KR20100044302A - Microorganisms of corynebacterium having enhanced nucleotide or nucleoside productivity and method of producing nucleotide or nucleoside using the same - Google Patents

Microorganisms of corynebacterium having enhanced nucleotide or nucleoside productivity and method of producing nucleotide or nucleoside using the same Download PDF

Info

Publication number
KR20100044302A
KR20100044302A KR1020080103379A KR20080103379A KR20100044302A KR 20100044302 A KR20100044302 A KR 20100044302A KR 1020080103379 A KR1020080103379 A KR 1020080103379A KR 20080103379 A KR20080103379 A KR 20080103379A KR 20100044302 A KR20100044302 A KR 20100044302A
Authority
KR
South Korea
Prior art keywords
corynebacterium
nucleic acid
iii
pdz
synthetase
Prior art date
Application number
KR1020080103379A
Other languages
Korean (ko)
Other versions
KR101056872B1 (en
Inventor
김정환
김형석
권중근
황수연
백민지
안태민
권나라
김주정
윤난영
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020080103379A priority Critical patent/KR101056872B1/en
Publication of KR20100044302A publication Critical patent/KR20100044302A/en
Application granted granted Critical
Publication of KR101056872B1 publication Critical patent/KR101056872B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides

Abstract

PURPOSE: A Corynebacterium sp. microorganism having improved nucleic acid material is provided to strengthen enzyme activity and reduce production cost. CONSTITUTION: A Corynebacterium sp. microorganism has improved nucleic acid material by strengthening enzyme activity of purine biosynthesis pathway. The enzyme is phosphoribosyl pyrophosphate amidotransferase, phosphoribosylamine glycine ligase, phosphorybosylglycine amide formyltransferase, phosphoribosylformylglycine amidine synthetase, or adenylosuccinate lyase. A gene encoding the enzymes is purF, purD, purN, purS, purL, purM, purKE, purC, purB or purH.

Description

핵산계 물질의 생산성이 향상된 코리네박테리움 속 미생물 및 그를 이용한 핵산계 물질의 생산 방법{MICROORGANISMS OF CORYNEBACTERIUM HAVING ENHANCED NUCLEOTIDE OR NUCLEOSIDE PRODUCTIVITY AND METHOD OF PRODUCING NUCLEOTIDE OR NUCLEOSIDE USING THE SAME}MICROORGANISMS OF CORYNEBACTERIUM HAVING ENHANCED NUCLEOTIDE OR NUCLEOSIDE PRODUCTIVITY AND METHOD OF PRODUCING NUCLEOTIDE OR NUCLEOSIDE USING THE SAME}

본 발명은 퓨린 생합성 경로 중 중요 효소인 ⅰ) 포스포리보실피로포스페이트 아미도트랜스퍼라아제(phosphoribosylpyrophosphate amidotransferase), ⅱ) 포스포리보실아민 글리신 리가아제(phosphoribosylamine-glycine ligase), ⅲ) 포스포리보실글리신아마이드 포밀트랜스퍼라아제(phosphoribosylglycinamide formyltransferase), ⅳ) 포스포리보실포밀글리신아미딘 신세타아제(phosphoribosylformylglycinamidine synthetase), ⅴ) 포스포리보실포밀글리신아미딘 신세타아제 Ⅱ(phosphoribosylformylglycinamidine synthetase Ⅱ), ⅵ) 포스포리보실아미노이미다졸 신세타아제(phosphoribosylaminoimidazole synthetase), ⅶ) 포스포리보실아미노이미다졸 카복실라아제(phosphoribosylaminoimidazole carboxylase), ⅷ) 포스포리보실아미노이미다졸 썩시노카복사마이드 신세타아제(phosphoribosylaminoimidazole succinocarboxamide synthetase), ⅸ) 아데닐로썩시네이트 리아제(adenylosuccinate lyase) 및 ⅹ) 이노신산 싸이클로하이드롤라 아제(inosinate cyclohydrolase)의 군으로부터 선택된 효소의 활성이 보다 강화된 코리네박테리움 속 미생물 및 이를 이용한 5'-크산틸산 또는 5'-이노신산 또는 이노신을 생산하는 방법에 관한 것이다. The present invention relates to an important enzyme in the purine biosynthesis pathway, i) phosphoribosylpyrophosphate amidotransferase, ii) phosphoribosylamine glycine ligase, iii) phospholibosylglycinamide Phosphoribosylglycinamide formyltransferase, ⅳ) phosphoribosylformylglycinamidine synthetase, ⅴ) phosphoribosylformylglycine amidine synthetase Ⅱ (phosphoribosylformyl phosphobosylformyl lysyl phosphinyl phosphinbo) Phosphoribosylaminoimidazole synthetase (ⅶ) phosphoribosylaminoimidazole carboxylase (ⅷ) phosphoribosylaminoimidazole carboxylase (ⅷ) phosphoribosylaminoimidazole carboxylase (phosph) Adenillo Cinnamic acid microorganisms with enhanced activity of enzymes selected from the group of adenylosuccinate lyase and iii) inosinic acid cyclohydrolase and 5'-xanthyl acid or 5'-inosinic acid or To a method of producing inosine.

핵산계 물질 중 하나인 5'-구아닐산(5'- guanylic acid: 이하 GMP라 칭함)은 식품 조미 첨가제로 널리 이용되고 있는 물질로서, 그 자체로 버섯의 맛을 내는 것으로 알려져 있으나, 주로 모노소디움 글루탐산(MSG)의 풍미를 강화하는 것으로 알려져 있다. 이러한 성질은 특히 5'-이노신산(5'-inosinic acid; 이하 IMP라 칭함)과 같이 쓰여졌을 때 강하게 나타난다.One of the nucleic acid-based materials, 5'-guanylic acid (hereinafter referred to as GMP) is widely used as a food seasoning additive, and is known to taste mushrooms by itself, but mainly monosodium glutamic acid It is known to enhance the flavor of (MSG). This property is particularly strong when used with 5'-inosinic acid (hereinafter referred to as IMP).

지금까지 알려진 GMP의 제조방법은 (1) 효모세포로부터 추출한 리보핵산(RNA)를 효소로 분해하는 방법, (2) 미생물 발효법으로 GMP를 직접 발효하는 방법, (3) 미생물 발효법으로 생산한 구아노신을 화학적 방법으로 인산화 시키는 방법, (4) 미생물 발효법으로 생산한 구아노신을 효소적 방법으로 인산화 시키는 방법, (5) 미생물 발효법으로 생산한 5'-크산틸산(5'-xanthylic acid: 이하 XMP)을 코리네박테리움속 미생물을 이용하여 GMP로 전환하는 방법, (6) 미생물 발효법으로 생산한 XMP를 대장균을 이용하여 GMP로 전환시키는 방법을 들 수 있다. 이중 (1)의 방법은 원료 수급 및 경제성에 문제가 있으며, (2)의 방법은 GMP의 세포막 투과성의 문제로 인하여 수율이 낮다는 단점이 있으므로 그 외의 방법이 공업적으로 주로 이용되고 있다.Known methods for manufacturing GMP include (1) a method of digesting ribonucleic acid (RNA) extracted from yeast cells with enzymes, (2) a direct fermentation of GMP by microbial fermentation, and (3) a guanosine produced by microbial fermentation. Phosphorylation by chemical method, (4) enzymatic phosphorylation of guanosine produced by microbial fermentation method, (5) 5'-xanthylic acid (XMP) produced by microbial fermentation method The method of converting into GMP using Nebacterium microorganism, (6) The method of converting XMP produced by microbial fermentation into GMP using E. coli. The method of (1) has a problem in the supply and demand of raw materials, and the method of (2) has a disadvantage of low yield due to the problem of GMP cell membrane permeability. Therefore, other methods are mainly used industrially.

위에서 전기한 방법들 중 XMP를 생산하여 GMP로 전환시키는 방법을 이용하여 GMP를 생산할 경우 XMP의 생산성을 강화하는 전략이 필요하다. 때문에 종래 XMP 생합성 관련 유전자가 강화된 코리네박테리움 균주 및 이를 이용한 XMP 생산 방법이 알려져 있었다. 예를 들면, 대한민국 등록특허 제0117443호에는 XMP 수율을 높이기 위하여 아데닌과 구아닌 반영양 요구성 형태의 크산틸산아미나아제 불활성 균주이며 구아노신 유사체 내성을 가지고 있고 세포벽 분해 효소인 라이소자임에 감수성이 매우 높은 균주를 제작하여 개시하였다. 대한민국 등록특허 제0402320호는 XMP를 생산하는 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)를 친주로 자외선 조사, N-메틸-N'-니트로-N-니트로소구아니딘(NTG) 등의 변이 유발제를 통상적인 방법에 따라 처리하여 친주의 형질을 변형시켜 XMP의 생합성에 영향을 주는 발린(valine)에 대한 유사체(analogue)인 노르발린(norvaline) 내성주를 선별하여 그 결과 XMP를 고수율, 고농도로 배양액중에 직접 축적시키는 미생물을 이용한 XMP 생산 방법을 개시하였다.If GMP is produced by producing XMP and converting it to GMP, the strategy for enhancing the productivity of XMP is needed. For this reason, conventional Corynebacterium strains with enhanced genes related to XMP biosynthesis and XMP production methods using the same have been known. For example, Korean Patent No. 0117443 discloses a highly sensitive susceptible strain of lysozyme, which is resistant to guanosine analogues and is a guanosine analogue inactive strain of adenine and guanine antireflective forms to increase XMP yield. Was prepared and started. Korean Patent No.0402320 discloses a mutation causing agent such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) based on corynebacterium ammoniagenes, which produces XMP, as a parent. By processing according to conventional methods, the strains of the parent strain are modified to select norvaline resistant strains, which are analogues to valine, which affect the biosynthesis of XMP, resulting in high yield and high concentration of XMP. An XMP production method using microorganisms that accumulate directly in culture is disclosed.

또 다른 핵산계 물질 중 하나인 IMP는 핵산 생합성 대사계의 중간 물질로서, 동식물의 체내에서 생리적으로 중요한 역할을 수행할 뿐 아니라, 식품, 의약품 및 각종 의료적 이용 등 다방면에 이용되고 있으며, 특히 모노소디움 글루탐산과 같이 사용하면 맛의 상승효과가 커서 정미성 조미료로 각광을 받고 있는 핵산계 조미료 중 하나이다.IMP, another nucleic acid-based substance, is an intermediate in nucleic acid biosynthetic metabolism. It plays a physiologically important role in the body of animals and plants, and is used in various fields such as food, medicine, and various medical uses. When used together with sodium glutamic acid, it is one of nucleic acid-based seasonings that has been spotlighted as a seasoning seasoning because of its synergistic effect.

IMP를 제조하는 방법으로는 효모 세포로부터 추출한 리보핵산을 효소로 분해하는 방법(일본 특허공고 제1614/1957호 등), 발효에 의해 생산된 이노신을 화학적 방법으로 인산화하는 방법(Agri. Biol. Chem., 36, 1511(1972) 등) 및 IMP를 생산 할 수 있는 미생물을 배양하고 배지에 축적된 IMP를 회수하는 방법 등이 있다. 이러한 방법 중에서 현재 가장 많이 사용되고 있는 방법이 미생물을 이용하여 IMP를 생산하는 방법이다. IMP를 생산하는데 이용하는 미생물 중 코리네박테리움(Corynebacterium) 속 균주, 예를 들어 코리네박테리움 암모니아게네스 균주를 발효시킴으로써 제조하는 방법(대한민국 등록특허 제0446113호) 등이 공지되어 있다.Methods for producing IMP include a method of enzymatically decomposing ribonucleic acid extracted from yeast cells (Japanese Patent Publication No. 1614/1957, etc.), and a method of phosphorylating inosine produced by fermentation by chemical method (Agri. Biol. Chem , 36, 1511 (1972), and the like, and methods of culturing microorganisms capable of producing IMP and recovering IMP accumulated in the medium. The most widely used method among these methods is a method of producing IMP using microorganisms. Among the microorganisms used to produce IMP, a method of preparing by fermenting a strain of the genus Corynebacterium, for example, Corynebacterium ammonia genes (Korean Patent No. 0446113) is known.

또 다른 핵산계 물질중 하나인 이노신은 정미성 조미료로 각광 받고 있는 IMP의 화학적 합성 및 효소전이 반응에 의한 합성에 있어서 중요한 기질이다. 또한 이노신은 핵산 생합성 대사계의 중간물질로 동식물의 체내에서 생리적으로 중요한 의미를 가질 뿐 아니라 식품, 의약품 및 각종 의료적 이용 등 다방면에서 이용되고 있다. 이러한 이노신을 생산하기 위하여 종래에는 바실러스(Agric. Biol. Chem., 46, 2347 (1982); 대한민국 등록특허 제27280호) 또는 코리네박테리움 암모니아게네스(Agric. Biol. Chem., 42, 399 (1978)) 등의 미생물을 이용한 직접 발효법이나 IMP의 열분해법(일본 특허 공소 제43-3320호) 등을 이용하여 제조하였다. 그러나, 열분해법의 경우 IMP를 분해하는데 대량의 열 소비가 요구되어 실용성이 문제되며, 직접 발효에 의한 제조방법은 대장균을 이용한 다양한 유전자형의 균주들이 제작 및 연구(Biosci Biotechnol Biochem. 2001 Mar; 65(3): 570-8)되었으나 이노신 생산 균주의 역가가 낮아 생산 원가가 높아진다는 단점이 있었다. 또한 기존 이노신 연구는 대장균과 바실러스균에 치중되어 있는데, 더 높은 수율과 농도를 위해 코리네박테리움 암모니아게네스 균주를 이용한 이노신 생산 균주 개발이 보고된 바 있 다(대한민국 등록특허 제0330705호, 제0671080호 및 제0671081호).Inosine, another nucleic acid-based substance, is an important substrate for the chemical synthesis of IMP, which has been spotlighted as a seasoning seasoning, and the synthesis by enzyme transfer reaction. Inosine is an intermediate of the nucleic acid biosynthesis metabolic system and has a physiological significance in the body of animals and plants, and is used in various fields such as food, medicine, and various medical uses. In order to produce such inosine, Bacillus (Agric. Biol. Chem., 46, 2347 (1982); Korean Patent No. 27280) or Corynebacterium ammonia genes (Agric. Biol. Chem., 42, 399 (1978)) and direct fermentation using microorganisms or pyrolysis of IMP (Japanese Patent Application No. 43-3320). However, in the case of pyrolysis, a large amount of heat is required to decompose IMP, and practicality is a problem, and the method of direct fermentation produces and studies various genotype strains using Escherichia coli (Biosci Biotechnol Biochem. 2001 Mar; 65 ( 3): 570-8), but the production cost is high due to the low titer of the inosine production strain. In addition, existing inosine studies are concentrated on Escherichia coli and Bacillus bacteria, and development of inosine-producing strains using Corynebacterium ammonia gene strains for higher yield and concentration has been reported (Korea Patent No. 0330705, No. 0671080 and 0671081).

종래 퓨린 생합성 관련 유전자가 강화된 코리네박테리움 균주 및 이를 이용한 IMP 또는 XMP 생산 방법이 알려져 있었다. 예를 들면, 대한민국 등록특허 제0785248호에서는 포스포리보실아미노이미다졸 썩시노카복사마이드 신세타아제를 코딩하는 유전자 purC가 과발현된 미생물 및 이를 이용한 IMP의 생산 방법이 개시 되어 있다. 또한, 대한민국 등록특허 제0857379호에서는 purKE에 의해 암호화되는 포스포리보실아미노이미다졸 카복실라아제 유전자가 과발현된 미생물 코리네박테리움 암모니아게네스 균주와 이를 육종 및 배양하여 IMP를 고농도 및 고수율로 생산하는 방법이 개시되어 있다. 또한, 대한민국 공개특허 제10-2007-0056491호에서는 purF에 의해 암호화되는 포스포리보실피로포스페이트 아미도트랜스퍼라아제 효소가 강화된 코리네박테리움 암모니아게네스 균주와 이를 이용한 XMP를 제조하는 방법이 개시되어 있다. 또한, 대한민국 출원특허 제10-2008-006537호(미공개)에서는 purN에 의해 암호화되는 포스포리보실글리신아마이드 포밀트랜스퍼라아제와 purH에 의해 암호화되는 이노신산 싸이클로하이드롤라아제 효소의 활성이 내재적 활성보다 강화되어 있고, 바람직하게는 추가로 5'-뉴클레오티다제가 불활성화 되어 있는 코리네박테리움 속 미생물 및 이를 이용하여 고농도 XMP를 생산하는 방법에 관한 것이 개시 되어 있다.Conventional Corynebacterium strains with enhanced genes related to purine biosynthesis and IMP or XMP production methods using the same have been known. For example, Korean Patent No. 085248 discloses a microorganism overexpressing the gene purC encoding phosphoribosylaminoimidazole leucinecarboxamide synthetase and a method of producing IMP using the same. In addition, the Republic of Korea Patent No. 0578379, a microorganism Corynebacterium ammonia gene strain overexpressing the phosphoribosylaminoimidazole carboxylase gene encoded by purKE and breeding and cultivating it to produce IMP in high concentration and high yield A method is disclosed. In addition, Korean Patent Laid-Open No. 10-2007-0056491 discloses a Corynebacterium ammonia genes strain enhanced with phosphoribosylpyrophosphate amidotransferase enzyme encoded by purF and a method for preparing XMP using the same It is. In addition, in Korean Patent Application No. 10-2008-006537 (unpublished), the activity of phosphoibosylglycine amide formyl transferase encoded by purN and inosine acid cyclohydrolase enzyme encoded by purH is enhanced than intrinsic activity. And, preferably, further relates to a microorganism of the genus Corynebacterium in which 5'-nucleotidase is inactivated, and a method for producing a high concentration of XMP using the same.

본 발명의 목적은 핵산계 물질인 XMP 또는 IMP 또는 이노신을 고농도로 생산 할 수 있는 코리네박테리움 속 미생물을 제공하는 것이다.An object of the present invention is to provide a microorganism of the genus Corynebacterium that can produce a high concentration of nucleic acid-based material XMP or IMP or inosine.

본 발명의 또 다른 목적은 상기 코리네박테리움 속 미생물들을 배양하여, 그 배양액으로부터 XMP 또는 IMP 또는 이노신을 생산하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of culturing the microorganisms of Corynebacterium and producing XMP or IMP or inosine from the culture solution.

상기와 같은 목적을 달성하기 위해, 본 발명은 포스포리보실피로포스페이트 아미도트랜스퍼라아제, 포스포리보실아민 글리신 리가아제, 포스포리보실글리신아마이드 포밀트랜스퍼라아제, 포스포리보실포밀글리신아미딘 신세타아제, 포스포리보실포밀글리신아미딘 신세타아제 Ⅱ, 포스포리보실아미노이미다졸 신세타아제, 포스포리보실아미노이미다졸 카복실라아제, 포스포리보실아미노이마다졸 썩시노카복사마이드 신세타아제, 아데닐로썩시네이트 리아제 및 이노신산 싸이클로하이드롤라아제의 효소 활성을 보다 강화시켜 퓨린 생합성 경로의 활성을 강화시킴으로써, XMP 또는 IMP 또는 이노신의 생산능이 향상된 코리네박테리움 속 미생물을 제공한다.In order to achieve the above object, the present invention is a phosphoribosyl pyrophosphate amidotransferase, phosphoribosylamine glycine ligase, phosphoribosyl glycine amide formyl transferase, phosphoribosyl formyl glycine amidine syntheta Azedes, phosphoribosylformylglycineamidine synthetase II, phosphoribosylaminoimidazole synthetase, phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole leucinocarboxamide synthetase, adenyl Enhancing the enzymatic activity of rotoxylate lyase and inosine acid cyclohydrolase to enhance the activity of the purine biosynthetic pathway, thereby providing a microorganism of the genus Corynebacterium with improved production of XMP or IMP or inosine.

본 발명은 또한 상기 코리네박테리움 속 미생물을 배양하여, 그 배양액으로부터 XMP 또는 IMP 또는 이노신을 생산하는 방법을 제공한다.The present invention also provides a method of culturing the microorganism of the genus Corynebacterium, to produce XMP or IMP or inosine from the culture.

본 발명에 따라 코리네박테리움 속 미생물의 퓨린 생합성 경로의 효소 들의 활성을 강화시킴으로써, XMP 또는 IMP 또는 이노신을 고농도로 생산하여 수율 향상에 의한 생산 원가 절감을 이룰 수 있다.In accordance with the present invention, by enhancing the activity of enzymes in the purine biosynthetic pathway of Corynebacterium sp. Microorganisms, production of XMP or IMP or inosine at high concentrations can be achieved to reduce production costs by improving yield.

본 발명은 포스포리보실피로포스페이트 아미도트랜스퍼라아제, 포스포리보실아민 글리신 리가아제, 포스포리보실글리신아마이드 포밀트랜스퍼라아제, 포스포리보실포밀글리신아미딘 신세타아제, 포스포리보실포밀글리신아미딘 신세타아제 Ⅱ, 포스포리보실아미노이미다졸 신세타아제, 포스포리보실아미노이미다졸 카복실라아제, 포스포리보실아미노이마다졸 썩시노카복사마이드 신세타아제, 아데닐로썩시네이트 리아제 및 이노신산 싸이클로하이드롤라아제의 효소 활성을 강화시켜 퓨린 생합성 경로의 활성을 강화시킴으로써, XMP 또는 IMP 또는 이노신의 생산능이 향상된 코리네박테리움 속 미생물을 제공한다.The present invention is phosphoribosylpyrophosphate amidotransferase, phosphoribosylamine glycine ligase, phosphoribosylglycinamide formyltransferase, phosphoribosylformylglycineamidine synthetase, phosphoribosylformylglycineamidine Synthetase II, phosphoribosylaminoimidazole synthetase, phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole rosinocarboxamide synthetase, adenylolycinate lyase and inosinoic acid cyclase Enhancing the enzymatic activity of the rollases enhances the activity of the purine biosynthetic pathway, thereby providing microorganisms of the genus Corynebacterium with enhanced production of XMP or IMP or inosine.

보다 바람직하게는, 본 발명은 포스포리보실아민 글리신 리가아제, 포스포리보실글리신아마이드 포밀트랜스퍼라아제, 포스포리보실포밀글리신아미딘 신세타아제, 포스포리보실포밀글리신아미딘 신세타아제 Ⅱ, 아데닐로썩시네이트 리아제 및 이노신산 싸이클로하이드롤라아제를 암호화하는 유전자가 도입되어 활성이 강화된 코리네박테리움 속 미생물, 여기에 부가적으로 포스ㅊ포리보실피로포스페이트 아미도트랜스퍼라아제와 포스포리보실아미노이미다졸 신세타아제를 암호화하는 유전자 또는 포스포리보실아미노이미다졸 카복실라아제와 포스포리보실아미노이미다졸 썩시노카복사마이드 신세타아제를 암호화하는 유전자가 도입되어 활성이 강화된 코리네박테리움 속 미생물을 제공한다. 또한, 상기 언급된 효소를 암호화하는 유전자가 모두 도입되어 활성이 강화된 코리네박테리움 속 미생물을 제공한다.More preferably, the present invention relates to phosphoribosylamine glycine ligase, phosphoribosylglycine amide formyltransferase, phosphoribosylformylglycine amidine synthetase, phosphoribosylformylglycine amidine synthetase II, ade Microorganisms of the genus Corynebacterium in which activity of genes encoding nilorotinate lyase and inosinic acid cyclohydrolase has been enhanced, in addition to phosphogibosylpyrophosphate amidotransferase and phosphoribosyl Genes encoding aminoimidazole synthetase or genes encoding phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole leucinocarboxamide synthetase have been introduced to enhance activity. Provide microorganisms. In addition, all of the genes encoding the above-mentioned enzymes are introduced to provide a microorganism of the genus Corynebacterium with enhanced activity.

상기 유전자 purF, purD, purN, purS, purL, purM, purKE, purC, purB 및 purH 의 뉴클레오티드 서열들은 이미 공지되어 있으며, 각각 서열번호 35, 36, 37, 38, 39, 40, 41, 42, 43 및 44의 뉴클레오티드 서열을 갖는다. 바람직하게는, 상기 유전자들은 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610)로부터 유래된 것일 수 있다.Nucleotide sequences of the genes purF, purD, purN, purS, purL, purM, purKE, purC, purB and purH are already known, and SEQ ID NOs: 35, 36, 37, 38, 39, 40, 41, 42, 43, respectively. And 44 nucleotide sequences. Preferably, the genes may be derived from Corynebacterium ammonia genes CJIP2401 (KCCM-10610).

본 발명에서 상기 내재적 유전자는 코리네박테리움 속 미생물이 천연의 상태로 가지고 있는 유전자를 의미하며, 상기 효소들의 활성을 강화시키는 방법은 유전자 카피 수의 증가 및 돌연변이에 의하여 효소활성을 증가 또는 이 둘 모두에 의한 것이 포함된다. 상기 유전자 카피 수의 증가는 외래 유전자의 도입에 의한 개수의 증가뿐만 아니라 내재적 유전자의 증폭에 의한 것도 포함된다. 내재적 유전자의 증폭은 당업계에 알려진 방법, 예를 들면 적당한 선택 압력하에서 배양하는 방법 등에 의하여 용이하게 이루어질 수 있다.In the present invention, the endogenous gene refers to a gene that the microorganism of Corynebacterium has in its natural state, and the method of enhancing the activity of the enzymes increases enzyme activity by increasing gene copy number and mutation or both. All things are included. The increase in the number of gene copies includes not only an increase in the number due to introduction of a foreign gene but also an amplification of an endogenous gene. Amplification of endogenous genes can be readily accomplished by methods known in the art, such as culturing under appropriate selection pressure and the like.

본 발명에서 상기 효소의 활성은 바람직하게는 코리네박테리움 속 미생물이 천연상태로 가지고 있는 내재적 유전자에 더하여 1 카피 이상의 유전자를 새로 도입함으로써 달성되며, 바람직하게는 2개 카피의 유전자가 상동 재조합에 의하여 내재적 유전자 옆에 1 카피의 유전자가 더 삽입되고, 최종적으로는 2개 카피의 유전자가 증폭되고 돌연변이를 일으킴으로써 효소의 활성이 강화되는 것이다.In the present invention, the activity of the enzyme is preferably achieved by introducing one or more new genes in addition to the intrinsic genes of the native microorganisms of Corynebacterium, preferably two copies of the genes for homologous recombination. One copy of the gene is inserted next to the endogenous gene, and finally two copies of the gene are amplified and mutated to enhance the activity of the enzyme.

본 발명은 상기 효소를 암호화하는 각각의 유전자를 포함하는 재조합 벡터를 제공한다. The present invention provides a recombinant vector comprising each gene encoding the enzyme.

본 발명에서 외래 유전자의 도입시 사용 가능한 벡터는 바람직하게는 염색체 삽입용 벡터 pDZ이며, 더욱 바람직하게는 각각 도 2, 3, 4, 5, 6 및 7의 개열지도를 갖는 염색체 삽입용 벡터 pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC일 수 있다. 이들 벡터는 순서대로 또는 조합되어 상기 코리네박테리움 속 미생물에 도입될 수 있으며, 상기 유전자의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합에 의하여 이루어질 수 있다.The vector usable at the time of introduction of a foreign gene in the present invention is preferably a chromosome insertion vector pDZ, more preferably a chromosome insertion vector pDZ- having a cleavage map of Figs. 2, 3, 4, 5, 6 and 7, respectively. 2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC. These vectors may be introduced into the Corynebacterium microorganisms in sequence or in combination, and the insertion of the gene into the chromosome may be by any method known in the art, for example homologous recombination.

본 발명의 바람직한 실시예에서, 본 발명은 XMP를 생산하는 코리네박테리움 암모니아게네스 CJXFT0301(KCCM-10530)와 IMP를 생산하는 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610) 및 이노신을 생산하는 코리네박테리움 암모니아게네스 CJIS-H273(KCCM-10905)에 각각 상기 벡터 pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC를 순서대로 또는 조합하여 도입하고, 선택배지에 배양한 균주를 제공한다.In a preferred embodiment of the present invention, the present invention produces Corynebacterium ammonia genes CJXFT0301 (KCCM-10530) for producing XMP and Corynebacterium ammonia genes CJIP2401 (KCCM-10610) for producing IMP and inosine The vector pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, and pDZ-2purC were introduced into Corynebacterium ammonia gene CJIS-H273 (KCCM-10905), respectively. To provide a strain cultured in a selective medium.

본 발명에서, 상기 형질전환된 미생물들은 각각 XMP를 고농도로 생산하도록 형질전환된 코리네박테리움 암모니아게네스 CN02-0058, CN02-0078, CN02-0120 균주들, IMP를 고농도로 생산하도록 형질전환된 코리네박테리움 암모니아게네스 CN01-0118, CN01-0300균주들, 그리고 이노신을 고농도로 생산하도록 형질전환된 코리네박테리움 암모니아게네스 CN04-0049, CN04-0050 균주들이다. 상기 코리네박테리움 암모니아게네스 CN01-0118 균주는 부다페스트 조약 하에 서울 서대문구 홍제1동 소재의 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2008년 09월 23일자로 기탁하였다(수탁번호 KCCM 10965P). 상기 균주들은 각각 XMP 또는 IMP 또는 이노신 생산 효율이 각각의 모균주보다 높다.In the present invention, the transformed microorganisms are each transformed to produce high concentrations of Corynebacterium ammonia genes CN02-0058, CN02-0078, CN02-0120 strains, IMP transformed to produce high concentrations of XMP Corynebacterium ammonia genes CN01-0118, CN01-0300 strains, and Corynebacterium ammonia genes CN04-0049, CN04-0050 strains transformed to produce high concentrations of inosine. The Corynebacterium ammonia genes CN01-0118 strain was deposited on September 23, 2008 at the Korean Culture Center of Microorganisms (KCCM), Hongje 1-dong, Seodaemun-gu, Seoul under the Budapest Treaty (Accession No. KCCM). 10965P). The strains have higher XMP or IMP or inosine production efficiency than their respective parent strains, respectively.

또한, 본 발명은 상기의 형질전환된 각각의 코리네박테리움 속 미생물을 배 양하여 그 배양액으로부터 XMP 또는 IMP 또는 이노신을 생산하는 방법에 관한 것이다.In addition, the present invention relates to a method for producing XMP or IMP or inosine from the culture medium by culturing each of the transformed Corynebacterium genus microorganisms.

상기의 형질전환된 각각의 코리네박테리움 속 미생물을 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.Each of the transformed Corynebacterium genus microorganisms can be cultured under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like while controlling the temperature, pH and the like.

탄소원으로는 글루코오스와 프룩토오스가 사용될 수 있고, 질소원으로는 암모니아, 염화암모늄, 황산암모늄과 같은 각종 무기질소원 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크, 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 무기화합물로는 인산1수소칼륨, 인산2수소칼륨, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 이외에 필요에 따라 비타민 및 영양요구성 염기 등이 첨가될 수 있다.As a carbon source, glucose and fructose may be used, and as a nitrogen source, various inorganic nitrogen sources such as ammonia, ammonium chloride, and ammonium sulfate and peptone, NZ-amine, meat extract, yeast extract, corn steep liquor, casein hydrolyzate, and fish Or organic nitrogen sources such as degradation products thereof, degreasing soy cakes, or degradation products thereof. As the inorganic compound, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate and the like may be used. In addition, vitamins and nutrient-containing bases may be added as necessary.

배양은 호기적 조건 하에서 예를 들면, 진탕배양 또는 통기 교반 배양에 의해, 바람직하게는 20 내지 40℃의 온도에서 수행될 수 있다. 배지의 pH는 배양하는 동안 중성근처에서 유지하는 것이 바람직하다. 배양은 4 내지 5일 동안 수행할 수 있다. 구체적 실시예에서, 본 발명에 의하여 형질전환된 각각의 코리네박테리움 속 미생물은 형질전환하지 않은 코리네박테리움 속 미생물에 비하여 높은 수율로 XMP 또는 IMP 또는 이노신을 생산하였다.The culturing may be carried out under aerobic conditions, for example by shaking culture or aeration stirred culture, preferably at a temperature of 20 to 40 ° C. The pH of the medium is preferably maintained near neutral during the culture. Cultivation can be performed for 4 to 5 days. In a specific example, each Corynebacterium microorganism transformed by the present invention produced XMP or IMP or Inosine in higher yield compared to the Corynebacterium microorganism not transformed.

이하, 본 발명을 실시예를 통하여 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명이 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrating the present invention, and the present invention is not limited by these examples.

실시예Example

참고예 1 : 염색체 삽입용 벡터 (pDZ)를 이용한 유전자의 삽입 방법 Reference Example 1 Gene Insertion Method Using a Chromosome Insertion Vector (pDZ)

염색체 삽입용 벡터 pDZ를 이용하여 유전자의 염색체 삽입을 진행한다. 코리네박테리움 암모니아게네스의 염색체로 여분의 유전자를 삽입하기 위하여, 대상이 되는 유전자를 연속적으로 2개를 포함하고 있는 pDZ 벡터를 제작한다. 도 1은 염색체 삽입용 벡터 pDZ를 나타낸다.The chromosome insertion of a gene is performed using the vector pDZ for chromosome insertion. In order to insert an extra gene into the chromosome of Corynebacterium ammonia genes, a pDZ vector containing two consecutive genes of interest is prepared. 1 shows the vector pDZ for chromosome insertion.

본 발명에서는 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301(KCCM-10530) 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610) 균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273(KCCM-10905) 균주에 일렉트로포레이션법(electroporation)으로 형질전환한 후, 카나마이신(kanamycin) 25㎎/l를 함유한 선별 배지에서 염색체상의 동 유전자와 상동성에 의해 삽입된 균주를 선별하였다.In the present invention, Corynebacterium ammonia genes CJXFT0301 (KCCM-10530) strain XMP producing strain, Corynebacterium ammonia genes CJIP2401 (KCCM-10610) strain IMP production strain, Corynebacter strains of inosine production After transforming the ammonia genes CJIS-H273 (KCCM-10905) strain by electroporation, it was inserted by homology with homologous genes on a chromosome in a selection medium containing 25 mg / l of kanamycin. Strains were selected.

벡터의 성공적인 염색체 삽입은 X-gal(5-브로모-4-클로로-3-인돌릴-B-D-갈락토시드)을 포함한 고체배지에서 푸른색을 나타나는가의 여부를 확인함으로써 가능하다.Successful chromosomal insertion of the vector is possible by identifying whether blue color appears in solid media, including X-gal (5-bromo-4-chloro-3-indolyl-B-D-galactosid).

1차 염색체 삽입된 균주를 영양배지에서 진탕 배양 (30℃, 4시간) 한 후, 각각 10-4으로부터 10-10으로 X-gal을 포함하고 있는 고체배지에 도말한다. 대부분의 콜로니가 푸른색을 띄는데 반해 낮은 비율로 나타나는 백색 콜로니를 선별함으로 써, 2차교차(crossover)에 의해 삽입된 염색체상의 벡터 서열이 제거된 균주를 선별한다.The primary chromosome-inserted strain is shaken in nutrient medium (30 ° C., 4 hours), and then plated on solid medium containing X-gal from 10 −4 to 10 −10 , respectively. While most colonies are blue, by selecting white colonies that appear at a low rate, strains from which the vector sequence on the chromosome inserted by the crossover have been removed are selected.

이상과 같이 선별된 균주는 최종적으로 항생제 카나마이신에 대한 감수성 여부의 확인 및 PCR을 통하여 유전자 구조 확인 과정을 거쳐 최종 선정된다.The strains selected as described above are finally selected through the process of gene structure confirmation through PCR and confirmation of susceptibility to the antibiotic kanamycin.

실시예 1: IMP 생산 균주 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610)균주 유래의 purFM 유전자 클로닝 및 재조합벡터(pDZ-2purFM) 제작, purFM 삽입 균주 개발Example 1 PurFM Gene Cloning and Recombinant Vector (pDZ-2purFM) from IMP Production Strain Corynebacterium Ammonia Genes CJIP2401 (KCCM-10610)

본 실시예에서는 purF 유전자와 purM 유전자가 근접거리에 위치하고 있어, 두 유전자를 동시에 발현시키기 위하여 프로모터 부위를 포함한 purFM 벡터를 제작하기로 하였다. In the present embodiment, since the purF gene and the purM gene are located in close proximity, a purFM vector including a promoter region was prepared to simultaneously express the two genes.

코리네박테리움 암모니아게네스 CJIP2401 균주의 염색체를 분리하고, 이를 주형으로 하여 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 96℃, 30초와 어닐링 53℃, 30초 및 중합반응 72℃, 2분을 30회 반복하였다. 그 결과, 프로모터 부위를 포함한 purFM 유전자 두 쌍(purFM-A, purFM-B)을 얻었다. purFM-A는 서열번호 1과 2를 프라이머로 사용하여 증폭된 것이며, purFM-B는 서열번호 3과 4를 프라이머로 사용하여 증폭된 것이다.The chromosome of the Corynebacterium ammonia genes CJIP2401 strain was isolated, and as a template, the polymerase was used as PfuUltra high-trust DNA polymerase (Stratagene), and PCR conditions were denaturation 96 ℃, 30 seconds and annealing 53 ℃. , 30 seconds and the polymerization reaction 72 ℃, 2 minutes was repeated 30 times. As a result, purFM containing a promoter site Two pairs of genes (purFM-A, purFM-B) were obtained. purFM-A was amplified using SEQ ID NOs: 1 and 2 as primers, and purFM-B was amplified using SEQ ID NOs: 3 and 4 as primers.

상기 pDZ-2purFM 벡터를 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301(KCCM-10530) 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610) 균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273(KCCM-10905) 균주에 일렉트로포레이션법을 통하여 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 내재적 purFM 유전자의 바로 옆에 1개의 purFM 유전자를 추가로 삽입하여 총 개수를 2개로 증가시킨 균주를 얻었다. 연속적으로 삽입된 purFM 유전자는 2개의 purFM 연결부위를 증폭할 수 있는 서열번호 5와 6의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.The pDZ-2purFM vector was transformed into Xine-producing strain Corynebacterium ammonia genes CJXFT0301 (KCCM-10530) strain, IMP-producing strain Corynebacterium ammonia genes CJIP2401 (KCCM-10610) strain, inosine production strain The strain of Corynebacterium ammonia genes CJIS-H273 (KCCM-10905) was transformed by electroporation, and a second crossover process was performed to insert one additional purFM gene right next to the intrinsic purFM gene on the chromosome. To obtain a strain in which the total number was increased to two. Subsequently inserted purFM genes are two purFMs It was finally confirmed by PCR using primers of SEQ ID NOs: 5 and 6, which can amplify the linking sites.

pDZ-2purFM 벡터를 제작하기 위한 PCR 반응에 사용된 프라이머들과 제작된 해당 증폭 균주를 확인하기 위하여 사용된 프라이머들의 서열은 각각 다음과 같다.The sequences of the primers used for the PCR reaction for constructing the pDZ-2purFM vector and the primers used for identifying the corresponding amplification strains were as follows.

서열번호 1 : cgacgagaat tccccgaccc gcatgagatgSEQ ID NO: 1 cgacgagaat tccccgaccc gcatgagatg

서열번호 2 : gtatcgtcta gagcggtagc ggtggcttcgSEQ ID NO: 2 gtatcgtcta gagcggtagc ggtggcttcg

서열번호 3 : cgacgatcta gacccgaccc gcatgagatgSEQ ID NO: 3 cgacgatcta gacccgaccc gcatgagatg

서열번호 4 : gtatcgaagc ttgcggtagc ggtggcttcg SEQ ID NO: 4 gtatcgaagc ttgcggtagc ggtggcttcg

서열번호 5 : gctatcgttt cccctgaaSEQ ID NO: gctatcgttt cccctgaa

서열번호 6 : tgattctact aagtttgcSEQ ID NO: 6 tgattctact aagtttgc

실시예 2: IMP 생산 균주 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610) 균주 유래의 purDB 유전자 클로닝 및 재조합벡터(pDZ-2purDB) 제작, purDB 삽입 균주 개발Example 2: PurDB gene cloning and recombinant vector (pDZ-2purDB) derived from IMP producing strain Corynebacterium ammonia gene CJIP2401 (KCCM-10610) strain, purDB insertion strain development

본 실시예에서는 purD 유전자와 purB 유전자가 근접 거리에 위치하고 있어, 두 유전자를 동시에 발현시키기 위하여 프로모터 부위를 포함한 purDB 벡터를 제작 하기로 하였다. In this embodiment, since the purD gene and the purB gene are located in close proximity, a purDB vector including a promoter region was prepared to simultaneously express the two genes.

코리네박테리움 암모니아게네스 CJIP2401 균주의 염색체를 분리하고, 이를 주형으로 하여 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제를 사용하였으며, PCR 조건은 변성 96℃, 30초와 어닐링 53℃, 30초 및 중합반응 72℃, 2분을 30회 반복하였다. 그 결과, 프로모터 부위를 포함한 purDB 유전자 두 쌍(purDB-A, purDB-B)을 얻었다. purDB-A는 서열번호 7과 8을 프라이머로 사용하여 증폭된 것이며, purDB-B는 서열번호 9와 10을 프라이머로 사용하여 증폭된 것이다. The chromosome of the Corynebacterium ammonia genes CJIP2401 strain was isolated and the polymerase was used as a template, and PfuUltra high-reliability DNA polymerase was used, and PCR conditions were denatured 96 ° C, 30 seconds and annealing 53 ° C, 30 seconds. And 30 degreeC of the polymerization reaction 72 degreeC and 2 minutes was repeated. As a result, purDB including the promoter site Two pairs of genes (purDB-A, purDB-B) were obtained. purDB-A was amplified using SEQ ID NOs: 7 and 8 as primers, and purDB-B was amplified using SEQ ID NOs: 9 and 10 as primers.

상기 증폭 산물을 TOPO 클로닝 키트를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-purDB-A와 pCR-purDB-B 벡터를 얻었다. 상기 pCR 벡터에 purDB-A와 purDB-B의 각 말단에 포함된 제한효소(purDB-A: HindⅢ+SpeI, purDB-B: SpeI+XbaI)를 처리하여, 상기 pCR 벡터로부터 각각의 purDB 유전자를 분리하였다. 다음으로, 제한효소 HindⅢ와 XbaI이 처리된 pDZ 벡터에 3 조각 접합을 통하여 클로닝하여, 최종적으로 purDB 유전자 2개가 연속적으로 클로닝된 pDZ-2purDB 재조합 벡터를 제작하였다. 도 3은 코리네박테리움 염색체 삽입용 벡터 pDZ-2purDB을 나타내는 도면이다.The amplification product was cloned into E. coli vector pCR2.1 using the TOPO cloning kit to obtain pCR-purDB-A and pCR-purDB-B vectors. The pCR vector was treated with restriction enzymes (purDB-A: HindIII + SpeI, purDB-B: SpeI + XbaI) contained at each end of purDB-A and purDB-B, and each purDB was extracted from the pCR vector. Gene was isolated. Next, the pDZ vector treated with the restriction enzymes HindIII and XbaI was cloned through three-piece conjugation to prepare a pDZ-2purDB recombinant vector in which two purDB genes were cloned. 3 is a diagram showing a vector pDZ-2purDB for inserting Corynebacterium chromosome.

상기 pDZ-2purDB 벡터를 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401 균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주에 일렉트로포레이션법을 통하여 형질전환 하고, 2차 교차 과정을 거쳐 염색체 상의 내재적 purDB 유전자의 바로 옆에 1개의 purDB 유전자를 추가로 삽입하여 총 개수를 2개로 증가시킨 균주를 얻었다. 연속적으로 삽입된 purDB 유전자는 2개의 purDB 연결부위를 증폭할 수 있는 서열번호 11과 12의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.The pDZ-2purDB vector was used in the Corynebacterium ammonia genes CJXFT0301 strain, an XMP producing strain, and the Corynebacterium ammonia genes CJIP2401, an IMP producing strain, and the corynebacterium ammonia genes, which is an inosine producing strain, CJIS-H273. The strain was transformed through the electroporation method, and a second crossover process was performed to insert one additional purDB gene immediately next to the intrinsic purDB gene on the chromosome to obtain a total strain increased to two. Subsequently inserted purDB genes are two purDBs Final confirmation was carried out by PCR using primers of SEQ ID NOs: 11 and 12 capable of amplifying the linking sites.

pDZ-2purDB 벡터를 제작하기 위한 PCR 반응에 사용된 프라이머들과 제작된 해당 균주를 확인하기 위하여 사용된 프라이머들의 서열은 각각 다음과 같다.The sequences of the primers used for the PCR reaction for constructing the pDZ-2purDB vector and the primers used for identifying the corresponding strains are as follows.

서열번호 7 : ggcacaagct tccgcgtagt atcataagca gtcSEQ ID NO: 7 ggcacaagct tccgcgtagt atcataagca gtc

서열번호 8 : cagcactagt gctggctcta gtgcgaagtc atSEQ ID NO: 8 cagcactagt gctggctcta gtgcgaagtc at

서열번호 9 : cagcactagt ccgcgtagta tcataagcag tcSEQ ID NO: 9 cagcactagt ccgcgtagta tcataagcag tc

서열번호 10 : gccctctaga gctggctcta gtgcgaagtc atSEQ ID NO: 10 gccctctaga gctggctcta gtgcgaagtc at

서열번호 11 : tcgctgacaa gcacgcgttt atcggcSEQ ID NO: 11 tcgctgacaa gcacgcgttt atcggc

서열번호 12 : ggtagcgggg tcggccgcaa ggccSEQ ID NO: 12 ggtagcgggg tcggccgcaa ggcc

실시예 3: IMP 생산 균주 코리네박테리움 암모니아게네스 CJIP2401(KCCM-10610) 균주 유래의 purNH 유전자 클로닝 및 재조합벡터(pDZ-2purNH) 제작, purNH 삽입 균주 개발Example 3: PurNH gene cloning and recombinant vector (pDZ-2purNH) derived from IMP production strain Corynebacterium ammonia gene CJIP2401 (KCCM-10610) strain, purNH insertion strain development

본 실시예에서는 purN 유전자와 purH 유전자가 근접 거리에 위치하고 있어, 두 유전자를 동시에 발현시키기 위하여 프로모터 부위를 포함한 purNH 벡터를 제작하기로 하였다. In this embodiment, since the purN gene and the purH gene are located in close proximity, a purNH vector including a promoter region is prepared to simultaneously express the two genes.

코리네박테리움 암모니아게네스 CJIP2401 균주의 염색체를 분리하고, 이를 주형으로 하여 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제를 사용하였으며, PCR 조건은 변성 96℃, 30초와 어닐링 53℃, 30초 및 중합반응 72℃, 2분을 30회 반복하였다. 그 결과, 프로모터 부위를 포함한 purNH 유전자 두 쌍(purNH-A, purNH-B)을 얻었다. purNH-A는 서열번호 13과 14를 프라이머로 사용하여 증폭된 것이며, purNH-B는 서열번호 14와 15를 프라이머로 사용하여 증폭된 것이다. 상기 증폭 산물을 TOPO 클로닝 키트를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-purNH-A와 pCR-purNH-B 벡터를 얻었다. 상기 pCR 벡터에 purNH-A와 purNH-B의 각 말단에 포함된 제한효소(purNH-A: BamHI+SalI, purNH-B: SalI)를 처리하여, 상기 pCR 벡터로부터 각각의 purNH 유전자를 분리하였다. The chromosome of the Corynebacterium ammonia genes CJIP2401 strain was isolated and the polymerase was used as a template, and PfuUltra high-reliability DNA polymerase was used, and PCR conditions were denatured 96 ° C, 30 seconds and annealing 53 ° C, 30 seconds. And 30 degreeC of the polymerization reaction 72 degreeC and 2 minutes was repeated. As a result, purNH including the promoter site Two pairs of genes (purNH-A, purNH-B) were obtained. purNH-A was amplified using SEQ ID NOs: 13 and 14 as primers, and purNH-B was amplified using SEQ ID NOs: 14 and 15 as primers. The amplified product was cloned into the E. coli vector pCR2.1 using the TOPO cloning kit to obtain pCR-purNH-A and pCR-purNH-B vectors. The pCR vector was treated with restriction enzymes (purNH-A: BamHI + SalI, purNH-B: SalI) contained at each end of purNH-A and purNH-B, and each purNH from the pCR vector. Gene was isolated.

다음으로, 제한효소 BamHI과 SalI이 처리된 pDZ 벡터에 3 조각 접합을 통하여 클로닝하여, 최종적으로 purNH 유전자 2개가 연속적으로 클로닝된 pDZ-2purNH 재조합 벡터를 제작하였다. 도 4는 코리네박테리움 염색체 삽입용 벡터 pDZ-2purNH을 나타내는 도면이다.Next, the pDZ vector treated with the restriction enzymes BamHI and SalI was cloned through three-piece conjugation, to finally prepare a pDZ-2purNH recombinant vector in which two purNH genes were continuously cloned. Figure 4 is a diagram showing the vector pDZ-2purNH for Corynebacterium chromosome insertion.

상기 pDZ-2purNH 벡터를 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401 균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주에 일렉트로포레이션법을 통하여 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 내재적 purNH 유전자의 바로 옆에 1개의 purNH 유전자를 추가로 삽입하여 총 개수를 2개로 증가시킨 균주를 얻었다. 연속적으로 삽입된 purNH 유전자는 2개의 purNH 연결부위 를 증폭할 수 있는 서열번호 16과 17의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.The pDZ-2purNH vector to Corynebacterium ammonia genes CJXFT0301 strain, which is an XMP producing strain, and Corynebacterium ammonia genes, CJIP2401 strain, which is an IMP producing strain, and Corynebacterium ammonia genes, which is an inosine producing strain, CJIS-H273 The strain was transformed through an electroporation method, and a second crossover process was performed to further insert one purNH gene immediately next to the intrinsic purNH gene on the chromosome to obtain a strain of which the total number was increased to two. Subsequently inserted purNH genes are two purNH genes. Final confirmation was carried out by PCR using primers SEQ ID NOs: 16 and 17 capable of amplifying the linking sites.

pDZ-2purNH벡터를 제작하기 위한 PCR 반응에 사용된 프라이머들과 제작된 해당 증폭 균주를 확인하기 위하여 사용된 프라이머들의 서열은 각각 다음과 같다.The sequences of the primers used for the PCR reaction for constructing the pDZ-2purNH vector and the primers used for identifying the corresponding amplification strains were as follows.

서열 번호 13 : cgggatcccg aggcgaagac gatattgagg acagSEQ ID NO: 13 cgggatcccg aggcgaagac gatattgagg acag

서열 번호 14 : acgcgtcgac gtgggaaacg cagacgagaa caSEQ ID NO: 14: acgcgtcgac gtgggaaacg cagacgagaa ca

서열 번호 15 : acgcgtcgac gaggcgaaga cgatattgag gacagSEQ ID NO: 15 acgcgtcgac gaggcgaaga cgatattgag gacag

서열 번호 16 : tcgatgcctg catcttggSEQ ID NO: 16: tcgatgcctg catcttgg

서열 번호 17 : ggcgataagg cttcgagtSEQ ID NO: 17 ggcgataagg cttcgagt

실시예 4: IMP 생산 균주 코리네박테리움 암모니아게네스 CJIP2401 균주 유래 purSL 유전자 클로닝 및 재조합벡터(pDZ-2purSL) 제작, purSL 삽입 균주 개발Example 4: IMP production strain Corynebacterium ammonia genes CJIP2401 strain-derived purSL gene cloning and recombinant vector (pDZ-2purSL) production, purSL insertion strain development

본 실시예에서는 purS 유전자와 purL 유전자가 근접 거리에 위치하고 있어, 두 유전자를 동시에 발현시키기 위하여 프로모터 부위를 포함한 purSL 벡터를 제작하기로 하였다. In the present embodiment, since the purS gene and the purL gene are located in close proximity, a purSL vector including a promoter region was prepared to simultaneously express the two genes.

코리네박테리움 암모니아게네스 CJIP2401 균주의 염색체를 분리하고, 이를 주형으로 하여 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제를 사용하였으며, PCR 조건은 변성 96℃, 30초와 어닐링 53℃, 30초 및 중합반응 72℃, 2분을 30회 반복하였다. 그 결과, 프로모터 부위를 포함한 purSL 유전자 두 쌍(purSL-A, purSL-B) 을 얻었다. purSL-A는 서열번호 18과 19를 프라이머로 사용하여 증폭된 것이며, purSL-B는 서열번호 20과 21을 프라이머로 사용하여 증폭된 것이다. The chromosome of the Corynebacterium ammonia genes CJIP2401 strain was isolated and the polymerase was used as a template, and PfuUltra high-reliability DNA polymerase was used, and PCR conditions were denatured 96 ° C, 30 seconds and annealing 53 ° C, 30 seconds. And 30 degreeC of the polymerization reaction 72 degreeC and 2 minutes was repeated. As a result, purSL containing the promoter site Two pairs of genes (purSL-A, purSL-B) were obtained. purSL-A was amplified using SEQ ID NOs: 18 and 19 as primers, and purSL-B was amplified using SEQ ID NOs: 20 and 21 as primers.

상기 증폭 산물을 TOPO 클로닝 키트를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-purSL-A와 pCR-purSL-B 벡터를 얻었다. 상기 pCR 벡터에 purSL-A와 purSL-B의 각 말단에 포함된 제한효소(purSL-A: BamHI+SalI, purSL-B: SalI+BamHl)를 처리하여, 상기 pCR 벡터로부터 각각의 purSL 유전자를 분리하였다. 다음으로, 제한효소 BamHI이 처리된 pDZ 벡터에 3 조각 접합을 통하여 클로닝하여, 최종적으로 purSL 유전자 2개가 연속적으로 클로닝된 pDZ-2purSL 재조합 벡터를 제작하였다. 도 5는 코리네박테리움 염색체 삽입용 벡터 pDZ-2purSL을 나타내는 도면이다The amplified product was cloned into E. coli vector pCR2.1 using the TOPO cloning kit to obtain pCR-purSL-A and pCR-purSL-B vectors. The pCR vector was treated with restriction enzymes (purSL-A: BamHI + SalI, purSL-B: SalI + BamHl) contained at each end of purSL-A and purSL-B, and each purSL from the pCR vector. Gene was isolated. Next, the pDZ vector treated with the restriction enzyme BamHI was cloned through three-piece conjugation to prepare a pDZ-2purSL recombinant vector in which two purSL genes were cloned. 5 is a diagram showing a vector pDZ-2purSL for corynebacterium chromosome insertion.

상기 pDZ-2purSL벡터를 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401 균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주에 일렉트로포레이션법을 통하여 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 내재적 purSL 유전자의 바로 옆에 1개의 purSL 유전자를 추가로 삽입하여 총 개수를 2개로 증가시킨 균주를 얻었다. 연속적으로 삽입된 purSL 유전자는 2개의 purSL 연결부위를 증폭할 수 있는 서열번호 22와 23의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.The pDZ-2purSL vector is used in the Corynebacterium ammonia genes CJXFT0301 strain, which is an XMP producing strain, and the Corynebacterium ammonia genes, CJIP2401, which is an IMP producing strain, and the corynebacterium ammonia genes, which is an inosine producing strain, CJIS-H273. The strain was transformed through an electroporation method, and a second crossover process was performed to further insert one purSL gene right next to the intrinsic purSL gene on the chromosome to obtain a strain of which the total number was increased to two. Subsequently inserted purSL genes are two purSL Final confirmation was carried out by PCR using primers of SEQ ID NOs: 22 and 23 which can amplify the linking sites.

pDZ-2purSL벡터를 제작하기 위한 PCR 반응에 사용된 프라이머들과 제작된 해당 증폭 균주를 확인하기 위하여 사용된 프라이머들의 서열은 각각 다음과 같다.The sequences of the primers used for the PCR reaction for constructing the pDZ-2purSL vector and the primers used for identifying the corresponding amplification strains were as follows.

서열 번호 18 : gctcggatcc gcgatactca gccccagcaa cagcagaaaa tgaagcSEQ ID NO: 18 gctcggatcc gcgatactca gccccagcaa cagcagaaaa tgaagc

서열 번호 19 : cagcgtcgac gcagccgtcg caggcaccat cgcagcagtSEQ ID NO: 19: cagcgtcgac gcagccgtcg caggcaccat cgcagcagt

서열 번호 20 : cagcgtcgac gcgatactca gccccagcaa cagcagaaaa tgaagcSEQ ID NO: 20 cagcgtcgac gcgatactca gccccagcaa cagcagaaaa tgaagc

서열 번호 21 : gctcggatcc gcagccgtcg caggcaccat cgcagcagtSEQ ID NO: 21 gctcggatcc gcagccgtcg caggcaccat cgcagcagt

서열 번호 22 : acttgacctc cagccctaSEQ ID NO: 22 acttgacctc cagcccta

서열 번호 23 : aagaacaacg tcggcgtcSEQ ID NO: 23 aagaacaacg tcggcgtc

실시예 5: IMP 생산 균주 코리네박테리움 암모니아게네스 CJIP2401 균주 유래 purKE 유전자 클로닝 및 재조합벡터(pDZ-2purKE) 제작, purKE 삽입 균주 개발Example 5: IMP production strain Corynebacterium ammonia genes CJIP2401 strain derived purKE gene cloning and recombinant vector (pDZ-2purKE) production, purKE insert strain development

본 실시예에서는 purK 유전자와 purE 유전자가 근접 거리에 위치하고 있어, 두 유전자를 동시에 발현시키기 위하여 프로모터 부위를 포함한 purKE 벡터를 제작하기로 하였다. In the present embodiment, since the purK gene and the purE gene are located in close proximity, a purKE vector including a promoter region is prepared to simultaneously express the two genes.

코리네박테리움 암모니아게네스 CJIP2401 균주의 염색체를 분리하고, 이를 주형으로 하여 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제를 사용하였으며, PCR 조건은 변성 96℃, 30초와 어닐링 53℃, 30초 및 중합반응 72℃, 2분을 30회 반복하였다. 그 결과, 프로모터 부위를 포함한 purKE 유전자 두 쌍(purKE-A, purKE-B)을 얻었다. purKE-A는 서열번호 24와 25를 프라이머로 사용하여 증폭된 것이며, purKE-B는 서열번호 26과 27을 프라이머로 사용하여 증폭된 것이다. The chromosome of the Corynebacterium ammonia genes CJIP2401 strain was isolated and the polymerase was used as a template, and PfuUltra high-reliability DNA polymerase was used, and PCR conditions were denatured 96 ° C, 30 seconds and annealing 53 ° C, 30 seconds. And 30 degreeC of the polymerization reaction 72 degreeC and 2 minutes was repeated. As a result, purKE including the promoter site Two pairs of genes (purKE-A, purKE-B) were obtained. purKE-A was amplified by using SEQ ID NOs: 24 and 25 as primers, and purKE-B was amplified using SEQ ID NOs: 26 and 27 as primers.

상기 증폭 산물을 TOPO 클로닝 키트를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-purKE-A와 pCR-purKE-B 벡터를 얻었다. 상기 pCR 벡터에 purKE-A와 purKE-B의 각 말단에 포함된 제한효소(purKE-A: BamHI+KpnI, purKE-B: KpnI+XbaI)를 처리하여, 상기 pCR 벡터로부터 각각의 purKE 유전자를 분리하였다. 다음으로, 제한효소 BamHI과 XbaI이 처리된 pDZ 벡터에 3 조각 접합을 통하여 클로닝하여, 최종적으로 purKE 유전자 2개가 연속적으로 클로닝된 pDZ-2purKE 재조합 벡터를 제작하였다. 도 6은 코리네박테리움 염색체 삽입용 벡터 pDZ-2purKE을 나타내는 도면이다. The amplification products were cloned into E. coli vector pCR2.1 using the TOPO cloning kit to obtain pCR-purKE-A and pCR-purKE-B vectors. The pCR vector was treated with restriction enzymes (purKE-A: BamHI + KpnI, purKE-B: KpnI + XbaI) contained at each end of purKE-A and purKE-B, and each purKE from the pCR vector. Gene was isolated. Next, the pDZ vector treated with the restriction enzymes BamHI and XbaI was cloned through three-piece conjugation to prepare a pDZ-2purKE recombinant vector in which two purKE genes were continuously cloned. Fig. 6 shows the vector pDZ-2purKE for corynebacterium chromosome insertion.

상기 pDZ-2purKE벡터를 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주에 일렉트로포레이션법을 통하여 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 내재적 purKE 유전자의 바로 옆에 1개의 purKE 유전자를 추가로 삽입하여 총 개수를 2개로 증가시킨 균주를 얻었다. 연속적으로 삽입된 purKE 유전자는 2개의 purDB 연결부위를 증폭할 수 있는 서열번호 28과 29의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.The pDZ-2purKE vector was used in the Corynebacterium ammonia genes CJXFT0301 strain, which is an XMP producing strain, and the Corynebacterium ammonia genes, CJIP2401, which is an IMP producing strain, and the corynebacterium ammonia genes, which is an inosine producing strain, CJIS-H273. The strain was transformed through the electroporation method, and a second crossover process was performed to further insert one purKE gene immediately next to the intrinsic purKE gene on the chromosome to obtain a strain of which the total number was increased to two. Subsequently inserted purKE genes are two purDBs It was finally confirmed by PCR using the primers of SEQ ID NOs: 28 and 29 that can amplify the linking sites.

pDZ-2purKE벡터를 제작하기 위한 PCR 반응에 사용된 프라이머들과 제작된 해당 균주를 확인하기 위하여 사용된 프라이머들의 서열은 각각 다음과 같다.The primers used in the PCR reaction for constructing the pDZ-2purKE vector and the primers used for identifying the corresponding strains were as follows.

서열 번호 24 : acgtcaggat cccctatcgt gctttgctgtSEQ ID NO: 24 acgtcaggat cccctatcgt gctttgctgt

서열 번호 25 : ctctaaggta ccattggtac tagtagccgcSEQ ID NO: 25 ctctaaggta ccattggtac tagtagccgc

서열 번호 26 : acgtcaggta cccctatcgt gctttgctgtSEQ ID NO: 26 acgtcaggta cccctatcgt gctttgctgt

서열 번호 27 : ctctaatcta gaattggtac tagtagccgcSEQ ID NO: 27: ctctaatcta gaattggtac tagtagccgc

서열 번호 28 : ccagctgggg ttccggttSEQ ID NO: 28: ccagctgggg ttccggtt

서열 번호 29 : tttcgatgcg cttcgtttSEQ ID NO: 29 tttcgatgcg cttcgttt

실시예 6: IMP 생산 균주 코리네박테리움 암모니아게네스 CJIP2401 균주 유래 purC 유전자 클로닝 및 재조합벡터(pDZ-2purC) 제작, purC 삽입 균주 개발Example 6: PurC gene cloning and recombinant vector (pDZ-2purC) derived from IMP producing strain Corynebacterium ammonia gene CJIP2401 strain, purC insertion strain development

코리네박테리움 암모니아게네스 CJIP2401 균주의 염색체를 분리하고, 이를 주형으로 하여 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제를 사용하였으며, PCR 조건은 변성 96℃, 30초와 어닐링 53℃, 30초 및 중합반응 72℃, 2분을 30회 반복하였다. 그 결과, 프로모터 부위를 포함한 purC 유전자 두 쌍(purC-A, purC-B)을 얻었다. purC-A는 서열번호 30과 31을 프라이머로 사용하여 증폭된 것이며, purC-B는 서열번호 31과 32을 프라이머로 사용하여 증폭된 것이다. The chromosome of the Corynebacterium ammonia genes CJIP2401 strain was isolated and the polymerase was used as a template, and PfuUltra high-reliability DNA polymerase was used, and PCR conditions were denatured 96 ° C, 30 seconds and annealing 53 ° C, 30 seconds. And 30 degreeC of the polymerization reaction 72 degreeC and 2 minutes was repeated. As a result, purC containing the promoter site Two pairs of genes (purC-A, purC-B) were obtained. purC-A was amplified using SEQ ID NOs: 30 and 31 as primers, and purC-B was amplified using SEQ ID NOs: 31 and 32 as primers.

상기 증폭 산물을 TOPO 클로닝 키트를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-purC-A와 pCR-purC-B 벡터를 얻었다. 상기 pCR 벡터에 purC-A와 purC-B의 각 말단에 포함된 제한효소(purC-A: BamHI+SalI, purC-B: SalI)를 처리하여, 상기 pCR 벡터로부터 각각의 purC 유전자를 분리하였다. 다음으로, 제한효소 BamHI과 SalI이 처리된 pDZ 벡터에 3 조각 접합을 통하여 클로닝하여, 최종적으로 purC 유전자 2개가 연속적으로 클로닝된 pDZ-2purC 재조합 벡터를 제작하였다. 도 7은 코리네박테리움 염색체 삽입용 벡터 pDZ-2purC를 나타내는 도면이다. The amplified product was cloned into E. coli vector pCR2.1 using the TOPO cloning kit to obtain pCR-purC-A and pCR-purC-B vectors. The pCR vector is treated with restriction enzymes (purC-A: BamHI + SalI, purC-B: SalI) contained at each end of purC-A and purC-B, and each purC is removed from the pCR vector. Gene was isolated. Next, the pDZ vector treated with the restriction enzymes BamHI and SalI was cloned through three-piece conjugation, to finally prepare a pDZ-2purC recombinant vector in which two purC genes were continuously cloned. 7 is a diagram showing a vector pDZ-2purC for corynebacterium chromosome insertion.

상기 pDZ-2purC벡터를 XMP 생산 균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주에, IMP 생산 균주인 코리네박테리움 암모니아게네스 CJIP2401 균주에, 이노신 생산 균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주에 일렉트로포레이션법을 통하여 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 내재적 purC 유전자의 바로 옆에 1개의 purC 유전자를 추가로 삽입하여 총 개수를 2개로 증가시킨 균주를 얻었다. 연속적으로 삽입된 purC 유전자는 2개의 purC 연결부위를 증폭할 수 있는 서열번호 33과 34의 프라이머를 이용한 PCR을 통하여 최종 확인하였다.The pDZ-2purC vector was used in the Corynebacterium ammonia genes CJXFT0301 strain, an XMP producing strain, and the Corynebacterium ammonia genes CJIP2401, an IMP producing strain, and the corynebacterium ammonia genes, which is an inosine producing strain, CJIS-H273. The strain was transformed through an electroporation method, and a second crossover process was performed to further insert one purC gene immediately next to the intrinsic purC gene on the chromosome to obtain a strain having a total number of two. Successively inserted purC genes are two purCs It was finally confirmed by PCR using primers of SEQ ID NOs: 33 and 34, which can amplify the linking sites.

pDZ-2purC벡터를 제작하기 위한 PCR 반응에 사용된 프라이머들과 제작된 해당 증폭 균주를 확인하기 위하여 사용된 프라이머들의 서열은 각각 다음과 같다.The sequences of the primers used for the PCR reaction for constructing the pDZ-2purC vector and the primers used for identifying the corresponding amplification strains were as follows.

서열 번호 30 : gctcggatcc cgcagtggct gttgcgctga acatgcgSEQ ID NO: 30 gctcggatcc cgcagtggct gttgcgctga acatgcg

서열 번호 31 : gcaggtcgac cacggacata tcggtttgct tcacgcgggSEQ ID NO: 31 gcaggtcgac cacggacata tcggtttgct tcacgcggg

서열 번호 32 : gcaggtcgac cgcagtggct gttgcgctga acatgcgSEQ ID NO: 32 gcaggtcgac cgcagtggct gttgcgctga acatgcg

서열 번호 33 : gagcgcttgt ccggcaagcg tttcSEQ ID NO: 33 gagcgcttgt ccggcaagcg tttc

서열 번호 34 : ggtggttgcg gtaagaaccc ggccSEQ ID NO: 34: ggtggttgcg gtaagaaccc ggcc

실시예 7: 퓨린 생합성 유전자 강화에 의한 고수율 XMP 균주 개발 Example 7 Development of High Yield XMP Strains by Purine Biosynthesis Gene Enhancement

상기 실시예에서 제작된 pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE 및 pDZ-2purC 벡터를 XMP를 생산하는 코리네박테리움 암모니아게네스 CJXFT0301 균주에 조합 또는 모두 도입하였다. 벡터 도입 순서는 임의로 선택하였으며, 도입 방법 및 확인은 상기 실시예에서 표기한 바와 같다.PDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE and pDZ-2purC vectors prepared in the above examples were combined or all introduced into the Corynebacterium ammonia genes CJXFT0301 strain producing XMP. . The order of vector introduction was chosen arbitrarily, the introduction method and confirmation are as indicated in the above examples.

아래는 퓨린 생합성 유전자 강화에 의해 개발된 XMP를 생산하는 능력이 증진된 코리네박테리움 암모니아게네스 균주들의 유전자 형질을 나타낸다.Below are the genetic traits of Corynebacterium ammonia gene strains with enhanced ability to produce XMP developed by purine biosynthetic gene enrichment.

CN02-0058 유전자 형질CN02-0058 Gene Traits

: CJXFT0301 + 2purDB + 2purNH + 2purSL: CJXFT0301 + 2purDB + 2purNH + 2purSL

CN02-0078 유전자 형질CN02-0078 Gene Traits

: CJXFT0301 + 2purDB + 2purNH + 2purSL + 2purFM: CJXFT0301 + 2purDB + 2purNH + 2purSL + 2purFM

CN02-0120 유전자 형질CN02-0120 Gene Traits

: CJXFT0301 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC + 2purFM: CJXFT0301 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC + 2purFM

실시예 8: 퓨린 생합성 유전자 강화에 의한 고수율 IMP 균주 개발 Example 8 Development of High Yield IMP Strains by Purine Biosynthesis Gene Enhancement

상기 실시예에서 제작된 pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE 및 pDZ-2purC 벡터를 IMP를 생산하는 코리네박테리움 암모니아게네스 CJIP2401 균주에 조합 또는 모두 도입하였다. 벡터 도입 순서는 임의로 선택하였으며, 도입 방법 및 확인은 상기 실시예에서 표기한 바와 같다.PDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE and pDZ-2purC vectors prepared in the above examples were combined or all introduced into the Corynebacterium ammonia genes CJIP2401 strain producing IMP. . The order of vector introduction was chosen arbitrarily, the introduction method and confirmation are as indicated in the above examples.

아래는 퓨린 생합성 유전자 강화에 의해 개발된 IMP를 생산하는 능력이 증진된 코리네박테리움 암모니아게네스 균주들의 유전자 형질을 나타낸다.Below are the genetic traits of Corynebacterium ammonia gene strains with enhanced ability to produce IMPs developed by purine biosynthetic gene enrichment.

CN01-0118 유전자 형질CN01-0118 Gene Traits

: CJIP2401 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC: CJIP2401 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC

CN01-0300 유전자 형질CN01-0300 Gene Traits

: CJIP2401 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC + 2purFM: CJIP2401 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC + 2purFM

실시예 9: 퓨린 생합성 유전자 강화에 의한 고수율 이노신 균주 개발 Example 9 Development of High Yield Inosine Strains by Purine Biosynthesis Gene Enhancement

상기 실시예에서 제작된 pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE 및 pDZ-2purC 벡터를 이노신을 생산하는 코리네박테리움 암모니아게네스 CJIS-H273 균주에 조합 또는 모두 도입하였다. 벡터 도입 순서는 임의로 선택하였으며, 도입 방법 및 확인은 상기 실시예에서 표기한 바와 같다.PDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE and pDZ-2purC vectors prepared in the above examples are combined or all in the Corynebacterium ammonia genes CJIS-H273 strain producing inosine Introduced. The order of vector introduction was chosen arbitrarily, the introduction method and confirmation are as indicated in the above examples.

아래는 퓨린 생합성 유전자 강화에 의해 개발된 이노신을 생산하는 능력이 증진된 코리네박테리움 암모니아게네스 균주들의 유전자 형질을 나타낸다.Below are the genetic traits of Corynebacterium ammonia gene strains with enhanced ability to produce inosine developed by purine biosynthetic gene enrichment.

CN04-0049 유전자 형질CN04-0049 Gene Traits

: CJIS-H273 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC: CJIS-H273 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC

CN04-0050 유전자 형질CN04-0050 Gene Traits

: CJIS-H273 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC + 2purFM: CJIS-H273 + 2purDB + 2purNH + 2purSL + 2purKE + 2purC + 2purFM

실시예 10: XMPExample 10: XMP 삼각 플라스크 발효역가 시험Erlenmeyer flask fermentation potency test

하기 종배지 3㎖을 함유하는 14㎖ 튜브에 모균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주와 당 특허에서 제작된 코리네박테리움 암모니아게네스 CN02-0058, CN02-0078, CN02-0120 균주들을 접종하고 30℃에서 20시간 동안 200rpm으로 진탕 배양하였다. 하기 생산 배지 32㎖(발효배지 24㎖ + 별살배지 8㎖)을 포함하고 있는 250㎖ 코너-바플 플라스크에 0.4㎖의 종 배양액을 접종하고 30℃에서 96시간 동안 230rpm으로 진탕 배양하였다.The parent strain Corynebacterium ammonia genes CJXFT0301 strain and Corynebacterium ammonia genes CN02-0058, CN02-0078, and CN02-0120 strains prepared in the patent were prepared in a 14 ml tube containing 3 ml of the following species. Inoculation and shaking culture at 200 rpm for 20 hours at 30 ℃. 0.4 ml of the seed culture was inoculated into a 250 ml corner-baffle flask containing 32 ml of the following production medium (24 ml of fermentation medium + 8 ml of starch medium), followed by shaking culture at 230 ° C. at 230 rpm for 96 hours.

상기 종배지 및 발효배지의 조성은 다음과 같다.The composition of the seed medium and fermentation medium is as follows.

종배지: 포도당 30g/l, 펩톤 15g/l, 효모엑기스 15g/l, 염화나트륨 2.5g/l, 우레아 3g/l, 아데닌 150㎎/l, 구아닌 150㎎/l, pH 7.2 Species medium : glucose 30g / l, peptone 15g / l, yeast extract 15g / l, sodium chloride 2.5g / l, urea 3g / l, adenine 150mg / l, guanine 150mg / l, pH 7.2

플라스크 발효 배지: 포도당 80g/l, 황산마그네슘 10g/l, 황산철 20㎎/l, 황산아연 10㎎/l, 황산망간 10㎎/l, 아데닌 30㎎/l, 구아닌 30㎎/l, 비오틴 100㎍/l, 황산구리 1㎎/l, 티아민염산염 5㎎/l, 염화칼슘 10㎎/l, pH 7.2 Flask fermentation medium : glucose 80g / l, magnesium sulfate 10g / l, iron sulfate 20mg / l, zinc sulfate 10mg / l, manganese sulfate 10mg / l, adenine 30mg / l, guanine 30mg / l, biotin 100 Μg / l, copper sulfate 1mg / l, thiamine hydrochloride 5mg / l, calcium chloride 10mg / l, pH 7.2

플라스크 별살 배지: 인산제1칼륨 10g/l, 인산제2칼륨 10g/l, 우레아 7g/l, 황산암모늄 5g/l Flask differentiation medium : 10 g / l potassium phosphate, 10 g / l potassium phosphate, 7 g / l urea, 5 g / l ammonium sulfate

배양 종료 후 HPLC를 이용한 방법에 의해 XMP의 생산량을 측정하였으며, 배양액 중의 XMP 결과는 아래 표 1과 같다.After the incubation, the production of XMP was measured by the method using HPLC, and the XMP results in the culture are shown in Table 1 below.

균주명Strain name Cell OD (배양 4일후)Cell OD (4 days after culture) 생산성(g/l/hr) (배양 4일후)Productivity (g / l / hr) (after 4 days of culture) 대조군(CJXFT0301)Control Group (CJXFT0301) 45.345.3 0.2980.298 CN02-0058CN02-0058 43.343.3 0.3270.327 CN02-0078CN02-0078 42.142.1 0.3400.340 CN02-0120CN02-0120 43.943.9 0.3150.315

배지 내 XMP 축적량을 모균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주와 비교한 결과, 코리네박테리움 암모니아게네스 CN02-0058, CN02-0078 및 CN02-0120 균주들이 동일한 조건하에서 모균주인 코리네박테리움 암모니아게네스 CJXFT0301 균주 대비 단위 시간당 생산하는 XMP 생산성이 10.6~11.4% 증가함을 나타낸다. Comparing the XMP accumulation in the medium with the parent strain Corynebacterium ammonia genes CJXFT0301 strain, Corynebacterium ammonia genes CN02-0058, CN02-0078 and CN02-0120 strains under the same conditions Coryne strain XMP productivity per unit time is increased by 10.6 ~ 11.4% compared to the bacterium ammonia genes CJXFT0301 strain.

또한 코리네박테리움 암모니아게네스 CN02-0058 균주가 갖고 있는 증폭 유전자 조합(2purDB+2purNH+2purSL)만으로도 모균주 대비 생산 수율이 크게 증진됨을 알 수 있었으며, 생산 수율이 가장 많이 증진된 유전자 조합은 코리네박테리움 암모니아게네스 CN02-0078 균주가 갖고 있는 조합으로써 코리네박테리움 암모니아게네스 CN02-0058 균주대비 purFM 유전자의 증폭만이 추가되었음을 확인할 수 있었다. 그리고 모든 퓨린 생합성 경로상의 유전자가 증폭된 경우는 다소 수율 증진 폭이 낮음을 알 수 있었다.In addition, the amplification gene combination (2purDB + 2purNH + 2purSL) possessed by the Corynebacterium ammonia genes CN02-0058 strain alone showed that the production yield was significantly improved compared to the parent strain. As a combination of the Nebacterium ammonia genes CN02-0078 strain, it was confirmed that only amplification of purFM gene was added compared to the Corynebacterium ammonia genes CN02-0058 strain. In addition, when the genes on all purine biosynthetic pathways were amplified, the yield improvement was somewhat low.

실시예 11: IMPExample 11: IMP 삼각 플라스크 발효역가 시험Erlenmeyer flask fermentation potency test

하기 종배지 3㎖를 지름18㎜ 시험관에 분주하고 가압 살균한 후, 모균주인 코리네박테리움 암모니아게네스 CJIP2401 균주와 당 특허에서 제작된 코리네박테리움 암모니아게네스 CN01-0118 및 CN01-0300 균주들을 접종하고 30℃ 온도에서 24시간 진탕 배양하여 종 배양액으로 사용하였다. 하기 발효배지 27㎖를 500㎖ 진탕용 삼각플라스크에 분주하고, 120℃ 온도에서 10분간 가압 살균한 후, 플라스크 배양액 3㎖을 접종하여 5 내지 6일간 배양하였다. 배양 조건은 회전수 200rpm, 온도32℃, pH 7.2로 조절하였다.After dispensing 3 ml of the following medium into an 18 mm diameter test tube and autoclaving, the parent strain Corynebacterium ammonia genes CJIP2401 strain and Corynebacterium ammonia genes CN01-0118 and CN01-0300 produced in this patent Strains were inoculated and shake cultured at 30 ° C. for 24 hours to use as seed culture. 27 ml of the fermentation broth was dispensed into a 500 ml shake flask, sterilized under pressure at 120 ° C. for 10 minutes, and then inoculated with 3 ml of the flask culture and incubated for 5 to 6 days. Culture conditions were adjusted to 200 rpm, temperature 32 ℃, pH 7.2.

상기 종배지 및 발효배지의 조성은 다음과 같다. The composition of the seed medium and fermentation medium is as follows.

종배지: 포도당 1%, 펩톤1%, 육즙 1%, 효모엑기스 1%, 염화나트륨 0.25%, 아데닌 100㎎/l, 구아닌100㎎/l, pH 7.2 Species medium : glucose 1%, peptone 1%, gravy 1%, yeast extract 1%, sodium chloride 0.25%, adenine 100 mg / l, guanine 100 mg / l, pH 7.2

플라스크 발효배지: 글루타민산 나트륨 0.1%, 암모늄클로라이드 1%, 황산마그네슘1 .2%, 염화칼슘 0.01%, 황산철 20㎎/l, 황산망간 20㎎/l, 황산아연 20㎎/l, 황산구리 5㎎/l, L-시스테인 23㎎/l, 알라닌 24㎎/l, 니코틴산 8㎎/l, 비오틴 45㎍/l, 티아민염산 5㎎/l, 아데닌 30㎎/l, 인산(85%) 1.9%, 포도당4.2%, 원당 2.4% 되게 첨가하여 사용 Flask fermentation medium : 0.1% sodium glutamate, 1% ammonium chloride, magnesium sulfate 1.2%, calcium chloride 0.01%, iron sulfate 20mg / l, manganese sulfate 20mg / l, zinc sulfate 20mg / l, copper sulfate 5mg / L, cysteine 23 mg / l, alanine 24 mg / l, nicotinic acid 8 mg / l, biotin 45 µg / l, thiamine hydrochloride 5 mg / l, adenine 30 mg / l, phosphoric acid (85%) 1.9%, glucose 4.2%, 2.4% per raw material

배양 종료 후 HPLC를 이용한 방법에 의해 IMP의 생산량을 측정하였으며, 배양액 중의 5'-이노신산 결과는 아래 표 2와 같다.After the incubation, the production of IMP by the method using HPLC was measured, the results of 5'-inosinic acid in the culture is shown in Table 2 below.

균주명Strain name Cell OD (배양 5일후)Cell OD (5 days after culture) 생산성(g/l/hr) (배양 5일후)Productivity (g / l / hr) (after 5 days of culture) 대조군(CJIP2401)Control Group (CJIP2401) 31.231.2 0.1360.136 CN01-0118CN01-0118 32.432.4 0.1520.152 CN01-0300CN01-0300 31.531.5 0.1450.145

배지 내 IMP 축적량을 모균주인 코리네박테리움 암모니아게네스 CJIP2401 균주와 비교한 결과, 코리네박테리움 암모니아게네스 CN01-0118과 CN01-0300 균주들이 동일한 조건하에서 모균주인 코리네박테리움 암모니아게네스 CJIP2401 균주 대비 단위 시간당 생산하는 IMP의 생산성이 10.6~11.2% 증가함을 나타낸다.Comparing IMP accumulation in the medium with the parent strain Corynebacterium ammonia genes CJIP2401, Corynebacterium ammonia genes CN01-0118 and CN01-0300 strains under the same conditions, the parent strain Corynebacterium ammonia crab The productivity of IMP produced per unit time compared to Ness CJIP2401 strain is increased by 10.6 ~ 11.2%.

실시예 12: 이노신 삼각 플라스크 발효역가 시험Example 12 Inosine Erlenmeyer Flask Fermentation Titer Test

하기 종배지 3㎖를 지름18㎜ 시험관에 분주하고 가압 살균한 후, 모균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주와 당 특허에서 제작된 코리네박테리움 암모니아게네스 CN04-0049, CN04-0050 균주들을 접종하고 30℃ 온도에서 24시간 진탕 배양하여 종 배양액으로 사용하였다. 하기 발효배지 27㎖를 250㎖ 진탕용 삼각플라스크에 분주하고 120℃ 온도에서 10분간 가압살균 후 종배양액 3㎖을 접종한 다음 5 내지 6일 동안 배양하였다. 배양 조건은 회전수 220rpm, 온도 32℃, pH 7.2 로 조절하였다.After dispensing 3 ml of the following medium into an 18 mm diameter test tube and autoclaving, the parent strain Corynebacterium ammonia genes CJIS-H273 strain and Corynebacterium ammonia genes CN04-0049, CN04 produced in the present patent The strains were inoculated and shaken for 24 hours at 30 ° C. to be used as the seed culture. 27 ml of the fermentation broth was dispensed into a 250 ml Erlenmeyer flask for shaking, and autoclaved at 120 ° C. for 10 minutes, inoculated with 3 ml of the seed culture solution, and then cultured for 5 to 6 days. Culture conditions were adjusted to 220 rpm, temperature 32 ℃, pH 7.2.

상기 종배지 및 발효배지의 조성은 다음과 같다. The composition of the seed medium and fermentation medium is as follows.

종배지: 포도당 5%, 펩톤 0.5%, 육즙 0.5%, 염화나트륨 0.25%, 효모 추출물 1%, 아데닌 100㎎/l, 구아닌 100㎎/l, pH 7.2 Species medium : glucose 5%, peptone 0.5%, gravy 0.5%, sodium chloride 0.25%, yeast extract 1%, adenine 100 mg / l, guanine 100 mg / l, pH 7.2

플라스크 발효배지: 글루타민산나트륨 0.1%, 암모늄클로라이드 1%, 황산마그네슘 1.2%, 염화칼슘 0.01%, 황산철 20㎎/l, 황산망간 20㎎/l, 황산아연 20㎎/l, 황산구리 5㎎/l, L-시스테인 23㎎/l, 알라닌 24㎎/l, 니코틴산 8㎎/l, 바이오틴 45㎍/l, 티아민염산염 5㎎/l, 아데닌 50㎎/l, 구아닌 30㎎/l, 인산(85%) 1.9%, 과당, 포도당 및 당밀을 혼합하여 환원당으로 6%가 되게 첨가하여 사용, pH 7.2 Flask fermentation medium : Sodium glutamate 0.1%, Ammonium chloride 1%, Magnesium sulfate 1.2%, Calcium chloride 0.01%, Iron sulfate 20mg / l, Manganese sulfate 20mg / l, Zinc sulfate 20mg / l, Copper sulfate 5mg / l, L-cysteine 23 mg / l, alanine 24 mg / l, nicotinic acid 8 mg / l, biotin 45 μg / l, thiamine hydrochloride 5 mg / l, adenine 50 mg / l, guanine 30 mg / l, phosphoric acid (85%) 1.9%, mixed with fructose, glucose and molasses to 6% as reducing sugar, pH 7.2

배양 종료 후 HPLC를 이용한 방법에 의해 이노신의 생산량을 측정하였으며, 배양액 중의 이노신 결과는 아래 표 3과 같다.After the incubation, the production of inosine was measured by the method using HPLC, the results of inosine in the culture is shown in Table 3 below.

균주명Strain name Cell OD (배양 5일후)Cell OD (5 days after culture) 생산성(g/l/hr) (배양 5일후)Productivity (g / l / hr) (after 5 days of culture) 대조군(CJIS-H273)Control Group (CJIS-H273) 70.170.1 0.1000.100 CN04-0049CN04-0049 69.869.8 0.1130.113 CN04-0050CN04-0050 68.768.7 0.1210.121

배지 내 이노신 축적량을 모균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주와 비교한 결과, 코리네박테리움 암모니아게네스 CN04-0049 와 CN04-0050균주가 동일한 조건하에서 모균주인 코리네박테리움 암모니아게네스 CJIS-H273 균주 대비 단위 시간당 생산하는 이노신 생산성이 11.3~12.1% 증가함을 나타낸다. 또한 XMP 생산 균주 및 IMP 생산 균주의 경우와는 달리, 이노신 생산 균주의 경우 모든 퓨린 유전자의 증폭된 조합이 생산 수율의 증진 폭이 가장 큼을 알 수 있었다.Comparing the inosine accumulation in the medium with the parent strain Corynebacterium ammonia genes CJIS-H273, Corynebacterium ammonia genes CN04-0049 and CN04-0050 strains under the same conditions Inosine production per unit time is increased by 11.3 to 12.1% compared to the ammonia genes CJIS-H273 strain. In addition, unlike in the case of XMP producing strains and IMP producing strains, it was found that in the inosine producing strains, the amplified combination of all purine genes showed the greatest improvement in production yield.

도 1은 코리네박테리움 염색체내 삽입용 벡터 pDZ 벡터를 나타낸다.1 shows a vector pDZ vector for insertion into Corynebacterium chromosome.

도 2는 코리네박테리움 염색체내 삽입용 벡터 pDZ-2purFM을 나타낸다.Figure 2 shows the vector pDZ-2purFM for insertion into Corynebacterium chromosome.

도 3은 코리네박테리움 염색체내 삽입용 벡터 pDZ-2purDB를 나타낸다.Figure 3 shows the vector pDZ-2purDB for insertion into the Corynebacterium chromosome.

도 4는 코리네박테리움 염색체내 삽입용 벡터 pDZ-2purNH를 나타낸다.Figure 4 shows a vector pDZ-2purNH for insertion into Corynebacterium chromosome.

도 5는 코리네박테리움 염색체내 삽입용 벡터 pDZ-2purSL을 나타낸다.Figure 5 shows the vector pDZ-2purSL for insertion into the Corynebacterium chromosome.

도 6은 코리네박테리움 염색체내 삽입용 벡터 pDZ-2purKE를 나타낸다.Figure 6 shows the vector pDZ-2purKE for insertion into Corynebacterium chromosome.

도 7은 코리네박테리움 염색체내 삽입용 벡터 pDZ-2purC를 나타낸다.Figure 7 shows the vector pDZ-2purC for insertion into the Corynebacterium chromosome.

<110> CJ Cheiljedang Corporation <120> Microorganisms of corynebacterium having enhanced nucleotide or nucleoside productivity and method of producing nucleotide or nucleoside using the same <130> PA08-0233 <160> 44 <170> KopatentIn 1.71 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cgacgagaat tccccgaccc gcatgagatg 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 gtatcgtcta gagcggtagc ggtggcttcg 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cgacgatcta gacccgaccc gcatgagatg 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gtatcgaagc ttgcggtagc ggtggcttcg 30 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 gctatcgttt cccctgaa 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgattctact aagtttgc 18 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggcacaagct tccgcgtagt atcataagca gtc 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cagcactagt gctggctcta gtgcgaagtc at 32 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cagcactagt ccgcgtagta tcataagcag tc 32 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gccctctaga gctggctcta gtgcgaagtc at 32 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tcgctgacaa gcacgcgttt atcggc 26 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ggtagcgggg tcggccgcaa ggcc 24 <210> 13 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cgggatcccg aggcgaagac gatattgagg acag 34 <210> 14 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 acgcgtcgac gtgggaaacg cagacgagaa ca 32 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 acgcgtcgac gaggcgaaga cgatattgag gacag 35 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcgatgcctg catcttgg 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ggcgataagg cttcgagt 18 <210> 18 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gctcggatcc gcgatactca gccccagcaa cagcagaaaa tgaagc 46 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 cagcgtcgac gcagccgtcg caggcaccat cgcagcagt 39 <210> 20 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cagcgtcgac gcgatactca gccccagcaa cagcagaaaa tgaagc 46 <210> 21 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gctcggatcc gcagccgtcg caggcaccat cgcagcagt 39 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 acttgacctc cagcccta 18 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 aagaacaacg tcggcgtc 18 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 acgtcaggat cccctatcgt gctttgctgt 30 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ctctaaggta ccattggtac tagtagccgc 30 <210> 26 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 acgtcaggta cccctatcgt gctttgctgt 30 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 ctctaatcta gaattggtac tagtagccgc 30 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ccagctgggg ttccggtt 18 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 tttcgatgcg cttcgttt 18 <210> 30 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gctcggatcc cgcagtggct gttgcgctga acatgcg 37 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gcaggtcgac cacggacata tcggtttgct tcacgcggg 39 <210> 32 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 gcaggtcgac cgcagtggct gttgcgctga acatgcg 37 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 gagcgcttgt ccggcaagcg tttc 24 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ggtggttgcg gtaagaaccc ggcc 24 <210> 35 <211> 1500 <212> DNA <213> Corynebacterium ammoniagenes <400> 35 gtggtgaaca ctactttccc cagcgacgtg aatttagatg accaaggcga gcaagaaccc 60 cgcgaagagt gcggtgtctt tggcgtctgg gctcctggtg aagatgttgc gacactgacc 120 tactttggtc tgttcgcatt gcagcatcgt gggcaggaag ctgcaggtat cggcgtcggt 180 gatggagacc gcctcgttgt cttcaaagac atgggcttgg tctcgaatat tttcgatgag 240 tccattttaa attccctcca tggctccgtg ggcgtggggc atacgcgcta ctcgactgcc 300 ggtggcaaag agtggtcgaa tgtccagccg atgtttaata ccacctcaaa tggggtagac 360 atcgctttgt gccacaacgg caacttggtg aactaccaag aactgcgcga tgaagcagta 420 gctctgggac tttaccgaga gaatgaaaaa tccctgtcgg attccatgat catgacagct 480 ttgctggcgc acggagtcgg ggaaggcaac tctgtctttg acgccgctaa gcaactgctg 540 ccaagcatca aaggcgcttt ttgcttgacc tttaccgatg gcaagacctt gtacgccgcg 600 cgtgacccgc acggtgtacg ccccttggtc attggccgct tggcgcaagg ctgggttgtt 660 gcttccgaaa cctgtgcgct ggatatcgtg ggcgcacagt ttatccgtga ggtagagccc 720 ggtgaactta tctctgtcaa tgaggcagga atccacagcg aaaaattcgc tgagccgaag 780 cgccagggct gcgtctttga atacgtctac ttggcacgtc cagacaccgt gatcaaaggc 840 cgcaacgttc acgcgacgcg cgtggatatt ggtcgcgcac ttgcgaaatc tcaccctgcg 900 ccagaagctg acatggtcat ccccgtgcca gaatccggaa acccggcagc tgttggctac 960 gcccgggaat cgggcctgac atttgcgcac ggcttggtca aaaacgccta cgtgggtcga 1020 accttcattc agcccaccca gaccttgcgc cagctgggta ttcgcctcaa gctcaacccc 1080 ctgcgcgagg tcatcgaggg caagtcactc gttgttgtag atgactctat tgtccgcggc 1140 aacacccaac gcgcgctggt gcgcatgctg cgtgaagcag gcgctgctga agtgcacgtg 1200 cgcattgctt caccgccagt caaatggcct tgtttctacg gcattgactt cgcctcgcct 1260 ggtgaattga ttgctaatat caagccttct gatgatcctc aggtagtaac cgatgcagtg 1320 tgcgaagcta tcggagcaga ctctttaggg tttgtatctg tagatgagat ggttgaggca 1380 acgcaccaac ctatcaattc cttgtgtacc gcttgctttg atggcaacta cgaactcgga 1440 cttccgaccg ctaaccccaa tgctgacgct gtgcgaactt tgctcagcca aaagaactga 1500 1500 <210> 36 <211> 1281 <212> DNA <213> Corynebacterium ammoniagenes <400> 36 atgcgcattc ttgtaattgg ttccggcggc cgcgagcacg ccattttgaa aggccttgcg 60 gccgaccccg ctaccaccga cctgcacgtt gcaccgggct cacctgcttt tgcatcgcta 120 gctactgtgc acgctgacta caaagaagta gcggatccgg cccgcatgct ggagttggct 180 caggacatta aacctgagct ggttgtcatc ggtccagaga ttccattggt tgccggtgtt 240 gctgacacat tgcgcgctga aggcatcgcg gtctttggac cgaacgcgga tgcagcacag 300 attgaaggct ctaaggcctt tgccaaggaa gtcatggaag ctgcaggcgt tgctaccgcg 360 cgtgcgcaga ccctaccacc gggaatgact gacgacgata ttgaacatga gctcgactac 420 ttcggcccca tgtatgtcgt caaagatgac gggctggccg caggcaaagg cgttgtggtc 480 accgctgacc gcgccgaagc acgccagcac atccacctgg tgcatgccgc tggtaaccca 540 gtgctactag aatctttctt ggacggtcca gaggtctcgc tgttttgcct tgtcgatggc 600 gaaaccgtcg tgccactgct gccagcccaa gaccacaagc gtgcctacga caatgatgaa 660 ggcccgaata ccggcggcat gggcgcatac accccgctgc cgtggttgtc tgctgaaggc 720 gtcgaccgca tcgtgcgcga ggtctgcgag ccggtagcta agcaaatggt cgagcgcgga 780 accccatact ccggcctgct gtacgcaggt ctggcatggg gccaagaagg cccctccgtc 840 attgagttca actgccgctt cggcgaccca gaaacccagc cgctgctgtc gctgttgaag 900 acgccgctgg caggggttct caacgcagtt gcaaccggaa ctctcgacga acttcctgcg 960 ctggagtggg aagacgccta tgccgtgacc gtagtgctgg cggctgcgaa ttatccagaa 1020 tctccacgca agggcgatgc catcacctcg ccagatctgg cagataccga caagattttg 1080 cacgcgggta ccgcggtaaa ggacgcagag gttatctcca atggcggtcg cgtgcttaac 1140 gtaatcggca agggtgagac cctatctgcc gcgcgcgctg ccgcgtatga ggtgctcgag 1200 aacattgagc tggcggatag cttctaccgc accgacattg gccaagctgc tgaagaaggt 1260 cgcatcagca ttgactctta g 1281 <210> 37 <211> 606 <212> DNA <213> Corynebacterium ammoniagenes <400> 37 gtgactgaat cgccttcgca agttttgaaa gcacaagacc cgcttcaagt agtggtgctg 60 gtatctggca ccggatcttt gctgcaaaat attatcgaca accaagatga ctcctatcgg 120 gttatcaagg tagtcgcgga taagccctgc ccggggatta accgagccca agatgcaggc 180 atcgacaccg aagtcgtgct tttaggctca gaccgcgcgc agtggaacaa agaccttgtc 240 gcagcggttg gtaccgccga tgttgtggtg tccgctggat ttatgaaaat cctggggcct 300 gaattcttgg ccagctttga aggccgcaca ataaatacgc atcccgcact cctgccgtcc 360 tttccgggcg cgcatggagt acgggatgcg ttggcttatg gcgtgaaagt caccggctct 420 actgtccatt ttgtggacgc gggagtcgat actggccgca tcatcgcaca acgcgcagta 480 gagattgagg cagaagatga tgaggcaagc ttgcatgagc gcatcaaaag cgtcgaacgt 540 gagcttatcg tgcaggtctt acgcgcagcg aatgttcaag accagcagct tattattgag 600 atttaa 606 <210> 38 <211> 243 <212> DNA <213> Corynebacterium ammoniagenes <400> 38 atggctcgtg ttgttgtcaa tgtcatgccc aaggctgaaa tcctcgaccc gcagggacaa 60 gctgttgtcc gtgcacttgg acgcctgggt gtaaacggag taagcgatgt ccgtcagggc 120 aagcgctttg aaatcgaagt cgatgattca gtcagcgctg aagatctaga caaggtcgca 180 gcaagcttgc tggcaaacac cgtcatcgag gactacgaag ttgtagggct ggaggtcaag 240 taa 243 <210> 39 <211> 2277 <212> DNA <213> Corynebacterium ammoniagenes <400> 39 atgactgttt ccaatgacac agtagataat gcaaaggcca ctcccgagct agaccagccg 60 tgggaagaac tcggcttaaa gcaagacgaa tacgacaaga ttgtaggcat cttgggccgc 120 cgcccaaccg atgctgagct gacggtttac tccgtgatgt ggtcggagca ctgctcttac 180 aagtcttcca agacccacct acgctacttt ggcgagacca ccactgagga aatggcgtcg 240 aagattcttg ccggtatcgg tgagaacgct ggtgtcgttg acatcggcga cggtgacgca 300 gtgaccttcc gcgtcgaatc ccacaaccac ccatccttcg tcgagcctta ccagggtgcc 360 gcgaccggtg ttggcggcat cgtccgcgac atcatggcga tgggtgcacg tccaatcgca 420 gtgatggatc agctgcgctt cggcccagct gatgccccgg ataccgcacg tgttctgccg 480 ggcgttgttt ccggcatcgg cggttacggc aactccctcg gcctgccgaa catcggcggc 540 gagaccgtct ttgatgagtc ttatgccggc aacccactgg tcaacgcact gtgcgtgggt 600 accttgcgcg tggaagacct gaagctggct tttgcttccg gtactggcaa caaggtgatg 660 ctctttggct cccgcacggg cctcgacggc atcggcggcg tatccgtttt gggttctgct 720 tccttcgaag aaggcgaaga gcgcaagctt cctgcagtcc aggtcggcga cccattcgcg 780 gaaaaagtcc tcatcgaatg ctgcctggag ctctacgctg cgggcgtcgt tgtcggtatt 840 caggaccttg gtggcggtgg cctcgcatgt gcgacctctg agctggcagc agctggcgac 900 ggcggcatgg tggtcaacct ggataatgtt ccactgcgtg cagagaacat gtccgccgca 960 gaaatcctgg cttccgaatc ccaggagcgc atgtgtgctg ttgtctcccc agataacgtg 1020 gagaagttcc gcgagatctg tgaaaagtgg gacgtaacgt gtgctgaaat cggtgaagtt 1080 accgataaga aagacaccta cctcgtgtac cacaacggtg agctggtagt agacgctccg 1140 ccatcaacta tcgatgaagg ccctgtctac gagcgcccat acgcacgccc tcagtggcag 1200 gatgagatcc agcaggctcc ggaaattgca cgtccggaat ccttggtaca ggcattcaag 1260 gacatggtgt cctccccagc tctgtcatcg cgtgcattta tcactgagca gtatgaccgc 1320 tacgtgcgcg gtaacaccgt caaggcgaag cagtctgact ccggcgttct gcgtatcaat 1380 gaggaaactt ctcgcggtgt cgcaatttct gccgatgcct ccggtcgcta caccaagctg 1440 gacccaaaca tgggtgcacg tttggcgctg gctgaggcat accgcaacgt tgctgtgacc 1500 ggcgcacgac catatgcggt gaccaactgc ttgaacttcg gttctccaga aaacaccgac 1560 gtgatgtggc aattccgcga ggccgttcac ggtctggctg acggttctaa ggaactgaat 1620 atcccagtct ccggcggtaa cgtctccttc tacaaccaga ctggtgatga gccaattctg 1680 ccgaccccag ttgttggcgt gctcggtgtc attgatgatg ttcacaaggc actggcacat 1740 gacttgggcg gcattgatga gcctgaaacc ctgattctgc ttggtgagac caaggaagaa 1800 ttcggcggct ccatctggca gcaggtctcc ggcggcggcc tgcagggtct gccaccacag 1860 gtggatctgg cgaatgaggc aaagctggcg gacttcttcg tcggcaacac ctccgttgca 1920 gcctcccacg acctctctga gggcggtctg gctatcgcgg cgtttgagat ggcgcaaaag 1980 aacaacgtcg gcgtcgacct tgatttgagc gttgtacacg aggatgcact gaccgcactg 2040 tttagtgagt ccgcatcgcg tgttctgatt tccaccgcgt ctgaccacct cgatggaatc 2100 ttgcagcgtg cttccgagct gggcattcca gctgtcgtgg taggaaccac caatgattcc 2160 ggcaacatca ccttcgctgg tgaagaagtt gctaccgctg agctgcgcga ggcatggtct 2220 gcaaccttgc caaacctgtt tggccacgct gttggcgcta attccgtagt cgaataa 2277 <210> 40 <211> 1056 <212> DNA <213> Corynebacterium ammoniagenes <400> 40 atgtctgaaa atacttacgc cgcggcaggc gtcaacattg aagaaggcga ccgcgccgtt 60 gagcttttcg ctccactggc taagcgcgct acccgtccag aggtaatggg tggactcggt 120 ggcttcgcgg gactgtttaa gctcggcgaa tacaaagagc caatccttgc agctggctcc 180 gacggcgtgg gcaccaagct cgccgttgcc caggcaatgg ataagcacga caccatcggc 240 attgacctgg ttgcaatgtg cgtcgatgac ttggtcgtgt gtggtgctga gccactattt 300 ctccaggact acatcgcagt aggcaaggtt gttccggaaa aggttgcgca gattgttgcc 360 ggtattgctg agggctgcgt gcaggcaggc tgtgcacttc ttggtggcga gaccgctgag 420 cacccgggcg taatgaatga aaaggactac gatgtttccg ccaccgctgt cggcgttgtc 480 gaagcagacg agcttctcgg accagacaag gttcgcgacg gcgatgtttt gattgccatg 540 ggctcatccg gactgcactc caatggttac tccttggcgc gccacgtctt gttagagcag 600 gcaggattgc cgctcgatgg ctacatcgat gaccttggcc gcacgcttgg tgaagagctc 660 ctggagccga cccgcatcta cgccaaggac tgcctggcgc tagtttctga gtgtgacgtt 720 gctactttct gccacgtcac cggcggtggc ttggcaggca acctcgagcg cgtgctacct 780 gaaggccttg tcgcagaggt taaccgcgca tcgtggaccc cagcagcgat tttccgcacc 840 atcgcgtctt tcggcaaggt cagcctggaa gagatggaaa agaccttcaa catgggcgtt 900 ggcatgatcg ctatcgtttc ccctgaagac cgtgaccgcg ccttggcgat gctaactgcg 960 cgccacgttg atgcatggga gctgggctcg gttcgcacca agaaggaaga cgacaccgca 1020 ggtgttgtca tgcaaggtga gcactctaac ttctaa 1056 <210> 41 <211> 1779 <212> DNA <213> Corynebacterium ammoniagenes <400> 41 atgaaacgcg tgagtgaaca agcaggaaac ccagacggaa accctcaagc acatgttccc 60 ggcatgccgg ttatcgccgt tattggtgat ggccagctag ctcgcatgat gcaaaccgcc 120 gccattgagc tcggccaatc gctgcgcctt cttgccggcg cacgcgatgc ctctgcggca 180 caagtatgcg cggatgtagt gcttggtgat tacaccaact acgacgactt gctcaaagcc 240 gtcgacggtg ccaccgctgt cacttttgac catgagcacg tgcctaatga gcacctcacc 300 gcgttgatcg atgcaggcta taacgtgcag ccacaacctg ctgcgctgat taacgcccaa 360 gacaaattgg ttatgcgcga gcgcctcgcc gagctgggcg cacccgtgcc gcgctttgcg 420 ccgattgaat ctgcccaaga tgcgtacgat ttttggacct tgacgtccgg gcaggtctgt 480 ctgaaggcgc gccggggtgg ctacgacggc aaaggcgtgt ggtttccgaa taatgaatct 540 gagctgactg ctttggtctc tgacctttcg cgccgcggcg tggccttgat ggctgaagag 600 aaggttgcgc tggtccgcga gctttccgtg ctggtcgcgc ggactccctc gggcgaggtt 660 gctacttggc cgctgactga gtctgtgcag cgcaacggtg tgtgcgctga agctgtcgcg 720 ccagccccgg gagttgaccc gcagctgcag caacgcgctg agacactggg tgaaaagatt 780 gccaccgagt tgggtgtaac tggtgtgctc gcggtagagc tttttgcatt tgcgaatgag 840 tccggtgcgg aagatatcgc ggttaatgaa ctggcaatgc gcccgcacaa taccggccac 900 tggaccctag atggttctgt gacctcccaa tttgagcagc acctgcgcgc ggtgatggat 960 gagccactgg gggatacatc cacgcttgcc ccagtcaccg tgatggccaa cgtcttaggc 1020 gctgacgaag acccaaagat gccaatgggc gagcgtgccc gagaagtggc gcgccgcttc 1080 ccgcgagcca aagtccatct ctacggcaag gggcatcgcc caggccgtaa gattggccac 1140 gtgaacctca ccggtgagga cgtagaggca acccgtcgcg atgctcgctt ggctgcggat 1200 ttcctcgtga acgccgcgtg gtctgataac tggtccgcta aatagcaaga tgtatcaaga 1260 tatataagga aagaaatgac tgcaccgcta gttgggctca tcatgggctc tgattctgat 1320 tggccaaccg ttgaaccagc agctgaggtt ctcgccgaat tcggtgttcc ttttgaggtg 1380 ggcgtggtct ctgcgcaccg cacgccggaa aagatgctgg attacgccaa gcaagcccac 1440 actcgcggca tcaaggtgat tgttgcttgt gccggtgggg cagcgcacct accaggcatg 1500 gtggctgcag caactccttt gccagttatt ggtattccac gtgccttgaa agatttggaa 1560 ggtctggact ctttgctgtc tatcgtgcag atgccagctg gggttccggt tgcgaccgtg 1620 tctatcggcg gcgctaagaa tgctggcttg ctcgccatcc gtaccctggg cgtgcagtac 1680 tcagaattgg ttgaacgcat ggccgattac caagaaaata tggccaagga agttgagcaa 1740 aaagacgcca atcttcgcgc caagctcatg ggggactag 1779 <210> 42 <211> 888 <212> DNA <213> Corynebacterium ammoniagenes <400> 42 atgcgcccac agctttctga ttatcagcac gtatcctccg gcaaagtccg cgatatctac 60 gaagtagatg acaacacttt gctcatggtg gtcaccgacc gcatctccgc ctatgacttc 120 gcactagagc cagccatccc cgataaaggc cgggttctta ccgcaaccac catgttcttc 180 ttcgacgcca tcgatttccc gaaccatttg gcaggaccca tcgatgatgc gcggattcca 240 gaagaagtat tgggccgagc gatcatcgtt aagaagctca acatgctgcc ctttgagtgc 300 gttgcccgcg gttacctcac cggttccggc ttgaaggaat acaacgctaa cggcaccgtg 360 tgcggcatcg agctgccaga aggcttggtt gaggcgtcgc gtctgccaga gccaattttc 420 accccagcca ccaaggcaga gcagggcgac cacgatgaaa acgtcagctt cgagcgcgtg 480 gtgcaggacc ttggccaaga gcgcgcagag cagcttcgcg atgaaaccct gcgcatctac 540 tccgccgccg ccaagattgc cgaagaaaag ggcatcatct tggctgatac gaagtttgaa 600 ttcggccttg attccgaagg caatctggtc ttgggcgatg aagtacttac gcctgattcc 660 tcccggtact ggccagcaga cacctacgcg gaaggcattg tgcagcccag ctttgacaag 720 cagtacgtgc gcaactggtt gacctcggag gaatccggct gggatgtgga gtcggaaacc 780 cagccgccag tgcttcccga tgacatcgtc gccgccaccc gcctgcgcta catcgaggct 840 tatgagcgct tgtccggcaa gcgtttcatc gacttcattg gcggttaa 888 <210> 43 <211> 1440 <212> DNA <213> Corynebacterium ammoniagenes <400> 43 atgaagcccg tggctgataa gaagaagatt tccaacgttt tgtcctcgcg ttacgcctct 60 gcagagttat ccaacttgtg gagcccggaa cacaaaatca tcatggagcg ccagctctgg 120 atcgcggtca tgcgcgccca gaaagacctc ggcgttgaca ttccatctga agcaattgac 180 gcatacgaag cagtcattga ccaggtagac ctaggttcca tcgcggatcg tgagcgcgtg 240 acgcgccatg acgtgaaagc tcgcatcgaa gaattcaacg cgctggctgg tcatgagcac 300 attcacaagg gcatgacctc ccgtgacctg acggagaacg tcgagcagct gcaaatctac 360 cgctccctgg agctcattcg tgataaagcc atcgcggttg cagcgcgcat tggtgagcac 420 gccgcgaaat accagacttt ggtcatggcg ggccgctctc acaacgttgc cgcgcaggcg 480 accaccttgg gtaagcgttt cgcatcggct ggtgatgaaa tgctgctcgc cattgagcgc 540 gtagaaaacc tccttgcccg ctacccactg cgcggcatca agggaccaat gggcacttcc 600 caggacatgc tggacttgat gggcggcgac gaaaacaagc tcgcagcgct cgaaaccgac 660 atcgcggacc acttgggctt tgcccgcgtg ttcaactcgg tgggccagat ttacccacgc 720 acccttgatt ttgatgcggt ttccgcgctg gttgagctgg gtgcctcgcc atcgtctctg 780 gctaccacca tccgcttgat ggccggcaac gaaaccgtca ccgaaggttt caaggaaggc 840 caagttggct cttccgcgat gccgcacaag atgaatgccc gctcctgcga acgcgtcggt 900 ggcctccagg ttatcttgcg cggctacctg actatggttg cagaccttgc tggtcagcag 960 tggaacgaag gcgacgtatt ctgctcggtg gttcgccgtg tagccctgcc ggacgctttc 1020 ttcgccatcg atggccagtt tgaaaccttc cttaccgtgt tggatgagtt cggcgcattc 1080 ccagcaatga tcgaccgcga actcgagcgc tacctgccat tcttggccac cacccgcatc 1140 cttatggctg cggtgcgcgc aggcgttggc cgcgaaaccg cacacgaagt catcaaggaa 1200 aacgcagtgg ctgttgcgct gaacatgcgc gaaaacggcg gggaacaaga cctactggag 1260 cgccttgctg ccgatgagcg cctgcccatg agcaaggaac agctcgaaga agcactcgct 1320 gacaagcacg cgtttatcgg cgctgctgaa tcccaggtag atgcagttct tagacgcatt 1380 aaggaactcg cggaccagca tccgaaggcg gccgcctaca ccccaggcga aatcttgtaa 1440 1440 <210> 44 <211> 1551 <212> DNA <213> Corynebacterium ammoniagenes <400> 44 atgagtgatg accgcaagca gatcaagcgt gcactaatta gcgtttatga caagacaggg 60 ctcgaagagc tcgctcgcac gcttgacagc gcaggcgtag agattgtgtc caccggctcc 120 accgccgcca agattgctga tcttggtatt aacgtcactc cggttgaatc tctcaccgga 180 ttcccagagt gcctcgaagg ccgcgttaag accttgcacc cacgcgtgca tgcgggcatt 240 ttggctgata cccgcaagcc ggatcacctt aatcagctgg aagagcttga gattgagcca 300 ttccagttgg tcgtggttaa cctgtaccca tttaaagaga ctgtagcttc tggcgcagac 360 ttcgatggtt gcgtcgagca gattgatatc ggcggtccat ccatggtccg tgctgctgcc 420 aagaaccacc catcggtggc ggttgttgta gacccagcgc gttacggcga catcgctgag 480 gctgtcgctc agggcggatt cgatctggcg cagcgtcgtc agctggccgc gactgcgttt 540 aagcacacgg cagattatga tgttgcagtt tctggctggt ttgcccagca gcttgccgat 600 gactctgttg cctctgctga gcttgaaggc gacgcgctgc gttatggtga gaaccctcac 660 cagcaggctt ccatcgttcg tgaaggcacg accggtgttg ctaatgcgaa gcagctgcac 720 ggtaaggaaa tgagctacaa caactaccag gacgcggatg ccgcatggcg cgcggcttgg 780 gatcatgaac gtccatgtgt agcaattatt aagcacgcta acccttgcgg tatcgctgtt 840 tctgatgagt ccatcgcagc agcacacgca gcggcacacg cctgtgaccc aatgtccgct 900 ttcggtggcg ttattgcggt caaccgcgaa gtcaccaagg aaatggcaac ccaggttgct 960 gacatcttca ccgaggtcat catcgcaccg tcctacgaag atggagccgt cgagattttg 1020 cagggcaaga agaatattcg catccttgtt gctgagcatg aagtaccagc agtagaggtc 1080 aaagaaatct ctggtggccg tctgctgcag gaagcagacg tttaccaggc tgagggcgat 1140 aaggcttcga gttggacttt ggctgccggc gaagctgcat ccgaggaaaa gctcgcggag 1200 ctggaattcg cttggcgcgc agtacgctcg gtaaagtcca acgccatctt gttggcgcat 1260 gaaggtgcaa ccgttggcgt gggtatgggc caggtcaacc gcgttgattc ggcgaagttg 1320 gctgttgacc gcgcgaatac tttggctgat tccgcagagc gtgctcgcgg ttccgtcgca 1380 gcatcggatg cgttcttccc attcgccgat ggcttgcagg tgcttatcga tgccggcgtt 1440 tccgccgttg tccagcccgg cggctccatc cgcgatgaag aagttattgc tgccgctgaa 1500 gcagccggta tcaccatgta cttcactggc acccgccact tcgcgcacta a 1551 <110> CJ Cheiljedang Corporation <120> Microorganisms of corynebacterium having enhanced nucleotide or          nucleoside productivity and method of producing nucleotide or          nucleoside using the same <130> PA08-0233 <160> 44 <170> KopatentIn 1.71 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cgacgagaat tccccgaccc gcatgagatg 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 gtatcgtcta gagcggtagc ggtggcttcg 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cgacgatcta gacccgaccc gcatgagatg 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gtatcgaagc ttgcggtagc ggtggcttcg 30 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 gctatcgttt cccctgaa 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgattctact aagtttgc 18 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggcacaagct tccgcgtagt atcataagca gtc 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cagcactagt gctggctcta gtgcgaagtc at 32 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cagcactagt ccgcgtagta tcataagcag tc 32 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gccctctaga gctggctcta gtgcgaagtc at 32 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tcgctgacaa gcacgcgttt atcggc 26 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ggtagcgggg tcggccgcaa ggcc 24 <210> 13 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cgggatcccg aggcgaagac gatattgagg acag 34 <210> 14 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 acgcgtcgac gtgggaaacg cagacgagaa ca 32 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 acgcgtcgac gaggcgaaga cgatattgag gacag 35 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcgatgcctg catcttgg 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ggcgataagg cttcgagt 18 <210> 18 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gctcggatcc gcgatactca gccccagcaa cagcagaaaa tgaagc 46 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 cagcgtcgac gcagccgtcg caggcaccat cgcagcagt 39 <210> 20 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cagcgtcgac gcgatactca gccccagcaa cagcagaaaa tgaagc 46 <210> 21 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gctcggatcc gcagccgtcg caggcaccat cgcagcagt 39 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 acttgacctc cagcccta 18 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 aagaacaacg tcggcgtc 18 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 acgtcaggat cccctatcgt gctttgctgt 30 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ctctaaggta ccattggtac tagtagccgc 30 <210> 26 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 acgtcaggta cccctatcgt gctttgctgt 30 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 ctctaatcta gaattggtac tagtagccgc 30 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ccagctgggg ttccggtt 18 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 tttcgatgcg cttcgttt 18 <210> 30 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gctcggatcc cgcagtggct gttgcgctga acatgcg 37 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gcaggtcgac cacggacata tcggtttgct tcacgcggg 39 <210> 32 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 gcaggtcgac cgcagtggct gttgcgctga acatgcg 37 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 gagcgcttgt ccggcaagcg tttc 24 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ggtggttgcg gtaagaaccc ggcc 24 <210> 35 <211> 1500 <212> DNA <213> Corynebacterium ammoniagenes <400> 35 gtggtgaaca ctactttccc cagcgacgtg aatttagatg accaaggcga gcaagaaccc 60 cgcgaagagt gcggtgtctt tggcgtctgg gctcctggtg aagatgttgc gacactgacc 120 tactttggtc tgttcgcatt gcagcatcgt gggcaggaag ctgcaggtat cggcgtcggt 180 gatggagacc gcctcgttgt cttcaaagac atgggcttgg tctcgaatat tttcgatgag 240 tccattttaa attccctcca tggctccgtg ggcgtggggc atacgcgcta ctcgactgcc 300 ggtggcaaag agtggtcgaa tgtccagccg atgtttaata ccacctcaaa tggggtagac 360 atcgctttgt gccacaacgg caacttggtg aactaccaag aactgcgcga tgaagcagta 420 gctctgggac tttaccgaga gaatgaaaaa tccctgtcgg attccatgat catgacagct 480 ttgctggcgc acggagtcgg ggaaggcaac tctgtctttg acgccgctaa gcaactgctg 540 ccaagcatca aaggcgcttt ttgcttgacc tttaccgatg gcaagacctt gtacgccgcg 600 cgtgacccgc acggtgtacg ccccttggtc attggccgct tggcgcaagg ctgggttgtt 660 gcttccgaaa cctgtgcgct ggatatcgtg ggcgcacagt ttatccgtga ggtagagccc 720 ggtgaactta tctctgtcaa tgaggcagga atccacagcg aaaaattcgc tgagccgaag 780 cgccagggct gcgtctttga atacgtctac ttggcacgtc cagacaccgt gatcaaaggc 840 cgcaacgttc acgcgacgcg cgtggatatt ggtcgcgcac ttgcgaaatc tcaccctgcg 900 ccagaagctg acatggtcat ccccgtgcca gaatccggaa acccggcagc tgttggctac 960 gcccgggaat cgggcctgac atttgcgcac ggcttggtca aaaacgccta cgtgggtcga 1020 accttcattc agcccaccca gaccttgcgc cagctgggta ttcgcctcaa gctcaacccc 1080 ctgcgcgagg tcatcgaggg caagtcactc gttgttgtag atgactctat tgtccgcggc 1140 aacacccaac gcgcgctggt gcgcatgctg cgtgaagcag gcgctgctga agtgcacgtg 1200 cgcattgctt caccgccagt caaatggcct tgtttctacg gcattgactt cgcctcgcct 1260 ggtgaattga ttgctaatat caagccttct gatgatcctc aggtagtaac cgatgcagtg 1320 tgcgaagcta tcggagcaga ctctttaggg tttgtatctg tagatgagat ggttgaggca 1380 acgcaccaac ctatcaattc cttgtgtacc gcttgctttg atggcaacta cgaactcgga 1440 cttccgaccg ctaaccccaa tgctgacgct gtgcgaactt tgctcagcca aaagaactga 1500                                                                         1500 <210> 36 <211> 1281 <212> DNA <213> Corynebacterium ammoniagenes <400> 36 atgcgcattc ttgtaattgg ttccggcggc cgcgagcacg ccattttgaa aggccttgcg 60 gccgaccccg ctaccaccga cctgcacgtt gcaccgggct cacctgcttt tgcatcgcta 120 gctactgtgc acgctgacta caaagaagta gcggatccgg cccgcatgct ggagttggct 180 caggacatta aacctgagct ggttgtcatc ggtccagaga ttccattggt tgccggtgtt 240 gctgacacat tgcgcgctga aggcatcgcg gtctttggac cgaacgcgga tgcagcacag 300 attgaaggct ctaaggcctt tgccaaggaa gtcatggaag ctgcaggcgt tgctaccgcg 360 cgtgcgcaga ccctaccacc gggaatgact gacgacgata ttgaacatga gctcgactac 420 ttcggcccca tgtatgtcgt caaagatgac gggctggccg caggcaaagg cgttgtggtc 480 accgctgacc gcgccgaagc acgccagcac atccacctgg tgcatgccgc tggtaaccca 540 gtgctactag aatctttctt ggacggtcca gaggtctcgc tgttttgcct tgtcgatggc 600 gaaaccgtcg tgccactgct gccagcccaa gaccacaagc gtgcctacga caatgatgaa 660 ggcccgaata ccggcggcat gggcgcatac accccgctgc cgtggttgtc tgctgaaggc 720 gtcgaccgca tcgtgcgcga ggtctgcgag ccggtagcta agcaaatggt cgagcgcgga 780 accccatact ccggcctgct gtacgcaggt ctggcatggg gccaagaagg cccctccgtc 840 attgagttca actgccgctt cggcgaccca gaaacccagc cgctgctgtc gctgttgaag 900 acgccgctgg caggggttct caacgcagtt gcaaccggaa ctctcgacga acttcctgcg 960 ctggagtggg aagacgccta tgccgtgacc gtagtgctgg cggctgcgaa ttatccagaa 1020 tctccacgca agggcgatgc catcacctcg ccagatctgg cagataccga caagattttg 1080 cacgcgggta ccgcggtaaa ggacgcagag gttatctcca atggcggtcg cgtgcttaac 1140 gtaatcggca agggtgagac cctatctgcc gcgcgcgctg ccgcgtatga ggtgctcgag 1200 aacattgagc tggcggatag cttctaccgc accgacattg gccaagctgc tgaagaaggt 1260 cgcatcagca ttgactctta g 1281 <210> 37 <211> 606 <212> DNA <213> Corynebacterium ammoniagenes <400> 37 gtgactgaat cgccttcgca agttttgaaa gcacaagacc cgcttcaagt agtggtgctg 60 gtatctggca ccggatcttt gctgcaaaat attatcgaca accaagatga ctcctatcgg 120 gttatcaagg tagtcgcgga taagccctgc ccggggatta accgagccca agatgcaggc 180 atcgacaccg aagtcgtgct tttaggctca gaccgcgcgc agtggaacaa agaccttgtc 240 gcagcggttg gtaccgccga tgttgtggtg tccgctggat ttatgaaaat cctggggcct 300 gaattcttgg ccagctttga aggccgcaca ataaatacgc atcccgcact cctgccgtcc 360 tttccgggcg cgcatggagt acgggatgcg ttggcttatg gcgtgaaagt caccggctct 420 actgtccatt ttgtggacgc gggagtcgat actggccgca tcatcgcaca acgcgcagta 480 gagattgagg cagaagatga tgaggcaagc ttgcatgagc gcatcaaaag cgtcgaacgt 540 gagcttatcg tgcaggtctt acgcgcagcg aatgttcaag accagcagct tattattgag 600 atttaa 606 <210> 38 <211> 243 <212> DNA <213> Corynebacterium ammoniagenes <400> 38 atggctcgtg ttgttgtcaa tgtcatgccc aaggctgaaa tcctcgaccc gcagggacaa 60 gctgttgtcc gtgcacttgg acgcctgggt gtaaacggag taagcgatgt ccgtcagggc 120 aagcgctttg aaatcgaagt cgatgattca gtcagcgctg aagatctaga caaggtcgca 180 gcaagcttgc tggcaaacac cgtcatcgag gactacgaag ttgtagggct ggaggtcaag 240 taa 243 <210> 39 <211> 2277 <212> DNA <213> Corynebacterium ammoniagenes <400> 39 atgactgttt ccaatgacac agtagataat gcaaaggcca ctcccgagct agaccagccg 60 tgggaagaac tcggcttaaa gcaagacgaa tacgacaaga ttgtaggcat cttgggccgc 120 cgcccaaccg atgctgagct gacggtttac tccgtgatgt ggtcggagca ctgctcttac 180 aagtcttcca agacccacct acgctacttt ggcgagacca ccactgagga aatggcgtcg 240 aagattcttg ccggtatcgg tgagaacgct ggtgtcgttg acatcggcga cggtgacgca 300 gtgaccttcc gcgtcgaatc ccacaaccac ccatccttcg tcgagcctta ccagggtgcc 360 gcgaccggtg ttggcggcat cgtccgcgac atcatggcga tgggtgcacg tccaatcgca 420 gtgatggatc agctgcgctt cggcccagct gatgccccgg ataccgcacg tgttctgccg 480 ggcgttgttt ccggcatcgg cggttacggc aactccctcg gcctgccgaa catcggcggc 540 gagaccgtct ttgatgagtc ttatgccggc aacccactgg tcaacgcact gtgcgtgggt 600 accttgcgcg tggaagacct gaagctggct tttgcttccg gtactggcaa caaggtgatg 660 ctctttggct cccgcacggg cctcgacggc atcggcggcg tatccgtttt gggttctgct 720 tccttcgaag aaggcgaaga gcgcaagctt cctgcagtcc aggtcggcga cccattcgcg 780 gaaaaagtcc tcatcgaatg ctgcctggag ctctacgctg cgggcgtcgt tgtcggtatt 840 caggaccttg gtggcggtgg cctcgcatgt gcgacctctg agctggcagc agctggcgac 900 ggcggcatgg tggtcaacct ggataatgtt ccactgcgtg cagagaacat gtccgccgca 960 gaaatcctgg cttccgaatc ccaggagcgc atgtgtgctg ttgtctcccc agataacgtg 1020 gagaagttcc gcgagatctg tgaaaagtgg gacgtaacgt gtgctgaaat cggtgaagtt 1080 accgataaga aagacaccta cctcgtgtac cacaacggtg agctggtagt agacgctccg 1140 ccatcaacta tcgatgaagg ccctgtctac gagcgcccat acgcacgccc tcagtggcag 1200 gatgagatcc agcaggctcc ggaaattgca cgtccggaat ccttggtaca ggcattcaag 1260 gacatggtgt cctccccagc tctgtcatcg cgtgcattta tcactgagca gtatgaccgc 1320 tacgtgcgcg gtaacaccgt caaggcgaag cagtctgact ccggcgttct gcgtatcaat 1380 gaggaaactt ctcgcggtgt cgcaatttct gccgatgcct ccggtcgcta caccaagctg 1440 gacccaaaca tgggtgcacg tttggcgctg gctgaggcat accgcaacgt tgctgtgacc 1500 ggcgcacgac catatgcggt gaccaactgc ttgaacttcg gttctccaga aaacaccgac 1560 gtgatgtggc aattccgcga ggccgttcac ggtctggctg acggttctaa ggaactgaat 1620 atcccagtct ccggcggtaa cgtctccttc tacaaccaga ctggtgatga gccaattctg 1680 ccgaccccag ttgttggcgt gctcggtgtc attgatgatg ttcacaaggc actggcacat 1740 gacttgggcg gcattgatga gcctgaaacc ctgattctgc ttggtgagac caaggaagaa 1800 ttcggcggct ccatctggca gcaggtctcc ggcggcggcc tgcagggtct gccaccacag 1860 gtggatctgg cgaatgaggc aaagctggcg gacttcttcg tcggcaacac ctccgttgca 1920 gcctcccacg acctctctga gggcggtctg gctatcgcgg cgtttgagat ggcgcaaaag 1980 aacaacgtcg gcgtcgacct tgatttgagc gttgtacacg aggatgcact gaccgcactg 2040 tttagtgagt ccgcatcgcg tgttctgatt tccaccgcgt ctgaccacct cgatggaatc 2100 ttgcagcgtg cttccgagct gggcattcca gctgtcgtgg taggaaccac caatgattcc 2160 ggcaacatca ccttcgctgg tgaagaagtt gctaccgctg agctgcgcga ggcatggtct 2220 gcaaccttgc caaacctgtt tggccacgct gttggcgcta attccgtagt cgaataa 2277 <210> 40 <211> 1056 <212> DNA <213> Corynebacterium ammoniagenes <400> 40 atgtctgaaa atacttacgc cgcggcaggc gtcaacattg aagaaggcga ccgcgccgtt 60 gagcttttcg ctccactggc taagcgcgct acccgtccag aggtaatggg tggactcggt 120 ggcttcgcgg gactgtttaa gctcggcgaa tacaaagagc caatccttgc agctggctcc 180 gacggcgtgg gcaccaagct cgccgttgcc caggcaatgg ataagcacga caccatcggc 240 attgacctgg ttgcaatgtg cgtcgatgac ttggtcgtgt gtggtgctga gccactattt 300 ctccaggact acatcgcagt aggcaaggtt gttccggaaa aggttgcgca gattgttgcc 360 ggtattgctg agggctgcgt gcaggcaggc tgtgcacttc ttggtggcga gaccgctgag 420 cacccgggcg taatgaatga aaaggactac gatgtttccg ccaccgctgt cggcgttgtc 480 gaagcagacg agcttctcgg accagacaag gttcgcgacg gcgatgtttt gattgccatg 540 ggctcatccg gactgcactc caatggttac tccttggcgc gccacgtctt gttagagcag 600 gcaggattgc cgctcgatgg ctacatcgat gaccttggcc gcacgcttgg tgaagagctc 660 ctggagccga cccgcatcta cgccaaggac tgcctggcgc tagtttctga gtgtgacgtt 720 gctactttct gccacgtcac cggcggtggc ttggcaggca acctcgagcg cgtgctacct 780 gaaggccttg tcgcagaggt taaccgcgca tcgtggaccc cagcagcgat tttccgcacc 840 atcgcgtctt tcggcaaggt cagcctggaa gagatggaaa agaccttcaa catgggcgtt 900 ggcatgatcg ctatcgtttc ccctgaagac cgtgaccgcg ccttggcgat gctaactgcg 960 cgccacgttg atgcatggga gctgggctcg gttcgcacca agaaggaaga cgacaccgca 1020 ggtgttgtca tgcaaggtga gcactctaac ttctaa 1056 <210> 41 <211> 1779 <212> DNA <213> Corynebacterium ammoniagenes <400> 41 atgaaacgcg tgagtgaaca agcaggaaac ccagacggaa accctcaagc acatgttccc 60 ggcatgccgg ttatcgccgt tattggtgat ggccagctag ctcgcatgat gcaaaccgcc 120 gccattgagc tcggccaatc gctgcgcctt cttgccggcg cacgcgatgc ctctgcggca 180 caagtatgcg cggatgtagt gcttggtgat tacaccaact acgacgactt gctcaaagcc 240 gtcgacggtg ccaccgctgt cacttttgac catgagcacg tgcctaatga gcacctcacc 300 gcgttgatcg atgcaggcta taacgtgcag ccacaacctg ctgcgctgat taacgcccaa 360 gacaaattgg ttatgcgcga gcgcctcgcc gagctgggcg cacccgtgcc gcgctttgcg 420 ccgattgaat ctgcccaaga tgcgtacgat ttttggacct tgacgtccgg gcaggtctgt 480 ctgaaggcgc gccggggtgg ctacgacggc aaaggcgtgt ggtttccgaa taatgaatct 540 gagctgactg ctttggtctc tgacctttcg cgccgcggcg tggccttgat ggctgaagag 600 aaggttgcgc tggtccgcga gctttccgtg ctggtcgcgc ggactccctc gggcgaggtt 660 gctacttggc cgctgactga gtctgtgcag cgcaacggtg tgtgcgctga agctgtcgcg 720 ccagccccgg gagttgaccc gcagctgcag caacgcgctg agacactggg tgaaaagatt 780 gccaccgagt tgggtgtaac tggtgtgctc gcggtagagc tttttgcatt tgcgaatgag 840 tccggtgcgg aagatatcgc ggttaatgaa ctggcaatgc gcccgcacaa taccggccac 900 tggaccctag atggttctgt gacctcccaa tttgagcagc acctgcgcgc ggtgatggat 960 gagccactgg gggatacatc cacgcttgcc ccagtcaccg tgatggccaa cgtcttaggc 1020 gctgacgaag acccaaagat gccaatgggc gagcgtgccc gagaagtggc gcgccgcttc 1080 ccgcgagcca aagtccatct ctacggcaag gggcatcgcc caggccgtaa gattggccac 1140 gtgaacctca ccggtgagga cgtagaggca acccgtcgcg atgctcgctt ggctgcggat 1200 ttcctcgtga acgccgcgtg gtctgataac tggtccgcta aatagcaaga tgtatcaaga 1260 tatataagga aagaaatgac tgcaccgcta gttgggctca tcatgggctc tgattctgat 1320 tggccaaccg ttgaaccagc agctgaggtt ctcgccgaat tcggtgttcc ttttgaggtg 1380 ggcgtggtct ctgcgcaccg cacgccggaa aagatgctgg attacgccaa gcaagcccac 1440 actcgcggca tcaaggtgat tgttgcttgt gccggtgggg cagcgcacct accaggcatg 1500 gtggctgcag caactccttt gccagttatt ggtattccac gtgccttgaa agatttggaa 1560 ggtctggact ctttgctgtc tatcgtgcag atgccagctg gggttccggt tgcgaccgtg 1620 tctatcggcg gcgctaagaa tgctggcttg ctcgccatcc gtaccctggg cgtgcagtac 1680 tcagaattgg ttgaacgcat ggccgattac caagaaaata tggccaagga agttgagcaa 1740 aaagacgcca atcttcgcgc caagctcatg ggggactag 1779 <210> 42 <211> 888 <212> DNA <213> Corynebacterium ammoniagenes <400> 42 atgcgcccac agctttctga ttatcagcac gtatcctccg gcaaagtccg cgatatctac 60 gaagtagatg acaacacttt gctcatggtg gtcaccgacc gcatctccgc ctatgacttc 120 gcactagagc cagccatccc cgataaaggc cgggttctta ccgcaaccac catgttcttc 180 ttcgacgcca tcgatttccc gaaccatttg gcaggaccca tcgatgatgc gcggattcca 240 gaagaagtat tgggccgagc gatcatcgtt aagaagctca acatgctgcc ctttgagtgc 300 gttgcccgcg gttacctcac cggttccggc ttgaaggaat acaacgctaa cggcaccgtg 360 tgcggcatcg agctgccaga aggcttggtt gaggcgtcgc gtctgccaga gccaattttc 420 accccagcca ccaaggcaga gcagggcgac cacgatgaaa acgtcagctt cgagcgcgtg 480 gtgcaggacc ttggccaaga gcgcgcagag cagcttcgcg atgaaaccct gcgcatctac 540 tccgccgccg ccaagattgc cgaagaaaag ggcatcatct tggctgatac gaagtttgaa 600 ttcggccttg attccgaagg caatctggtc ttgggcgatg aagtacttac gcctgattcc 660 tcccggtact ggccagcaga cacctacgcg gaaggcattg tgcagcccag ctttgacaag 720 cagtacgtgc gcaactggtt gacctcggag gaatccggct gggatgtgga gtcggaaacc 780 cagccgccag tgcttcccga tgacatcgtc gccgccaccc gcctgcgcta catcgaggct 840 tatgagcgct tgtccggcaa gcgtttcatc gacttcattg gcggttaa 888 <210> 43 <211> 1440 <212> DNA <213> Corynebacterium ammoniagenes <400> 43 atgaagcccg tggctgataa gaagaagatt tccaacgttt tgtcctcgcg ttacgcctct 60 gcagagttat ccaacttgtg gagcccggaa cacaaaatca tcatggagcg ccagctctgg 120 atcgcggtca tgcgcgccca gaaagacctc ggcgttgaca ttccatctga agcaattgac 180 gcatacgaag cagtcattga ccaggtagac ctaggttcca tcgcggatcg tgagcgcgtg 240 acgcgccatg acgtgaaagc tcgcatcgaa gaattcaacg cgctggctgg tcatgagcac 300 attcacaagg gcatgacctc ccgtgacctg acggagaacg tcgagcagct gcaaatctac 360 cgctccctgg agctcattcg tgataaagcc atcgcggttg cagcgcgcat tggtgagcac 420 gccgcgaaat accagacttt ggtcatggcg ggccgctctc acaacgttgc cgcgcaggcg 480 accaccttgg gtaagcgttt cgcatcggct ggtgatgaaa tgctgctcgc cattgagcgc 540 gtagaaaacc tccttgcccg ctacccactg cgcggcatca agggaccaat gggcacttcc 600 caggacatgc tggacttgat gggcggcgac gaaaacaagc tcgcagcgct cgaaaccgac 660 atcgcggacc acttgggctt tgcccgcgtg ttcaactcgg tgggccagat ttacccacgc 720 acccttgatt ttgatgcggt ttccgcgctg gttgagctgg gtgcctcgcc atcgtctctg 780 gctaccacca tccgcttgat ggccggcaac gaaaccgtca ccgaaggttt caaggaaggc 840 caagttggct cttccgcgat gccgcacaag atgaatgccc gctcctgcga acgcgtcggt 900 ggcctccagg ttatcttgcg cggctacctg actatggttg cagaccttgc tggtcagcag 960 tggaacgaag gcgacgtatt ctgctcggtg gttcgccgtg tagccctgcc ggacgctttc 1020 ttcgccatcg atggccagtt tgaaaccttc cttaccgtgt tggatgagtt cggcgcattc 1080 ccagcaatga tcgaccgcga actcgagcgc tacctgccat tcttggccac cacccgcatc 1140 cttatggctg cggtgcgcgc aggcgttggc cgcgaaaccg cacacgaagt catcaaggaa 1200 aacgcagtgg ctgttgcgct gaacatgcgc gaaaacggcg gggaacaaga cctactggag 1260 cgccttgctg ccgatgagcg cctgcccatg agcaaggaac agctcgaaga agcactcgct 1320 gacaagcacg cgtttatcgg cgctgctgaa tcccaggtag atgcagttct tagacgcatt 1380 aaggaactcg cggaccagca tccgaaggcg gccgcctaca ccccaggcga aatcttgtaa 1440                                                                         1440 <210> 44 <211> 1551 <212> DNA <213> Corynebacterium ammoniagenes <400> 44 atgagtgatg accgcaagca gatcaagcgt gcactaatta gcgtttatga caagacaggg 60 ctcgaagagc tcgctcgcac gcttgacagc gcaggcgtag agattgtgtc caccggctcc 120 accgccgcca agattgctga tcttggtatt aacgtcactc cggttgaatc tctcaccgga 180 ttcccagagt gcctcgaagg ccgcgttaag accttgcacc cacgcgtgca tgcgggcatt 240 ttggctgata cccgcaagcc ggatcacctt aatcagctgg aagagcttga gattgagcca 300 ttccagttgg tcgtggttaa cctgtaccca tttaaagaga ctgtagcttc tggcgcagac 360 ttcgatggtt gcgtcgagca gattgatatc ggcggtccat ccatggtccg tgctgctgcc 420 aagaaccacc catcggtggc ggttgttgta gacccagcgc gttacggcga catcgctgag 480 gctgtcgctc agggcggatt cgatctggcg cagcgtcgtc agctggccgc gactgcgttt 540 aagcacacgg cagattatga tgttgcagtt tctggctggt ttgcccagca gcttgccgat 600 gactctgttg cctctgctga gcttgaaggc gacgcgctgc gttatggtga gaaccctcac 660 cagcaggctt ccatcgttcg tgaaggcacg accggtgttg ctaatgcgaa gcagctgcac 720 ggtaaggaaa tgagctacaa caactaccag gacgcggatg ccgcatggcg cgcggcttgg 780 gatcatgaac gtccatgtgt agcaattatt aagcacgcta acccttgcgg tatcgctgtt 840 tctgatgagt ccatcgcagc agcacacgca gcggcacacg cctgtgaccc aatgtccgct 900 ttcggtggcg ttattgcggt caaccgcgaa gtcaccaagg aaatggcaac ccaggttgct 960 gacatcttca ccgaggtcat catcgcaccg tcctacgaag atggagccgt cgagattttg 1020 cagggcaaga agaatattcg catccttgtt gctgagcatg aagtaccagc agtagaggtc 1080 aaagaaatct ctggtggccg tctgctgcag gaagcagacg tttaccaggc tgagggcgat 1140 aaggcttcga gttggacttt ggctgccggc gaagctgcat ccgaggaaaa gctcgcggag 1200 ctggaattcg cttggcgcgc agtacgctcg gtaaagtcca acgccatctt gttggcgcat 1260 gaaggtgcaa ccgttggcgt gggtatgggc caggtcaacc gcgttgattc ggcgaagttg 1320 gctgttgacc gcgcgaatac tttggctgat tccgcagagc gtgctcgcgg ttccgtcgca 1380 gcatcggatg cgttcttccc attcgccgat ggcttgcagg tgcttatcga tgccggcgtt 1440 tccgccgttg tccagcccgg cggctccatc cgcgatgaag aagttattgc tgccgctgaa 1500 gcagccggta tcaccatgta cttcactggc acccgccact tcgcgcacta a 1551  

Claims (13)

ⅰ)포스포리보실피로포스페이트 아미도트랜스퍼라아제, ⅱ)포스포리보실아민 글리신 리가아제, ⅲ)포스포리보실글리신아마이드 포밀트랜스퍼라아제, ⅳ)포스포리보실포밀글리신아미딘 신세타아제, ⅴ)포스포리보실포밀글리신아미딘 신세타아제 Ⅱ, ⅵ)포스포리보실아미노이미다졸 신세타아제, ⅶ)포스포리보실아미노이미다졸 카복실라아제, ⅷ)포스포리보실아미노이미다졸 썩시노카복사마이드 신세타아제, ⅸ)아데닐로썩시네이트 리아제, 및 ⅹ)이노신산 싸이클로하이드롤라아제의 군으로부터 선택된 두개 또는 그 이상의 효소 활성을 강화시킴으로써 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.Iii) phospholibosyl pyrophosphate amidotransferase, ii) phospholibosylamine glycine ligase, iii) phospholibosylglycine amide formyltransferase, iii) phospholibosyl formyl glycine amidine synthetase, iii) Phosphoribosylformylglycineamidine synthetase II, i) phospholibosylaminoimidazole synthetase, i) phospholibosylaminoimidazole carboxylase, i) phospholibosilaminoimidazole rosinocarboxamide synthetase A microorganism of the genus Corynebacterium, in which the production capacity of a nucleic acid-based substance is improved by enhancing two or more enzyme activities selected from the group of azeases, iii) adenylocicinate lyase, and iii) inosinic acid cyclohydrolase. 제1항에 있어서,The method of claim 1, ⅱ)포스포리보실아민 글리신 리가아제, ⅲ)포스포리보실글리신아마이드 포밀트랜스퍼라아제, ⅳ)포스포리보실포밀글리신아미딘 신세타아제, ⅴ)포스포리보실포밀글리신아미딘 신세타아제 Ⅱ, ⅸ)아데닐로썩시네이트 리아제 및 ⅹ)이노신산 싸이클로하이드롤라아제의 효소 활성을 강화시킴으로써 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.Ii) phospholibosylamine glycine ligase, iii) phospholibosyl glycine amide formyl transferase, iii) phospholibosylformylglycine amidine synthetase, iii) phospholibosylformylglycine amidine synthetase II, ⅸ A microorganism of the genus Corynebacterium having improved production capacity of nucleic acid-based material by enhancing the enzymatic activity of adenyroloxylate lyase and iii) inosinic acid cyclohydrolase. 제2항에 있어서, The method of claim 2, 부가적으로 ⅰ)포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 ⅵ)포 스포리보실아미노이미다졸 신세타아제의 효소 활성을 더 강화시킴으로써 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.In addition, microorganisms of the genus Corynebacterium having improved production capacity of nucleic acid-based substances by further enhancing the enzymatic activity of phosphoboribosylpyrophosphate amidotransferase and iii) phosphoribosylaminoimidazole synthetase. 제2항에 있어서, The method of claim 2, 부가적으로 ⅶ)포스포리보실아미노이미다졸 카복실라아제 및 ⅷ)포스포리보실아미노이미다졸 썩시노카복사마이드 신세타아제의 활성을 더 강화시킴으로써 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.In addition, microorganisms of the genus Corynebacterium having enhanced production of nucleic acid-based substances by further enhancing the activities of iii) phosphoribosylaminoimidazole carboxylase and iii) phosphoribosylaminoimidazole rosinocarboxamide synthetase. 제1항에 있어서, The method of claim 1, i)포스포리보실피로포스페이트 아미도트랜스퍼라아제, ⅱ)포스포리보실아민 글리신 리가아제, ⅲ)포스포리보실글리신아마이드 포밀트랜스퍼라아제, ⅳ)포스포리보실포밀글리신아미딘 신세타아제, ⅴ)포스포리보실포밀글리신아미딘 신세타아제 Ⅱ, ⅵ)포스포리보실아미노이미다졸 신세타아제, ⅶ)포스포리보실아미노이미다졸 카복실라아제, ⅷ)포스포리보실아미노이미다졸 썩시노카복사마이드 신세타아제, ⅸ)아데닐로썩시네이트 리아제 및 ⅹ)이노신산 싸이클로하이드롤라아제의 활성 모두를 강화시킴으로써 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.i) phospholibosyl pyrophosphate amidotransferase, ii) phospholibosylamine glycine ligase, iii) phospholibosylglycine amide formyl transferase, iii) phospholibosyl phosphimlycine amidine synthetase, i) Phosphoribosylformylglycineamidine synthetase II, i) phospholibosylaminoimidazole synthetase, i) phospholibosylaminoimidazole carboxylase, i) phospholibosilaminoimidazole rosinocarboxamide synthetase A microorganism of the genus Corynebacterium in which the production capacity of a nucleic acid-based substance is improved by enhancing both the activities of azedes, iii) adenylolycinate lyase and iii) inosinic acid cyclohydrolase. 제1항에 있어서, The method of claim 1, 상기 효소들을 암호화하는 유전자는 각각 purF, purD, purN, purS, purL, purM, purKE, purC, purB 및 purH인 것을 특징으로 하는 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.Genes encoding the enzymes are purF, purD, purN, purS, purL, purM, purKE, purC, purB and purH Corynebacterium genus microorganisms with improved production capacity of nucleic acid-based material, characterized in that. 제6항에 있어서,The method of claim 6, 상기 유전자들은 서열번호 35, 36, 37, 38, 39, 40, 41, 42, 43 및 44의 염기서열을 가지는 것을 특징으로 하는 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.The genes of the genus Corynebacterium improved production capacity of nucleic acid-based material, characterized in that having the nucleotide sequence of SEQ ID NO: 35, 36, 37, 38, 39, 40, 41, 42, 43 and 44. 제1항에 있어서,The method of claim 1, 상기 효소의 활성은 코리네박테리움 속 미생물이 천연상태로 가지고 있는 내재적 purF, purD, purN, purS, purL, purM, purKE, purC, purB 및 purH 유전자 각각에 더하여 1개 이상의 purF, purD, purN, purS, purL, purM, purKE, purC, purB 및 purH 유전자 각각이 더 도입됨으로써 강화되는 것을 특징으로 하는 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.The activity of the enzyme is one or more of purF, purD, purN, in addition to each of the intrinsic purF, purD, purN, purS, purL, purM, purKE, purC, purB, and purH genes possessed naturally by Corynebacterium sp. A microorganism of the genus Corynebacterium with improved production capacity of a nucleic acid-based material, characterized in that the purS, purL, purM, purKE, purC, purB and purH genes are each enhanced. 제1항에 있어서,The method of claim 1, 상기 코리네박테리움 속 미생물은 도 2, 3, 4, 5, 6 및 7의 개열지도를 가지는 벡터 pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE 및 pDZ-2purC로 이루어진 군으로부터 선택된 2개 또는 그 이상의 벡터로 형질전환된 것을 특징으로 하는 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.The microorganism of the genus Corynebacterium is a vector pDZ-2purFM, pDZ-2purDB, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE and pDZ-2purC having a cleavage map of Figures 2, 3, 4, 5, 6 and 7. Microorganisms of the genus Corynebacterium with improved production capacity of nucleic acid-based material, characterized in that transformed with two or more vectors selected from the group consisting of. 제1항에 있어서,The method of claim 1, 상기 핵산계 물질은 5'-크산틸산(XMP) 또는 5'-이노신산(IMP) 또는 이노신인 것을 특징으로 하는 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.The nucleic acid-based material is 5'-xanthylic acid (XMP) or 5'-inosinic acid (IMP) or inosine, Corynebacterium genus microorganisms with improved production capacity of the nucleic acid-based material, characterized in that. 제10항에 있어서,The method of claim 10, 상기 코리네박테리움 속 미생물은 코리네박테리움 암모니아게네스 CN01-0118 (KCCM10965P)인 것을 특징으로 하는 핵산계 물질의 생산능이 향상된 코리네박테리움 속 미생물.The microorganism of the genus Corynebacterium is Corynebacterium genus microorganisms with improved production capacity of nucleic acid-based material, characterized in that Corynebacterium ammonia genes CN01-0118 (KCCM10965P). 제1항 내지 제11항 중 어느 한 항에 따른 코리네박테리움 속 미생물을 배양하고, 그 배양액으로부터 핵산계 물질을 얻는 핵산계 물질의 생산 방법.A method for producing a nucleic acid-based substance, wherein the microorganism of the genus Corynebacterium according to any one of claims 1 to 11 is cultured, and a nucleic acid-based substance is obtained from the culture solution. 제12항에 있어서,The method of claim 12, 상기 핵산계 물질은 5'-크산틸산(XMP) 또는 5'-이노신산(IMP) 또는 이노신인 것을 특징으로 하는 핵산계 물질의 생산 방법.The nucleic acid-based material is a method for producing a nucleic acid-based material, characterized in that 5'-xanthyl acid (XMP) or 5'-inosinic acid (IMP) or inosine.
KR1020080103379A 2008-10-22 2008-10-22 Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same KR101056872B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080103379A KR101056872B1 (en) 2008-10-22 2008-10-22 Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080103379A KR101056872B1 (en) 2008-10-22 2008-10-22 Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same

Publications (2)

Publication Number Publication Date
KR20100044302A true KR20100044302A (en) 2010-04-30
KR101056872B1 KR101056872B1 (en) 2011-08-12

Family

ID=42219015

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080103379A KR101056872B1 (en) 2008-10-22 2008-10-22 Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same

Country Status (1)

Country Link
KR (1) KR101056872B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282220A (en) * 2015-05-29 2017-01-04 上海市农业科学院 A kind of method improving bacillus subtilis synthesis inosine ability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013873B1 (en) * 2018-01-25 2019-08-23 씨제이제일제당 주식회사 A microorganism of the genus Corynebacterium producing purine nucleotide and method for producing purine nucleotide using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070056491A (en) * 2005-11-30 2007-06-04 씨제이 주식회사 Microorganisms having a gene purf and production method of xanthosine 5'-monophosphate using the same
KR100857379B1 (en) * 2007-01-11 2008-09-11 씨제이제일제당 (주) Microorganism overexpressed 5'-phosphoribosyl-5-aminoimidazoleair carboxylase and the process for producing 5'-inosinic acid using the same
KR100785248B1 (en) 2007-01-12 2007-12-12 씨제이 주식회사 5'- microorganism overexpressed purc gene and the process for production method of 5'-inosinic acid using the same
KR100957690B1 (en) 2008-01-22 2010-05-12 씨제이제일제당 (주) A microorganism of corynebacterium genus having enhanced xanthosine 5'-monophosphate productivity and method of producing xanthosine 5'-monophosphate using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282220A (en) * 2015-05-29 2017-01-04 上海市农业科学院 A kind of method improving bacillus subtilis synthesis inosine ability
CN106282220B (en) * 2015-05-29 2021-03-23 上海市农业科学院 Method for improving inosine synthesizing capability of bacillus subtilis

Also Published As

Publication number Publication date
KR101056872B1 (en) 2011-08-12

Similar Documents

Publication Publication Date Title
KR101166027B1 (en) Microorganism belonging to the genus Corynebacterium having enhaced 5&#39;-inosinic acid productivity and method for producing 5&#39;-inosinic acid using the same
US8058036B2 (en) Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same
EP2102337B1 (en) A microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR20190090657A (en) A microorganism of the genus Corynebacterium producing purine nucleotide and method for producing purine nucleotide using the same
EP2115120B1 (en) Microorganism producing inosine and method of producing inosine using the same
US20210002655A1 (en) Microorganism having increased glycine productivity and method for producing fermented composition using the same
CN102985529B (en) The production method of the microorganism producing 5 &#39;-xanthosine monophosphate(XMP) and 5 &#39;-guanosine monophosphate with improvement and 5 &#39;-xanthosine monophosphate(XMP) and the 5 &#39;-guanosine monophosphate using it
EP1447442A1 (en) Inosine production by means of Bacillus bacteria able to grow in the presence of 6-ethoxypurine
KR20000076602A (en) Process for producing purine nucleotides
KR101056872B1 (en) Microorganisms in Corynebacterium with Improved Productivity of Nucleic Acid-Based Materials and Methods for Producing Nucleic Acid-Based Materials Using the Same
KR100957690B1 (en) A microorganism of corynebacterium genus having enhanced xanthosine 5&#39;-monophosphate productivity and method of producing xanthosine 5&#39;-monophosphate using the same
KR100954052B1 (en) Microorganisms of corynebacterium having an inactivated gene encoding abc-transpoter and processes for the preparation of 5&#39;-inosinic acid using the same
KR100857379B1 (en) Microorganism overexpressed 5&#39;-phosphoribosyl-5-aminoimidazoleair carboxylase and the process for producing 5&#39;-inosinic acid using the same
EP2233563B1 (en) Microorganism of the genus corynebacterium having the ability to produce inosine, and an inosine production method using the same
KR100785248B1 (en) 5&#39;- microorganism overexpressed purc gene and the process for production method of 5&#39;-inosinic acid using the same
KR100694427B1 (en) Microorganisms of corynebacterium and processes of preparing 5&#39;-inosinic acid using same
KR101049023B1 (en) Corynebacterium ammoniagenes with 5&#39;-inosinic acid production capacity and method for producing 5&#39;-inosine acid using the same
KR100964078B1 (en) Corynebacterium ammoniagenes having enhanced 5&#39;-inosinic acid productivity and method of producing 5&#39;-inosinic acid using the same
KR20090069571A (en) Microorganisms of corynebacterium having an inactivated gene encoding oxidoreductase and processes for the preparation of 5&#39;-inosinic acid using the same
KR20100038639A (en) Microorganism comprising modified purc gene and process for production method of inosine using the same
KR20100088906A (en) Microorganism having enhanced inosine productivity and process for producing inosine using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150527

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160530

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 9