KR20100049813A - Continuous casting method for reducing width deviation of ferritic stainless steel first-slab - Google Patents

Continuous casting method for reducing width deviation of ferritic stainless steel first-slab Download PDF

Info

Publication number
KR20100049813A
KR20100049813A KR1020080108810A KR20080108810A KR20100049813A KR 20100049813 A KR20100049813 A KR 20100049813A KR 1020080108810 A KR1020080108810 A KR 1020080108810A KR 20080108810 A KR20080108810 A KR 20080108810A KR 20100049813 A KR20100049813 A KR 20100049813A
Authority
KR
South Korea
Prior art keywords
continuous casting
slab
width deviation
cast
width
Prior art date
Application number
KR1020080108810A
Other languages
Korean (ko)
Other versions
KR100986892B1 (en
Inventor
최자용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080108810A priority Critical patent/KR100986892B1/en
Publication of KR20100049813A publication Critical patent/KR20100049813A/en
Application granted granted Critical
Publication of KR100986892B1 publication Critical patent/KR100986892B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel

Abstract

PURPOSE: A continuous casting method for reducing the width deviation of a ferritic stainless steel first slab is provided to reduce the slab edge faults of a hot rolled coil by reducing the width deviation of a first slab during a continuous casting process. CONSTITUTION: A continuous casting method for reducing the width deviation of a ferritic stainless steel first slab is as follows. Molten steel flows into a mold through a ladle-tundish. The molten steel flowing into the mold is first cooled. The molten steel is second cooled. The rising acceleration of a first slab is controlled less than 0.06m/min∧2. The maximum width deviation of the first slab is less than 10mm.

Description

페라이트계 스테인리스강의 초주편 폭편차 저감을 위한 연속주조 방법{Continuous casting method for reducing width deviation of ferritic stainless steel first-slab}Continuous casting method for reducing width deviation of ferritic stainless steel first-slab

본 발명은 페라이트계 스테인리스강의 연속주조방법에 관한 것으로, 보다 상세하게는 연속주조초기 초주편의 주속상승가속도 제어를 통하여 초주편의 폭편차를 저감함으로써, 열연코일의 슬라브 에지 결함을 개선하는 연속주조방법에 관한 것이다.The present invention relates to a continuous casting method of ferritic stainless steel, and more particularly, to a continuous casting method for improving slab edge defects of hot rolled coils by reducing the width deviation of the ultra cast steel by controlling the speed of acceleration of the initial casting of the continuous casting. It is about.

일반적으로 열간압연 공정에서 폭압연에 따른 슬라브 에지 결함은 연주주편에서 비롯되는 것으로서, 최종제품의 폭에 비해 연주주편 폭이 과다하게 큰 경우에는 슬라브 에지 결함의 폭방향 깊이가 증가하는 문제가 발생한다. 이후 슬리팅 (slitting) 공정을 거치는데, 상기 공정을 거치더라도 최종제품에는 결함이 잔존하게 된다.In general, the slab edge defects due to the width rolling in the hot rolling process originate from the cast steel, and when the width of the cast steel is excessively large compared to the width of the final product, there is a problem that the width depth of the slab edge defect increases. . Thereafter, a slitting process is performed, and even though the slitting process is performed, defects remain in the final product.

반대로 최종제품의 폭에 비해 연주주편 폭이 과다하게 작은 경우에는 열간압연공정에서의 폭퍼짐으로도 상쇄되지 못하여, 최종적으로 제품의 폭이 부족하게 되 는 문제가 발생한다.On the contrary, if the width of the cast steel is excessively small compared to the width of the final product, it cannot be offset by the width spread in the hot rolling process, resulting in a problem that the width of the product is finally insufficient.

이러한 문제를 해결하기 위한 종래의 공지기술에서는 연속주조시 몰드의 폭가변을 통해 주편폭을 조절함으로써 이를 해결하고 있으나, 폭가변 설비가 없는 곳에서는 이러한 기술을 적용할 수 없는 문제점을 가지고 있다. Conventional known techniques for solving this problem have been solved by adjusting the width of the slab through the variable width of the mold during continuous casting, but there is a problem that can not be applied to this technique where there is no variable width equipment.

또한, 주편 상/하면 폭편차를 저감하기 위해 몰드의 단변부 형상을 변경하는 방법이 제시되고 있으나, 이러한 기술 또한 주편의 길이방향 폭편차와는 다른 개념인 것이다. In addition, a method of changing the shape of the short side of the mold in order to reduce the width deviation on the upper and lower surfaces of the cast is proposed, but this technique is also a concept different from the longitudinal width deviation of the cast.

즉, 연속주조초기 초주편의 폭편차 저감을 위한 본 발명은 폭가변 설비 없이도 초주편의 폭편차를 최소화하기 위한 연주조건의 제어방법을 제시하는 것으로서, 이와 관련된 특허는 아직 보고되고 있지 않다. In other words, the present invention for reducing the width deviation of the initial casting of the continuous casting is proposed a control method of the playing conditions for minimizing the width deviation of the ultra cast without the need for a width-variable equipment, the patent has not been reported yet.

참고로, 여기서 주편폭편차라 함은 실제주편폭과 지시주편폭과의 차이를 의미하며, 상기 초주편은 연속주조를 시작하여 처음 주조되는 주편을 의미하는 것으로, 초주편 이후 주조되는 주편들을 중주편, 그리고 연속주조를 시작하여 마지막으로 주조되는 주편을 말주편이라고 정의할 수 있다.For reference, the slab width deviation means a difference between the actual slab width and the indicated slab width, and the ultra slab means a slab that is first cast after starting a continuous casting. Part and last casting can be defined as the end cast.

본 발명은 상기한 종래의 문제점을 개선하기 위한 것으로, 연속주조공정에서 몰드의 폭가변 설비 없이도 연속주조초기 초주편의 주속상승가속도 제어를 통하여 초주편의 폭편차를 저감함으로써, 열연코일의 슬라브 에지 결함을 개선할 수 있는 페라이트계 스테인리스강의 연속주조방법을 제공하는데, 그 목적이 있다.The present invention has been made to improve the above-mentioned problems. In the continuous casting process, slab edge defects of hot rolled coils can be eliminated by reducing the width deviation of the ultra casts by controlling the speed of acceleration of the initial cast of the continuous cast without the need for variable width of the mold. It is an object of the present invention to provide a continuous casting method of ferritic stainless steel that can be improved.

상기 목적을 달성하기 위한 본 발명의 연속주조방법은, 연속주조초기 초주편을 주조하기 위하여 레이들-턴디시를 거쳐 몰드로 용강이 유입된 후 1차냉각, 주속상승가속도 구간 및 2차냉각 공정을 포함하는 페라이트계 스테인리스강의 연속주조 방법에 있어서, In order to achieve the above object, the continuous casting method of the present invention includes a primary cooling, a circumferential acceleration acceleration section, and a secondary cooling process after molten steel flows into a mold through a ladle-tundish to cast the initial casting of the continuous casting. In the continuous casting method of ferritic stainless steel comprising a,

상기 초주편의 주속상승가속도를 0.06m/min2 이하로 제어하는 것을 포함한다.It includes controlling the circumferential speed rising acceleration of the ultra-thin piece to 0.06m / min 2 or less.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자는 열연코일의 슬라브 에지 결함을 유발하는 연속주조초기 초주편의 폭증가 현상을 억제하기 위한 방안을 모색하던 중 연속주조초기 초주편의 주속상승가속도를 적절히 제어하면, 초주편의 응고셀 형성을 촉진함에 따라 폭변형 저항성을 향상시켜 초주편에서 폭증가 현상을 억제할 수 있다는 것을 규명한 것이다.The inventors of the present invention, while exploring a method for suppressing the phenomena of the increase in the initial casting of the continuous casting early casting causing the slab edge defect of the hot rolled coil, if appropriately controlling the speed of acceleration of the continuous casting initial casting, the formation of the solidification cell It was found that it is possible to suppress the phenomena of the increase in the width of the cast by improving the resistance to deformation.

먼저, 도 1은 스테인리스강 연속주조장치의 개략도를 나타낸 것으로, 본 발명은 통상의 연속주조방법에 따라 레이들(1)-턴디시(2)를 거쳐 몰드(5)로 용강(4)이 유입되고, 몰드(5)내에서는 응고가 시작되면 응고셀이 형성되며 이후 2차냉각대(7) 하부로 갈수록 응고셀이 두꺼워져 최종적으로 응고가 완료되어 주편(8)이 얻어질 수 있는 것이다.First, Figure 1 shows a schematic diagram of a stainless steel continuous casting apparatus, the present invention is the molten steel 4 is introduced into the mold (5) through the ladle (1)-tundish (2) according to the conventional continuous casting method When the solidification starts in the mold 5, a solidification cell is formed, and then the solidification cell becomes thicker toward the lower side of the secondary cooling stand 7 so that the solidification is finally completed, and thus, the cast piece 8 may be obtained.

이때, 강의 응고시에는 온도하락에 따른 부피수축이 일어나게 되며, 이에 따라 주편폭은 감소하게 된다. 그러나 응고셀이 약한 상부에서는 고열에 의해 주편 자체에서 발생되는 철정압(6)에 의해 온도하락에 따른 부피수축량이 감소하게 되고, 심한 경우에는 몰드의 폭보다 더 팽창하게 되는 경우도 발생하게 된다. At this time, when the steel solidifies, volume shrinkage occurs due to a temperature drop, thereby reducing the width of the cast steel. However, when the coagulation cell is weak, the amount of shrinkage due to temperature drop is reduced by the iron static pressure 6 generated in the cast itself by high heat, and in some cases, the expansion occurs more than the width of the mold.

결과적으로, 최종 연주주편의 폭은 철정압과 온도하락에 따른 부피수축의 상호작용에 의해 결정되는 것으로, 일반적으로 연주주편에서 조업조건의 변동이 없는 한 주편의 폭변화는 거의 일어나지 않게 되므로, 폭수축 보정계수의 조정을 통해 폭편차가 작은 주편을 생산할 수 있다. As a result, the width of the final cast steel is determined by the interaction between the iron static pressure and the volume shrinkage due to the temperature drop. By adjusting the shrinkage correction factor, it is possible to produce casts with small width deviations.

그러나 도 2에서 알 수 있듯이, 초주편에서는 주편길이 방향에 따라 폭편차가 달라지는 것을 확인할 수 있다. 이를 상세히 살펴보면, 초주편의 헤드부(Head)는 폭편차가 상대적으로 크며, 최종적으로 초주편의 테일부(Tail)에서는 정상폭과 동일해짐을 알 수 있다.However, as can be seen in Figure 2, it can be seen that the width deviation is different depending on the length direction of the cast in the ultra cast. Looking in detail, it can be seen that the head portion (Head) of the ultra-thin piece has a relatively large width deviation, and finally the tail portion (Tail) of the ultra-thin piece is equal to the normal width.

도 3은 연속주조시 중주편과 초주편의 내부유동 모식도를 나타낸 것으로서, 이러한 현상이 일어나는 원인은 도 3에 나타난 바와 같이, 초주편(기호 F)의 경우중주편(기호 C)에 비해 더미바로 인한 용강유동영역이 짧아 용강유동이 활발하게 일어나는 것을 알 수 있다(Vc<VF). Figure 3 shows the internal flow schematic diagram of the middle cast and ultra cast during continuous casting, the cause of this phenomenon, as shown in Figure 3, in the case of ultra cast (symbol F) due to the dummy bar (symbol C) due to the dummy bar It can be seen that the molten steel flow zone is active due to the short molten steel flow zone (V c <V F ).

이로인해 중주편에 비해 초주편의 응고셀 부근에서 온도가 높아져(Tc<TF) 응고셀의 두께가 상대적으로 얇아지게 됨으로써(Sc>SF), 철정압에 대한 변형 저항성이 약화되어, 폭증가 현상이 크게 일어나기 때문에 발생하는 것이다.As a result, the temperature is higher in the vicinity of the solidification cell of the ultrathin slab than the middle cast (T c <T F ), and the thickness of the solidification cell becomes relatively thin (S c > S F ), thereby weakening the deformation resistance against the positive static pressure. This is caused by a big explosion.

이에 본 발명에서는 페라이트계 스테인리스 강의 연속주조시 초주편의 폭증가 현상을 억제하기 위해, 연속주조시 초주편의 응고셀 강도확보를 위한 주속상승가속도를 제어하는 것으로, 상기 주속상승가속도를 0.06m/min2 이하로 제어한다. 이때, 상기 주속상승가속도는 통상적으로 주조를 시작하여 주속이 제로일 때부터 목표 주속에 도달할 때까지 구간에서 제어될 수 있는 것이다.Thus in the present invention, in order to suppress the ferritic stainless steel, when continuous casting Chaozhou convenience pokjeungga phenomenon, continuous by controlling the peripheral speed of rise acceleration to secure Chaozhou solidification cells strength during casting, the peripheral speed of the rising acceleration 0.06m / min or less 2 To control. At this time, the circumferential speed increase acceleration can be controlled in the interval from the start of the casting to the target circumferential speed from the zero circumferential speed.

상기 주속상승가속도가 0.06m/min2 를 초과하는 경우에는, 초주편의 응고셀 형성 저하에 따른 최대폭편차값이 커져 최종제품의 슬라브 에지 결함에 영향을 미칠 수 있으므로, 상기 주속상승가속도는 0.06m/min2 이하로 제어하는 것이 바람직하다.When the circumferential ascending acceleration exceeds 0.06 m / min 2 , the maximum variance value due to the decrease in solidification cell formation of the ultra cast may increase, which may affect the slab edge defects of the final product. It is preferable to control to min 2 or less.

본 발명을 만족하는 초주편의 최대폭편차는 슬라브 에지 결함에 영향을 미치지 않는 범위인 10mm 이하로 제어되는 것이 바람직하다. The maximum width deviation of the ultrathin sheet satisfying the present invention is preferably controlled to 10 mm or less, which is a range that does not affect slab edge defects.

상술한 바와 같이, 본 발명에 따르면, 연속주조공정에서 몰드의 폭가변 설비 없이도 초주편의 폭편차를 저감하여 열연코일의 슬라브 에지 결함이 개선된 페라이트계 스테인리스강을 제조할 수 있는 효과가 있다.As described above, according to the present invention, it is possible to manufacture ferritic stainless steel in which slab edge defects of the hot rolled coil are improved by reducing the width deviation of the ultra cast steel in the continuous casting process without the need for the mold width changing equipment.

이하 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

11~13% 크롬을 함유하는 페라이트계 스테인리스강을 대상으로 초기 주속상승가속도를 0.06~0.20m/min2 범위에서 변화시키면서 초주편의 폭편차를 측정하여 그 결과를 표 1 및 도 4에 나타내었다. 이때, 초주편의 2차냉각 비수조건은 중주편의 주속에서의 비수량 대비 중주편 주속의 55~78%구간에서 비수량은 120~105%인 조건이다.The width deviation of the ultra cast steel was measured while changing the initial circumferential acceleration in the range of 0.06 to 0.20 m / min 2 in the ferritic stainless steel containing 11 to 13% chromium, and the results are shown in Table 1 and FIG. 4. In this case, the second cooling non-aqueous condition of the ultra cast is a condition where the non-aqueous quantity is 120 to 105% in a section of 55 to 78% of the circumferential speed of the middle cast compared to the non-amount at the circumferential speed of the middle cast.

[표 1]TABLE 1

분류Classification 주속상승가속도(m/min2)Main speed ascent acceleration (m / min 2 ) 평균폭편차(mm)Average Width Deviation (mm) 최대폭편차(mm)Maximum Width Deviation (mm) 비교예 1Comparative Example 1 0.200.20 14.314.3 2323 비교예 2Comparative Example 2 0.100.10 12.012.0 2020 비교예 3Comparative Example 3 0.080.08 8.58.5 2121 발명예 (1-4)  Inventive Example (1-4) 0.060.06 0.60.6 77 0.060.06 5.55.5 99 0.060.06 4.64.6 88 0.060.06 3.83.8 99

도 4는 본 발명의 발명예와 비교예에 있어서 초주편 폭편차 저감효과를 나타낸 그래프로서, 도 4 및 표 1에서 알 수 있듯이 초기 주속상승가속도 0.06m/min2인 발명예들의 경우 최대폭편차 및 평균폭편차가 감소하여 본 발명에서 목표로 하는 최대폭편차를 만족하는 것을 잘 알 수 있다. Figure 4 is a graph showing the effect of reducing the width of the ultra-thin slab in the invention and comparative examples of the present invention, as shown in Figure 4 and Table 1, the maximum width deviation and in the case of the invention examples of the initial circumferential speed increase acceleration 0.06m / min 2 It can be seen that the average width deviation is reduced to satisfy the maximum width deviation targeted by the present invention.

반면, 본 발명의 주속상승가속도를 만족하지 않는 비교예(1-3)들의 경우 최대폭편차가 20~23mm로, 슬라브 에지 결함에 영향을 미칠 수 있는 최대폭편차 10mm를 초과하여 슬라브 에지 결함 문제를 가지고 있음을 잘 알 수 있다.On the other hand, in case of Comparative Examples (1-3) that do not satisfy the circumferential ascending acceleration of the present invention, the maximum width deviation is 20 to 23 mm, and the slab edge defect problem exceeds 10 mm, which may affect the slab edge defect. I can see that there is.

도 1은 연속주조장치의 개략도를 나타낸다.1 shows a schematic view of a continuous casting apparatus.

도 2는 연속주조 초주편 길이 방향에 따른 폭편차를 나타낸 그래프이다.Figure 2 is a graph showing the width deviation along the longitudinal direction of the continuous casting ultra-thin casting.

도 3은 연속주조시 중주편과 초주편의 내부유동 모식도를 나타낸다.Figure 3 shows the internal flow schematic diagram of the middle cast and ultra cast during continuous casting.

도 4는 본 발명의 발명예와 비교예에 있어서 초주편 폭편차 저감효과를 나타낸 그래프이다.4 is a graph showing the effect of reducing the width of the ultra-thin slab in the invention and comparative examples of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 레이들 2: 턴디시1: ladle 2: tundish

3: 침지노즐 4: 용강3: immersion nozzle 4: molten steel

5: 몰드 6: 철정압5: mold 6: iron positive pressure

7: 2차냉각대 8: 주편7: 2nd cooling stand 8: cast

Claims (2)

연속주조초기 초주편을 주조하기 위하여 레이들-턴디시를 거쳐 몰드로 용강이 유입된 후 1차냉각, 주속상승가속도 구간 및 2차냉각 공정을 포함하는 페라이트계 스테인리스강의 연속주조 방법에 있어서, In the continuous casting method of the ferritic stainless steel comprising the first cooling, circumferential acceleration acceleration section and the second cooling process after the molten steel flows into the mold through the ladle-tundish to cast the initial casting of continuous casting, 상기 초주편의 주속상승가속도를 0.06m/min2 이하로 제어하는 것을 포함하는 페라이트계 스테인리스강의 초주편 폭편차 저감을 위한 연속주조 방법.Continuous casting method for reducing the width deviation of the ultra-thin slab of ferritic stainless steel comprising the control of the circumferential ascension acceleration of the ultra-thin cast to 0.06m / min 2 or less. 제 1항에 있어서, 상기 초주편의 최대폭편차는 10mm 이하인 것을 특징으로 하는 페라이트계 스테인리스강의 초주편 폭편차 저감을 위한 연속주조 방법.The continuous casting method of claim 1, wherein the maximum width deviation of the ultra cast steel is 10 mm or less.
KR1020080108810A 2008-11-04 2008-11-04 Continuous casting method for reducing width deviation of ferritic stainless steel first-slab KR100986892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080108810A KR100986892B1 (en) 2008-11-04 2008-11-04 Continuous casting method for reducing width deviation of ferritic stainless steel first-slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080108810A KR100986892B1 (en) 2008-11-04 2008-11-04 Continuous casting method for reducing width deviation of ferritic stainless steel first-slab

Publications (2)

Publication Number Publication Date
KR20100049813A true KR20100049813A (en) 2010-05-13
KR100986892B1 KR100986892B1 (en) 2010-10-08

Family

ID=42276063

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080108810A KR100986892B1 (en) 2008-11-04 2008-11-04 Continuous casting method for reducing width deviation of ferritic stainless steel first-slab

Country Status (1)

Country Link
KR (1) KR100986892B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400032B1 (en) * 2012-01-31 2014-05-30 현대제철 주식회사 Continuous casting method for hot-rolled coil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603900B2 (en) 1977-07-07 1985-01-31 日本鋼管株式会社 Casting speed control method at the start of pouring in continuous casting
JPS5884652A (en) 1981-11-13 1983-05-20 Kawasaki Steel Corp Controlling method for automatic charging in continuous casting
JPS61232049A (en) 1985-04-09 1986-10-16 Nippon Steel Corp Method for controlling continuously cast ingot to specified width
JPS62199253A (en) 1986-02-27 1987-09-02 Nippon Steel Corp Constant width controlling method for continuous casting slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400032B1 (en) * 2012-01-31 2014-05-30 현대제철 주식회사 Continuous casting method for hot-rolled coil

Also Published As

Publication number Publication date
KR100986892B1 (en) 2010-10-08

Similar Documents

Publication Publication Date Title
KR101609174B1 (en) Hot Rolled Silicon Steel Producing Method
JP6115735B2 (en) Steel continuous casting method
JP2018503741A (en) Lean duplex stainless steel and manufacturing method thereof
KR101757548B1 (en) Method of manufacturing peritectic steel slab
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
CN113953479A (en) Method for improving flanging of thin strip steel coil
KR100986892B1 (en) Continuous casting method for reducing width deviation of ferritic stainless steel first-slab
JP3427794B2 (en) Continuous casting method
KR101252645B1 (en) Continuous Casting Method and Continuous Casting Apparatus
KR101360660B1 (en) Method for manufacturing austenitic stainless steel sheet having excellent edge property
CN109689247B (en) Method for continuously casting steel
KR101412537B1 (en) Reducing method of crack for addition of boron high-carbon steel
KR101795871B1 (en) Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus
KR100986931B1 (en) Continuous casting method for reducing width deviation of ferritic stainless steel last-slab
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
KR101403118B1 (en) Method for manufacturing a duplex stainless thin steel sheet containing high nitrogen by using strip caster with twin roll
KR100954798B1 (en) Method for manufacturing austenitic stainless steel
JPH07276020A (en) Continuous casting method
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP7273307B2 (en) Steel continuous casting method
KR101049844B1 (en) Reduction of center segregation in width direction of cast steel
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP2011121063A (en) Continuous casting method with soft reduction
KR101482461B1 (en) Strip casting method for manufacturing austenite stainless steel having good edge porperty
KR101036911B1 (en) Method for manufacturing steel bloom including nickel with excellent hot rolling property

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150922

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170825

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 9