KR20100034037A - 비혼화성 액-액 반응을 위한 미세유체 장치 및 방법 - Google Patents

비혼화성 액-액 반응을 위한 미세유체 장치 및 방법 Download PDF

Info

Publication number
KR20100034037A
KR20100034037A KR1020107003163A KR20107003163A KR20100034037A KR 20100034037 A KR20100034037 A KR 20100034037A KR 1020107003163 A KR1020107003163 A KR 1020107003163A KR 20107003163 A KR20107003163 A KR 20107003163A KR 20100034037 A KR20100034037 A KR 20100034037A
Authority
KR
South Korea
Prior art keywords
passage
mixer
passage portion
fluid
volume
Prior art date
Application number
KR1020107003163A
Other languages
English (en)
Inventor
베랑게르 슈벨리에
클레멘스 알 호른
막심 모리나
삐에르 월
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20100034037A publication Critical patent/KR20100034037A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/304Micromixers the mixing being performed in a mixing chamber where the products are brought into contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00984Residence time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Accessories For Mixers (AREA)

Abstract

0.2밀리미터 내지 15밀리미터 범위의 횡단직경[11]을 갖는 반응물 통로(reactant passage)[26]로서, 상기 반응물 통로의 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 입구[A, B 또는 A, B1], 유체가 통과해 흘려 상기 유체에서 일정한 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion)[38], 적어도 0.1 밀리미터의 부피를 갖으며 일반적으로 장치 안의 이용가능한 부피에 대한 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion)[40], 및 각 부가 체류시간 통로 부위(additional dwell time passage portion)[46]가 각 부가 믹서통로 부위(additional mixer passage portion)에 바로 뒤따라 이어져 있는 하나 이상의 부가 믹서 통로 부위를 갖는 반응물 통로를 포함하는 통합 열-강화 미세구조 유체 장치(unitary thermally-tempered microstructured fluidic device )[10]를 제공하는 단계; 및 상기 2 이상의 비혼화성 유체를 상기 반응물 통로를 통해 흐르게 하는 단계로서, 여기서 상기 2 이상의 비혼화성 유체는 상기 2 이상의 입구[A, B 또는 A, B1]로 흘러 상기 2 이상의 비혼화성 유체의 총 흐름이 상기 초기 믹서 통로 부위[38]를 통해 흐르도록 하는 단계를 포함하는 2 이상의 비혼화성 유체를 접촉하는 방법이 개시 되어 있다. 상기 방법이 실시될 수 있는 일체형 장치[10] 또한 개시되어 있다.

Description

비혼화성 액-액 반응을 위한 미세유체 장치 및 방법{MICROFLUIDIC DEVICES AND METHODS FOR IMMISCIBLE LIQUID-LIQUID REACTIONS}
본 출원은 2007년 7월 11일에 "비혼화성 액-액 반응을 위한 미세유체 장치 및 방법(Microfluidic Devices and Methods for Immiscible Liquid-Liquid Reactions)"의 명칭으로 출원된 유럽특허출원번호 제07301224.7호를 우선권으로 주장한다.
2 이상의 비혼화성 액체에 반응물이 포함 또는 용해되어있는 반응의 주요 문제는 상(phase)간에 물질 전달의 양 또는 속도가 원하는 만큼 달성하는가이다. 본 발명은 이와 같은 비혼화성 액-액 반응을 촉진하기 위한 미세구조 유체 장치 또는 미세유체 장치, 및 비혼화성 액-액 반응을 촉진하기 위한 방법에 관한 것이다.
화학 제조환경에서, 비혼화성 액/액 반응은 대량화(scale-up) 문제, 특히 대량의 반응물을 처리하여야 하는 문제에 직면하고 있다. 배치 탱크의 부피는 통상적으로 대형이기 때문에, 필수 공정 기간 동안 에멀젼을 제조 및 유지하는데 필요한 에너지의 양 또는 밀도를 운반하는 것이 주요 제한이 된다. 최대 달성가능한 배플 속도(baffle speeds)는 운반가능한 에너지의 양 또는 밀도를 제한한다. 이와 같은 문제를 극복하는 데는 2가지 방법이 있다.
하나의 일반적인 방법은 추가 화합물을 하나 이상의 상 전이 촉매로써 사용하는 것이다. 상 전이 촉매(4급아민염 또는 술폰산염 등의 극성 말단 및 통상 긴 알킬 사슬의 소수성 부위를 갖는 거대 분자를 포함하는 촉매임)의 단점은 통상적으로 반응 액상 중 하나에 촉매 화합물을 첨가하는 것을 필요로 하며, 이는 작업 공정을 복합하게 하고, 반응이 완료된 후 일반적으로 상 분리 상태에 있다는 점이다.
다른 일반적인 방법은 상기 반응에 사용될 반응기 안의 액체의 표면 대 부피 비를 크게 하는 것이다.
표면 대 부피 비를 크게 하기 위한 하나의 방법은 안정한 에멀젼을 제조하는 것이다. 그러나 안정한 에멀젼은 또한 차후 작업 공정에서 어려움을 야기한다.
일시적인 고 표면 대 부피 비(즉 불안정한 에멀젼)는 액적(droplet)을 주입함으로써 달성할 수 있다. 상기 방법은 상기 주입된 액체 및 호스트 액체의 부피 간에 큰 비율을 필요로 하고 이는 통상적으로 과잉 액체의 사용을 요구하는 단점이 있다.
불안정한 에멀젼을 제조하기 위한 다른 방법은 로터-스테이터(rotor-stators) 및 초음파(ultrasonification)를 사용하는 것으로, 이 모두는 배치 크기에 특히 적합하여야 하며, 이는 배치 크기가 증가할수록 보다 어려운 단점이 있다.
불안정한 에멀젼을 제조하기 위한 다른 선택으로, 문헌에는 정적 믹서(static mixers)가 문헌에 자주 인용되고 있으며, 이는 실제로도 사용되고 있다. 단일 정적 믹싱 장치를 제공하는 것 이상으로 에멀젼화를 향상시키기 위해서는 다수의 정적 믹싱 장치를 배치함으로써 정적 믹싱의 길이를 증가시킬 수 있다. 상기 배열은 액체가 흐르는 배관 내부의 정적 믹싱 영역(static mixing zone) 길이를 증가하여 에멀젼화를 향상시키는 것을 의미한다. 믹싱 용량은 다관식 반응기(multitubular reactor)처럼 평행하게 배치된 다수의 정적 믹서를 사용함으로써 단일 정적 믹서 장치보다 증가시킬 수 있다.
본 발명자 및/또는 동료는 앞서 도 1에 나타난 일반적 형태의 다양한 미세유체 장치를 개발하였다. 도 1은 특정 유형 미세유체 장치의 일반적 층상 구조를 보여주는 개략도이다(실제 비율은 아님). 상기 유형의 미세유체 장치(10)는 적어도 2개의 볼륨(12 및 14) 및 볼륨 안에 구조화된 1개 이상의 열 제어 통로(도면에는 구체적으로 표시 안됨)를 포함한다. 열 제어용 통로가 존재하면 상기 장치는 "열 강화(thermally tempered)"장치가 된다(상기 용어는 본 명세서에서 사용되고 있음. 볼륨 12는 수직방향으로 수평 벽 16 및 18에 의해 제한되며, 볼륨 14는 수직방향으로 수평 벽 20 및 22에 의해 제한되어 있다. 부가층인 34등의 부가층들이 선택적으로 제공될 수 있으며, 이는 부가벽인 36등의 부가 벽들로 제한될 수 있다.
본 명세서에서 사용된 용어 "수평적(horizontal)" 및 "수직적(vertical)"은 오직 상대적 용어로, 일반적으로 상대적 방향만을 나타내는 것으로, 수직이 필수적인 것임을 의미하는 것은 아니다. 또한, 상기 용어는 편의상 형상에서 사용되는 방향을 의미한다. 상기 방향은 관습적으로 사용되는 것이며, 도시된 장치의 특징을 의도하는 것은 아니다. 본 명세서에 기술된 본 발명 및 그 구현예는 원하는 방향에서 이용될 수 있으며, 수평 및 수직 벽은 일반적으로 교차하는 벽일 필요는 있으나, 수직일 필요는 없다.
종래기술인 도 2에 일부 상세히 나타나 있는 반응물 통로(26)는 2개의 중심 수평벽 18 및 20 사이의 볼륨(24) 내부에 위치하고 있다. 도 2는 수직벽 구조물(28)의 횡-단면도를 나타내며, 도면의 일부분에는 반응물 통로(26)를 볼륨(24) 내부의 횡-단면 수준에서 보여주고 있다. 도 2의 반응물 통로(26)를 용이하게 나타내기 위하여 음영을 넣었으며, 반응물 통로는 보다 좁고 굴곡진 믹서 통로 부위(30) 및 이를 뒤따르는 보다 크고, 보다 굴곡이 적은 체류 시간 통로 부위(32)를 포함하고 있다. 도 2의 좁고 굴곡진 믹서 통로 부위(30)를 보다 자세히 살펴보면, 믹서 통로 부위(30)는 도면상 비연속적으로 나타난다. 도 1의 횡단면에서 보이는 믹서 통로 부위의 비연속적 단면 사이의 유체 연결은 도 2에 나타난 횡-단면으로부터 수직 이격되어 있는, 볼륨(24) 내부의 다른 평면을 통해 알 수 있으며, 그 결과 믹서통로부위(30)는 사형(serpentine)이면서도 3차원적으로 굴곡을 이룬다. 도 1 및 2에 나타난 장치 및 다른 관련 구현예는 예컨대, 유럽 특허 출원번호 제EP 01 679 115호, C. Guermeur 등(2005)에서 보다 상세히 개시되어 있다. 도 1 및 2의 장치, 및 유사 장치에서, 좁고 보다 굴곡진 믹서 통로 부위(30)는 반응물이 믹싱되도록 하며, 보다 크고 보다 굴곡이 적은 체류 시간 통로 부위(32)가 믹서 통로 부위(30)에 연결되어 상대적으로 제어된 열 환경 하에서 반응이 완료될 수 있는 부피를 제공한다.
열 제어를 증가하는 것이 바람직한 반응에 대하여, 본 발명자 및/또는 동료는 또한 종래 기술인 도 3 및 4에 나타난 유형의 미세유체 장치를 개발하였다. 도 3은 수직 벽 구조물(28)의 횡-단면도를 나타내며, 도면의 일부분에는 반응물 통로(26)를 도 1의 볼륨(24) 내부의 횡-단면 수준에서 보여주고 있다. 도 4는 수직 벽 구조물(28)의 횡-단 평면도를 나타내며, 도면의 일부분에는 도 3의 반응물 통로(26)의 부가적 부분을 보여주고 있다. 도 3의 반응물 통로(26)는 볼륨(24) 내부에만 포함되는 것이 아니라, 도 1에서 선택적으로 나타난 부가적 볼륨(34)도 이용한다. 도 3의 미세유체 장치의 반응물 통로(26)는 다수의 반응물 통로 부위(30)를 포함하며, 각각에 체류 시간 통로 부위(32)가 뒤따르고 있다. 체류 시간 통로 부위(32)는 전체 부피가 증가한 상태이며, 지점(33)에서 볼륨 층(24)을 떠나, 도 1의 수평 벽 18 및 16을 통과해 아래로 흘러, 도 4의 지점(35)에서의 부가 볼륨(34)으로 유입된 후 지점(37)에서 볼륨 층(24)으로 되돌아간다.
도 3 및 4에 나타난 장치 및 관련된 다른 구현예는 예컨대 유럽 특허 출원 번호제 EP 06 300 455호, P. Barthe, 등 (2006)에 보다 상세히 개시되어 있다. 상기 문헌에 개시된 바와 같이, 도 3 및 4의 장치에서, 설계 또는 바람직한 작동 방식은 1개의 반응물 스트림(stream)의 전체 부피를 도 3에 보이는 입구A로 흐르게 하는 반면에, 나머지 반응물 스트림은 분리 및 제 1 입구(B1)와 다수 부가 입구(B2)에 흐르게 하여 2개의 반응 스트림이 반응하도록 하는 것이다. 이는 믹서 통로 부위(30) 각각에서 발생한 열량이 도 2의 장치에 비하여 감소하도록 하며, 화학양론 균형이 일 측면으로부터 점차 이루어지도록한다.
상기 도 1-4에 나타난 유형의 장치를 통해 우수한 성능을 달성할 수 있으나, 고 열 및 고 물질 전달 속도를 요구하는, 종래의 상태를 초과하는 많은 실험 반응의 경우에는 비혼화성 액체에 대한 상기 장치의 성능을 향상시키기 위한 바람이 있었다.
비혼화성 유체의 고 표면 대 부피 비는 때로는 반응물이 라미나 흐름(laminar flow)으로 이동할 수 있는, 예컨대 0.25mm x 0.1mm 크기 범위의 미세채널을 이용하여 얻어진다. 단점은 이처럼 작은 반응 채널은 도 1-4의 장치와 비교하더라도, 작은 부피를 가진다는 점이다. 그 결과 압력 제한 및/또는 주어진 반응 속도에 대하여 충분한 반응 시간을 제공하기 위한 이유로 흐름 속도는 일반적으로 낮고, 그 결과 생산율은 낮다. 따라서, 도 1-4의 장치와 유사한 장치의 전체 크기 및 부피, 및 이에 따른 생산률을 감소시키지 않고 장치의 비혼화성 액체의 성능을 향상시키는 것이 바람직하다.
본 발명의 일구현예에 따르면, 2 이상의 비혼화성 액체를 접촉하는 방법은 (1) 0.2밀리미터 내지 15밀리미터 범위의 횡단직경을 갖는 반응물 통로(reactant passage)로서, 상기 반응물 통로의 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 입구를 갖는 반응물 통로, 유체가 통과해 흘려 상기 유체에서 일정한 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion), 적어도 0.1밀리미터의 부피를 갖으면서 일반적으로 미세구조 유체장치 안의 이용가능한 부피에 대하여 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion), 및 각 부가 체류시간 통로 부위(additional dwell time passage portion)가 각 부가 믹서통로 부위(additional mixer passage portion)에 바로 뒤따라 이어져 있는 하나 이상의 부가 믹서 통로 부위를 갖는 반응물 통로를 포함하는 통합 열-강화 미세구조 유체 장치(unitary thermally-tempered microstructured fluidic device )를 제공하는 단계; 및 (2) 상기 2 이상의 비혼화성 유체를 상기 반응물 통로를 통해 흐르게 하는 단계로서, 여기서 상기 2 이상의 비혼화성 유체는 상기 2 이상의 입구로 흘러 상기 2 이상의 비혼화성 유체의 총 흐름이 상기 초기 믹서 통로 부위를 통해 흐르도록 하는 단계를 포함한다.
본 발명의 다른 구현예에 따르면, 상기 방법이 실행될 수 있는 통합 장치도 개시되어 있다.
상기 일 구현예에는 0.2밀리미터 내지 15밀리미터 범위의 횡단직경을 갖는 반응물 통로(reactant passage)로서, 상기 반응물 통로의 길이를 따라 순서대로, (1) 반응물의 유입을 위한 2 이상의 입구를 갖는 반응물 통로, (2) 유체가 통과해 흘려 상기 유체에서 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion), (3) 적어도 0.1밀리미터의 부피를 갖으면서 일반적으로 미세구조 유체장치 안의 이용가능한 부피에 대하여 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion)(4) 하나 이상의 스테빌라이저 통로 부위(stabilizer passage portions)로서, 상기 스테빌라이저 통로 부위 각각은 유체가 통과해 상기 유체에서 믹싱을 유도하는 형상 또는 구조로 되어 있으며, 각각의 스테빌라이저 통로 부위에는 부가 체류 시간 통로 부위가 바로 뒤따라 이어져 있는 것을 특징으로 하는 스테빌라이저 통로부위를 갖는 반응물 통로를 포함하는 통합 열 강화 미세구조 유체 장치가 제공된다.
상기 다른 구현에는 0.2밀리미터 내지 15밀리미터 범위의 횡단직경을 갖는 반응물 통로(reactant passage)로서, 상기 반응물 통로의 길이를 따라 순서대,로 (1) 반응물의 유입을 위한 2 이상의 입구를 갖는 반응물 통로,(2)유체가 통과해 흘려 상기 유체에서 믹싱(mixing) 및 제 1 압력 강하를 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion), (3)적어도 0.1밀리미터의 부피를 갖으면서 일반적으로 미세구조 유체장치 안의 이용가능한 부피에 대하여 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion), (4) 하나 이상의 스테빌라이저 통로 부위(stabilizer passage portions)로서, 상기 스테빌라이저 통로 부위 각각은 유체가 통과해 상기 유체에서 믹싱 및 제 2 압력강하를 유도하는 형상 또는 구조를 갖으며, 상기 제2 압력강하는 상기 제1 압력강하보다 작고, 각각의 스테빌라이저 통로 부위에는 부가 체류 시간 통로 부위가 바로 뒤따라 이어져 있는 것을 특징으로 하는 스테빌라이저 통로부위를 갖는 반응물 통로를 갖는 통합 열 강화 미세구조 유체 장치를 포함하고 있다.
본 발명의 추가적인 특징 및 이점은 하기의 상세한 설명에 기술되어 있으며, 그 일부는 상세한 설명을 통해 당업계에 기술을 가진자에게 자명할 것이다. 또한, 상세한 설명, 청구항 및 첨부된 도면을 포함하는 명세서에 기술된 본 발명을 실시함으로써 그 일부를 인식할 수 있다.
상기 일반적인 설명 및 하기의 상세한 설명은 본 발명의 구현예를 나타내는 것으로, 청구하고 있는 본 발명의 성질 및 특성을 이해시키고자, 개괄 또는 틀을 제공하고자 작성된 것임을 이해하여야 한다. 수반된 도면은 본 발명을 보다 더 이해시키고자 첨부한 것으로, 본 명세서의 일부를 구성한다. 도면은 본 발명의 다양한 구현예를 나타내는 것으로, 상세한 설명과 함께 본 발명의 원리 및 작동을 설명하는 역할을 한다.
도 1은 종래의 특정 미세유체 장치의 일반적인 층상 구조를 보여주는 개략도이다;
도 2는 도 1의 볼륨(24) 안 수직벽 구조물의 횡-단면도이다;
도 3은 도 1의 볼륨(24) 안 수직벽 구조물의 다른 횡-단면도이다.
도 4는 도 1의 임의 볼륨(34) 안 수직벽 구조물의 횡-단면도이다.
도 5는 본 발명의 방법에 따른 반응물의 흐름 및 본 발명 장치의 일반적인 흐름로를 보여주는 개략도이다.
도 6은 본 발명 장치의 일 구현예에 따른 도 1의 볼륨(24) 안 수직벽 구조물의 횡-단 면도이다.
도 7은 본 발명 장치의 다른 구현예에 따른 도 1의 볼륨(24) 안 수직벽 구조물의 횡-단면도이다.
도 8은 본 발명의 방법을 실험하는데 사용된 장치의 도 1의 볼륨(24) 안 수직벽 구조물의 횡-단면도이다.
도 9는 백분율 수율(y 축)을 에멀젼화 영역(x 축) 수치의 함수로 나타낸 그래프이다.
도 10은 하나의 비교 장치, 본 발명의 방법에 따라 사용된 2개의 장치, 및 본 발명의 방법에 따라 사용된 2개의 진보된 장치에서, 실험 반응의 백분율을 압력강하(bar)의 함수에 나타낸 그래프이다.
도 11 및 12는 2개의 다른 비혼화성 유체에 있어서, 믹싱 영역의 수 및/또는 믹싱 또는 스테빌라이저 영역의 수에 대한 액적의 반경(마이크로미터, 다이아몬드, 좌축) 및 압력강하(bar, 직사각형, 우축)의 효과를 이론적인 수치로 계산한 것을 보여준다.
본 발명의 바람직한 구현예를, 예컨대 첨부된 도면을 참고하여 상세히 기술하고자 한다. 가능한, 동일 또는 유사한 부위를 언급하는데 동일한 참조번호가 사용될 것이다.
도 5는 본 발명의 방법에 따른 반응물의 흐름 및 본 발명에 따른 통합 미세구조 유체 장치(10) 안의 일반화된 유로(flow path)를 보여주는 개략도이다. 2 이상의 반응물을 포함하는 비혼화성 유체는 2 이상의 입구 A 및 B를 통해 통합 미세구조 유체 장치(10) 내부의 반응물 통로(26)로 유입된다. 상기 반응물 통로는 바람직하게는 0.2밀리미터 내지 15밀리미터 범위의 횡-단 직경을 갖는 것을 특징으로 하고, 그 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 2 이상의 입구 A 및 B, 유체가 통과해 흘려 상기 유체에서 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion)(38), 적어도 0.1밀리미터의 부피를 갖으며 일반적으로 장치 안의 이용가능한 부피에 대한 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion)(40), 및 각 부가 체류시간 통로 부위(additional dwell time passage portion)가 각 부가 믹서통로 부위(additional mixer passage portion)에 바로 뒤따라 이어져 있는 하나 이상의 부가 믹서 통로 부위를 갖는다. 즉, 도 5에 나타난 바와 같이, 부가 믹서 통로 부위는 연관된 부가 체류 시간 통로 부위(46)와 함께 하나의 유닛(42)을 나타내고, 이를 n번 반복한다(여기서, n은 양의 정수임) 유체는 출구(C)에서 상기 장치(10)로부터 방출된다.
"통합(unitary)"은 본 명세서에서 일반적으로, 비-파괴 분해가 가능하지 않도록 구조화 및 배열된 장치로 이해된다. 일부 예로 본 발명자 및/또는 그 동료에 의해 개발된 방법에 따라 제조되고, 예컨대 미국 특허 번호제 7,007,709호, G. Guzman 등, 2006에 개시되어 있는 유리, 유리-세라믹, 및 세라믹 미세구조 장치를 포함한다. 상기 물질 및 방법은 본 발명과 관련하여 유용하다.
도 5에 나타난 방법 및 미세구조 유체 장치는 비혼화성 유체 매질에서 2가지 중요한 반응 측면인 에멀젼화 및 반응 시간을 포함한다. 상기 배치는 고 표면/부피 비(초기 믹서 통로 부위(38) 및 하나 이상의 부가 믹서 통로 부위(44)가 제공된 경우) 및 현저히 큰 내부 부피(이격된 믹서 영역 사이에 일반적으로 직선형 채널의 체류 시간 통로 부위 40 및 46가 제공된 경우) 모두를 보증한다. 결국, 큰 내부 부피를 제공하기 위하여, 초기 체류 시간 통로 부위는 바람직하게는 적어도 0.1밀리리터, 보다 바람직하게는 적어도 0.3밀리리터의 부피를 갖는다. 하나 이상의 부가 체류 시간 통로 부위는 바람직하게는 초기의 것과 대략 동일한 부피를 갖는 것이 바람직할 수 있으나, 반드시 모두가 동일한 부피를 가질 필요는 없다.
믹서 또는 에멀젼화 영역 및 체류 시간 또는 반응 영역을 개조하면, 상기 반응 시간에 필요로 한 부피를 제공하나, 이는 일반적으로 길고, 좁은 굴곡진 에멀젼화 영역만을 포함하는 미세구조인 경우는 아니다. 상기와 같은 긴 에멀젼화 영역은 부피가 작아, 반응시간이 짧다는 단점을 갖는다.
도 5의 그림에 나타난 방법을 통해 도 3 및 4의 종래 기술 장치에서 2 이상의 비혼화성 유체 모두를 제2의 부가 입구인 B2보다는 2 이상의 A 및 B1에 흐르도록 하여, 결국 2 이상의 비혼화성 유체의 총 흐름이 초기 믹서 통로 부위를 통해 흐르게 함으로써, 종래기술 장치에서 선택적으로 실행이 가능함을 이해할 수 있다. 부가 입구(B2)를 플러깅 또는 캡핑하는 것을 막기 위하여, 초기 체류 시간 통로 부위 이후에, 부가 입구가 없는 반응물 통로를 갖는 장치를 사용하는 것이 바람직할 수 있다.
모든 미세믹서 설계의 대부분은, 흐름 속도가 높을수록, 보다 우수한 품질의 에멀젼이 얻어진다. 본 발명의 장치는 반응속도론(reaction kinetics)에서 필요로 한, 반응 시간과 호환되는 체류 시간을 계속 유지하면서도, 높은 유체 속도를 이용하는 장점이 있다.
본 발명에 따른 장치의 바람직한 구현예 중 하나는 도 6에 나타나 있으며, 본 구현예는 도 1의 볼륨(24)에 유용한 벽 구조물의 횡단면이다. 도 6의 구조물은 도 4에 보인 구조물과 함께 사용되어, 상기 도 3 및 4에서 논의된 것과 동일한 방법으로 체류 시간 통로 부피를 증가시키고자 한 것이다.
도 5의 개략적인 그림과 같이, 도 6의 장치에서, 2 이상의 반응물을 포함하는 2 이상의 비혼화성 유체는 2 이상의 입구 A 및 B1로 유입되어 통합 미세구조 유체 장치(도 1에 일반적으로 나타난 유형의 장치(10)) 안의 반응물 통로(26)로 흐른다. 상기 반응물 통로는 바람직하게는 0.2밀리미터 내지 15밀리미터 범위의 횡-단 직경(11)을 갖는 것을 특징으로 하고, 그 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 2 이상의 입구 A 및 B1, 유체가 통과해 흘려 상기 유체에서 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion)(38), 적어도 0.1밀리미터의 부피를 갖으며 일반적으로 장치 안의 이용가능한 부피에 대한 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion)(40), 및 각 부가 체류시간 통로 부위(additional dwell time passage portion)가 각 부가 믹서통로 부위(additional mixer passage portion)에 바로 뒤따라 이어져 있는 하나 이상의 부가 믹서 통로 부위를 갖는다.
도 6에 나타난 방법 및 미세구조 유체 장치는 비혼화성 유체 매질에서 2가지 중요한 반응 측면인 에멀젼화 및 반응 시간을 포함한다. 상기 배치는 고 표면/부피 비(초기 믹서 통로 부위(38) 및 하나 이상의 부가 믹서 통로 부위(44)가 제공된 경우) 및 현저히 큰 내부 부피(이격된 믹서 영역 사이에 일반적으로 직선형 채널의 체류 시간 통로 부위 40 및 46, 또한 도 4의 구조 안에 제공된 부가 체류 시간 통로 부피가 제공된 경우)를 보장한다. 결국, 큰 내부 부피를 제공하기 위하여, 초기 체류 시간 통로 부위는 바람직하게는 적어도 0.1밀리리터, 보다 바람직하게는 적어도 0.3밀리리터의 부피를 갖는다. 부가 체류 시간 통로 부위(46)는 바람직하게는 부피가 유사하나, 초기의 것(40) 또는 서로 동일할 필요는 없다.
도 6의 장치에서, 부가 믹서(44)는 초기 믹서 통로 부위(38)보다 작은 압력강화를 유도하도록 구조화되어 있다. 이는, 부가 믹서 통로 부위(44)에 초기 믹서 통로 부위(38)와 동일한 압력 및 유속의 동일 유체가 제공되었음을 가정한 것으로, 부가 믹서 통로 부위는 초기 믹서 통로 부위(38)로부터 제조된 것보다 적은 압력강하가 나타나도록 구조화 및 배열되어 있다. 도 6의 구현예에서, 부가 믹서(44)는 초기 믹서(38)보다 짧으며, 그 길이를 따라 보다 작은 믹싱 부재(60)를 갖고 있다. 따라서, 부가 믹서는 믹서보다는 스테빌라이저(stabilizer)로서 역할을 하며, 완전한 길이의 믹서 대신에 상기 스테빌라이저를 이용하면 전체로서 반응물 통로에 대하여 현저히 감소한 압력강하를 야기한다. 도 3의 장치의 사용과 관련하여 상기 언급된 바와 같이, 본 발명의 방법에서 부가 입구(B2)는 사용되지 않지만, 본 발명의 범위를 벗어난 방법의 경우에는 사용가능하다.
도 7은 본 발명 장치의 다른 구현예에 따른 도 1의 볼륨(24) 안 수직 벽 구조의 횡단 면도이다. 도 6의 구조물과 동일한 방식으로, 도 7의 구조물은 도 4에 보인 구조물과 함께 사용되어, 상기 도 3 및 4에 논의된 것과 동일한 방법으로 체류 시간 통로 부피를 증가시키고자 한 것이다.
도 6의 구조물과는 반대로, 도 7에 나타난 구현예에는 어떠한 부가 입구도 제공되지 않는다. 본 구현예의 초기 믹서(38)가 좁고, 굴곡진 통로 부위의 형상이지만, 본 구현예의 부가 믹서 또는 스테빌라이저(44)는 자기-유지 발진 제트(self-sustaining oscillating jet) 구조물에 유용한, 유속에서 생산할 수 있도록 구조화 및 형상화된 챔버 형상으로 되어 있다.
도 7의 자기-유지 발진 제트 스테빌라이저(44)는 도 6의 스테빌라이저(44) 보다 낮은 압력강화를 발생시키면서도, 에멀젼 대부분을 유지시킨다. 도 7의 자기-유지 제트 스테빌라이저(44)는 각각 하나(또는 선택적으론 보다 분리된) 공급 채널(들)(62)을 갖는 챔버(60) 형상이고, 하나 이상의 공급 채널(62) 각각은 챔버 (60)의 공통 벽(64) 지점서 챔버(60)에 도입되며, 하나 이상의 분리 공급 채널(62)은 상기 하나 이상의 분리 채널(62)의 너비 및 전체 내부-채널 벽을 합한 너비를 포함하는 총 채널 너비(66)를 가지며, 상기 챔버(60)는 상기 하나 이상의 채널(62)에 수직 방향의 너비(68)가 상기 총 채널 너비(66)보다 적어도 2배를 갖는다. 챔버(60)는 또한 큰 개방 채널보다 압력 저항을 증가시키는 역할을 할 수 있는 하나 이상의 포스트(post)(70)를 포함할 수 있다.
실시예
아미드화 반응을 실험 반응으로 이용하였다. 실험 과정은 다음과 같다: 1.682g (0.01 몰)의 2-페닐아세트 염화물(1)을 건조 에틸 아세테이트 또는 톨루엔 1L에 용해시켰다. 1- 페닐에틸아민(1.212g, 0.01 몰)을 0.1 N 소듐 히드록시드 용액 1L에 용해시켰다. 상기 2개의 비혼화성 용액 1:1의 일정 비율로 펌핑하여, 상온에서 반응기에 다양한 유속으로 통과하도록 하였다. 반응기 출구에서, 1N 산 염화물 용액을 포함하는 비커에 액체를 수집하여 반응을 퀀칭(quenching)하였다. 유기 상을 분리, 건조한 후, 분석을 위해 기체 크로마토그래피에 주입하였다.
주입의 순서는 중요하지 않았다; 유기 및 수용액 상에서 사용되는 입구를 전환하더라도 수율에 영향을 주지 않았다. 하나의 반응물을 도 8에 나타난 것과 유사한 실험 구조물의 입구 A에 주입하였고, 다른 반응물은 실험에서 원하는 총 믹서 수 및 체류시간 또는 반응 영역에 따라 입구 B 중에서 선택된 한 곳에 주입하였다. 유속은 체류시간의 편차 범위가 1.1 내지 1.5 초로 제한되도록 조정되었다. 그 결과를 백분율 수율을 에멀젼화 영역(첫 번째 후의 믹서 영역)의 함수로 도 9의 그래프에 나타내었다. 도를 보면 알 수 있듯이, 에멀젼화 영역이 클수록, 수율이 높았다. 상기 특정 반응의 경우, 첫 번째 이후 가장 우수한 성능의 에멀젼화 또는 믹서 영역은 4(4)이였으며, 이는 실험 장치로부터 이용가능한 최대치였다. 둥근 바닥 플라스크(100ml, 상온, 3 분, 600 rpm 자기 교반기)에서 실시한 상기와 동일한 반응의 경우 그 수율은 55.6%이였다(기준 값).
도 10은 하나의 비교 방법/장치(경로 48) 및 본 발명의 4가지 응용 방법(경로 50-56)에 대하여 다양한 유속(보이지 않음)에서 얻은 수율 백분율을 압력강하(bar)의 함수로 나타낸 것이다. 비교 장치, 경로(48)는 단일 믹서 통로 부위 및 이후 단일 체류 시간 통로 부위를 갖는 도 2의 장치이다. 나머지 경로(50-56)는 모두 다수의 믹서 통로 부위(각각 체류 시간 통로 부위가 바로 뒤따름)를 통해 반응물 모두를 유입하는 것을 포함하는 방법을 통해 얻어졌다.
경로(50)는 본 발명의 방법에 기술된 대로 사용한 도 3과 같은 장치로부터 얻은 수율을 보여주며, 경로(52)는 장치의 입구에 부가 체류 시간 구조물이 첨부된 도 8의 장치로부터 얻은 결과를 보여준다. 경로 50 및 52 양쪽 모두, 연속 믹서는 초기 믹서와 동일한 길이 및 믹싱 부재 수를 갖는다. 이와 다른 것은 경로 54 및 56이다. 경로 54는 도 7의 장치로부터 얻은 것이며, 경로 56은 도 6의 장치로부터의 얻은 결과이다. 경로 54 및 56 모두, 본 발명의 바람직한 구조가 우수함을 나타내는 것으로, 초기 믹서 하류의 믹서 또는 에멀젼화기 또는 스테빌라이저는 초기 믹서보다 짧거나, 덜 밀집(압력강하가 작음)되어 있다. 경로 54 및 56에 나타난 것처럼, 상대적으로 낮은 압력(압력강하)에서 수율이 높았다.
설계 이론 및 분석
본 명세서에 기술된 설계 원리 및 방법이 특정 화학 반응 경우에 어떻게 사용 및 적용될 수 있는지를 설명하기 위하여, 본 출원인은 하기와 같은 반응시스템 단순 분석을 제안한다(이에 한정되는 것은 아님). 총 믹싱 및/또는 에멀젼화 부재의 임의수 N은 분석에 있어서의 변수로 고려되며, 이는 (i) 압력강하, (ⅱ) 충분한 반응 시간을 제공하기 위한 반응기의 총 부피, 및 (ⅲ) 에멀젼 분산 상에서 액적의 최대 지름 사이에 상호조건(trade-off)을 찾고자 계산된다.
사용된 표기는 하기와 같다: γ 계면 장력, ρ 혼합물의 밀도, S 연속 매질 내 분산된 상의 용해도, D 확산 계수, R 기체 몰랄 상수, T 온도, V 반응기의 총 부피, V m 에멀젼화 부재의 부피, V DT 하나의 직선형 세그먼트의 부피, △P m 하나의 에멀젼화 부재 내 압력강하, 및 Q 총 부피 유속.
각 에멀젼화 부재 안의 전단 응력은 에멀젼을 생성하며, 본 출원인은 전체 반응기에 대하여 상기 공정에서의 에너지 소비 E m 을 산출하기 위하여 하기의 방적식을 사용하였다. 이는 에멀젼화 부재의 수에는 독립적이며, 단일 유닛의 설계에만 의존적이다.
Figure pct00001
이후, 분산 상에서 액적의 최대 직경 d max 은 다음과 같이 계산될 수 있다:
Figure pct00002
직경이 계산되면, 직선형 채널의 에멀젼 안정성 시간을 측정할 수 있으며, 결국, 바람직한 부피의 직선형 채널의 크기 순서를 정할 수 있다. 간단히 표시하기 위하여, 본 발명자는 유착(coalescence)과 같은 다른 기작을 고안할 수 있으나, 에멀젼의 불안정화(destabilization) 후에 성숙화 공정(maturing process)을 가정할 수 있다. 상기 공정의 경우 액적의 반경은 다음과 같다:
Figure pct00003
여기서 k 는 혼합물 특성에 따라 정해진 상수임:
Figure pct00004
에멀젼화 부재의 출구에서의 액적의 반경은, 반응기 안의 액적의 크기를 최소화하기를 원할 경우, d max /2 와 같이 계산할 수 있다. 반응기 안에서 얻어진 압력강하는 다음과 같이 표기될 수 있으며,
Figure pct00005
총 부피V=N(V m +V DT )로 표기될 수 있다. 에멀젼화 부재의 부피를 무시하는 경우 약 V=N·V DT 이다. 상기 결과 총 체류 시간을 τ=V/Q로 계산할 수 있다.
주어진 반응 및 공정 조건의 경우, 유속 Q 및 필요한 총 체류 시간 τ이 설정되어 있다. 에멀젼화 부재의 설계가 정해진 것으로 가정할 경우, 상기 부재 N의 수를 제외한 모든 파라미터가 정해진다. 상기 수는 하기의 2가지 기준에 따라 정해진다: (i) 에멀젼화 부재의 입구에서의 반경은 최소화되어야 함(즉, 상기 직선형 채널의 출구에서), (ⅱ) 압력강하는 최소화되어야 함. 상기 조건은 하기의 방정식을 표시할 수 있도록 한다(최적화인 경우 r 0 , κ τ, △P m △P DT 는 상수임):
Figure pct00006
여기서 r△PN에 비하여 최소화되어야 함.
정량 실시예
정량 실시예를 위하여 보고된 데이터로부터 2개의 시스템, 즉 에틸-아세테이트(C4H802)-물 및 톨루엔 (C7H8)-물 시스템을 선택하였다:
[표 1] 2개의 특정 실시예(20℃)의 유체 성질
Figure pct00007
반응기 및 반응/공정 조건으로 다음을 가정하였다:
Q=150ml/min
△P m =0.3 bar (용매 정도에 의존되나, 단순화를 위해 상수를 취함)
△P DT =0.15 bar (용매 정도에 의존되나, 단순화를 위해 상수를 취함)
Vm=0.1ml
τ=20 s
이로부터 하기의 결과를 얻었다:
[표 2] 2개의 특정 실시예(20℃)의 결과
Figure pct00008
상기 보고된 수치는 큰 값으로, 안정성이 약함을 의미한다. 상기 결과는 본 발명이 상기 경우에 실시할 필요성이 있음을 나타내는 것이다. 도 11 및 12는 여기서 보고된 데이터를 도출하는데 사용된 단순 모델을 대상으로 상기 분석의 최종 결과를 보여준다. 도 11은 에틸 아세테이트 및 물에 대한 결과를 보여준다. 믹서/스테빌라이저의 수는 수평축에, 다이아몬드 기호로 표시한 액적 크기는 좌측의 수직축에 마이크로미터 단위로 표시하였고, 직사각형 기호로 표시한 압력강하는 우측의 수직축에 bar 단위로 표시하였다. 도 11에 나타난 바와 같이, 4번째 또는 5번째 믹서/스테빌라이저가 액적 반경 감소의 대부분을 야기하였다. 도 12는 톨루엔 및 물에 대한 계산 결과를 보여준다. 재 언급하건대, 믹서/스테빌라이저의 수는 수평축에, 다이아몬드 기호로 표시한 액적 크기는 좌측의 수직축에 마이크로미터 단위로 표시하였고, 직사각형 기호로 표시한 압력강하는 우측의 수직축에 bar 단위로 표시하였다. 도 11과는 달리, 도 12에서는 오직 1개 또는 2개의 믹서/스테빌라이저 후에, 이미 액적 반경 감소의 대부분이 발생하였음을 보여준다. 이는 본 발명에서 기술된 설계 원리를 사용하면 최적을 발견할 수 있으며, 상기 최적 값은 반응에 의존함을 보여주는 것이다.
다른 크기 순서의 단순 측정치는 본 발명에서 기술된 진보된 통합 접근방법이 유착(coalescence)을 효과적으로 차단하는 것을 보여준다. 점성의 연속 상 내의 전단(shear)이 유도한 액적의 유착에서, 유착 액적의 최대 반경 R 수치를 일부 모델을 가지고 측정할 수 있다; 상기 모델 중 하나(고정 계면 접근법)는 다음과 같이 표현된다:
Figure pct00009
h c 은 2개의 액적 사이의 배수(drainage)에 대한 임계 필름 두께이며, τ은 전단 속도, h m 은 연속 액상의 역동 점성이다.
원통형 튜브의 직경D에 있어서, 반경 r에서의 전단 응력 τ은 다음과 같이 주어진다:
Figure pct00010
여기서, 최대 유착 반경 R c 을 유도하는 전단 속도 하의 액체의 부피 분획은 다음과 같이 주어진다:
Figure pct00011
상기 수치는 튜브의 내부 직경에 매우 의존적임은 분명하며, 따라서 이는 2개의 스테빌라이저 사이에 작은 치수를 확보하는 것이 왜 중요한 요소인지를 설명한다.
상기 동일한 분석은 직사각형 횡단을 가지고도 가능하다. 종횡비(aspect ratio)는 주어진 미세채널의 부피에 대하여 효과적인 전단(shear)을 제공하는데 주요 요소임을 보여준다. 전단 속도의 계산과 관련된 보다 상세한 설명은 P.-S. Lee & S.V. Garimella의 "종횡비 차이가 있는 직사각형 미세채널에서의 열적발달 흐름 및 열 전달(Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios)", International Journal of Heat and Mass Transfer, vol. 49, pp. 3060-3067, 2006에 기술되어 있다.

Claims (15)

  1. 0.2밀리미터 내지 15밀리미터 범위의 횡단직경을 갖는 반응물 통로(reactant passage)로서, 상기 반응물 통로의 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 입구(inlet), 유체가 통과해 흘려 상기 유체에서 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion), 적어도 0.1밀리미터의 부피를 갖으면서 일반적으로 미세구조 유체장치 안의 이용가능한 부피에 대하여 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion), 및 부가 체류시간 통로 부위(additional dwell time passage portion)가 각각의 부가 믹서통로 부위(additional mixer passage portion)에 바로 뒤따라 이어져 있는 하나 이상의 부가 믹서 통로 부위를 갖는 반응물 통로를 포함하는 통합 열-강화 미세구조 유체 장치(unitary thermally-tempered microstructured fluidic device)를 제공하는 단계; 및
    2 이상의 비혼화성 유체를 상기 반응물 통로를 통해 흐르게 하는 단계로서, 여기서 상기 2 이상의 비혼화성 유체는 상기 2 이상의 입구로 흘러 상기 2 이상의 비혼화성 유체의 총 흐름이 상기 초기 믹서 통로 부위를 통해 흐르도록 하는 단계를 포함하는 2 이상의 반응물을 포함하는 2 이상의 비혼화성 유체를 함께 접촉하는 방법.
  2. 제1항에 있어서, 상기 통합 열-강화 미세구조 유체장치를 제공하는 단계는 적어도 0.3밀리리터의 부피를 갖는 초기 체류시간 통로 부위(initial dwell time passage portion)를 갖는 일체 열-강화 미세구조 유체 장치를 제공하는 것을 추가로 포함하는 것을 특징으로 하는 2 이상의 반응물을 포함하는 2 이상의 비혼화성 유체를 함께 접촉하는 방법.
  3. 0.2밀리미터 내지 15밀리미터 범위의 횡단직경을 갖는 반응물 통로(reactant passage)로서, 상기 반응물 통로의 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 입구; 유체가 통과해 흘려 상기 유체에서 믹싱(mixing)을 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion); 적어도 0.1 밀리미터의 부피를 갖으면서 일반적으로 미세구조 유체장치 안의 이용가능한 부피에 대하여 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion)를 갖는 반응물 통로를 포함하는 통합 열-강화 미세구조 유체 장치로서, 상기 장치는 상기 유체 통로를 따라, 상기 초기 체류시간 통로 부위 이후에 부가 입구(additional inlets) 없이, 하나 이상의 스테빌라이저 통로 부위(stabilizer passage portions)를 추가로 포함하고, 상기 스테빌라이저 통로 부위 각각은 유체가 통과해 상기 유체에서 믹싱을 유도하는 형상 또는 구조로 되어 있으며, 각각의 스테빌라이저 통로 부위에는 부가 체류시간 통로 부위가 바로 뒤따라 이어져 있는 것을 특징으로 하는 통합 열 강화 미세구조 유체장치.
  4. 제 3항에 있어서, 상기 초기 체류시간 통로 부위는 적어도 0.3밀리리터의 부피를 갖는 것을 특징으로 하는 미세구조 유체장치.
  5. 제 3항 또는 제 4항에 있어서, 상기 하나 이상의 스테빌라이저 통로 부위는 상기 믹서 통로 부위보다 작은 압력 강하(pressure drop)를 유도하도록 구조화 및 배열된 것을 특징으로 하는 미세구조 유체장치.
  6. 제 3항 내지 제5항 중 어느 한 항에 있어서, 상기 믹서 통로 부위는 제1 길이를 갖는 좁은 굴곡 통로를 포함하고, 상기 하나 이상의 스테빌라이저 통로 부위는 각각 상기 제1 길이보다 짧은 길이를 갖는 좁은 굴곡 통로 부위를 포함하는 것을 특징으로 하는 미세구조 유체장치.
  7. 제3항 내지 제6항 중 어느 한 항에 있어서, 상기 믹서 통로 부위는 제1 개수(number) 믹서 부재를 포함하고, 상기 하나 이상의 스테빌라이저 통로 부위는 각각 상기 제1 개수보다 작은 믹서 부재의 개수를 포함하는 것을 특징으로 하는 미세구조 유체장치.
  8. 제3 내지 5항 중 어느 한 항에 있어서, 상기 믹서 통로 부위는 좁은 굴곡 통로 부위를 포함하고, 상기 하나 이상의 스테빌라이저 통로 부위 중 적어도 하나는 하나 이상의 분리 공급 채널(separate feed channel)을 갖는 자기-유지 발산 제트 챔버(self-sustaining oscillating jet chamber)를 포함하며, 상기 하나 이상의 채널 각각은 상기 챔버의 공통 벽(common wall)에서 상기 챔버로 도입되고, 상기 하나 이상의 분리 채널들은 상기 하나 이상의 분리 채널의 너비 및 전체 내부-채널 벽을 합한 너비를 포함하는 총 채널 너비를 가지며, 상기 챔버는 상기 하나 이상의 채널에 수직 방향의 너비가 상기 총 채널 너비보다 적어도 2배를 가지는 것을 특징으로 하는 미세구조 유체장치.
  9. 제 3항 내지 8항 중 어느 한 항에 있어서, 상기 장치는 유리, 세라믹, 또는 유리-세라믹을 포함하는 통합 제품을 포함하는 것을 특징으로 하는 미세구조 유체 장치.
  10. 0.2밀리미터 내지 15밀리미터 범위의 횡단직경을 갖는 반응물 통로(reactant passage)로서, 상기 반응물 통로의 길이를 따라 순서대로, 반응물의 유입을 위한 2 이상의 입구, 유체가 통과해 흘려 상기 유체에서 믹싱(mixing) 및 제 1 압력 강하를 유도하는 형상 또는 구조를 갖는 초기 믹서 통로 부위(initial mixer passage portion); 적어도 0.1 밀리미터의 부피를 갖으면서 일반적으로 미세구조 유체장치 안의 이용가능한 부피에 대하여 통로 안의 이용가능한 부피를 최대화하는 부드럽고 연속적인 형상 또는 구조를 갖는 초기 체류 시간 통로 부위(initial dwell time passage portion)를 갖는 반응물 통로를 포함하는 통합 열-강화 미세구조 유체 장치로서, 상기 장치는 상기 유체 통로를 따라, 상기 초기 체류 시간 통로 부위 이후에 하나 이상의 스테빌라이저 통로 부위(stabilizer passage portions)를 추가로 포함하고, 상기 스테빌라이저 통로 부위 각각은 유체가 통과해 상기 유체에서 믹싱 및 제 2 압력강하를 유도하는 형상 또는 구조를 갖으며, 상기 제2 압력강하는 상기 제1 압력강하보다 작고, 각각의 스테빌라이저 통로 부위에는 부가 체류 시간 통로 부위가 바로 뒤따라 이어져 있는 것을 특징으로 하는 통합 열 강화 미세구조 유체 장치.
  11. 제10항에 있어서, 상기 초기 체류시간 흐름 부위는 적어도 0.3밀리리터의 부피를 갖는 것을 특징으로 하는 미세구조 유체장치.
  12. 제10항 또는 제11항에 있어서, 상기 초기 믹싱 통로 부위의 하류 측의 반응물 통로에 입구가 제공되지 않는 것을 특징으로 하는 미세구조 유체장치.
  13. 제10항 내지 제12항 중 어느 한 항에 있어서, 상기 믹서 통로 부위는 제1 길이를 갖는 좁은 굴곡 통로 부위를 포함하고, 상기 하나 이상의 스테빌라이저 통로 부위는 각각은 상기 제 1 길이 보다 짧은 길이의 좁은 굴곡 통로 부위를 포함하는 것을 특징으로 하는 미세구조유체장치.
  14. 제10항 내지 제13항 중 어느 한 항에 있어서, 상기 믹서 통로 부위는 제 1 개수 믹서 부재를 포함하고, 상기 하나 이상의 스테빌라이저 통로 부위 각각은 상기 제1 개수보다 작은 믹서 부재의 개수를 포함하는 것을 특징으로 하는 미세구조 유체장치.
  15. 제10 내지 제11항 중 어느 한 항에 있어서, 상기 믹서 통로 부위는 좁은 굴곡 통로 부위를 포함하고, 상기 하나 이상의 스테빌라이저 통로 부위 중 적어도 하나는 하나 이상의 분리 공급 채널(separate feed channel)을 갖는 자기-유지 발산 제트 챔버(self-sustaining oscillating jet chamber)를 포함하며, 상기 하나 이상의 채널 각각은 상기 챔버의 공통 벽(common wall)에서 상기 챔버로 도입되고, 상기 하나 이상의 분리 채널들은 상기 하나 이상의 분리 채널의 너비 및 전체 내부-채널 벽을 합한 너비를 포함하는 총 채널 너비를 가지며, 상기 챔버는 상기 하나 이상의 채널에 수직 방향의 너비가 상기 총 채널 너비보다 적어도 2배를 가지는 것을 특징으로 하는 미세구조 유체장치.

KR1020107003163A 2007-07-11 2008-07-11 비혼화성 액-액 반응을 위한 미세유체 장치 및 방법 KR20100034037A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07301224A EP1992404B1 (en) 2007-05-15 2007-07-11 Microfluidic device and method for immiscible liquid - liquid reactions
EP07301224.7 2007-07-11

Publications (1)

Publication Number Publication Date
KR20100034037A true KR20100034037A (ko) 2010-03-31

Family

ID=39864759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107003163A KR20100034037A (ko) 2007-07-11 2008-07-11 비혼화성 액-액 반응을 위한 미세유체 장치 및 방법

Country Status (7)

Country Link
US (1) US20100284240A1 (ko)
EP (2) EP2314370B1 (ko)
JP (1) JP2011509814A (ko)
KR (1) KR20100034037A (ko)
CN (1) CN101801512B (ko)
TW (1) TW200918162A (ko)
WO (1) WO2009009130A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121159A (ko) 2015-04-10 2016-10-19 충남대학교산학협력단 비혼화성 액-액 반응을 위한 연속식 미세유체 반응 시스템 및 이를 이용한 반응 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698613B2 (ja) 2004-01-26 2011-06-08 プレジデント アンド フェロウズ オブ ハーバード カレッジ 流体送達のシステムおよび方法
JP2008539090A (ja) * 2005-04-26 2008-11-13 アビザ テクノロジー リミティド マイクロ流体構造およびその製造方法
EP2216093A1 (en) 2009-01-30 2010-08-11 Corning Incorporated In situ formation and deposition of palladium Pd(0) in reactors
EP2617703B1 (en) 2012-01-17 2014-07-30 Corning Incorporated Improved catalyzed hypohalous oxidation of alcohol groups
US9588027B2 (en) 2013-03-13 2017-03-07 UPKO Diagnostics, LLC Mixing of fluids in fluidic systems
CN107206376B (zh) 2014-12-12 2021-07-09 欧普科诊断有限责任公司 包括通过模塑形成之流控系统的包含孵育通道的流控系统
US20220105515A1 (en) * 2019-01-31 2022-04-07 Samplix Aps A microfluidic device and a method for provision of emulsion droplets

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534659A (en) * 1984-01-27 1985-08-13 Millipore Corporation Passive fluid mixing system
AU5014293A (en) * 1992-08-28 1994-03-29 Turbocom, Inc. Method and apparatus for mixing fluids
US6537506B1 (en) * 2000-02-03 2003-03-25 Cellular Process Chemistry, Inc. Miniaturized reaction apparatus
DE10041823C2 (de) * 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
FR2830206B1 (fr) 2001-09-28 2004-07-23 Corning Inc Dispositif microfluidique et sa fabrication
US20030178641A1 (en) * 2002-01-23 2003-09-25 Blair Steven M. Microfluidic platforms for use with specific binding assays, specific binding assays that employ microfluidics, and methods
DE10204414A1 (de) * 2002-02-04 2003-09-04 Siemens Ag Mikrofluidik-System
US20040228211A1 (en) * 2003-05-13 2004-11-18 Koripella Chowdary R. Internal micromixer
JP4431857B2 (ja) * 2003-05-30 2010-03-17 富士フイルム株式会社 マイクロデバイス
JP4432104B2 (ja) * 2003-05-30 2010-03-17 富士フイルム株式会社 マイクロリアクター
US7160025B2 (en) * 2003-06-11 2007-01-09 Agency For Science, Technology And Research Micromixer apparatus and methods of using same
DE10333922B4 (de) * 2003-07-25 2005-11-17 Wella Ag Bauteile für statische Mikromischer, daraus aufgebaute Mikromischer und deren Verwendung zum Mischen, zum Dispergieren oder zur Durchführung chemischer Reaktionen
DE10333921B4 (de) * 2003-07-25 2005-10-20 Wella Ag Extraktionsverfahren unter Verwendung eines statischen Mikromischers
EP1944079B1 (en) * 2004-06-11 2012-05-30 Corning Incorporated Microstructure designs for optimizing mixing and pressure drop
EP1679115A1 (en) 2005-01-07 2006-07-12 Corning Incorporated High performance microreactor
EP1854536A1 (en) * 2006-05-11 2007-11-14 Corning Incorporated High throughput thermally tempered microreactor devices and methods
US7503686B2 (en) * 2006-07-11 2009-03-17 Paradox Holding Company, Llc Apparatus and method for mixing fluids at the surface for subterranean treatments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121159A (ko) 2015-04-10 2016-10-19 충남대학교산학협력단 비혼화성 액-액 반응을 위한 연속식 미세유체 반응 시스템 및 이를 이용한 반응 방법

Also Published As

Publication number Publication date
EP1992404B1 (en) 2011-03-23
CN101801512A (zh) 2010-08-11
EP2314370A2 (en) 2011-04-27
EP2314370A3 (en) 2012-03-28
US20100284240A1 (en) 2010-11-11
EP2314370B1 (en) 2013-09-04
WO2009009130A1 (en) 2009-01-15
CN101801512B (zh) 2013-01-09
EP1992404A3 (en) 2008-12-03
TW200918162A (en) 2009-05-01
JP2011509814A (ja) 2011-03-31
EP1992404A2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
KR20100034037A (ko) 비혼화성 액-액 반응을 위한 미세유체 장치 및 방법
US7939033B2 (en) Process intensified microfluidic devices
KR101211752B1 (ko) 혼합 및 압력 강하를 최적화하는 미세구조 설계
US7032607B2 (en) Capillary reactor distribution device and method
Burns et al. The intensification of rapid reactions in multiphase systems using slug flow in capillaries
US8551417B2 (en) Reactor and reaction plant
EP2172261A1 (en) Multiple flow path microfluidic devices
Sheng et al. Surfactant effect on mass transfer characteristics in the generation and flow stages of gas–liquid Taylor flow in a microchannel
JP4910909B2 (ja) マイクロリアクタシステム
Liu et al. Adjustable behaviors and dynamic mechanisms of droplets in the cross junction
Jovanovic Liquid-liquid microreactors for phase transfer catalysis
JP4298671B2 (ja) マイクロデバイス
Fu et al. Multiphase Flow in a Microchannel
Coach Continuous metal scavenging with a flow liquid-liquid extraction unit

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid