KR20100055389A - Process for manufacturing a galvannealed steel sheet by dff regulation - Google Patents

Process for manufacturing a galvannealed steel sheet by dff regulation Download PDF

Info

Publication number
KR20100055389A
KR20100055389A KR1020107001332A KR20107001332A KR20100055389A KR 20100055389 A KR20100055389 A KR 20100055389A KR 1020107001332 A KR1020107001332 A KR 1020107001332A KR 20107001332 A KR20107001332 A KR 20107001332A KR 20100055389 A KR20100055389 A KR 20100055389A
Authority
KR
South Korea
Prior art keywords
steel sheet
oxide
temperature
dip galvanized
producing
Prior art date
Application number
KR1020107001332A
Other languages
Korean (ko)
Other versions
KR101273308B1 (en
Inventor
쟝-미쉘 마테뉴
플로랑스 베르뜨랑
Original Assignee
아르셀러미탈 프랑스
신닛뽄세이테쯔 카부시키카이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38608886&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20100055389(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 아르셀러미탈 프랑스, 신닛뽄세이테쯔 카부시키카이샤 filed Critical 아르셀러미탈 프랑스
Publication of KR20100055389A publication Critical patent/KR20100055389A/en
Application granted granted Critical
Publication of KR101273308B1 publication Critical patent/KR101273308B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

The invention deals with a process for manufacturing a hot-dip galvannealed steel sheet having a TRIP microstructure, and comprising, by % by weight, 0.01 <= C <= 0.22%, 0.50 <= Mn <= 2.0%, 0.5 < Si <= 2.0%, 0.005 <= Al <= 2.0%, Mo < 0.01 %, Cr <=1.0%, P < 0.02%, Ti <= 0.20%, V <= 0.40%, Ni <= 1.0%, Nb <= 0.20%, the balance of the composition being iron and unavoidable impurities resulting from the smelting, said process comprising the steps consisting in:-oxidizing said steel sheet in order to form a layer of iron oxide on the surface of the steel sheet, and to form an. internal oxide of at least one type of oxide selected from the group consisting of Si oxide, Mn oxide, Al oxide, complex oxide comprising Si and Mn, complex oxide comprising Si and Al complex oxide comprising Al and Mn, and complex comprising Si, Mn and Al,-reducing said oxidized steel sheet in order to reduce the layer of iron oxide,-hot-dip galvanising said reduced steel sheet to form a zinc-based coated steel sheet, and-subjecting said zinc-based coated steel sheet to an alloying treatment to form a galvannealed steel sheet.

Description

DFF 조절에 의한 합금화 아연도금 강판의 제조 방법{PROCESS FOR MANUFACTURING A GALVANNEALED STEEL SHEET BY DFF REGULATION}Production method of alloyed galvanized steel sheet by DFF control {PROCESS FOR MANUFACTURING A GALVANNEALED STEEL SHEET BY DFF REGULATION}

본 발명은 TRIP 미세조직을 갖는 합금화 용융아연도금 (hot-dip galvannealed) 강판의 제조 방법에 관한 것이다.The present invention relates to a method for producing an alloyed hot-dip galvannealed steel sheet having a TRIP microstructure.

동력구동식 지상 차량 구조체의 경량화라는 요구를 충족시키기 위해, 매우 높은 기계적 강도를 매우 높은 레벨의 변형 가능성과 결합시킨 TRIP 강 (용어 TRIP 은 변태유기소성 (transformation-induced plasticity) 을 나타냄) 을 사용하는 것이 알려져 있다. TRIP 강은 페라이트, 잔여 (residual) 오스테나이트 및 선택적으로는 마르텐사이트 및/또는 베이나이트를 포함하는 미세조직을 갖고, 이로써 600 ∼ 1,000 ㎫ 의 인장강도를 가질 수 있다. 이러한 종류의 강은 예컨대 길이방향 부재와 강화부품과 같은 구조 및 안전 부품 등의 에너지-흡수성 부품의 제조를 위해 널리 사용된다.In order to meet the demand for lighter power-driven ground vehicle structures, TRIP steel (term TRIP stands for transformation-induced plasticity) combines very high mechanical strength with very high levels of deformability. It is known. TRIP steels have a microstructure comprising ferrite, residual austenite and optionally martensite and / or bainite, and thus may have a tensile strength of 600 to 1,000 MPa. Steels of this kind are widely used for the production of energy-absorbing parts such as structural and safety parts such as longitudinal members and reinforced parts.

자동차 제조업체에 운반되기 전에, 강판은, 내식성을 증가시키기 위해, 일반적으로 용융아연도금에 의해 행해지는 아연계 코팅으로 코팅된다. 아연 욕 (bath) 에서 꺼낸 다음, 종종 아연도금 강판을 어닐링하여, 강의 철과 아연 코팅의 합금화를 향상시킨다 (이른바, 합금화 아연도금). 아연-철 합금으로 이루어진 이러한 종류의 코팅은 아연 코팅보다 양호한 용접성을 제공한다.Before being transported to an automobile manufacturer, the steel sheet is coated with a zinc-based coating, which is usually done by hot dip galvanizing to increase the corrosion resistance. After removal from the zinc bath, the galvanized steel sheet is often annealed to improve alloying of the iron and zinc coatings of the steel (so-called galvanized zinc). Coatings of this kind made of zinc-iron alloys provide better weldability than zinc coatings.

대부분의 TRIP 강은 다량의 규소를 강에 첨가함으로써 얻어진다. 규소는 실온에서 페라이트 및 오스테나이트를 안정화시키고, 잔여 오스테나이트가 분해되어 탄화물을 형성하는 것을 방지한다. 그렇지만, 0.2 중량% 초과의 규소를 포함하는 TRIP 강판은, 코팅 바로 전에 이루어지는 어닐링 동안 강판 표면에 규소 산화물이 형성되기 때문에, 아연도금하기 어렵다. 이러한 규소 산화물은 용융 아연에 대한 불량한 젖음성 (wettability) 을 나타내고, 강판의 도금 성능을 열화시킨다.Most TRIP steels are obtained by adding large amounts of silicon to the steel. Silicon stabilizes ferrite and austenite at room temperature and prevents residual austenite from decomposing to form carbides. However, TRIP steel sheets comprising more than 0.2% by weight of silicon are difficult to galvanize because silicon oxide is formed on the surface of the steel sheet during annealing just before coating. Such silicon oxides exhibit poor wettability with respect to molten zinc and degrade the plating performance of the steel sheet.

이 문제를 해결하기 위하여, 낮은 규소 함량 (0.2 중량% 미만) 을 갖는 TRIP 강의 사용이 공지되어 있다. 그렇지만, 이는, 탄소 함량이 증가될 때에만 높은 레벨의 인장강도, 즉 약 800 ㎫ 의 인장강도가 달성될 수 있다는 중요한 단점을 갖는다. 그러나, 이는 용접 지점의 기계적 저항을 낮추는 효과를 갖는다.To solve this problem, the use of TRIP steels with a low silicon content (less than 0.2% by weight) is known. However, this has the significant disadvantage that a high level of tensile strength, ie a tensile strength of about 800 MPa can be achieved only when the carbon content is increased. However, this has the effect of lowering the mechanical resistance of the welding point.

한편, 합금화 아연도금 프로세스 동안의 합금화 속도는, 철에 대한 확산 장벽으로 작용하는 외부 선택적 산화 때문에, TRIP 강 조성에 상관없이 매우 느리게 되고, 합금화 아연도금의 온도는 증가되어야 한다. 합금화 아연도금의 온도의 증가는, 고온에서의 잔여 오스테나이트의 분해 때문에, TRIP 효과의 보존에 유해하다. TRIP 효과를 보존하기 위해, 다량의 몰리브덴 (0.15 중량% 초과) 이 강에 첨가되어야 하고, 그 결과, 탄화물의 석출이 지연될 수 있다. 그렇지만, 이는 강판의 비용에 영향을 미친다.On the other hand, the alloying rate during the alloying galvanization process becomes very slow, regardless of the TRIP steel composition, due to the external selective oxidation acting as a diffusion barrier to iron, and the temperature of the alloying galvanizing must be increased. The increase in temperature of the galvanized alloy is detrimental to the preservation of the TRIP effect due to the decomposition of residual austenite at high temperatures. In order to preserve the TRIP effect, large amounts of molybdenum (greater than 0.15% by weight) must be added to the steel, as a result of which the precipitation of carbides can be delayed. However, this affects the cost of the steel sheet.

실제로, 변형의 영향으로 잔여 오스테나이트가 마르텐사이트로 변태되므로, TRIP 강판이 변형되는 때에 TRIP 효과가 관찰되고, TRIP 강판의 강도가 증가한다.In fact, since the residual austenite is transformed into martensite under the influence of deformation, the TRIP effect is observed when the TRIP steel sheet is deformed, and the strength of the TRIP steel sheet increases.

그러므로, 본 발명의 목적은, 상기한 단점을 제거하는 것과, 높은 규소 함량 (0.5 중량% 초과) 및 높은 기계적 특성을 나타내는 TRIP 미세조직을 갖는 강판을 합금화 용융아연도금하는 방법으로서, 표면 강판의 양호한 젖음성 및 코팅되지 않은 부분의 부존재를 보장하므로 강판에서의 아연 합금 코팅의 양호한 접착 및 양호한 표면 외관을 보장하고 또한 TRIP 효과를 보존하는 방법을 제안하는 것이다.Therefore, it is an object of the present invention to eliminate the above drawbacks and to alloy hot-dip galvanized steel sheets having a TRIP microstructure exhibiting high silicon content (greater than 0.5% by weight) and high mechanical properties. It is proposed a method of ensuring wettability and absence of uncoated parts, thus ensuring good adhesion and good surface appearance of the zinc alloy coating on the steel sheet and also preserving the TRIP effect.

본 발명의 제 1 주제는, 페라이트, 잔여 오스테나이트 및 선택적으로는 마르텐사이트 및/또는 베이나이트를 포함하는 TRIP 미세조직을 갖는 합금화 용융아연도금 강판의 제조 방법으로서, A first subject of the invention is a process for the production of an alloyed hot dip galvanized steel sheet having a TRIP microstructure comprising ferrite, residual austenite and optionally martensite and / or bainite.

- 조성이, 중량% 로, Composition is in weight percent,

0.01 ≤ C ≤ 0.22 %0.01 ≤ C ≤ 0.22%

0.50 ≤ Mn ≤ 2.0 %0.50 ≤ Mn ≤ 2.0%

0.5 < Si ≤ 2.0 %0.5 <Si ≤ 2.0%

0.005 ≤ Al ≤ 2.0 %0.005 ≤ Al ≤ 2.0%

Mo < 0.01 %Mo <0.01%

Cr ≤ 1.0 %Cr ≤ 1.0%

P < 0.02 %P <0.02%

Ti ≤ 0.20 %Ti ≤ 0.20%

V ≤ 0.40 %V ≤ 0.40%

Ni ≤ 1.0 %Ni ≤ 1.0%

Nb ≤ 0.20 %Nb ≤ 0.20%

를 포함하고, 조성의 잔부가 철 및 제련 (smelting) 에 따른 불가피한 불순물인 강판을 제공하는 단계; Providing a steel sheet, wherein the balance of the composition is an inevitable impurity due to iron and smelting;

- 강판 표면에 산화철 층이 형성되도록, 그리고 Si 산화물, Mn 산화물, Al 산화물, Si 와 Mn 을 포함하는 복합 산화물, Si 와 Al 을 포함하는 복합 산화물, Al 과 Mn 을 포함하는 복합 산화물, 및 Si, Mn 과 Al 을 포함하는 복합 산화물로 이루어진 군에서 선택된 적어도 한 종류의 산화물의 내부 산화물 (internal oxide) 이 형성되도록, 상기 강판을 산화시키는 단계; A layer of iron oxide is formed on the surface of the steel sheet and Si oxide, Mn oxide, Al oxide, a composite oxide comprising Si and Mn, a composite oxide comprising Si and Al, a composite oxide comprising Al and Mn, and Si, Oxidizing the steel sheet so that an internal oxide of at least one type of oxide selected from the group consisting of complex oxides including Mn and Al is formed;

- 산화철 층을 환원시키기 위해, 상기 산화된 강판을 환원시키는 단계; Reducing the oxidized steel sheet to reduce the iron oxide layer;

- 상기 환원된 강판을 용융아연도금하여, 아연계 코팅된 강판을 형성하는 단계; 및 Hot-dip galvanizing the reduced steel sheet to form a zinc-based coated steel sheet; And

- 상기 아연계 코팅된 강판을 합금화 처리하여, 합금화 아연도금 강판을 형성하는 단계Alloying the zinc-based coated steel sheet to form an alloyed galvanized steel sheet

를 포함하는, 합금화 용융아연도금 강판의 제조 방법이다.It is a method of producing an alloyed hot dip galvanized steel sheet comprising a.

본 발명에 따른 TRIP 미세조직을 갖는 합금화 용융아연도금 강판을 얻기 위해, 하기 원소를 포함하는 강판이 제공된다:In order to obtain an alloyed hot dip galvanized steel sheet having a TRIP microstructure according to the present invention, a steel sheet comprising the following elements is provided:

- 0.01 ∼ 0.22 중량% 의 탄소. 이 원소는 양호한 기계적 특성을 얻는데 필수적이지만, 젖음성을 저하시키지 않도록 너무 많은 양으로 존재해서는 안 된다. 경화능 (hardenability) 을 촉진하고 충분한 항복강도 (Re) 를 얻고 또 안정화된 잔여 오스테나이트를 형성하기 위해, 탄소 함량은 0.01 중량% 미만이어서는 안 된다. 고온에서 형성된 오스테나이트 미세조직으로부터 베이나이트 변태가 이루어지고, 페라이트/베이나이트 라멜라가 형성된다. 오스테나이트에 비해 페라이트에서의 탄소의 매우 낮은 용해도로 인해, 오스테나이트의 탄소는 라멜라들 사이에 배출 (reject) 된다. 규소 및 망간으로 인해, 탄화물의 석출이 거의 존재하지 않는다. 따라서, 어떠한 탄화물의 석출없이, 라멜라간 (interlamellar) 오스테나이트는 점차 탄소가 많아진다. 이처럼 탄소가 많아지면, 오스테나이트는 안정화되고, 즉 실온으로의 냉각시 이 오스테나이트의 마르텐사이트 변태가 일어나지 않는다.0.01 to 0.22% by weight of carbon. This element is essential for obtaining good mechanical properties, but it should not be present in too large an amount so as not to degrade wettability. In order to promote hardenability, obtain sufficient yield strength (R e ) and form stabilized residual austenite, the carbon content should not be less than 0.01% by weight. The bainite transformation takes place from the austenitic microstructure formed at high temperatures, and ferrite / bainite lamellae are formed. Due to the very low solubility of carbon in ferrite as compared to austenite, carbon of austenite is rejected between the lamellars. Due to the silicon and manganese, there is almost no precipitation of carbides. Thus, without precipitation of any carbides, the interlamellar austenite gradually increases in carbon. As such carbon increases, austenite is stabilized, that is, martensite transformation of this austenite does not occur upon cooling to room temperature.

- 0.50 ∼ 2.0 중량% 의 망간. 망간은 경화능을 향상시켜서, 높은 항복강도 (Re) 를 달성할 수 있게 한다. 망간은 오스테나이트의 형성을 촉진하여, 마르텐사이트 변태 개시 온도 (Ms) 를 낮추고 오스테나이트를 안정화시키는데 기여한다. 그렇지만, 편석 (segregation) 을 방지하기 위해, 강은 너무 높은 망간 함량을 갖지 않을 필요가 있으며, 이는 강판의 열처리 동안 증명될 수 있다. 더욱이, 망간을 과잉 첨가하면, 취성을 야기하는 두꺼운 내부 망간 산화물 층이 형성되고, 아연계 코팅의 부착이 충분하지 않을 수 있다.0.50 to 2.0% by weight manganese. Manganese improves the hardenability, making it possible to achieve high yield strength (R e ). Manganese promotes the formation of austenite, thereby lowering the martensite transformation start temperature (Ms) and contributing to stabilizing austenite. However, in order to prevent segregation, the steel needs not to have too high manganese content, which can be proved during the heat treatment of the steel sheet. Moreover, excessive addition of manganese forms a thick inner manganese oxide layer that causes brittleness and may result in insufficient adhesion of the zinc-based coating.

- 0.5 중량% 초과, 바람직하게는 0.6 중량% 초과 그리고 2.0 중량% 이하의 규소. 규소는 강의 항복강도 (Re) 를 향상시킨다. 이 원소는 실온에서 페라이트 및 잔여 오스테나이트를 안정화시킨다. 규소는 오스테나이트로부터 냉각시 시멘타이트의 석출을 억제하고, 탄화물의 성장을 현저히 저지한다. 이는, 시멘타이트에서의 규소의 용해도가 매우 낮다는 사실과, 규소가 오스테나이트 내 탄소의 활동도를 증가시킨다는 사실로부터 유래한다. 따라서, 형성되는 임의의 시멘타이트 핵이 규소-부유 (silicon-rich) 오스테나이트 영역에 의해 둘러싸이고, 석출물-매트릭스 계면으로 배출된다. 이 규소-부유 오스테나이트는 또한 탄소가 많으며, 시멘타이트와 인접한 오스테나이트 영역 사이의 감소된 탄소 구배로 인한 감소된 확산 때문에, 시멘타이트의 성장이 느려진다. 그러므로, 이러한 규소의 첨가는 TRIP 효과를 얻기에 충분한 양의 잔여 오스테나이트를 안정화시키는데 기여한다. 강판의 젖음성을 향상시키기 위한 어닐링 단계 동안, 강판의 표면 아래에서 내부 규소 산화물과, 규소 및/또는 망간 및/또는 알루미늄을 포함하는 복합 산화물이 형성되고 분산된다. 그러나, 규소를 과잉 첨가하면, 두꺼운 내부 규소 산화물 층 및 가능하게는 규소 및/또는 망간 및/또는 알루미늄을 포함하는 복합 산화물이 형성되어, 취성을 야기하고, 아연계 코팅의 접착이 충분하지 않을 수 있다.More than 0.5% by weight, preferably more than 0.6% by weight and not more than 2.0% by weight of silicon. Silicon improves the yield strength (R e ) of the steel. This element stabilizes ferrite and residual austenite at room temperature. Silicon suppresses the precipitation of cementite upon cooling from austenite and significantly inhibits the growth of carbides. This is due to the fact that the solubility of silicon in cementite is very low and that silicon increases the activity of carbon in austenite. Thus, any cementite nuclei formed are surrounded by silicon-rich austenite regions and are discharged to the precipitate-matrix interface. This silicon-rich austenite is also carbonaceous and slows the growth of cementite due to the reduced diffusion due to the reduced carbon gradient between the cementite and adjacent austenite regions. Therefore, the addition of such silicon contributes to stabilizing residual austenite in an amount sufficient to obtain the TRIP effect. During the annealing step to improve the wettability of the steel sheet, a composite oxide comprising silicon and / or manganese and / or aluminum is formed and dispersed under the surface of the steel sheet. However, excessive addition of silicon forms a thick internal silicon oxide layer and possibly a complex oxide comprising silicon and / or manganese and / or aluminum, causing brittleness and insufficient adhesion of the zinc-based coating. have.

- 0.005 ∼ 2.0 중량% 의 알루미늄. 규소와 마찬가지로, 알루미늄은, 강판이 냉각될 때, 페라이트를 안정화시키고 페라이트의 형성을 증가시킨다. 규소는 시멘타이트에 잘 용해되지 않고, 이와 관련하여, 강을 베이나이트 변태 온도에 유지하는 때에 시멘타이트의 석출을 피하기 위해 그리고 잔여 오스테나이트를 안정화시키기 위해 사용될 수 있다. 강을 탈산 (deoxidize) 하기 위해 최소량의 알루미늄이 요구된다.0.005 to 2.0% by weight of aluminum. Like silicon, aluminum stabilizes ferrite and increases the formation of ferrite when the steel sheet is cooled. Silicon does not dissolve well in cementite and in this regard can be used to avoid precipitation of cementite and to stabilize residual austenite when maintaining the steel at bainite transformation temperature. A minimum amount of aluminum is required to deoxidize the steel.

- 0.01 미만, 바람직하게는 0.006 중량% 이하의 몰리브덴. 종래 방법에서는, 아연도금 후 재가열 동안 탄화물 석출을 방지하기 위해 Mo 의 첨가가 요구된다. 여기서, 규소, 망간 및 알루미늄의 내부 산화 덕분에, 아연도금 강판의 합금화 처리가 내부 산화물을 전혀 포함하지 않는 종래 아연도금 강판의 경우보다 더 낮은 온도에서 행해질 수 있다. 그 결과, 종래 아연도금 강판의 합금화 처리 동안 행했던 것처럼 베이나이트 변태를 지연시킬 필요가 없기 때문에, 몰리브덴의 함량이 감소될 수 있고, 0.01 중량% 미만으로 될 수 있다.Molybdenum less than 0.01, preferably up to 0.006% by weight. In the conventional method, addition of Mo is required to prevent carbide precipitation during reheating after galvanizing. Here, thanks to the internal oxidation of silicon, manganese and aluminum, the alloying treatment of the galvanized steel sheet can be performed at a lower temperature than in the case of the conventional galvanized steel sheet containing no internal oxide at all. As a result, since there is no need to delay the bainite transformation as has been done during the alloying process of the conventional galvanized steel sheet, the content of molybdenum can be reduced and can be made less than 0.01% by weight.

- 1.0 중량% 이하의 크롬. 강을 아연도금하는 때, 표면 외관 문제를 피하기 위해, 크롬 함량은 제한되어야 한다.Up to 1.0% by weight of chromium. When galvanizing steel, the chromium content should be limited to avoid surface appearance problems.

- 0.02 중량% 미만, 바람직하게는 0.010 중량% 미만의 인. 인은, 규소와 함께, 탄화물의 석출을 억제함으로써 잔여 오스테나이트의 안정도를 증가시킨다.Phosphorus less than 0.02% by weight, preferably less than 0.010% by weight. Phosphorus, together with silicon, increases the stability of residual austenite by inhibiting precipitation of carbides.

- 0.20 중량% 이하의 티타늄. 티타늄은 항복강도 (Re) 를 향상시키지만, 인성의 저하를 피하기 위해, 티타늄의 함량은 0.20 중량% 로 제한되어야 한다.Up to 0.20% by weight of titanium. Titanium improves the yield strength (R e ), but in order to avoid degradation of toughness, the content of titanium should be limited to 0.20% by weight.

- 0.40 중량% 이하의 바나듐. 바나듐은 결정립 미세화 (grain refinement) 에 의해 항복 강도 (Re) 를 향상시키고, 강의 젖음성을 향상시킨다. 그렇지만, 0.40 중량% 초과에서는, 강의 인성이 악화되고, 용접 구역에 크랙이 발생할 위험이 있다.Vanadium up to 0.40% by weight. Vanadium improves the yield strength (R e ) by grain refinement and improves the wettability of the steel. However, at more than 0.40% by weight, the toughness of the steel deteriorates and there is a risk of cracking in the weld zone.

- 1.0 중량% 이하의 니켈. 니켈은 항복 강도 (Re) 를 증가시킨다. 니켈의 함량은, 높은 비용으로 인해, 일반적으로 1.0 중량% 로 제한된다.Up to 1.0 weight percent nickel. Nickel increases the yield strength (R e ). The content of nickel is generally limited to 1.0% by weight, due to its high cost.

- 0.20 중량% 이하의 니오브. 니오브는 탄질화물의 석출을 향상시키고, 이로써 항복강도 (Re) 를 증가시킨다. 그렇지만, 0.20 중량% 초과에서는, 용접성 및 고온 성형성이 악화된다.Up to 0.20% by weight of niobium. Niobium improves the precipitation of carbonitrides, thereby increasing the yield strength (R e ). However, at more than 0.20% by weight, weldability and high temperature formability deteriorate.

조성의 잔부는, 철, 및 통상적으로 발견될 것으로 예상되고 강의 제련에 따라 발생하는 불순물인 다른 원소이며, 여기서 이들의 비율은 원하는 특성에 영향을 미치지 않는다.The balance of the composition is iron and other elements that are normally expected to be found and which are impurities that occur as a result of smelting steel, where their proportions do not affect the desired properties.

상기한 조성을 갖는 강판은, 용융 아연의 욕에서 용융아연도금되고 열처리되어 상기한 합금화 아연도금 강판을 형성하기 전에, 먼저 산화된 후 환원된다.The steel sheet having the above composition is first oxidized and then reduced before being hot dip galvanized and heat treated in a bath of molten zinc to form the alloyed galvanized steel sheet.

목적은, 용융아연도금 전에 강판이 어닐링 처리되는 동안, 규소, 망간 및 알루미늄의 선택적 외부 산화로부터 강을 보호할 제어된 두께의 산화철의 외층을 갖는 산화된 강판을 형성하는 것이다.The purpose is to form an oxidized steel sheet having an outer layer of iron oxide of controlled thickness that will protect the steel from the selective external oxidation of silicon, manganese and aluminum while the steel sheet is annealed prior to hot dip galvanizing.

강판의 상기한 산화는, 규소 산화물, 망간 산화물, 알루미늄 산화물, 규소 및/또는 망간 및/또는 알루미늄을 포함하는 복합 산화물로 이루어진 군에서 선택되는 표면상 (superficial) 산화물을 포함하지 않는 산화철 층이 강판 표면에 형성될 수 있는 조건 하에서 행해진다. 이 단계 동안, 산화철 층 아래에 규소, 망간 및 알루미늄의 내부 선택적 산화가 이루어지고, 더 환원이 이루어지는 때에 표면상 선택적 산화의 위험을 최소화하는 규소, 망간 및 알루미늄의 깊은 고갈 구역이 형성된다. 따라서, 규소 산화물, 망간 산화물, 알루미늄 산화물, Si 와 Mn 을 포함하는 복합 산화물, Si 와 Al 을 포함하는 복합 산화물, Mn 과 Al 을 포함하는 복합 산화물, 및 Si, Mn 과 Al 을 포함하는 복합 산화물로 이루어진 군에서 선택된 적어도 한 종류의 산화물의 내부 산화물 층이 형성된다.The oxidation of the steel sheet is characterized in that the iron oxide layer does not contain a superficial oxide selected from the group consisting of silicon oxide, manganese oxide, aluminum oxide, silicon and / or a composite oxide comprising manganese and / or aluminum. Under conditions that can be formed on the surface. During this step, an internal selective oxidation of silicon, manganese and aluminum takes place under the iron oxide layer and a deep depletion zone of silicon, manganese and aluminum is formed which minimizes the risk of selective oxidation on the surface when further reduction takes place. Therefore, silicon oxide, manganese oxide, aluminum oxide, a composite oxide containing Si and Mn, a composite oxide containing Si and Al, a composite oxide containing Mn and Al, and a composite oxide containing Si, Mn and Al An internal oxide layer of at least one type of oxide selected from the group consisting of is formed.

산화는, 공기와 연료를 바람직하게는 공연비 1 ∼ 1.2 로 포함하는 분위기의 직접 화염 로 (direct flame furnace) 내에서, 상기 강판을 주위 온도에서부터 680 ∼ 800 ℃ 인 가열 온도 T1 까지 가열함으로써 행해지는 것이 바람직하다.Oxidation is carried out by heating the steel sheet from ambient temperature to a heating temperature T1 of 680-800 ° C. in an atmosphere of a direct flame furnace, preferably containing air and fuel at an air-fuel ratio of 1 to 1.2. desirable.

온도 T1 이 800 ℃ 초과인 때, 강판의 표면에 형성된 산화철 층은 강으로부터 나오는 망간을 포함하고, 젖음성이 손상된다. 만약 온도 T1 이 680 ℃ 미만이라면, 규소, 망간 및 알루미늄의 내부 산화가 촉진되지 않고, 강판의 아연도금성 (galvanizability) 이 불충분하다.When the temperature T1 is higher than 800 ° C, the iron oxide layer formed on the surface of the steel sheet contains manganese coming out of the steel, and the wettability is impaired. If the temperature T1 is less than 680 ° C., the internal oxidation of silicon, manganese and aluminum is not promoted and the galvanizability of the steel sheet is insufficient.

분위기가 1 미만의 공연비를 갖는 경우, 규소, 망간 및 알루미늄의 표면상 산화가 이루어지고, 따라서 가능하게는 산화철과 조합된, 규소 산화물, 망간 산화물, 알루미늄 산화물 그리고 규소 및/또는 망간 및/또는 알루미늄의 복합 산화물로 이루어진 군에서 선택된 산화물의 표면상 층이 형성되며, 젖음성이 손상된다. 그러나, 공연비가 1.2 를 초과하는 경우에는, 산화철 층이 너무 두꺼워서, 완전히 환원되지 않을 것이다. 그러므로, 젖음성이 또한 손상된다.If the atmosphere has an air-fuel ratio of less than 1, the oxidation on the surface of silicon, manganese and aluminum takes place, and thus silicon oxide, manganese oxide, aluminum oxide and silicon and / or manganese and / or aluminum, possibly in combination with iron oxide The layer on the surface of the oxide selected from the group consisting of complex oxides is formed, the wettability is impaired. However, if the air-fuel ratio exceeds 1.2, the iron oxide layer is too thick and will not be fully reduced. Therefore, wettability is also impaired.

직접 화염 로에서 나올 때, 산화된 강판은 산화철이 철로 완전히 환원될 수 있는 조건에서 환원된다. 이 환원 단계는 복사관 로 (radiant tube furnace) 또는 저항 로 (resistance furnace) 내에서 행해질 수 있다. 따라서, 상기 산화된 강판은, 바람직하게는 15 부피% 초과의 수소를 포함하고 잔부가 질소와 불가피한 불순물인 분위기에서 열처리된다. 실제로, 분위기 내 수소의 함량이 15 부피% 미만이라면, 산화철 층이 불충분하게 환원될 수 있고, 젖음성이 손상된다.When exiting the flame furnace directly, the oxidized steel sheet is reduced under conditions such that iron oxide can be fully reduced to iron. This reduction step can be carried out in a radiant tube furnace or a resistance furnace. Thus, the oxidized steel sheet is preferably heat-treated in an atmosphere containing more than 15% by volume of hydrogen and the balance being nitrogen and unavoidable impurities. In fact, if the content of hydrogen in the atmosphere is less than 15% by volume, the iron oxide layer may be insufficiently reduced and the wettability is impaired.

상기 산화된 강판은 가열 온도 T1 으로부터 균열 (soaking) 온도 T2 까지 가열된 후, 상기 균열 온도 T2 에서 균열 시간 t2 동안 균열되고, 마지막으로 상기 균열 온도 T2 로부터 냉각 온도 T3 까지 냉각된다.The oxidized steel sheet is heated from a heating temperature T1 to a soaking temperature T2, then cracks at the cracking temperature T2 for a cracking time t2, and finally cooled from the cracking temperature T2 to a cooling temperature T3.

상기 균열 온도 T2 는 바람직하게는 770 ∼ 850 ℃ 이다. 강판이 상기 온도 T2 에 있을 때, 페라이트와 오스테나이트로 이루어진 2상 (dual phase) 미세조직이 형성된다. T2 가 850 ℃ 초과이면, 오스테나이트의 부피비가 너무 많이 증가하고, 강의 표면에서 외부 선택적 산화가 이루어진다. T2 가 770 ℃ 미만이면, 충분한 부피비의 오스테나이트를 형성하는데 요구되는 시간이 너무 길다.The said crack temperature T2 becomes like this. Preferably it is 770-850 degreeC. When the steel sheet is at the temperature T2, a dual phase microstructure of ferrite and austenite is formed. If T2 is above 850 ° C., the volume ratio of austenite increases too much, and external selective oxidation occurs at the surface of the steel. If T2 is less than 770 ° C, the time required for forming a sufficient volume ratio of austenite is too long.

원하는 TRIP 효과를 달성하기 위해, 균열 단계 동안 충분한 오스테나이트가 형성되어야 하고, 그 결과, 냉각 단계 동안, 충분한 잔여 오스테나이트가 유지된다. 시간 t2 동안 균열이 행해지며, 시간 t2 는 바람직하게는 20 ∼ 180 초이다. 시간 t2 가 180 초 초과이면, 오스테나이트 결정립이 조대해지고, 형성 후 강의 항복강도 (Re) 가 제한된다. 더욱이, 강의 경화능이 낮다. 그렇지만, 강판이 20 초 미만의 시간 t2 동안 균열되면, 형성되는 오스테나이트의 비가 충분하지 않고, 냉각시 충분한 잔여 오스테나이트 및 베이나이트가 형성되지 않는다.In order to achieve the desired TRIP effect, sufficient austenite must be formed during the cracking step, and as a result, sufficient residual austenite is maintained during the cooling step. Cracking is performed during time t2, and time t2 is preferably 20 to 180 seconds. If the time t2 is greater than 180 seconds, the austenite grains become coarse and the yield strength R e of the steel after formation is limited. Moreover, the hardenability of the steel is low. However, if the steel sheet is cracked for a time t2 of less than 20 seconds, the ratio of austenite formed is not sufficient, and sufficient residual austenite and bainite are not formed upon cooling.

환원된 강판은, 용융 아연의 욕의 냉각이나 재가열을 피하기 위해, 상기 욕의 온도에 가까운 냉각 온도 T3 에서 최종적으로 냉각된다. 따라서, T3 는 460 ∼ 510 ℃ 인 것이 바람직하다. 그러므로, 균질 미세조직을 갖는 아연계 코팅을 얻을 수 있다.The reduced steel sheet is finally cooled at a cooling temperature T3 close to the temperature of the bath in order to avoid cooling or reheating the bath of molten zinc. Therefore, it is preferable that T3 is 460-510 degreeC. Therefore, a zinc based coating having a homogeneous microstructure can be obtained.

강판이 냉각될 때, 온도가 바람직하게는 450 ∼ 500 ℃ 인 용융 아연 욕에서 용융도금 (hot dip) 된다. 이 욕은 0.08 ∼ 0.135 중량% 의 용해된 알루미늄을 포함하고, 잔부는 아연 및 불가피한 불순물이다. 용융 아연을 탈산하기 위해, 그리고 아연계 코팅의 두께 제어를 더 용이하게 하기 위해, 알루미늄이 욕에 첨가된다. 그 조건에서, 강과 아연계 코팅의 계면에 델타 상 (FeZn7) 의 석출이 유도된다.When the steel sheet is cooled, it is hot dip in a molten zinc bath whose temperature is preferably 450 to 500 ° C. This bath contains 0.08 to 0.135% by weight of dissolved aluminum, with the balance being zinc and inevitable impurities. Aluminum is added to the bath to deoxidize the molten zinc and to make it easier to control the thickness of the zinc-based coating. Under such conditions, precipitation of the delta phase (FeZn 7 ) is induced at the interface between the steel and the zinc-based coating.

욕을 나올 때, 강판은, 아연계 코팅의 두께를 조정하기 위해, 가스의 프로젝션 (projection) 에 의해 닦아내진다. 일반적으로 3 ∼ 10 ㎛ 인 이 두께는 요구되는 내식성에 따라 결정된다.When leaving the bath, the steel sheet is wiped off by projection of the gas to adjust the thickness of the zinc-based coating. This thickness, which is usually 3 to 10 μm, is determined in accordance with the required corrosion resistance.

용융아연도금 강판은, 철이 강으로부터 코팅의 아연까지 확산함에 의해 아연-철 합금으로 이루어진 코팅이 획득되도록, 최종적으로 열처리된다. 이러한 합금화 처리는, 상기 강판을 460 ∼ 510 ℃ 의 온도 T4 에서 10 ∼ 30 초의 균열 시간 t4 동안 유지함으로써 행해질 수 있다. 규소, 망간 및 알루미늄의 외부 선택적 산화의 부존재 덕분에, 이 온도 T4 는 종래 합금화 온도보다 더 낮다. 그러한 이유로, 강에 다량의 몰리브덴이 요구되지 않으며, 강 중 몰리브덴의 함량은 0.01 중량% 미만으로 제한될 수 있다. 온도 T4 가 460 ℃ 미만이면, 철과 아연의 합금화는 불가능하다. 온도 T4 가 510 ℃ 초과이면, 원하지 않는 탄화물 석출로 인해, 안정적인 오스테나이트를 형성하는 것이 곤란해지고, TRIP 효과를 획득할 수 없다. 시간 t4 는 합금 내 평균 철 함량이 8 ∼ 12 중량% 가 되도록 조정되며, 이는 코팅의 용접성의 개선과 성형 동안 파우더링 (powdering) 의 제한을 적절히 절충한 것이다.The hot dip galvanized steel sheet is finally heat treated so that a coating made of a zinc-iron alloy is obtained by diffusing iron from the steel to the zinc of the coating. This alloying treatment can be carried out by maintaining the steel sheet for a crack time t4 of 10 to 30 seconds at a temperature T4 of 460 to 510 ° C. Thanks to the absence of external selective oxidation of silicon, manganese and aluminum, this temperature T4 is lower than conventional alloying temperatures. For that reason, large amounts of molybdenum are not required for the steel, and the content of molybdenum in the steel can be limited to less than 0.01% by weight. If the temperature T4 is less than 460 ° C, alloying of iron and zinc is impossible. If the temperature T4 is higher than 510 ° C, due to unwanted carbide precipitation, it becomes difficult to form stable austenite, and the TRIP effect cannot be obtained. The time t4 is adjusted so that the average iron content in the alloy is from 8 to 12% by weight, which is a good compromise between the improvement of the weldability of the coating and the limitation of powdering during molding.

도 1 은, 예열 단계 후 어닐링 단계 전의 샘플 A 의 사진이고, 도 2 는, 예열 단계 후 어닐링 단계 전의 샘플 B 의 사진이다.1 is a photograph of sample A before the annealing step after the preheating step, and FIG. 2 is a photograph of sample B before the annealing step after the preheating step.

이하에서, 비제한적인 설명으로써 주어지는 예를 통해 그리고 도 1 및 도 2 를 참조하여 본 발명을 설명한다.In the following, the present invention is explained by way of examples given as non-limiting explanations and with reference to FIGS. 1 and 2.

아래 표 1 에 주어진 조성의 강으로 제조된 두께 0.8 ㎜ 의 샘플 A 및 B 를 이용하여 시험을 행하였다.The test was carried out using samples A and B having a thickness of 0.8 mm made of steel of the composition given in Table 1 below.

샘플 A 및 B 를, 직접 화염 로에서 주위 온도 (20 ℃) 로부터 750 ℃ 까지 예열한다. 그리고 나서, 샘플 A 및 B 를 복사관 로에서 연속적으로 어닐링하고, 이곳에서 750 ℃ 로부터 800 ℃ 까지 가열한 후, 800 ℃ 에서 60 초간 균열하고, 마지막으로 460 ℃ 까지 냉각시킨다. 복사관 로 내 분위기는 30 부피% 의 수소를 포함하고, 잔부는 질소 및 불가피한 불순물이다.Samples A and B are preheated from ambient temperature (20 ° C.) to 750 ° C. directly in a flame furnace. Samples A and B are then annealed continuously in a radiant furnace, heated from 750 ° C. to 800 ° C., then cracked at 800 ° C. for 60 seconds, and finally cooled to 460 ° C. The atmosphere in the radiant furnace contains 30% by volume of hydrogen, the balance being nitrogen and inevitable impurities.

냉각 후, 0.12 중량% 의 알루미늄을 포함하고 잔부가 아연 및 불가피한 불순물인 용융 아연계 욕에서 샘플 A 및 B 를 용융아연도금한다. 상기 욕의 온도는 460 ℃ 이다. 아연계 코팅을 질소로 닦아내고 냉각한 후, 아연계 코팅의 두께는 7 ㎛ 이다.After cooling, samples A and B are hot-dipped galvanized in a molten zinc bath containing 0.12% by weight of aluminum and the balance being zinc and inevitable impurities. The temperature of the bath is 460 ° C. After the zinc-based coating was wiped off with nitrogen and cooled, the thickness of the zinc-based coating was 7 μm.

우선, 목적은, 직접 화염 로 내 공연비가 변동하는 때, 이들 샘플의 젖음성과 접착성을 비교하는 것이다. 공연비는, 샘플 A 의 경우 0.90 이고, 샘플 B 의 경우 본 발명에 따라 1.05 이다. 결과를 표 2 에 나타내었다.First, the objective is to compare the wettability and adhesion of these samples when the air-fuel ratio in the flame furnace changes directly. The air-fuel ratio is 0.90 for sample A and 1.05 according to the present invention for sample B. The results are shown in Table 2.

젖음성은 조작자에 의해 육안으로 대조된다. 또한, 코팅의 접착성도 샘플의 180°굽힘 시험 후 육안으로 대조된다.Wetting is visually contrasted by the operator. In addition, the adhesion of the coating is also visually controlled after the 180 ° bending test of the sample.

표 1: 샘플 A 및 B 화학 조성 (단위: 중량%), 조성의 잔부는 철 및 불가피한 불순물임 (샘플 A 및 B).Table 1: Samples A and B chemical composition in weight percent, balance of the composition being iron and inevitable impurities (Samples A and B).

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

도 1 은, 예열 단계 후 어닐링 단계 전의 샘플 A 의 사진이고, 도 2 는, 예열 단계 후 어닐링 단계 전의 샘플 B 의 사진이다.1 is a photograph of sample A before the annealing step after the preheating step, and FIG. 2 is a photograph of sample B before the annealing step after the preheating step.

그리고, 목적은, 규소와 망간의 내부 선택적 산화가 합금화 온도에 미치는 영향을 보여주는 것이다. 따라서, 본 발명에 따라 합금화 아연도금 강판을 얻기 위해 샘플 B 에 가해지는 합금화 처리의 온도를, 샘플 A 의 합금화 온도와 비교한다.The aim is to show the effect of internal selective oxidation of silicon and manganese on the alloying temperature. Therefore, the temperature of the alloying process applied to sample B in order to obtain the alloy galvanized steel sheet according to the present invention is compared with the alloying temperature of sample A.

그리고, 용융아연도금된 샘플 B 를, 480 ℃ 까지 가열하고 이 온도에서 19 초간 유지함으로써, 합금화 처리한다. 본 발명자는, 본 발명에 따라 획득된 합금화 용융아연도금 강판의 TRIP 미세조직이 이 합금화 처리에 의해 소실되지 않았음을 확인하였다.And the hot dip galvanized sample B is heated to 480 degreeC, and it hold | maintains at this temperature for 19 second, and alloying process is carried out. The inventor has confirmed that the TRIP microstructure of the alloyed hot dip galvanized steel sheet obtained according to the present invention was not lost by this alloying treatment.

샘플 A 의 아연계 코팅의 합금화를 획득하기 위해, 이를 540 ℃ 까지 가열하고 이 온도에서 20 초간 유지할 필요가 있다. 그러한 처리로, 본 발명자는, 탄화물 석출이 이루어지며, 실온까지의 냉각 동안 잔여 오스테니아트가 더 이상 유지되지 않음과, TRIP 효과가 사라졌음을 확인하였다.In order to obtain alloying of the zinc-based coating of Sample A, it needs to be heated to 540 ° C. and held at this temperature for 20 seconds. With such a treatment, the inventors found that carbide precipitation occurred, the residual austenite was no longer maintained during cooling to room temperature, and the TRIP effect was lost.

Claims (13)

페라이트, 잔여 오스테나이트 및 선택적으로는 마르텐사이트 및/또는 베이나이트를 포함하는 TRIP 미세조직을 갖는 합금화 용융아연도금 강판의 제조 방법으로서,
- 조성이, 중량% 로,
0.01 ≤ C ≤ 0.22 %
0.50 ≤ Mn ≤ 2.0 %
0.5 < Si ≤ 2.0 %
0.005 ≤ Al ≤ 2.0 %
Mo < 0.01 %
Cr ≤ 1.0 %
P < 0.02 %
Ti ≤ 0.20 %
V ≤ 0.40 %
Ni ≤ 1.0 %
Nb ≤ 0.20 %
를 포함하고, 조성의 잔부가 철 및 제련에 따른 불가피한 불순물인 강판을 제공하는 단계;
- 강판 표면에 산화철 층이 형성되도록, 그리고 Si 산화물, Mn 산화물, Al 산화물, Si 와 Mn 을 포함하는 복합 산화물, Si 와 Al 을 포함하는 복합 산화물, Al 과 Mn 을 포함하는 복합 산화물, 및 Si, Mn 과 Al 을 포함하는 복합 산화물로 이루어진 군에서 선택된 적어도 한 종류의 산화물의 내부 산화물이 형성되도록, 상기 강판을 산화시키는 단계;
- 산화철 층을 환원시키기 위해, 상기 산화된 강판을 환원시키는 단계;
- 상기 환원된 강판을 용융아연도금하여, 아연계 코팅된 강판을 형성하는 단계; 및
- 상기 아연계 코팅된 강판을 합금화 처리하여, 합금화 아연도금 강판을 형성하는 단계
를 포함하는, 합금화 용융아연도금 강판의 제조 방법.
A process for producing an alloyed hot-dip galvanized steel sheet having a TRIP microstructure comprising ferrite, residual austenite and optionally martensite and / or bainite,
Composition is in weight percent,
0.01 ≤ C ≤ 0.22%
0.50 ≤ Mn ≤ 2.0%
0.5 <Si ≤ 2.0%
0.005 ≤ Al ≤ 2.0%
Mo <0.01%
Cr ≤ 1.0%
P <0.02%
Ti ≤ 0.20%
V ≤ 0.40%
Ni ≤ 1.0%
Nb ≤ 0.20%
Providing a steel sheet comprising a remainder of the composition is an inevitable impurity due to iron and smelting;
A layer of iron oxide is formed on the surface of the steel sheet and Si oxide, Mn oxide, Al oxide, a composite oxide comprising Si and Mn, a composite oxide comprising Si and Al, a composite oxide comprising Al and Mn, and Si, Oxidizing the steel sheet so that an internal oxide of at least one type of oxide selected from the group consisting of complex oxides comprising Mn and Al is formed;
Reducing the oxidized steel sheet to reduce the iron oxide layer;
Hot-dip galvanizing the reduced steel sheet to form a zinc-based coated steel sheet; And
Alloying the zinc-based coated steel sheet to form an alloyed galvanized steel sheet
A manufacturing method of an alloyed hot dip galvanized steel sheet comprising a.
제 1 항에 있어서, 상기 강판은, 중량% 로, P < 0.010 % 을 포함하는, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to claim 1, wherein the steel sheet contains P <0.010% by weight. 제 1 항 또는 제 2 항에 있어서, 상기 강판은, 중량% 로, Mo ≤ 0.006 % 을 포함하는, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to claim 1 or 2, wherein the steel sheet contains Mo ≦ 0.006% by weight. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 공기와 연료를 공연비 1 ∼ 1.2 로 포함하는 분위기의 직접 화염 로 내에서, 상기 강판을 주위 온도에서부터 온도 T1 까지 가열함으로써, 상기 강판의 산화를 행하는, 합금화 용융아연도금 강판의 제조 방법.The oxidation of the steel sheet according to any one of claims 1 to 3, wherein the steel sheet is heated from an ambient temperature to a temperature T1 in a direct flame furnace in an atmosphere containing air and fuel at an air-fuel ratio of 1 to 1.2. The manufacturing method of the alloying hot-dip galvanized steel plate performed. 제 4 항에 있어서, 상기 온도 T1 은 680 ∼ 800 ℃ 인, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to claim 4, wherein the temperature T1 is 680 to 800 ° C. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 산화된 강판의 환원은, 15 부피% 초과의 수소를 포함하고 잔부가 질소와 불가피한 불순물인 분위기에서 행해지는 열처리로 구성되며, 이 열처리는, 온도 T1 으로부터 균열 온도 T2 까지의 가열 단계, 상기 균열 온도 T2 에서 균열 시간 t2 동안의 균열 단계, 및 상기 균열 온도 T2 로부터 냉각 온도 T3 까지의 냉각 단계를 포함하는, 합금화 용융아연도금 강판의 제조 방법.The method of any one of claims 1 to 5, wherein the reduction of the oxidized steel sheet consists of a heat treatment performed in an atmosphere containing more than 15% by volume of hydrogen and the balance being nitrogen and an unavoidable impurity. A process for producing an alloyed hot dip galvanized steel sheet comprising a heating step from a temperature T1 to a cracking temperature T2, a cracking step for a cracking time t2 at the cracking temperature T2, and a cooling step from the cracking temperature T2 to a cooling temperature T3. . 제 6 항에 있어서, 상기 균열 온도 T2 는 770 ∼ 850 ℃ 인, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to claim 6, wherein the crack temperature T2 is 770 to 850 ° C. 제 6 항 또는 제 7 항에 있어서, 상기 균열 시간 t2 는 20 ∼ 180 초인, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to claim 6 or 7, wherein the crack time t2 is 20 to 180 seconds. 제 6 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 냉각 온도 T3 는 460 ∼ 510 ℃ 인, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to any one of claims 6 to 8, wherein the cooling temperature T3 is 460 to 510 ° C. 제 5 항 내지 제 9 항 중 어느 한 항에 있어서, 복사관 로 또는 저항 로 내에서 상기 환원을 행하는, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to any one of claims 5 to 9, wherein the reduction is performed in a radiation tube furnace or a resistance furnace. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서, 상기 환원된 강판을, 0.08 ∼ 0.135 중량% 의 알루미늄을 포함하고 잔부가 아연 및 불가피한 불순물인 용융 욕에서 용융도금함으로써, 상기 용융아연도금을 행하는, 합금화 용융아연도금 강판의 제조 방법.The hot-dip galvanizing according to any one of claims 1 to 10, wherein the reduced steel sheet is subjected to hot-dip galvanizing by hot-plating the reduced steel sheet in a molten bath containing 0.08 to 0.135% by weight of aluminum and the balance being zinc and inevitable impurities. , Method for producing alloyed hot dip galvanized steel sheet. 제 11 항에 있어서, 상기 용융 욕의 온도는 450 ∼ 500 ℃ 인, 합금화 용융아연도금 강판의 제조 방법.The method for producing an alloyed hot dip galvanized steel sheet according to claim 11, wherein the melting bath has a temperature of 450 to 500 ° C. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서, 상기 아연계 코팅된 강판을 460 ∼ 510 ℃ 의 온도 T4 에서 10 ∼ 30 초의 균열 시간 t4 동안 가열함으로써, 상기 합금화 처리를 행하는, 합금화 용융아연도금 강판의 제조 방법.The alloying hot dip galvanizing according to any one of claims 1 to 12, wherein the zinc-based coated steel sheet is subjected to the alloying treatment by heating the zinc-based coated steel sheet at a temperature T4 of 460 to 510 ° C for a crack time t4 of 10 to 30 seconds. Method of manufacturing steel sheet.
KR1020107001332A 2007-06-29 2008-06-06 Process for manufacturing a galvannealed steel sheet by dff regulation KR101273308B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07290816.3 2007-06-29
EP07290816A EP2009129A1 (en) 2007-06-29 2007-06-29 Process for manufacturing a galvannealed steel sheet by DFF regulation
PCT/IB2008/001462 WO2009004425A1 (en) 2007-06-29 2008-06-06 Process for manufacturing a galvannealed steel sheet by dff regulation

Publications (2)

Publication Number Publication Date
KR20100055389A true KR20100055389A (en) 2010-05-26
KR101273308B1 KR101273308B1 (en) 2013-06-11

Family

ID=38608886

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107001332A KR101273308B1 (en) 2007-06-29 2008-06-06 Process for manufacturing a galvannealed steel sheet by dff regulation

Country Status (13)

Country Link
US (1) US20100193081A1 (en)
EP (2) EP2009129A1 (en)
JP (2) JP5713673B2 (en)
KR (1) KR101273308B1 (en)
CN (1) CN101809182B (en)
AR (1) AR067339A1 (en)
AT (1) ATE521726T1 (en)
BR (1) BRPI0813687B1 (en)
CA (1) CA2701091C (en)
ES (1) ES2371985T3 (en)
PL (1) PL2171116T3 (en)
RU (1) RU2451107C2 (en)
WO (1) WO2009004425A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873934B2 (en) 2013-09-12 2018-01-23 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
KR20190044668A (en) * 2017-01-25 2019-04-30 닛폰세이테츠 가부시키가이샤 Steel plate

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676642B2 (en) * 2009-12-29 2015-02-25 ポスコ Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
KR20120075260A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip plated steel sheet excellent in plating adhesiveness and method for manufacturing the hot dip plated steel sheet
BR112014007530B1 (en) * 2011-09-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation high strength hot dip galvanized steel sheet and process for producing it
KR20130076589A (en) * 2011-12-28 2013-07-08 주식회사 포스코 High strength galvanized steel sheet having excellent surface property and coating adhesion method for manufacturing the same
KR101657862B1 (en) * 2012-04-17 2016-09-19 제이에프이 스틸 가부시키가이샤 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
WO2014037627A1 (en) * 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured
CN103805840B (en) * 2012-11-15 2016-12-21 宝山钢铁股份有限公司 A kind of high formability galvanizing ultrahigh-strength steel plates and manufacture method thereof
JP5920249B2 (en) * 2013-03-05 2016-05-18 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
WO2014135753A1 (en) 2013-03-06 2014-09-12 Arcelormittal Investigacion Y Desarrollo, S.L. A method for manufacturing a metal sheet with a znal coating and with optimised drying, corresponding metal sheet, part and vehicle
US10718045B2 (en) * 2013-05-17 2020-07-21 Ak Steel Properties, Inc. Zinc-coated steel for press hardening applications and method of production
WO2015001367A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
CN105874087A (en) * 2013-12-10 2016-08-17 安赛乐米塔尔公司 A method of annealing steel sheets
WO2017006144A1 (en) 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
WO2018234839A1 (en) * 2017-06-20 2018-12-27 Arcelormittal Zinc coated steel sheet with high resistance spot weldability
WO2019092467A1 (en) * 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
CN108165892A (en) * 2017-11-23 2018-06-15 南阳汉冶特钢有限公司 A kind of low-temperature pressure container 35-50mm thickness Q420R high-strength steel and its production method
CN113969336B (en) * 2020-07-23 2023-03-28 宝山钢铁股份有限公司 Method for manufacturing hot-dip galvanized steel sheet, steel sheet and vehicle member

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925579A (en) * 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
US3936543A (en) * 1974-08-22 1976-02-03 Armco Steel Corporation Method of coating carbon steel
JP2619550B2 (en) * 1990-03-20 1997-06-11 川崎製鉄株式会社 Manufacturing method of galvannealed steel sheet
JP2970445B2 (en) * 1994-12-14 1999-11-02 住友金属工業株式会社 Hot-dip galvanizing method for Si-added high tensile steel
RU2128719C1 (en) * 1997-03-05 1999-04-10 Научно-производственный институт АО "Новолипецкий металлургический комбинат" Method of producing hot-galvanized metal of high drawing categories with thinnest zinc-plating and superior stamping ability
BE1014997A3 (en) * 2001-03-28 2004-08-03 Ct Rech Metallurgiques Asbl Continuous annealing of steel strip prior to galvanising using direct flame preheating to form an oxide film followed by full annealing and reduction stages to mature this oxide film
FR2828888B1 (en) * 2001-08-21 2003-12-12 Stein Heurtey METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS
JP4729850B2 (en) * 2003-02-10 2011-07-20 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
CN100368580C (en) * 2003-04-10 2008-02-13 新日本制铁株式会社 High strength hot dip galvanized steel sheet, and its production method
JP4464720B2 (en) * 2003-04-10 2010-05-19 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4119804B2 (en) * 2003-08-19 2008-07-16 新日本製鐵株式会社 High-strength galvannealed steel sheet with excellent adhesion and method for producing the same
JP5040093B2 (en) * 2004-10-07 2012-10-03 Jfeスチール株式会社 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
DE102004059566B3 (en) * 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel
CN102260842B (en) * 2004-12-21 2013-12-25 株式会社神户制钢所 Method and facility for hot dip zinc plating
JP4741376B2 (en) * 2005-01-31 2011-08-03 新日本製鐵株式会社 High-strength galvannealed steel sheet with good appearance, manufacturing method and manufacturing equipment thereof
CN101994073B (en) * 2005-03-30 2012-06-27 新日本制铁株式会社 Apparatus for producing hot dipped hot rolled steel strip
JP4644077B2 (en) * 2005-09-05 2011-03-02 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
DE112006003169B4 (en) * 2005-12-01 2013-03-21 Posco Steel sheets for hot press forming with excellent heat treatment and impact properties, hot pressed parts produced therefrom and process for their production
EP1978113B1 (en) * 2005-12-06 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873934B2 (en) 2013-09-12 2018-01-23 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
KR20190044668A (en) * 2017-01-25 2019-04-30 닛폰세이테츠 가부시키가이샤 Steel plate

Also Published As

Publication number Publication date
KR101273308B1 (en) 2013-06-11
ES2371985T3 (en) 2012-01-12
JP2015078438A (en) 2015-04-23
EP2009129A1 (en) 2008-12-31
RU2451107C2 (en) 2012-05-20
CN101809182B (en) 2015-08-05
RU2010102924A (en) 2011-08-10
CA2701091A1 (en) 2009-01-08
EP2171116A1 (en) 2010-04-07
JP2010532820A (en) 2010-10-14
EP2171116B1 (en) 2011-08-24
BRPI0813687B1 (en) 2018-10-30
ATE521726T1 (en) 2011-09-15
AR067339A1 (en) 2009-10-07
PL2171116T3 (en) 2012-01-31
JP5713673B2 (en) 2015-05-07
US20100193081A1 (en) 2010-08-05
BRPI0813687A8 (en) 2015-12-15
BRPI0813687A2 (en) 2014-12-30
WO2009004425A1 (en) 2009-01-08
CN101809182A (en) 2010-08-18
CA2701091C (en) 2012-04-17

Similar Documents

Publication Publication Date Title
KR101273308B1 (en) Process for manufacturing a galvannealed steel sheet by dff regulation
KR101527983B1 (en) Process for manufacturing a galvanized or a galvannealed steel sheet by dff regulation
KR101203021B1 (en) Galvanized or galvannealed silicon steel
US10900097B2 (en) High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability
KR102389648B1 (en) High strength multiphase steel, production method and use
US8114227B2 (en) Method for making a steel part of multiphase microstructure
JP6475840B2 (en) High-strength hot-dip galvanized steel sheet excellent in surface quality, plating adhesion, and formability, and its manufacturing method
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
KR20220041502A (en) Method of manufacturing galvannealed steel having excellent formability by controlling dew point
KR20050063917A (en) Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement
KR20140081616A (en) Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant