KR20100042239A - 수동 전력 제어를 갖는 수중 발전소 - Google Patents

수동 전력 제어를 갖는 수중 발전소 Download PDF

Info

Publication number
KR20100042239A
KR20100042239A KR1020090098204A KR20090098204A KR20100042239A KR 20100042239 A KR20100042239 A KR 20100042239A KR 1020090098204 A KR1020090098204 A KR 1020090098204A KR 20090098204 A KR20090098204 A KR 20090098204A KR 20100042239 A KR20100042239 A KR 20100042239A
Authority
KR
South Korea
Prior art keywords
power plant
rotor blade
underwater power
rotor
swivel
Prior art date
Application number
KR1020090098204A
Other languages
English (en)
Inventor
아르리트 라파엘
스타르쯔만 랄프
Original Assignee
보이트 파텐트 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 보이트 파텐트 게엠베하 filed Critical 보이트 파텐트 게엠베하
Publication of KR20100042239A publication Critical patent/KR20100042239A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/40Flow geometry or direction
    • F05B2210/404Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/506Kinematic linkage, i.e. transmission of position using cams or eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/75Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism not using auxiliary power sources, e.g. servos
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/77Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/78Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by aerodynamic forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/402Type of control system passive or reactive, e.g. using large wind vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/50Control logic embodiment by
    • F05B2270/508Control logic embodiment by mechanical means, e.g. levers, gears or cams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

본 발명은 수중 발전소에 관한 것으로서,
회전 유닛에 고정되는 복수의 로터 블레이드를 갖는 수평의 로터 배열에서의 프로펠러 모양의 수 터빈을 포함하며, 각각의 로터 블레이드는 실제로 각각의 로터 블레이드를 따라 확장되는 스위블 축과 관련되며, 적어도 스위블 축 주위의 로터 블레이드의 회전을 가능하게 하는 회전 유닛에 대한 로터 블레이드의 비틀림 및/혹은 고정에 관한 횡단 확장 부분에서 스위블 축 주위에 탄력 있게 배열되며, 및
스위블 축의 위치는 로터 블레이드의 작동 동안에 작용하는 유체압은 깃 모양의 피치 위치에서 지시되는 모멘트를 발생하며 회전하는 동안 기원하는 원심력은 깃 모양의 피치 위치에 대하여 로터 블레이드 상의 원심 모멘트의 회복을 초래하는 것과 같은 방법으로 로터 블레이드의 프로파일 모양에 따라 상대적으로 선택되는 것을 포함한다.
수중 발전소(underwater power plant), 수 터빈(water turbine), 로터 블레이드(rotor blade), 회전 유닛(revolving unit), 스위블 축(swivel axes)

Description

수동 전력 제어를 갖는 수중 발전소 {AN UNDERWATER POWER PLANT WITH PASSIVE POWER CONTROL}
본 발명은 수동 전력 제어를 갖는 수중 발전소에 관한 것으로서, 특히 수평의 로터(rotor) 구성에서 프로펠러 모양의 수 터빈(water turbine)을 갖는 조류 발전소에 관한 것이다.
물 흐름으로부터 어떠한 댐 구조 없이 자립형(free-standing)의 방법으로 운동 에너지를 흡수하는 발전소는 특히 해류, 바람직하게는 조류로부터의 전력 발전을 위하여 적합하다. 수중 발전소의 유리한 실시 예는 회전 유닛(revolving unit)에 고정되는 복수의 로터 블레이드(rotor blade)를 갖는 프로펠러 모양의 수 터빈을 포함한다.
그러한 수 터빈은 일반적으로 전기 발전기가 수용된 기계 곤돌라(gondola)를 거쳐 지지 구조물에 고정될 수 있는데, 상기 지지 구조물은 수계(water body) 바닥 의 토대(foundation)에 고정되거나 혹은 부유상태인 채로 배열된다. 일반적인 수중 발전소의 경제적인 디자인을 위하여, 특히 조류로부터의 발전소를 위하여, 일반적으로 1년의 과정을 통하여 발생하는 평균 흐름 속도가 기초로 사용된다. 그러나, 바다에서의 발전소의 위치의 경우에 있어서, 유입(inflow) 속도는 특정 경우에 있어서 적어도 선택된 발전소 구성에 놓여 있는 짧은 시간 동안 발생할 수 있다. 그러한 극단적 상황은 특히 폭풍 조건에서 발생하는데, 그 이유는 상기 조건에서 바람과 파도가 조류의 방향으로 진행하기 때문이다. 흐름으로부터의 수 터빈에 의해 흡수되는 기계적 전력은 그러한 스트레스의 경우에 있어서 제한될 필요가 있다.
전력 제한의 알려진 형상은 능동의 블레이드 각도 조절 장치를 제공한다. 이것은 원하는 전력 커브(curve)가 획득되는 그러한 방법으로 운전 유동(driving flow)의 로터 블레이드의 받음 각(angle of attack)의 선택을 허용한다. 극한 상황에서, 로터 블레이드는 깃 모양의(feathered) 피치(pitch) 위치의 방향으로 인도되며 따라서 전력 흡수는 제한된다. 따라서, 수 터빈 하류의 구성 요소는 과부하에 대하여 구동렬(drive train) 내에서 보호된다. 이러한 접근의 불리한 측면은 블레이드 각도 조절 장치와 같은 배열이 요구되는 구조적 노력이다. 더욱이, 실패의 위험을 증가시켜 결과적으로 정기적 유지가 요구되는 추가적인 가동 부품이 회전 유닛 내에 필요하다.
가능한 한 최소의 유지를 요구하는 튼튼한 구성을 이루기 위하여, 구동렬에서의 전기 발전기를 통한 지원 효과의 수단에 의한 속도 가이던스(guidance)는 다른 수단으로서 전력 제한이 야기될 수 있다. 발전기 및 아마도 추가되는 제동 장치는 최적 전력으로부터 떨어진 것과 같이 인도하기 위한 과부하의 경우에 있어서 로터의 속도를 감소시킬 것이다. 이러한 속도의 감소는 스톨(stall)이 로터 블레이드의 프로파일(profile)에서 발생할 때까지 진행될 수 있는데, 따라서 전력의 흡수는 효과적으로 감소된다. 이러한 접근의 불리한 면은 스톨의 상태 하에서 발생하는 기계적 부하가 블레이드 여기(excitation)를 발생시키는 결과 때문에 높으며 각각의 로터 블레이드의 구조적 강성(stiffness)의 형태를 요구한다는 것이다. 높은 구조적 노력은 강도를 두는 이러한 요구의 결과이며 수 터빈을 무겁게 한다.
전력 제한을 위한 속도 가이던스가 과부하의 경우에 있어서 최적의 포인트(popint) 이상의 회전 속도에 대한 속도가 증가가 허용될 때, 스톨링(stalling)을 막는 것이 가능하다. 원심 모멘트(centrifugal moment)의 증가가 특히 높은 속도의 범위에서 플랜트의 디자인을 위하여 고려될 필요가 있다.
본 발명은 과부하의 경우에 있어서 구조적 관점에서 간단하고 관련 개방 루 프(open-loop) 및 폐쇄 루프(closed-loop) 제어 장치를 생략하는 것이 가능한 전력 제한의 제공 목적을 기초로 한다. 더욱이, 전력 제한은 로터의 과도하게 높은 부하의 충격이 구조물의 결과로서 배제되는 방법으로 배열되어야 한다.
본 발명자들은 튼튼하고 효과적인 전력 제한이 수평 로터 디자인에서의 수 터빈을 위하여 로터 블레이드의 자기 동조(self-adjustment)에 의해 제공된다는 위의 목적에 대한 해결책을 인지하였다. 이러한 목적을 위하여 회전 유닛에 고정되는 복수의 로터 블레이드를 갖는 프로펠러의 방법으로 배열되는 수 터빈을 가정하였다. 각각의 로터 블레이드는 실제로 로터 블레이드를 따라 확장되는 스위블 축(swivel axes)과 관련된다. 스위블 축은 유체 중심(hydrodynamic center)과 관련되는 유입 프로파일 선단(nose)으로 옮겨진다.
각각의 로터 블레이드는 회전 유닛에 대한 고정 포인트를 의미하는 베이스(base) 포인트 주위를 회전할 수 있으며, 및/혹은 로터 블레이드는 유체력(hydrodynamic force)에 기인하는 부하의 결과로서 스위블 축 주위에 비틀림(torsion)을 수행한다. 비틀림은 블레이드 전체로 확장될 수 있거나 혹은 스위블 축의 부분을 의미하는 종단 부분으로 제한될 수 있다.
한편으로는 고정되어 회전하게 배열되고 다른 한편으로는 비틀림과 관련하여 로터 블레이드의 탄성 배열을 하는 상대적인 실시 예는 정상적인 표면에 스위블 축 을 갖는 프로파일 부분의 유체 중앙의 실선에 대한 스위블 축의 각각의 선택에 있어서 위쪽으로의 선회 운동을 이르게 한다. 이는 깃 모양의 피치 위치의 방향에서의 로터를 비틀어 감거나 혹은 이 방향으로 향하는 비틀림을 야기하는 모멘트로 이해되어야 한다.
로터 블레이드의 회전 동안 발생하는 원심력은 깃 모양의 피치 위치로의 운동에 반하여 작용하는데, 따라서 모든 작동 상황에서 블레이드를 뒤로 인도하는 모멘트를 발생시키는 원심 모멘트 및 위쪽으로 선회하는 유체적 모멘트 사이에서의 모멘트에 있어서 균형을 이룬다. 그것들은 블레이드에서 비틀림 동안에 자체로 일어날 수 있으며 혹은 회복력을 발생하기 위한 장치가 회전 유닛 내에 로터 블레이드의 고정에 더하여 포함될 수 있다.
회복력을 발생시키기 위한 장치가 깃 모양의 피치 위치 방향에서 스위블 축에 관한 로터 블레이드의 회전을 탄력적으로 방해하는 회전 유닛 내의 로터 블레이드의 고정에서 통합되는 경우에 있어서, 로터 블레이드는 과부하의 경우가 사라진 후에 자동적으로 로터 면으로 돌아온다. 깃 모양의 피치 위치 방향에서 위쪽으로 회전하는 운동이 실제로 로터 블레이드의 비틀림을 기초로 할 때에도 동일하게 적용된다.
만약 그러한 탄성 회복력이 회전 유닛 상에 고정되는 로터 블레이드의 배열 을 놓친다면 깃 모양의 피치 위치로부터의 복귀는 원심 운동의 효과에 의해 야기되어야만 한다. 이러한 목적을 위하여, 수 터빈은 복구 회전이 발생할 때까지의 정도에 수중 발전소의 전기 발전의 동력 작동 수단에 의하거나 혹은 유입에서 깃 모양의 피치 위치에서 플랜트를 작동시키기에 충분한 최소한의 운전 모멘트에 의해 가속화되는데, 따라서 위쪽으로 회전하는 효과를 갖는 유체 모멘트를 초과하는 원심 모멘트에 대하여 속도 한계에 대한 자동적인 급상승이 발생하며 정상적인 작동을 위한 복귀가 발생한다.
본 발명의 뒤따르는 개발에 따르면, 본 발명에 따른 수동 전력 제어는 양방향 유입을 갖는 수중 발전소를 위하여 사용된다. 로터 블레이드를 위한 양방향 유입을 갖는 프로파일은 특히 조류 발전소에 유리한데, 그 이유는 그러한 구조에서는 유입 방향의 주기적인 변화는 종형 축에 관한 로터 블레이드의 어떠한 회전이나 혹은 수직 축에 관한 발전소 전체의 어떠한 회전도 요구하지 않기 때문이다. 이러한 목적을 위하여, 렌즈 모양의 형상으로 대칭적으로 배열되는 유체역학적 프로파일 혹은 S자 꼬임(S-twist)을 갖는 점대칭의 프로파일을 사용하는 것이 가능하다. 수동 로터 블레이드 조절이 양 면에 유입 능력을 갖도록 결합될 때, 특히 개방 루프 및 폐쇄 루프 제어에 관한 구조적 관점에서 단순화된 플랜트 디자인이 획득된다. 따라서 플랜트를 모니터하기 위하여 필요한 전기 제어 시스템 상에 위치하는 필수품들이 감소되며, 따라서 높은 견고성을 갖는 수중 발전소가 획득된다. 본 발명을 아래에 자세히 나타낸 도면과 함께 본 실시 예를 참조하여 더 자세히 설명한다.
도 1은 수동 로터 블레이드 조절을 갖는 로터 블레이드(1)의 부분 단면의 종단면을 나타낸다. 로터 블레이드(1)는 이 경우에서는 허브(hub)와 같은 방식으로 배열되는 회전 유닛(2) 상의 스위블 축(3) 주위를 회전하는 방식으로 연결된다. 이러한 목적을 위하여 회전 유닛(2) 내의 용기(receptacle, 6)에 삽입되는 축 핀(axial pin, 5)이 제공된다. 용기(6)는 수 윤활(water-lubricated) 슬라이드 베어링으로 배열되고 축 핀(5)이 회전 운동을 실행하도록 허용하는 베어링(7)과 관련된다. 베어링(7)은 로터 블레이드가 회전 유닛(2) 내로 들어오는 힘(force)을 흡수하여야만 한다. 더하여, 방사상의 안전 장치(8)가 방사형 방향에서의 로터 블레이드(1)를 안전하게 하기 위하여 회전 유닛(2) 상의 스러스트 베어링(thrust bearing) 뒤를 붙잡고 있는 축 핀(5) 상에 제공된다.
도 1에 나타나는 것과 같이 회전 유닛(2)에 대한 로터 블레이드(1)의 회전 결합의 결과로서, 회전 면(39)과 관련된 로터 블레이드(1)의 블레이드 각도는 작동 모멘트의 균형에 따른 플랜트의 가동 동안에 설정될 것이다. 작동 모멘트 중의 하나는 로터 블레이드(1)에 작용하는 유체력에 의해 획득된다. 이는 도 2에 나타나는데, 이는 도 1의 A-A 부분에 따라 약술된 로터 블레이드(1)의 단방향 프로파일이다. 설명되는 프로파일은 도식적으로 단순화되었으며, 이러한 종류의 수중 발전소 에서 일반적으로 사용되는 수중익(hydrofoil)과 유사한 프로파일이다.
도 2는 로터 블레이드의 운전 유압(driving flow, c) 및 음성의 주변 속도(u)를 나타내는데, 유효 유량(effective flow, w)에 대한 벡터로 더해진다. 이것은 프로파일 선단(10)과 만나며 유체 중심(11)에 작용하는 프로파일 상의 힘 효과를 발생시킨다. 그것은 벡터로 더해질 때 유체력(Fr)의 결과로 나타나는 부력(Fa) 및 유압 저항(Fd)으로 구성된다. 본 발명의 경우에서, 유체 중심(11)은 프로파일 코드(9) 길이의 약 ¼에 위치한다. 결과로 생기는 유체 중앙(11)에 작용하는 유체력(Fr)은 두 가지의 부품으로 브레이크다운(break down)된다. 하나는 프로파일 코드(9)에 평행하게 뻗어 있는 접선력(tangential force, Ft)이다. 다른 하나는 프로파일 코드(9)에 수직 방향으로 획득되는 수평방향력(transversal force, Fq)이다.
스위블 축(3)은 유체력이 깃 모양의 피치 위치 방향에서 지시되는 모멘트를 발생시킨다. 이러한 목적을 위하여, 스위블 축(3)은 옮겨놓는 방법으로 유체 중앙으로부터 간격을 두어 상류에 배열된다. 그러한 결과적 레버(lever)의 결과로 인하여, 수평방향력(Fq)은 본 발명의 설명을 위하여 시계반대방향에서 지시되는 모멘트를 발생시킨다. 이러한 모멘트는 위로 회전하는 방법으로 작용하며 깃 모양의 피치 위치에 대한 프로파일을 비틀려고 하는데, 이는 프로파일 코드(9) 및 회전 평 면(39) 사이의 각도가 유효 유량(w)과 관련된 프로파일(40)의 받음 각을 감소시키기 위하여 증가한다. 깃 모양의 피치 위치 방향에서 위로 회전되는 위치를 위하여 파선으로 되어 있는, 처음 위치에서의 프로파일(40)은 도 3에서의 미리 결정된 운전 유량(c)을 위하여 약술된다.
본 발명의 선택적인 실시 예를 위하여, 로터 블레이드(1)는 회전 유닛(2)에 회전하지 않는 방법으로 결합된다. 대신에 위쪽으로의 회전은 로터 블레이드(1)의 탄성에 의해 야기된다. 이는 도 4에 나타난다. 중공(hollow) 프로파일로서 배열되는 로터 블레이드(1)를 위한 보강재(4)의 위치는 증가되는 구조 강도의 부위가 유체 중앙(11)과 관련되어 위쪽으로 배열되는 것과 같은 방법으로 선택된다. 이러한 수단의 결과로서, 수평방향력(Fq)은 아래에 명시될 비틀림 축(13), 즉 이미 아래에 선택된 용어에 따른, 설명된 실시 예를 위하여 보강재(4)를 따라 확장되는 그러한 축인 스위블 축(3) 주위를 트위스트(twist) 하게 된다. 로터 블레이드(1)의 스위블 축(3) 주위를 제한적으로 트위스트 하는 것은 도 4에서 설명한 것과 같이 A-A 부분과 관련된 프로파일(40)을 위하여 획득되는데, 따라서 프로파일(40)은 깃 모양의 피치 위치에 대한 회전 유닛(2)에 의한 특정한 방사형 거리로부터만 안내된다. 위쪽으로의 회전을 위한 특징 및 보강재(4) 및 비틀림에 대한 탄성 카운터포스(counter-force)의 결과의 국부적인 결정을 조절함으로써 이 목적에 필요한 모멘트를 조절할 가능성이 있다.
더욱이, 위에 설명한 회전 유닛(2)에 대한 로터 블레이드(1)의 회전 결합에 의한 스위블 축(3) 주위를 트위스트 하는 것 및 유체 중앙(11)과 관련되어 위쪽으로 배열되는 스위블 축(3) 주위의 비틀림에 관한 두 가지 수단은 서로 결합될 수 있다.
위에서 설명한 바와 같이 로터 블레이드(1)의 프로파일(40) 상의 유체력 작용의 결과로 인한 위쪽으로의 회전 모멘트와는 대조적으로, 회전 동안에 기원하는 원심력이 로터 블레이드(1)에 작용한다. 그것은 회전 평면(39) 뒤의 로터 블레이드(1)를 인도하는 경향이 있으며, 따라서 모멘트의 균형이 로터 블레이드(1) 상의 미리 결정된 유량 속도를 위하여 획득된다. 그러한 구성은 프로파일 구성 및 평형 상태는 정상적인 작동에서 로터 블레이드(1)가 유효 유량(w)과 관련된 추진에 이로운 각도로 가정하는 극한 하중의 경우에 있어서만 깃 모양의 피치 위치의 범위 내에 놓여 있는 직접적으로 결합된 전기 발전기에 의한 속도 가이던스와 결합하는 스위블 축(3) 위치 결정에 의해 선택될 수 있다.
결과적으로 초래된 평형 상태는 뒤따르는 수단에 의해 영향을 받을 수 있다. 쌍으로 배열되는 추가적인 웨이트(14.1, 14.2)가 이러한 목적을 위하여 도 5에 나타나는 것과 같이 도 1에 따른 추가 개발에서 제공된다. 도 6의 횡단면은 부가적인 웨이트(14.1, 14.2)가 회전 평면(39)과 평행인 스위블 축(3)으로부터 간격을 두고 있는 것을 나타낸다. 이것은 로터 블레이드(1)의 표면 원심 모멘트를 증가시키는데, 따라서 깃 모양의 피치 위치에 대하여 로터 블레이드(1)를 어택(atack) 위치로 인도하는 회복 모멘트는 회전 동안 증가된다. 회복력(15)를 발생시키기 위한 장치는 부가적으로 혹은 대안으로 제공될 수 있다. 도 5에서는, 이러한 목적을 위하여 회전 유닛(2) 내에서 통합되고 축 핀(5)에 대한 확장으로 작용하는 장치를 나타낸다. 깃 모양의 피치 위치 방향에서 로터 블레이드(1)의 회전 운동 동안 카운터포스를 발생시키는 수동 시스템이 특히 바람직하다.
더욱이, 도 5 및 6에 나타나는 것과 같은 수단은 본 발명에 따른 수동 로터 블레이드 조절을 갖는 수력 발전소의 시동을 향상시킨다. 로터 블레이드(1)는 깃 모양의 피치 위치에 있으며 유입에 관한 과부하는 없는 것으로 가정된다. 회복력(15)을 발생시키는 어떠한 장치도 제공되지 않는 경우에 있어서, 수 터빈을 먼저 특정 회전 속도로 가져오는 것이 필요하다. 이것은 전기 발전기의 운전 작동에 의해 성취된다. 특정 회전 속도로부터, 원심력은 정상적인 작동을 위하여 개개의 로터 블레이드(1)의 의해 생산되는 전기 발전기의 발전기 작동 동안의 추진력이 수 터빈을 원심력이 운전 유량(c)의 미리 결정된 속도까지의 어택 위치에서 위쪽으로의 회전 유체 모멘트에 대하여 로터 블레이드를 지지하기 위하여 로터 블레이드(1)를 회전 평면(39)으로 인도한다.
도 7 내지 14는 양방향 유입을 갖는 프로파일을 갖는 일반적인 수중 발전소 를 위한 수동 로터 블레이드 조절의 실시 예에 관한 것이다. 그러한 것 중의 하나가 도 7 및 8에 도식적으로 단순화하여 나타내는데, 이는 프로파일 코드(9) 및 중앙 라인(34)과 관련하여 대칭적으로 배열되는 것으로 가정한 렌즈 모양의 프로파일을 갖는다. 프로파일은 대안으로 S자 꼬임(S-twist)을 형성한다. 이 경우에 있어서, 골격 라인은 포인트 대칭이며 S자 모양의 외형을 따른다. 그러한 프로파일 배열은 본 도에서는 상세히 나타나지 않는다.
도 7은 전형적인 프로파일의 단면에서 제 1 방향으로부터의 운전 유량(c), 제 1 유체 중앙(19)에 작용하여 발생하는 유체력(Fr)을 갖는 음성 회전 속도(u) 및 유효 유량(w)을 나타낸다. 결과로서 생기는 유체력(Fr)은 도 8에서 나타나는 운전 유량(c')을 갖는 유입의 제 2 반대 방향을 위하여 획득되는데, 그러한 힘은 대칭으로 배열되는 제 2 유체 중앙(20)에 작용한다. 수동 로터 블레이드 조절을 구현하기 위하여, 스위블 축은 수평력(Fq, Fq')과 관련하여 위쪽으로의 회전 모멘트를 발생시키기 위한 레버 암(arm)을 제공하기 위하여 유체 중앙의 위쪽에 배열된다. 유입 방향에 따라, 제 1 스위블 축(3.1)으로부터 제 2 스위블 축(3.2)으로의 변화를 형성할 필요가 있다. 능동 시스템은 이러한 목적으로 사용되는데, 그러나 이것은 제어 시스템에 대하여 원하지 않는 효과를 이르게 할 수 있다. 그러므로 또한 유입 방향에 다른 수동 방법에 있어서 제 1 스위블 축(3.1)으로부터 제 2 스위블 축(3.2)으로의 변화를 형성하는 것이 바람직한데, 따라서 변화는 오직 흐름력(flow force) 자체에 의해서만 야기될 수 있다.
결과로서 생기는 유체력(Fr, Fr')의 수평력(Fq, Fq') 내로의 브레이크다운 및 도 7 및 8에서 선택된 것과 같이 프로파일 코드(9)에 평행하는 접선력(Ft, Ft')은 유입면 상의 프로파일 선단으로부터 유출면 상의 프로파일 선단으로의 향하는 도시된 실시 예를 위한 접선력(Ft, Ft')에 이르게 한다. 이러한 방향은 프로파일 및 프로파일 내의 부력 및 유동 저항 사이의 비율을 결정함으로써 미리 결정된 유입 속도 범위를 위한 설치 각도를 선택함으로써 설정된다. 양방향 유입을 갖는 프로파일(16)을 위한 수동 로터 블레이드 조절의 다음의 실시 예는 접선력(Ft, Ft')을 위하여 선택된 그러한 방향을 가정한다. 그러나, 도시된 원리는 또한 반대편으로 향하는 접선력(Ft, Ft')에도 적용될 수 있다.
도 9 및 10은 양방향 프로파일을 갖는 로터 블레이드(1)를 위한 수동 로터 블레이드 조절의 가능한 실시 예를 나타낸다. 평면 가이드 부위(29)가 이러한 목적을 위하여 회전 유닛(2) 내에 제공되는데, 그 위에 로터 블레이드(1)와 단단하게 결합되는 슬라이딩 장치가 슬라이딩 운동을 형성하며 동시에 로터 블레이드 힘을 전달한다. 본 발명의 배열을 위하여 슬라이딩 장치(30)는 평면의 평행한 방법으로 적용된 상부 지지 기판(27) 및 기부 지지 기판(28)을 포함하며 그들의 거리에 관하여 동일한 상부 및 하부 면의 슬라이딩이 평면 가이드 부위(29)에 대한 상대적인 운동 동안에 발생하는 것과 같은 방법으로 선택된다. 이러한 부품의 작용 표면은 예를 들면 PTFE와 같은 슬라이딩 물질로 덮여 있거나 혹은 슬라이드 베어링으로서 배열된다. 이 경우에 있어서, 하나의 부품은 바람직하게는 강성 물질, 일반적으로 특수강으로 만들어지며, 반대의 구동 표면은 엘라스토머(elastomer), 특히 Orkot®와 같은 연성 물질로 만들어진다.
상부 지지 기판(27) 및 기부 지지 기판(28) 사이의 결합은 바람직하게는 실린더 모양을 갖는 제 1 결합 소자(23) 및 제 2 결합 소자(24)에 의해 발생한다. 결합 소자(23, 24)는 로터 블레이드(1)의 양방향 프로파일에 관하여 그들의 종형 축이 제 1 및 제 2 스위블 축(3.1, 3.2)으로 정의되는 것과 같은 방법으로 배열된다. 제 1 결합 소자(23)는 평면 가이드 부위(29)를 통하여 도달하는 제 1 가이드 홈(21) 내로 이동한다. 따라서, 제 2 가이드 홈(22)은 제 2 결합 소자(24)와 관련된다.
두 개의 스위블 축(3.1, 3.2) 각각의 하나의 효과는 관련 가이드 홈(21, 22) 내의 결합 소자(23, 24)의 이동 능력에 의해 결정된다. 이는 도 9에 나타나는 단면 C-C로부터 나타난다. 두 개의 가이드 홈(21, 22)은 서로에 관하여 거울 모양으로 배열되며 각각은 정상적인 작동 위치에서 적어도 로터 블레이드(1)의 프로파일 코드(9)에 평행하는 단부로 확장되는 짧은 다리를 포함한다. 짧은 다리는 아래의 접선 가이드(25.1, 25.2)로서 설명된다. 그것들은 서로 부합하는 접선 가이드의 종형 축(33)과 관련된다. 더욱이, 상부 회전 부위(26.1, 26.2)가 가이드 홈(21, 22)을 위하여 제공되는데, 상기 부위는 접선 가이드(25.1, 25.2)에 인접한다. 바람직하게는, 각각 관련된 결합 시그먼트(coupling segment, 23, 24)를 위한 상부 회전 부위(26.1, 26.2)의 슬라이딩 표면은 관련 없는 결합 소자(23, 24)를 위한 반대의 가이드 홈(21, 22)의 접선 가이드(25.1, 25.2)의 단부 내에 중앙 포인트가 놓여 있는 아크 서클(arc of the circle)을 따른다. 아크 서클의 반지름은 실제로 두 개의 결합 소자(23, 24)의 중앙 포인트의 거리와 일치한다.
가이드 홈(21, 22)의 기능은 도 11 내지 14에 나타내었다. 도면은 서로 다른 작동 상황에 대한 도 9의 단면에 대하여 양방향 유입을 갖는 프로파일의 돌출부(31)를 나타낸다. 도 11은 운전 유동을 위한 정상적인 작동을 위한 회전 속도(v)를 나타낸다. 제 1 결합 소자(23)는 제 1 접선 가이드(25.1)의 단부에 위치하며 제 2 결합 소자(24)는 제 2 가이드 홈(22)에서 제 2 상부 회전 부위(26.2)를 따라 위쪽으로의 회전 운동이 가능한 방법으로 배열된다. 결과적으로, 제 1 스위블 축(3.1)은 제 1 결합 소자(23)에 의해 결정된다. 더욱이, 유체력은 제 1 가이드 홈(21)의 벽을 통하여 죄어진다. 더하여, 바람직하게 상부 및 기부 지지 기판(27, 28)의 평면 배열은 부하를 흡수하는 방법으로 작용한다. 이러한 정상적인 작동 상태를 기초로, 로터 블레이드(1)의 위쪽으로의 회전은 과부하의 경우에 발생한다. 이는 도 12에 나타내었다.
운전 유량(c')의 변화가 있을 때, 도 13 및 14에 나타나는 것과 같은 변화가 제 1 스위블 축(3.1)으로부터 제 2 스위블 축(3.2)으로 발생한다. 로터 블레이드 상의 흐름력 및 점차 형성되는 접선력(Ft)이 접선 가이드(25.1, 25.2) 내의 결합소자(23, 24)의 슬라이딩 운동을 이르게 한다. 이러한 운동의 뒤따르는 과정에 있어서, 제 1 결합 소자(23)는 제 1 가이드 홈(21)의 내부 상의 곡선 슬라이딩 궤도(32)를 따르며 제 2 결합 소자(24)는 제 2 접선 가이드(25.2) 상의 단부까지 이동한다. 그 결과, 제 2 스위블 축(3.2)은 제 2 결합 소자(24)에 의해 결정된다. 회전 속도(v)에서의 다음의 증가의 결과로서, 접선 가이드(33)의 축과 상대적인 프로파일 코드(9)의 평형 조정을 이르게 하는 평형 모멘트가 있다. 도 9의 거울 모양의 위치는 도에서는 자세히 설명되지 않는다.
본 발명의 뒤따르는 실시 예도 가능하다. 특히 스위블 축이 곡선의 개량을 갖는 것도 가능한데, 특히 낫 모양의 로터 블레이드의 경우에 있어서 그러하다. 스위블 축(3)을 결정하는 보강 부품이 직선으로 확장되지 않을 때 유체력의 결과로서 생기는 로터 블레이드의 트위스트를 갖는 스위블 축(3)의 경우에 있어서도 동일하게 적용된다. 직선으로 확장되지 않는 스위블 축도 본 발명의 가능한 실시 예이다. 더욱이, 본 발명에 따라 배열되는 수중 발전소는 특히 로터 블레이드 조절 장치 부위에서 성장 방지 시스템을 갖는다. 그러한 시스템은 성장을 제거하고 특히 기능 상태에서의 로터 블레이드 조절의 가이드 경로 및 구동 소자를 보존하기 위하여 플 랜트의 가열 부분을 위한 장치를 포함한다. 본 발명의 뒤따르는 실시 예는 다음의 청구항의 범주로부터 획득된다.
도 1은 본 발명에 따른 로터 블레이드 조절 장치를 나타낸다.
도 2는 단방향 로터 블레이드 프로파일을 위한 유입 상태 및 결과로서 생기는 힘 작용을 설명한다.
도 3은 깃 모양의 피치 위치 방향에서 로터 블레이드의 위쪽으로의 상승을 나타낸다.
도 4는 깃 모양의 피치 위치 방향에서 로터 블레이드의 탄력적인 비틀림을 나타낸다.
도 5는 회복력을 발생시키는 웨이트(weight) 및 장치를 갖는 도 1에 따른 실시 예의 뒤따르는 개발을 나타낸다.
도 6은 도 5에 따른 실시 예의 종단면을 나타낸다.
도 7 및 8은 양방향 프로파일을 위한 서로 다른 방향으로부터의 유입을 위한 유체력을 나타낸다.
도 9는 양방향 로터 블레이드를 위한 본 발명에 따른 로터 블레이드 조절의 가이드 홈의 횡단면을 나타낸다.
도 10은 도 9의 B-B의 단면을 나타낸다.
도 11은 첨가된 로터 블레이드 프로파일을 갖는 도 9의 단면에 대한 제 1방향으로부터의 유입을 위한 정상적인 작동 상태를 나타낸다.
도 12는 첨가된 로터 블레이드 프로파일을 갖는 도 9의 단면에 대한 깃 모양의 피치 위치 방향에서 위쪽으로 회전하는 로터 블레이드를 갖는 과부하 상태를 나 타낸다.
도 13 및 14는 첨가된 로터 블레이드 프로파일을 갖는 도 9의 단면에 대한 유입 방향의 반대의 결과로서 스위블 축의 변화를 나타낸다.
〈도면의 주요 부분에 대한 부호 설명〉
1 로터 블레이드 2 회전 유닛
3. 스위블 축 3.1 제 1 스위블 축
3.2 제 2 스위블 축 4 보강재
5 축 핀 6 용기
7 베어링 8 방사형 안전 수단
9 프로파일 코드 10 프로파일 선단
11. 유체 중앙 11.1 유체 중앙의 실선
12 상부 회전 위치 13 위쪽으로 회전되는 위치
14 추가 웨이트 15 회복력 발생 장치
16 양방향 유입을 갖는 프로파일 17 제 1 프로파일 선단
18 제 2 프로파일 선단 19 제 1 유체 중앙
20 제 2 유체 중앙 21 제 1 가이드 홈
22 제 2 가이드 홈 23 제 1 결합 소자
24 제 2 결합 소자 25.1 제 1 접선 가이드
25.2 제 2 접선 가이드 26.1 제 1 상부 회전 부위
26.2 제 2 상부 회전 부위 27 상부 지지 기판
28 기부 지지 기판 29 평면 가이드 부위
30 슬라이딩 장치 31 양방향 유입 프로파일의 돌출부
32 곡선 슬라이딩 궤도 33 접선 가이드의 종형 축
34 중앙 라인 39 회전 평면
40 프로파일
c, c' 운전 유량 d 받음 각
u, u' 음성 회전 속도 v, v' 회전 속도
w, w' 유효 유량 Fa, Fa' 부력
Fd, Fd' 흐름 저항 Fr, Fr' 결과로 초래되는 유체력
Fq, Fq' 수평력 Ft, Ft' 접선력

Claims (8)

  1. 수중 발전소에 있어서,
    회전 유닛(2)에 고정되는 복수의 로터 블레이드(1)를 갖는 수평의 로터 배열에서의 프로펠러 모양의 수 터빈을 포함하며, 상기 각각의 로터 블레이드(1)는 실제로 각각의 로터 블레이드(1)를 따라 확장되는 스위블 축(3, 3.1, 3.2)과 관련되며, 적어도 스위블 축(3, 3.1, 3.2) 주위의 로터 블레이드(1)의 회전을 가능하게 하는 회전 유닛에 대한 로터 블레이드(1)의 비틀림 및/혹은 고정에 관한 횡단 확장 부분에서 스위블 축(3, 3.1, 3.2) 주위에 탄력 있게 배열되며, 및
    스위블 축(3, 3.1, 3.2)의 위치는 로터 블레이드(1)의 작동 동안에 작용하는 유체압이 깃 모양의 피치 위치에서 지시되는 모멘트를 발생하며 회전하는 동안 기원하는 원심력은 깃 모양의 피치 위치에 대하여 로터 블레이드(1) 상의 원심 모멘트의 회복을 초래하는 것과 같은 방법으로 로터 블레이드(1)의 프로파일 모양에 따라 상대적으로 선택되는 것을 포함하는 것을 특징으로 하는, 수중 발전소.
  2. 제 1항에 따른 수중 발전소에 있어서, 상기 로터 블레이드(1)는 스위블 축(3, 3.1, 3.2)의 진행을 통하여 다양한 비틀림에 대한 탄성을 갖는 것을 특징으로 하는, 수중 발전소.
  3. 제 2항에 따른 수중 발전소에 있어서, 상기 로터 블레이드(1)는 회전 유닛으로부터 보여질 때, 그것의 종단 확장의 나머지 부위에서보다 종단 확장의 ⅓에서 스위블 축(3, 3.1, 3.2)에 대한 더 큰 탄성 회복력을 발생하는 것을 특징으로 하는, 수중 발전소.
  4. 전 항 중 어느 한 항에 따른 수중 발전소에 있어서, 상기 로터 블레이드(1)는 양방향성 유입을 갖는 프로파일을 갖는 것을 특징으로 하는, 수중 발전소.
  5. 제 4항에 따른 수중 발전소에 있어서, 로터 블레이드(1)에 작용하는 유체압은 유입 방향의 변화 동안에 제 1 스위블 축(3.1)으로부터 제 2 스위블 축(3.2)으로의 변화를 야기하며, 스위블 축(3.1, 3.2)은 각각 미리 결정된 운전 유량(c, c')에 대하여 작용하는 유체 중앙(11, 20)의 상류에 배열되는 것을 특징으로 하는, 수중 발전소.
  6. 제 4항 내지 5항 중 어느 한 항에 따른 수중 발전소에 있어서, 유입이 변화되는 경우에 유체압은 제 1 가이드 홈(21) 내의 제 1 결합 소자(23) 및 제 2 가이 드 홈(22) 내의 제 2 결합 소자(24)로 이동하는 것을 특징으로 하는, 수중 발전소.
  7. 제 6항에 따른 수중 발전소에 있어서, 제 1 스위블 축(3.1)으로부터 제 2 스위블 축(3.2)으로의 변화를 위하여 제 1 결합 소자(23)는 제 1 가이드 홈(21) 내의 제 1 접선 가이드(25.1) 외부로 이동하며 제2 결합 소자(24)는 제 2 가이드 홈(22) 내의 제 2 접선 가이드(25.2) 내로 이동하는 것을 특징으로 하는, 수중 발전소.
  8. 제 1 내지 7항에 따른 수중 발전소를 작동하는 방법에 있어서, 회전 평면(39)에 대한 로터 블레이드(1)의 블레이드 각도는 원심 모멘트 및 유체 모멘트의 모멘트 평형에 의해 설정되는 것을 특징으로 하는, 수중 발전소를 작동하는 방법.
KR1020090098204A 2008-10-15 2009-10-15 수동 전력 제어를 갖는 수중 발전소 KR20100042239A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008051370.9 2008-10-15
DE102008051370A DE102008051370A1 (de) 2008-10-15 2008-10-15 Unterwasserkraftwerk mit passiver Leistungsregelung

Publications (1)

Publication Number Publication Date
KR20100042239A true KR20100042239A (ko) 2010-04-23

Family

ID=41130258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090098204A KR20100042239A (ko) 2008-10-15 2009-10-15 수동 전력 제어를 갖는 수중 발전소

Country Status (5)

Country Link
US (1) US8956114B2 (ko)
EP (1) EP2177749B1 (ko)
KR (1) KR20100042239A (ko)
CA (1) CA2681992A1 (ko)
DE (1) DE102008051370A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009018758A1 (de) * 2009-04-27 2010-10-28 Voith Patent Gmbh Unterwasserkraftwerk mit einer bidirektional anströmbaren, gleichsinnig umlaufenden Wasserturbine
US9006919B2 (en) * 2011-03-08 2015-04-14 Gerard J. Lynch Adaptive hydrokinetic energy harvesting system
DE102011053370A1 (de) 2011-09-07 2013-03-07 Schottel Gmbh Wasserströmungskraftwerk
DE102013017941A1 (de) * 2012-12-14 2014-09-18 Walter Lohmann Regeneratives Unterwasser-Energiegerät, nachfolgend WALO 2-Gerät genannt.
CN106489024A (zh) * 2014-07-15 2017-03-08 学校法人冲绳科学技术大学院大学学园 波浪能转换器
FR3071559A1 (fr) 2017-09-27 2019-03-29 Emile Droche Rotor pour dispositif de recuperation de l'energie hydraulique de la houle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US910899A (en) * 1908-02-17 1909-01-26 C F Roper & Company Reversing-propeller.
US1962382A (en) * 1932-12-15 1934-06-12 James Leffel And Company Hydraulic turbine
US2283774A (en) * 1941-08-13 1942-05-19 Milton D Thompson Feathering-blade propeller
FR1149452A (fr) * 1953-08-06 1957-12-26 Neyrpic Ets Turbo-machine à réglage automatique de vitesse
US3138136A (en) * 1959-05-13 1964-06-23 Harry J Nichols Controllable reversible pitch propeller
US3275082A (en) * 1965-08-19 1966-09-27 Robert E Stark Propellers for water craft
NL7609651A (nl) * 1976-08-31 1978-03-02 Stichting Energie Stromingsmachine resp. windmolen met automatisch verstelbare schroefbladen.
US4366387A (en) * 1979-05-10 1982-12-28 Carter Wind Power Wind-driven generator apparatus and method of making blade supports _therefor
US4971641A (en) * 1988-11-14 1990-11-20 General Electric Company Method of making counterrotating aircraft propeller blades
FR2684351B1 (fr) * 1991-12-02 1994-02-04 Aerospatiale Ste Nationale Indle Rotor multipale a pas variable, notamment pour systeme arriere anticouple d'aeronef a voilure tournante.
US6116856A (en) * 1998-09-18 2000-09-12 Patterson Technique, Inc. Bi-directional fan having asymmetric, reversible blades
EP1183463B1 (en) * 1999-02-24 2004-09-22 Marine Current Turbines Limited Water current turbine sleeve mounting
DE10021430A1 (de) * 2000-05-03 2002-01-17 Olaf Frommann Adaptive Blattverstellung für Windenergierotoren

Also Published As

Publication number Publication date
EP2177749A2 (de) 2010-04-21
EP2177749A3 (de) 2013-01-30
US8956114B2 (en) 2015-02-17
CA2681992A1 (en) 2010-04-15
DE102008051370A1 (de) 2010-04-22
EP2177749B1 (de) 2013-12-04
US20100104435A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
JP5189647B2 (ja) マルチポイント係留及び安定化システム、及び流れを用いた水中用タービンのための制御方法
US7795750B2 (en) Underwater power station and method for operating an underwater power station
KR101120896B1 (ko) 관절형 가상해저면
CA2599120C (en) Device for maintaining a hydraulic turbomachine
KR20100042239A (ko) 수동 전력 제어를 갖는 수중 발전소
US20120211987A1 (en) Marine energy hybrid
US20090236858A1 (en) Vertical turbine for water or wind power generation
US20140042749A1 (en) Ocean floor mounting of wave energy converters
KR20110036817A (ko) 조수 터빈 시스템
CN103782026A (zh) 用于从流动液体中提取能量的设备
US20100123316A1 (en) Power generator barge
JP5347048B1 (ja) 水流エネルギーを利用した発電装置
KR20140053919A (ko) 수류 또는 해류 발전소 및 그 동작 방법
KR20140085561A (ko) 특히 조력 발전소용 수차를 위한 로터 및 그 작동 방법
JP2010515851A (ja) 水流からの電気エネルギー取得のための回転可能なエネルギー生成装置
RU2611139C2 (ru) Гидроветросиловая установка
RU2014125952A (ru) Универсальная ветро-гидросиловая установка УВГСУ "ГАЗ-ГАФ"
WO2005050007A1 (en) Fluid and wind turbine for generating power
US20150337794A1 (en) Turbine with helical blades
WO2011131792A2 (en) Wind turbine direction control
GB2474961A (en) Turbine with upwind horizontal axis rotor and passive yaw adjustment
JP2002202042A (ja) 水力装置
CN101680420A (zh) 用于产生电力的系统
RU2326265C1 (ru) Турбина с вертикальным валом вращения
JP2006322440A (ja) 水流車の建造方法と発電装置への利用方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application