와 같이 비어 있지 않은 조건이 설정될 수 있다. 추가로 전술한 바와 같이 경고 조건이 설정될 수 있다.
(708)단계에서, 보정된 밀도값이 검정 밀도값에 실질적으로 맞추어 지지 않는다면, 유동 물질이 유량계 어셈블리(10) 내에 존재하지 않는 것으로 결정될 수 있다. 따라서 전술한 바와 같이 비어 있는 조건이 설정될 수 있다.
탐지 방법 순서도 - 도 8
도 8은, 본 발명의 실시예에 따라 유량계 어셈블리 내의 잔여물을 탐지하는 방법의 순서도(800)이다. 방법(800)은 도 6의 계측 전자부품(20)을 작동시키기 위한 다른 방법 실시예를 포함한다. (801)단계에서, 잔여물 한계치가 저장된다. 이러한 방법 실시예에서, 잔여물 한계치는 잔여물 질량 한계치를 포함할 수 있다. 잔여물 한계치는 이하의 단계 이전에 어느 시간에서도 저장될 수 있다.
(802)단계에서, 전술한 바와 같이 유량계 어셈블리(10)가 진동한다.
(803)단계에서, 전술한 바와 같이 유량계(5)가 진동 응답을 측정한다.
(804)단계에서, 전술한 바와 같이 보정된 밀도값이 결정된다.
(805)단계에서, 전술한 바와 같이 보정된 밀도값이 유동 튜브 부피, 커플링 인자, 및 방향 인자와 곱해진다. 곱한 결과가 잔여물 질량값이다.
(806)단계에서, 잔여물 질량값은 잔여물 질량 한계치와 비교된다. 잔여물 질량 한계치는 질량 범위 또는 공차를 포함할 수 있다.
(807)단계에서, 잔여물 질량값이 잔여물 질량 한계치를 넘는 경우, 방법은 (808)단계로 진행한다. 그렇지 않다면, (810)단계로 진행한다.
(808)단계에서, 잔여물 질량값이 잔여물 질량 한계치를 넘는 경우, 유량계 어셈블리(10) 내에 유동 물질이 있는 것으로 결정될 수 있다. 따라서 전술한 바와 같이 비어 있지 않은 조건이 설정될 수 있다. 추가로, 전술한 바와 같이 경고 조건이 설정될 수 있다.
(809)단계에서, 잔여물 질량값이 잔여물 질량 한계치를 넘지 않는 경우, 유량계 어셈블리(10) 내에 유동 물질이 존재하지 않는 것으로 결정될 수 있다. 따라서 전술한 바와 같이 비어 있는 조건이 설정될 수 있다.
본 발명에 따른 계측 전자부품 및 방법은, 수개의 장점을 제공하도록 바람직한 경우 상기 실시예들 중 어느 하나를 채택할 수 있다. 계측 전자부품 및 방법은 유량계 내에 잔여물을 탐지하는 능력을 제공할 수 있다. 유량계는 예를 들어 코리올리 유량계를 포함할 수 있다. 계측 전자부품 및 방법은 유량계 내에 잔여물의 잔여물 질량을 측정하는 능력을 제공할 수 있다. 잔여물은 일반적인 물질 유동이 종결된 이후 어느 시간에도 탐지 및/또는 측정될 수 있다. 예를 들어, 유량계는 잔여물을 탐지 및/또는 측정하도록 순간적으로 또는 주기적으로 구동될 수 있다. 대안적으로, 유량계는 실질적으로 연속 작동될 수 있으며 따라서 일반적인 유동이 종결된 때에 탐지할 수 있다. 결과적으로, 유량계는 잔여 물질이 여전히 존재하는 시기 또는 만족스럽게 배수된 시기를 탐지할 수 있다.
본 발명에 따른 계측 전자부품 및 방법은 유량계 내의 잔여물을 탐지하도록 한계치를 설정하는 능력을 제공할 수 있다. 한계치는 미리 구성될 수 있으며 또는 사용자에 의해 설정 가능하다.
본 발명에 따른 계측 전자부품 및 방법은, 잔여물이 한계치를 넘는 경우 구동되는 경고를 제공할 수 있다. 경고는 미리 구성되거나 또는 대안적으로 사용자에 의해 구성 또는 설정될 수 있다.

Claims (24)

  1. 유량계 어셈블리(10) 내의 잔여물을 탐지하도록 구성된 계측 전자부품(meter electronics)(20)으로서, 상기 계측 전자부품(20)은 유량계(5)가 상기 유량계 어셈블리(10)를 진동하도록 지시하고 상기 유량계 어셈블리(10)로부터의 진동 응답(31)을 수신하도록 구성된 프로세싱 시스템(22) 및 유동 계측 파라미터 및 데이터를 저장하도록 구성된 저장 시스템(24)을 포함하는, 유동 계측 전자부품(20)으로서,
    상기 프로세싱 시스템(22)은 상기 진동 응답(31)을 미리 정해진 잔여물 한계치(threshold)(30)에 비교하여 잔여물을 탐지하도록 구성된 것을 특징으로 하는,
    계측 전자부품(20).
  2. 제 1 항에 있어서,
    상기 미리 정해진 잔여물 한계치(30)는 사용자에 의해 설정 가능한,
    계측 전자부품(20).
  3. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로, 잔여물 질량값(36)을 산정하도록 구성된,
    계측 전자부품(20).
  4. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로, 상기 진동 응답(31)이 상기 미리 정해진 잔여물 한계치(30)를 넘는 경우에 경고 조건(34)을 생성하도록 구성된,
    계측 전자부품(20).
  5. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로, 상기 진동 응답(31)이 상기 미리 정해진 잔여물 한계치(30)를 넘지 않는 경우 상기 유량계 어셈블리(10) 내에 비어 있는 조건(empty condition)(33)을 결정하도록 구성된,
    계측 전자부품(20).
  6. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로, 구동 크기(drive amplitude)(37)와 구동 이득(drive gain)(38)을 추가로 비교하여 상기 진동 응답(31)이 상기 미리 정해진 잔여물 한계치(30)를 넘고 상기 구동 이득(38)이 이득 한계치(gain threshold)(39) 만큼 상기 구동 크기(37)를 넘는 경우 잔여물을 탐지하도록 구성된,
    계측 전자부품(20).
  7. 제 1 항에 있어서,
    상기 유량계(5)는 코리올리 유량계(Coriolis flow meter)를 포함하는,
    계측 전자부품(20).
  8. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로, 상기 유량계 어셈블리(10)를 위한 기본 진동 주파수(fundamental vibration frequency)를 최초에 저장하여 상기 기본 진동 주파수로부터 상기 미리 정해진 잔여물 한계치(30)를 결정하도록 구성되고, 상기 미리 정해진 잔여물 한계치(30)는 상기 기본 진동 주파수로부터의 미리 정해진 주파수 오프셋(predetermined frequency offset)(41)을 포함하는,
    계측 전자부품(20).
  9. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로;
    상기 진동 응답(31)으로부터 보정된 주파수(42)를 결정하고;
    상기 유량계 어셈블리(10)의 기본 진동 주파수와 상기 보정된 주파수(42) 사이의 주파수 차이(43)를 계산하고; 그리고
    상기 주파수 차이(43)를 질량-주파수 관련 인자(44)에 곱하여 상기 유량계 어셈블리(10)를 위한 잔여물 질량값(36)을 획득하도록 구성되며;
    상기 비교는, 상기 잔여물 질량값(36)을 상기 미리 정해진 잔여물 한계치(30)에 비교하는 것을 포함하는,
    계측 전자부품(20).
  10. 제 1 항에 있어서,
    상기 미리 정해진 잔여물 한계치(30)는 상기 유량계 어셈블리(10)의 검정 밀도값(calibration density value)을 포함하며,
    상기 프로세싱 시스템(22)은:
    상기 진동 응답(31)을 보정하여 보정된 밀도값(61)을 제공하도록 구성되며,
    상기 비교는, 상기 보정된 밀도값(61)을 상기 검정 밀도값에 비교하는 것을 포함하며; 그리고
    상기 탐지는, 상기 보정된 밀도값(61)이 상기 검정 밀도값에 실질적으로 맞추어지는 경우 잔여물을 탐지하는 것을 포함하는,
    계측 전자부품(20).
  11. 제 1 항에 있어서,
    상기 프로세싱 시스템(22)은, 추가로;
    상기 진동 응답(31)을 보정하여 보정된 밀도값(61)을 제공하고; 그리고
    상기 보정된 밀도값(61)을 유동 튜브 부피(62), 유동 매체 점도 커플링 특성을 규정하는 커플링 인자(coupling factor)(63), 및 방향 인자(orientation factor)(64)와 곱하여 잔여물 질량값(36)을 제공하도록 구성되며;
    상기 미리 정해진 잔여물 한계치(30)는 미리 정해진 잔여물 질량 한계치를 포함하며; 그리고
    상기 비교는, 상기 잔여물 질량값(36)을 상기 미리 정해진 잔여물 한계치(30)와 비교하는 것을 포함하는,
    계측 전자부품(20).
  12. 제 11 항에 있어서,
    상기 보정은, 주변 온도 및 주변 압력을 위해 상기 진동 응답(31)을 보정하는 것을 더 포함하는,
    계측 전자부품(20).
  13. 유량계 어셈블리를 진동하는 단계 및 상기 유량계 어셈블리의 진동 응답을 측정하는 단계를 포함하는, 유량계 어셈블리 내에 잔여물을 탐지하는 방법에 있어서, 상기 방법은,
    잔여물을 탐지하도록 상기 진동 응답을 미리 정해진 잔여물 한계치에 비교하는 단계를 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  14. 제 13 항에 있어서,
    상기 미리 정해진 잔여물 한계치는 사용자에 의해 설정 가능한,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  15. 제 13 항에 있어서,
    상기 탐지는 잔여물 질량값을 실질적으로 결정하는 것을 더 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  16. 제 13 항에 있어서,
    상기 방법은, 상기 진동 응답이 상기 미리 정해진 잔여물 한계치를 넘는 경우 경고 조건을 생성하는 단계를 더 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  17. 제 13 항에 있어서,
    상기 방법은, 상기 진동 응답이 상기 미리 정해진 잔여물 한계치를 넘지 않는 경우 상기 유량계 어셈블리 내의 비어 있는 조건을 결정하는 단계를 더 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  18. 제 13 항에 있어서,
    상기 방법은 구동 크기와 구동 이득을 비교하는 단계를 더 포함하며,
    상기 탐지는, 상기 진동 응답이 상기 미리 정해진 잔여물 한계치를 넘는 경우 그리고 상기 구동 이득이 이득 한계치만큼 상기 구동 크기를 넘는 경우, 잔여물을 탐지하는 것을 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  19. 제 13 항에 있어서,
    상기 유량계는 코리올리 유량계를 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  20. 제 13 항에 있어서,
    상기 방법은 상기 유량계 어셈블리를 위한 기본 진동 주파수를 최초에 저장하는 단계를 더 포함하며,
    상기 결정은, 상기 기본 진동 주파수로부터 상기 미리 정해진 잔여물 한계치를 결정하는 것을 포함하며, 그리고
    상기 미리 정해진 잔여물 한계치는 상기 기본 진동 주파수로부터의 미리 정해진 주파수 오프셋을 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  21. 제 13 항에 있어서,
    상기 비교는,
    상기 진동 응답으로부터 보정된 주파수를 결정하는 단계;
    상기 유량계 어셈블리의 기본 진동 주파수와 상기 보정된 주파수 사이의 주파수 차이를 계산하는 단계; 및
    상기 유량계 어셈블리를 위한 잔여물 질량값을 획득하도록 상기 주파수 차이를 질량-주파수 관련 인자와 곱하는 단계를 더 포함하며,
    상기 비교는, 상기 잔여물 질량값을 상기 미리 정해진 잔여물 한계치와 비교하는 것을 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  22. 제 13 항에 있어서,
    상기 미리 정해진 잔여물 한계치는 상기 유량계 어셈블리의 검정 밀도값을 포함하며,
    상기 방법은, 보정된 밀도값을 제공하도록 상기 진동 응답을 보정하는 단계를 더 포함하며,
    상기 비교는, 상기 보정된 밀도값을 상기 검정 밀도값에 비교하는 것을 포함하며,
    상기 탐지는, 상기 보정된 밀도값이 상기 검정 밀도값에 실질적으로 맞추어지는 경우 잔여물을 탐지하는 것을 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  23. 제 13 항에 있어서,
    상기 비교는,
    보정된 밀도값을 제공하도록 상기 진동 응답을 보정하고; 그리고
    잔여물 질량값을 제공하도록 상기 보정된 밀도값을 유동 튜브 부피, 유동 매체 점도 커플링 특성을 규정하는 커플링 인자, 및 상기 유량계 어셈블리의 설치 방향에 관한 방향 인자와 곱하는 것을 더 포함하며;
    상기 미리 정해진 잔여물 한계치는 미리 정해진 잔여물 질량 한계치를 포함하며; 그리고
    상기 비교는, 상기 잔여물 질량값을 상기 미리 정해진 잔여물 한계치와 비교하는 것을 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
  24. 제 23 항에 있어서,
    상기 보정은, 주변 온도 및 주변 압력을 위해 상기 진동 응답을 보정하는 것을 더 포함하는,
    유량계 어셈블리 내에 잔여물을 탐지하는 방법.
KR1020107008537A 2004-06-22 2004-06-22 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측 전자부품 및 그 방법 KR20100058647A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/019938 WO2006009548A1 (en) 2004-06-22 2004-06-22 Meter electronics and method for detecting a residual material in a flow meter assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020077000858A Division KR100975092B1 (ko) 2004-06-22 2004-06-22 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측전자부품 및 그 방법

Publications (1)

Publication Number Publication Date
KR20100058647A true KR20100058647A (ko) 2010-06-03

Family

ID=34958256

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020077000858A KR100975092B1 (ko) 2004-06-22 2004-06-22 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측전자부품 및 그 방법
KR1020107008537A KR20100058647A (ko) 2004-06-22 2004-06-22 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측 전자부품 및 그 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020077000858A KR100975092B1 (ko) 2004-06-22 2004-06-22 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측전자부품 및 그 방법

Country Status (11)

Country Link
US (1) US7421350B2 (ko)
EP (1) EP1759177B1 (ko)
JP (1) JP4664973B2 (ko)
KR (2) KR100975092B1 (ko)
CN (1) CN100520313C (ko)
AU (1) AU2004321718B2 (ko)
BR (1) BRPI0418910B1 (ko)
CA (1) CA2571061C (ko)
HK (1) HK1110383A1 (ko)
MX (1) MXPA06014653A (ko)
WO (1) WO2006009548A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072234A1 (en) * 2003-05-20 2005-04-07 Weidong Zhu System and method for detecting structural damage
CA2622976C (en) * 2005-09-19 2013-05-07 Micro Motion, Inc. Meter electronics and methods for verification diagnostics for a flow meter
AU2007352590B2 (en) * 2007-05-03 2011-03-17 Micro Motion, Inc. Vibratory flow meter and method for correcting for an entrained phase in a two-phase flow of a flow material
DE102009002941A1 (de) * 2009-05-08 2010-11-11 Endress + Hauser Flowtec Ag Verfahren zum Detektieren einer Verstopfung in einem Coriolis-Durchflussmessgerät
DE102009046839A1 (de) 2009-11-18 2011-05-19 Endress + Hauser Flowtec Ag Meßsystem mit einer zwei parallel durchströmte Meßrohre aufweisenden Rohranordnung sowie Verfahren zu deren Überwachung
EP2513612B1 (de) 2009-12-14 2015-03-04 Siemens Aktiengesellschaft Verfahren zum betreiben eines coriolis-massendurchflussmessgeräts sowie coriolis-massendurchflussmessgerät
KR100969488B1 (ko) * 2009-12-18 2010-07-14 진두남 개폐시점을 조절할 수 있는 우수토실의 우수 및 토사유입 방지장치
GB201001948D0 (en) * 2010-02-06 2010-03-24 Mobrey Ltd Improvements in or relating to vibrating tube densitometers
US9389111B2 (en) 2010-03-11 2016-07-12 Measurement Technology Group, Inc. Dynamic-adaptive vapor reduction system and method
DE102010044179A1 (de) * 2010-11-11 2012-05-16 Endress + Hauser Flowtec Ag Meßsystem mit einem Meßwandler von Vibrationstyp
DE102011006997A1 (de) 2011-04-07 2012-10-11 Endress + Hauser Flowtec Ag Frequenzabgleichsverfahren für eine Rohranordnung
DE102011006919A1 (de) 2011-04-07 2012-10-11 Endress + Hauser Flowtec Ag Verfahren zum Trimmen eines Rohrs
DE102011006971A1 (de) 2011-04-07 2012-10-11 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Verfahren zu dessen Herstellung
US9395236B2 (en) * 2011-07-13 2016-07-19 Micro Motion, Inc. Vibratory meter and method for determining resonant frequency
KR101818176B1 (ko) 2011-12-12 2018-01-15 삼성전자주식회사 메모리 시스템 및 그것의 동작 방법
DE102012102947B4 (de) 2012-04-03 2023-12-21 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
CN104204735B (zh) 2012-04-03 2017-12-29 恩德斯+豪斯流量技术股份有限公司 振动型测量变换器
DE102013106155A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Flowtec Ag Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts
DE102013106157A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Flowtec Ag Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts
WO2016136814A1 (ja) * 2015-02-25 2016-09-01 三菱レイヨン株式会社 熱処理炉装置および炭素繊維束の製造方法
RU2683413C1 (ru) * 2015-04-14 2019-03-28 Майкро Моушн, Инк. Обнаружение неточного измерения расхода вибрационным измерителем
AT520632B1 (de) * 2018-01-29 2019-06-15 Anton Paar Gmbh Verfahren zur Messung der Dichte eines durch ein Rohr strömenden oder sich in einem Rohr befindlichen Mediums
JP7024466B2 (ja) * 2018-02-05 2022-02-24 横河電機株式会社 コリオリ流量計、時期予測システム、及び時期予測方法
WO2020076284A1 (en) * 2018-10-08 2020-04-16 Micro Motion, Inc. Cleaning and detecting a clean condition of a vibratory meter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992952A (en) 1987-09-21 1991-02-12 Mazda Motor Corporation Paint discharge rate control system
US4884441A (en) 1988-05-11 1989-12-05 Lew Hyok S Variable capacity flowmeter
JP2793699B2 (ja) * 1990-06-20 1998-09-03 トキコ株式会社 質量流量計
JPH04204328A (ja) * 1990-11-30 1992-07-24 Tokico Ltd 質量流量計
US5275061A (en) 1991-05-13 1994-01-04 Exac Corporation Coriolis mass flowmeter
US5316444A (en) * 1993-04-29 1994-05-31 Wicnienski Michael F Pump control and method of pumping
US5926096A (en) 1996-03-11 1999-07-20 The Foxboro Company Method and apparatus for correcting for performance degrading factors in a coriolis-type mass flowmeter
DE19620079C2 (de) * 1996-05-20 2001-08-23 Krohne Messtechnik Kg Massendurchflußmeßgerät
US6272438B1 (en) * 1998-08-05 2001-08-07 Micro Motion, Inc. Vibrating conduit parameter sensors, methods and computer program products for generating residual-flexibility-compensated mass flow estimates
US6327914B1 (en) 1998-09-30 2001-12-11 Micro Motion, Inc. Correction of coriolis flowmeter measurements due to multiphase flows
US6556931B1 (en) * 2000-11-03 2003-04-29 Micro Motion, Inc. Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
JP3944022B2 (ja) * 2001-12-05 2007-07-11 本田技研工業株式会社 車両の走行制御装置
JP4050900B2 (ja) * 2001-12-21 2008-02-20 日東精工株式会社 質量流量計の付着物検出装置および洗浄装置
US6782325B2 (en) * 2002-09-30 2004-08-24 Micro Motion, Inc. Programmable coriolis flow meter electronics for outputting information over a single output port

Also Published As

Publication number Publication date
MXPA06014653A (es) 2007-03-26
CA2571061C (en) 2013-02-12
US7421350B2 (en) 2008-09-02
KR20070026804A (ko) 2007-03-08
JP4664973B2 (ja) 2011-04-06
EP1759177B1 (en) 2022-02-23
BRPI0418910A (pt) 2007-11-27
BRPI0418910B1 (pt) 2016-11-16
CN100520313C (zh) 2009-07-29
HK1110383A1 (en) 2008-07-11
CN101014835A (zh) 2007-08-08
AU2004321718A1 (en) 2006-01-26
KR100975092B1 (ko) 2010-08-11
AU2004321718B2 (en) 2009-11-05
CA2571061A1 (en) 2006-01-26
EP1759177A1 (en) 2007-03-07
JP2008503755A (ja) 2008-02-07
WO2006009548A1 (en) 2006-01-26
US20070186682A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR100975092B1 (ko) 유량계 어셈블리 내의 잔여물을 탐지하기 위한 계측전자부품 및 그 방법
RU2177610C2 (ru) Способ и устройство для определения плотности материала, протекающего через расходомер
US9400203B2 (en) Vibratory flow meter and zero check method
KR101018401B1 (ko) 강성 계수 또는 질량 계수 중 하나 이상을 결정하기 위한방법 및 계측 전자장치
KR100463371B1 (ko) 코리올리 유량계의 구동 제어를 위한 형태 판단 방법 및 장치
EP2158457A1 (en) Vibratory flow meter and method for correcting for entrained gas in a flow material
CN106461442B (zh) 用于检测振动流量计量器中的不对称流量的装置和方法
US20230358658A1 (en) Dissolution monitoring method and apparatus
KR20200139226A (ko) 유량계 상 분율 및 농도 측정 조정 방법 및 장치
RU2349881C2 (ru) Электронный блок измерителя и способ для обнаружения остаточного вещества в расходомерном устройстве
KR20210034083A (ko) 유량계의 강성 계수를 검증할 시기를 결정하기 위한 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application