KR20100023946A - Fibrous adsorbent and manufacturing method for voc absorbent - Google Patents
Fibrous adsorbent and manufacturing method for voc absorbent Download PDFInfo
- Publication number
- KR20100023946A KR20100023946A KR1020100014616A KR20100014616A KR20100023946A KR 20100023946 A KR20100023946 A KR 20100023946A KR 1020100014616 A KR1020100014616 A KR 1020100014616A KR 20100014616 A KR20100014616 A KR 20100014616A KR 20100023946 A KR20100023946 A KR 20100023946A
- Authority
- KR
- South Korea
- Prior art keywords
- fiber
- manganese
- fibrous adsorbent
- volatile organic
- adsorption
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
본 발명은 폴리아크릴로나이트릴(Polyacrylonitrile)과 망간전구체를 혼합한 섬유전구체 조성물을 이용한 휘발성유기화합물의 흡착제 및 이의 제조방법에 관한 것이다. The present invention relates to an adsorbent for volatile organic compounds using a fiber precursor composition in which polyacrylonitrile and a manganese precursor are mixed, and a method for preparing the same.
휘발성 유기화합물은 인체 및 생태계에 미치는 영향이 커서 특정 대기 유해물질로 분류되고 있으며, 또한 광화학 반응을 통하여 오존 등과 같은 2차 오염물질인 광화학 산화물을 생성시킨다. 이와 같은 휘발성 유기화합물은 발암성이 높다고 알려져 있는 화학물질이 다수 포함되어 있기 때문에 인체에 유독하며 오존층 파괴, 지구온난화, 광화학 스모그, 악취 등의 문제점을 야기한다. Volatile organic compounds are classified as specific atmospheric harmful substances due to their great effect on human body and ecosystem, and also produce photochemical oxides, which are secondary pollutants such as ozone, through photochemical reactions. Such volatile organic compounds are toxic to the human body because they contain a number of chemicals known to be highly carcinogenic and cause problems such as ozone layer destruction, global warming, photochemical smog and odor.
휘발성 유기화합물의 인체에 대한 직접적인 영향은, 방향족 탄화수소류의 휘발성 유기화합물 중 벤젠의 경우에는 백혈병과 중추신경 장애를 일으킨다고 알려져 있으며, 매우 낮은 농도의 벤젠에 노출되었던 사람에게도 염색체 이상이 종종 발견된다고 보고되고 있다. 한편, 유기 용제류는 그 자체가 독성을 지니고 있거나 그 속에 포함된 이 물질들이 독성이 높아서 문제시되고 있다. 대표적인 유기용제로는 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소류가 있으며 이 물질은 다양한 배출원에서 배출되는데, 우리나라의 휘발성유기화합물질 배출량은 도장산업의 배출량이 55%로 가장 큰 비중을 차지하고 있고, 자동차 등의 교통수단이 그 뒤를 이어 28%를 차지하고 있다.The direct effects of volatile organic compounds on the human body are known to cause leukemia and central nervous system disorders in benzene among aromatic volatile organic compounds, and chromosomal abnormalities are often found in people exposed to very low concentrations of benzene. Is being reported. On the other hand, organic solvents are problematic because they are toxic in their own right or those substances contained therein are highly toxic. Representative organic solvents include aromatic hydrocarbons such as benzene, toluene and xylene, which are emitted from various sources. Korea's volatile organic compound emissions account for 55% of the paint industry's emissions. Back transportation is followed by 28%.
활성탄은 휘발성유기화합물를 제거하기 위해 현재 가장 널리 사용되고 있는 흡착제이며 활성탄 이외의 흡착제로는 실리카겔, 알루미나, 제올라이트 등을 사용하고 있다. 활성탄 제조 원료로는 나무, 석탄, 코코넛 열매와 같은 탄소함유 물질을 사용하며 종류로는 분말탄, 입상탄 그리고 섬유상 활성탄 등이 있다. Activated carbon is the most widely used adsorbent to remove volatile organic compounds. Silica gel, alumina and zeolite are used as adsorbents other than activated carbon. Raw materials for activated carbon use carbon-containing materials such as wood, coal and coconut fruit, and the types include powdered coal, granular carbon and fibrous activated carbon.
이중 입상활성탄은 충분히 넓은 표면적을 가지며 압력강하가 적고 흡착된 휘발성 유기화합물을 비교적 쉽게 회수할 수 있어 가장 널리 사용되고 있다. 반면 섬유상 활성탄은 최근 많은 각광을 받고 있는 흡착제이며, 이는 섬유상 활성탄의 기공 크기가 미세공으로만 이루어져 있으며 흡착부분이 섬유 표면으로부터 직접 미세공으로 연결되어 있어 흡착과 탈착속도가 빠르다는 장점을 지니고 있기 때문이다. 또한 벌집구조나 판형 등 여러 모양으로 만들 수 있어 표면을 최대한 사용할 수 있는 장점이 있다.
Double granular activated carbon is the most widely used because it has a sufficiently large surface area, a low pressure drop, and relatively easily recovers the adsorbed volatile organic compounds. On the other hand, fibrous activated carbon is an adsorbent that has received much attention recently because the pore size of fibrous activated carbon is composed of only micropores, and the adsorption portion is directly connected to micropores from the fiber surface, which has the advantage of fast adsorption and desorption rate. . In addition, it can be made in a variety of shapes, such as honeycomb structure or plate shape has the advantage that the surface can be used to the maximum.
본 발명의 목적은 휘발성 유기화합물의 흡착능력이 매우 우수한 흡착제 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide an adsorbent having a very good adsorption capacity of a volatile organic compound and a method for producing the same.
구체적으로 본 발명은 평균직경이 200 ~ 400 nm이며, 비표면적이 853 ~ 1300 ㎡/g 이고, 세공의 직경이 5.6 내지 6.0 Å, 중기공의 직경이 59 ~ 91Å인 섬유상의 흡착제를 제공하고자 한다.
Specifically, the present invention provides a fibrous adsorbent having an average diameter of 200 to 400 nm, specific surface area of 853 to 1300 m 2 / g, pore diameter of 5.6 to 6.0
상술한 바와 같은 휘발성 유기화합물의 흡착제로 사용되는 종래 입상활성탄의 문제점들을 해결하고자 광범위한 연구를 진행하였으며, 그 결과 본 발명에 따른 섬유상 흡착제를 사용할 경우, 톨루엔의 흡착능력이 기존의 입상 활성탄에 비하여 2배가량 높은 점을 인지하여 본 발명을 완성하게 되었다. In order to solve the problems of the conventional granular activated carbon used as the adsorbent of the volatile organic compounds as described above, extensive research has been conducted. As a result, when the fibrous adsorbent according to the present invention is used, the adsorption capacity of toluene is higher than that of the conventional granular activated carbon. The present invention was completed by recognizing the doubling point.
본 발명의 섬유상 흡착제를 제조하는 방법에 대해 구체적으로 설명하면,Referring to the method of producing the fibrous adsorbent of the present invention in detail,
a) 폴리아크릴로나이트릴수지를 용매에 용해한 후, 망간전구체를 전체 고형분 함량 중 0.1 ~ 5 중량%로 첨가하여 섬유전구체 조성물을 제조하는 단계;a) preparing a fiber precursor composition by dissolving polyacrylonitrile resin in a solvent and then adding manganese precursor in an amount of 0.1 to 5% by weight based on the total solid content;
b) 상기 섬유전구체 조성물을 주사바늘이 부착된 실린지에 넣고, 20 ~ 30kV의 전압을 가하여 전기방사하여 섬유를 제조하는 단계;b) preparing the fiber by inserting the fiber precursor composition into a syringe with a needle and electrospinning a voltage of 20 to 30 kV;
c) 상기 섬유를 250 ~ 300℃까지 승온시키고, 공기분위기 하에서 0.5 ~ 3시간 동안 산화안정화시키는 단계;c) heating the fiber to 250 to 300 ° C., and oxidatively stabilizing for 0.5 to 3 hours in an air atmosphere;
d) 상기 산화안정화된 섬유를 불활성분위기 또는 진공상태에서 800 ~ 1000℃로 탄화시키는 단계;d) carbonizing the oxidative stabilized fiber at 800 to 1000 ° C. in an inert atmosphere or in a vacuum state;
e) 상기 탄화된 섬유를 600 ~ 800℃, 스팀분위기에서 활성화하는 단계;e) activating the carbonized fiber at 600 ~ 800 ℃, steam atmosphere;
를 포함한다.It includes.
상기 섬유전구체 조성물은 고형분 함량이 10 ~ 30 중량%으로 제조하는 것이 바람직하다. 전기방사를 이용한 나노섬유 제조 시 가장 중요한 요소는 조성물의 적절한 점도인데, 10 중량% 미만으로 제조하는 경우 조성물의 점도가 낮고, 30 중량%를 초과하는 경우 점도가 높기 때문에 방사하기에 적절하지 못하다.The fiber precursor composition is preferably prepared in a solid content of 10 to 30% by weight. The most important factor in the preparation of nanofibers using electrospinning is the proper viscosity of the composition, which is not suitable for spinning because of the low viscosity of the composition when prepared in less than 10% by weight, and the high viscosity in excess of 30% by weight.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 출발물질인 섬유전구체 조성물은 폴리아크릴로나이트릴수지를 용매에 용해한 후, 망간전구체를 첨가하여 혼합하는 것도 가능하나, 폴리아크릴로나이트릴수지와 망간전구체를 각각 용매에 용해한 후, 전체 고형분 함량 중 망간전구체의 고형분 함량이 0.1 ~ 5 중량%가 되도록 두 용액의 혼합비율을 조절하여 제조할 수 있다.The fiber precursor composition, which is the starting material of the present invention, may be dissolved in a solvent after the polyacrylonitrile resin is added, and then mixed with the manganese precursor, but the polyacrylonitrile resin and the manganese precursor are respectively dissolved in the solvent, and then It can be prepared by adjusting the mixing ratio of the two solutions so that the solids content of the manganese precursor in the solids content is 0.1 to 5% by weight.
상기 폴리아크릴로나이트릴수지의 중량평균분자량은 50,000 내지 500,000인 것을 사용하는 것이 바람직하며, 임의의 통상적인 합성고분자일 수 있다. 50,000 미만인 경우 섬유전구체 조성물의 점도가 낮고, 500,000을 초과하는 경우 점도가 높으므로 바람직하지 않다.The weight average molecular weight of the polyacrylonitrile resin is preferably used in the range of 50,000 to 500,000, and may be any conventional synthetic polymer. If it is less than 50,000, the viscosity of the fiber precursor composition is low, and if it exceeds 500,000, the viscosity is high, which is not preferable.
상기 망간전구체는 망간아세테이트, 망간아세테이트테트라하이드레이트, 망간아세테이트 디하이드레이트, 망간아세티아세토네이트, 망간클로라이트에서 선택되는 어느 하나 이상을 사용할 수 있다. 상기 망간전구체의 함량은 섬유전구체 조성물의 전체 고형분 함량 중 0.1 ~ 5중량%, 보다 바람직하게는 0.5 ~ 1.5 중량%의 범위로 혼합하는 경우, 가장 우수한 비표면적을 갖는 것을 알 수 있었으며, 과도한 혼합은 오히려 중대기공을 증가시킴으로써 비표면적을 감소시키기 때문에 바람직하지 않다.The manganese precursor may be any one or more selected from manganese acetate, manganese acetate tetrahydrate, manganese acetate dihydrate, manganese acetacetonate, and manganese chlorite. The content of the manganese precursor was found to have the best specific surface area when mixed in the range of 0.1 to 5% by weight, more preferably 0.5 to 1.5% by weight of the total solid content of the fiber precursor composition, excessive mixing On the contrary, it is not preferable because the specific surface area is decreased by increasing the mesopores.
본 발명은 폴리아크릴로나이트릴과 망간전구체를 혼합하여 섬유전구체 조성물을 제조한 후 이를 이용하여 전기방사, 산화안정화, 탄화, 활성화 단계를 거쳐 섬유상의 흡착제로 제조함으로써, 활성화과정에서 섬유의 내부 및 외부에 고르게 존재하는 망간전구체에 의한 촉매활성과 열에 의한 물리적 이동을 통해 활성탄소섬유의 기공을 증가시킬 수 있을 뿐만 아니라 제조과정 역시 간편하고, 비표면적을 확대할 수 있었다. The present invention is to prepare a fiber precursor composition by mixing polyacrylonitrile and manganese precursor, and then using the same to prepare a fiber adsorbent through electrospinning, oxidative stabilization, carbonization, activation step, the inside of the fiber in the activation process Through the catalytic activity of the manganese precursors present in the outside and physical movement by heat, the pores of the activated carbon fibers can be increased, as well as the manufacturing process is simple and the specific surface area can be increased.
본 발명에서 상기 용매는 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 테트라하이드로퓨란(THF)에서 선택되는 어느 하나 이상이 사용 가능하다. In the present invention, the solvent may be any one or more selected from dimethylformamide (DMF), dimethylacetamide (DMAc) and tetrahydrofuran (THF).
이렇게 제조한 조성물을 균질화한 후 주사바늘이 부착된 실린지에 넣고, 20 ~ 30kV의 전압을 가하여 전기방사하여 섬유를 제조하고, 상기의 방식으로 제조된 섬유를 250 ~ 300℃까지 승온시키고, 공기분위기 하에서 0.5 ~ 3시간 동안 산화안정화시킨다. After homogenizing the composition thus prepared, it is placed in a syringe with a needle, and electrospun by applying a voltage of 20 to 30 kV to prepare a fiber, and the fiber prepared in the above manner is heated to 250 to 300 ° C., Oxidative stabilization under 0.5 to 3 hours.
보통 열가소성 수지는 고온에서 탄소화 및 활성화를 하면 용융되거나 섬유간의 융착이 발생하는데 이를 방지하기 위해서 산화안정화 공정을 통해 열경화성 수지로 변환시킨다. 즉, 산화안정화 공정은 열가소성 수지를 열경화성 수지로 변환시켜 후속 고온 탄소화, 활성화 공정에서 섬유의 융착 및 열용융을 방지하기 위해 섬유를 표면으로부터 산화처리하는 과정이다. 산화안정화 공정을 행하지 않고 직접 탄소화나 활성화를 하면 개환 및 탈수소 등의 발열반응이 급격하게 진행되어 탄화되기보다는 연소된다. 본 발명에서 산화안정화 과정은 산소의 가교, 또는 강한 수소결합을 형성하여 후속하는 고온 탄소화나 활성화 공정에 있어서 휘발분을 감소시켜 고상 탄소화 반응이 되며 탄소화 과정에서도 섬유의 치수 및 구조가 유지된다. In general, thermoplastic resins are melted when carbonized and activated at high temperatures, or fusion between fibers occurs. To prevent this, the thermoplastic resin is converted into a thermosetting resin through an oxidative stabilization process. That is, the oxidation stabilization process is a process of oxidizing fibers from the surface to prevent the fusion and thermal melting of the fibers in the subsequent high temperature carbonization, activation process by converting the thermoplastic resin into a thermosetting resin. If carbonization or activation is performed directly without performing an oxidative stabilization process, exothermic reactions such as ring opening and dehydrogenation proceed rapidly and are burned rather than carbonized. In the present invention, the oxidative stabilization process forms a crosslinking of oxygen or a strong hydrogen bond, thereby reducing volatile matter in the subsequent high temperature carbonization or activation process, resulting in a solid phase carbonization reaction and maintaining the dimensions and structure of the fiber even during the carbonization process.
섬유의 치수 및 구조를 유지하기 위해 안정화 과정을 거친 후 다시 휘발성의 비탄소 성분을 제거하거나 표면적을 증가시키기 위해 특수 조건하에서 고온으로 원료물질을 가열해 줌으로써 탄화 및 활성화를 한다. 이때 안정화 온도 및 시간은 임의의 조건으로 주어질 수 있다. 구체적으로 상기 안정화된 섬유를 불활성분위기 또는 진공상태에서 800 ~ 1000℃로 탄화한 후, 다시 600 ~ 800℃, 스팀분위기에서 활성화하여 섬유상의 흡착제를 제조하였다. 활성화공정은 세공구조를 제어하는데 있어 매우 중요한 역할을 한다. 통상적인 활성화 방법으로는 가스활성화법과 약품활성화법을 주로 행하고 있으며, 가스활성화법은 수증기, 탄산가스, 산소 등을 혼합한 상태에서 탄소화된 원료와 1000℃ 부근에서 접촉 반응시켜 미세한 다공질의 흡착탄을 만드는 방법이다. 그러나 본 발명에서는 탄화온도보다 낮은 온도범위(600 ~ 800℃)에서 스팀을 이용하여 활성화 하였다. 안정화 온도 및 시간은 임의의 조건으로 주어질 수 있으나 금속의 촉매작용이 유발되지 않도록, 탄화온도보다 낮은 온도를 선택하는 것이 바람직하다. 900℃ 이상의 고온에서 활성화할 경우 최종생산물의 거의 남지 않고 번-오프(burn-off) 될 수 있다. After stabilization to maintain the fiber's dimensions and structure, it is carbonized and activated by heating the raw material at high temperatures under special conditions to remove volatile non-carbon components or increase its surface area. At this time, the stabilization temperature and time may be given under any conditions. Specifically, the stabilized fibers were carbonized at 800 to 1000 ° C. in an inert atmosphere or vacuum state, and then activated at 600 to 800 ° C. and a steam atmosphere to prepare a fibrous adsorbent. The activation process plays a very important role in controlling the pore structure. Conventional activation methods are mainly gas activation and chemical activation. Gas activation is a fine porous adsorbed coal by contact reaction at around 1000 ° C with carbonized raw materials in the state of mixing water vapor, carbon dioxide, and oxygen. How to make it. However, in the present invention, activated using steam in the temperature range (600 ~ 800 ℃) lower than the carbonization temperature. The stabilization temperature and time may be given under any conditions, but it is preferable to select a temperature lower than the carbonization temperature so that catalysis of the metal is not induced. When activated at high temperatures above 900 ° C., it can be burned off with little left over in the final product.
결과적으로 생성되는 본 발명에 따른 휘발성 유기화합물 흡착용 섬유상 흡착제는 섬유의 직경이 200 ~ 400 nm이고, 평균직경이 250 nm이며, 비표면적이 853 ~ 1300 ㎡/g이고, 미세기공의 직경이 5.6 내지 6.0 Å, 중대기공의 직경이 59 ~ 91Å 이고, 휘발성유기화합물의 흡착력이 40 ~ 68g/100g 인 우수한 흡착제를 제조할 수 있다. The resulting fibrous adsorbent for adsorption of volatile organic compounds according to the present invention has a fiber diameter of 200 to 400 nm, an average diameter of 250 nm, a specific surface area of 853 to 1300 m 2 / g, and a diameter of micropores of 5.6 To 6.0 kPa, medium and large pore diameters of 59 to 91 kPa, excellent adsorption of 40 to 68 g / 100 g of the adsorption force of the volatile organic compounds can be prepared.
본 발명에서 휘발성유기화합물의 흡착력은 상기 섬유상 흡착제를 임의로 제작한 직경 6mm, 길이 15mm 흡착셀에 충진하고, 200 ppmv의 톨루엔이 함유되어있는 질소가스를 분당 180ml 흘려준 뒤 톨루엔 흡착량은 가스크로마토그래피를 이용하여 계산하였다.
In the present invention, the adsorption power of the volatile organic compound is filled into a 6 mm diameter and 15 mm length adsorption cell, optionally prepared with the fibrous adsorbent, and 180 ml of nitrogen gas containing 200 ppmv of toluene is flowed per minute, and then the amount of toluene adsorption is gas chromatography. Calculated using.
본 발명은 섬유의 기공을 적절하게 제어할 수 있으며, 휘발성유기화합물의 흡착량을 조절할 수 있었다.The present invention can properly control the pores of the fiber, it was possible to adjust the amount of adsorption of volatile organic compounds.
본 발명에 따른 섬유상 흡착제는 종래 입상활성탄에 비하여 매우 높은 휘발성유기화합물의 흡착특성을 갖음을 알 수 있었다.The fibrous adsorbent according to the present invention was found to have a very high adsorption characteristics of volatile organic compounds as compared to the conventional granular activated carbon.
또한, 입자상을 사용하는 경우에 비해 공정의 단순화 및 취급이 용이하기 때문에 휘발성유기화합물 흡착제로서 기대효과가 매우 크다.
In addition, since the process is simpler and easier to handle than the case of using a particulate form, the expected effect is very high as the volatile organic compound adsorbent.
도 1은 0.5 중량%의 망간을 함유하는 실시예 1에 따른 주사현미경사진과 투과현미경사진이다. 위의 사진은 30,000배 확대된 이미지이고, 아래 사진은 300,000배로 확대된 이미지이다.
도 2는 1.0 중량%의 망간을 함유하는 실시예 2에 따른 주사현미경사진과 투과현미경사진이다. 위의 사진은 30,000배 확대된 이미지이고, 아래 사진은 300,000배로 확대된 이미지이다.
도 3은 1.5 중량%의 망간을 함유하는 실시예 3에 따른 주사현미경사진과 투과현미경사진이다. 위의 사진은 30,000배 확대된 이미지이고, 아래 사진은 300,000배로 확대된 이미지이다.
도 4는 망간 함유량에 따른 탄소나노섬유의 질소흡탈착 등온선을 나타낸 것이다.
도 5는 망간 함유량에 따른 활성탄소나노섬유의 세공분포를 나타낸 것이다.
도 6은 톨루엔흡착의 파괴곡선(Breakthrough) 그래프를 나타낸 것이다. 1 is a scanning micrograph and a transmission micrograph according to Example 1 containing 0.5% by weight of manganese. The picture above is 30,000 times magnified. The picture below is 300,000 times magnified.
2 is a scanning micrograph and a transmission micrograph according to Example 2 containing 1.0% by weight of manganese. The picture above is 30,000 times magnified. The picture below is 300,000 times magnified.
3 is a scanning micrograph and a transmission micrograph according to Example 3 containing 1.5% by weight of manganese. The picture above is 30,000 times magnified. The picture below is 300,000 times magnified.
4 shows nitrogen adsorption and desorption isotherms of carbon nanofibers according to manganese content.
Figure 5 shows the pore distribution of activated carbon nanofibers according to the manganese content.
6 shows a breakthrough graph of toluene adsorption.
이하는 본 발명의 구체적인 설명을 위하여 일예를 들어 설명한다. 그러나 본 발명이 하기의 실시예에 한정되는 것은 아니다.
The following will be described by way of example for a detailed description of the invention. However, the present invention is not limited to the following examples.
하기 실시예에서 사용된 물성 측정방법은 다음과 같다.Physical property measurement method used in the following Examples are as follows.
직경분포 및 표면 이미지는 주사현미경(FE-SEM, Hitachi, S-4700)을 이용하여 측정되었다.Diameter distribution and surface images were measured using a scanning microscope (FE-SEM, Hitachi, S-4700).
비표면적 및 기공분포는 질소가스(N2)의 흡착동온선을 이용하였다. 질소의 흡탈착실험은 Micromeritics의 ASAP2020, USA를 이용하여 수행되었으며, 시료를 300℃에서 24시간 전처리한 후 77K의 등온조건에서 질소의 압력을 변화시키면서 측정하였다.Specific surface area and pore distribution were obtained by adsorption isotherm of nitrogen gas (N 2 ). Nitrogen adsorption and desorption experiments were carried out using ASAP2020, USA of Micromeritics, and the samples were pre-treated at 300 ° C. for 24 hours and measured while changing the pressure of nitrogen under isothermal conditions of 77K.
휘발성화합물의 흡착량은 톨루엔흡착실험을 수행하였으며, 흡착제의 입출구에서 흡착가스의 농도 변화인 파괴 곡선으로부터 흡착량을 구했다.Toluene adsorption experiment was carried out for the adsorption amount of volatile compounds, and the adsorption amount was determined from the breakdown curve which is the concentration change of adsorption gas at the inlet and outlet of the adsorbent.
실시예에 의해 제조된 섬유상 흡착제를 임의로 제작한 직경 6mm, 길이 15mm 흡착셀에 0.05내지 0.06g로 충진하고, 200 ppmv의 톨루엔이 함유되어있는 질소가스를 분당 180ml 흘려준 뒤 톨루엔 흡착량은 가스크로마토그래피를 이용하여 계산하였다. 본 발명에서는 실온조건에서 실험하였다.
The fibrous adsorbent prepared according to the embodiment was packed with a diameter of 6 mm and a length of 15 mm adsorbed cells at 0.05 to 0.06 g, and 180 ml of nitrogen gas containing 200 ppmv of toluene was poured per minute. Calculations were performed using chromatography. In the present invention, the experiment was performed at room temperature.
[실시예 1]Example 1
폴리아크릴로니트릴 수지(중량평균분자량 86,200)를 디메틸포름아미드(N,N-dimethylforamide) 용매에 고형분 10 중량%로 가한 후 60℃에서 24시간 동안 용해하여 고분자용액을 제조하였다. 상기 고분자용액에 망간아세테이트를 0.5 중량% 첨가하여 균질화하였다.A polyacrylonitrile resin (weight average molecular weight 86,200) was added to a solid content of 10% by weight in a dimethylformamide (N, N-dimethylforamide) solvent and dissolved at 60 ° C. for 24 hours to prepare a polymer solution. 0.5% by weight of manganese acetate was added to the polymer solution, and homogenized.
상기 균질화된 섬유전구체 용액을 전기방사기를 이용하여 전기방사하였다. 이때 방사조건은 0.5mm의 주사바늘이 부착된 30ml 실린지에 상기 섬유전구체 용액을 넣고 20 kV의 전압을 가하여 전기방사 하였다. 이때 주사바늘과 집전체간의 거리는 18cm로 유지하고 섬유전구체 용액의 용출속도는 1ml/h로 하며, 집전체에서 섬유가 집적되면 부직포를 떼어내어 분리하였다. The homogenized fiber precursor solution was electrospun using an electrospinner. At this time, the spinning condition was put into the 30ml syringe attached to a 0.5mm needle and the fiber precursor solution was electrospun by applying a voltage of 20 kV. In this case, the distance between the needle and the current collector was maintained at 18 cm, and the dissolution rate of the fiber precursor solution was 1 ml / h. When the fibers were accumulated in the current collector, the nonwoven fabric was separated and separated.
분리된 섬유 웹을 280℃, 공기분위기에서 1시간가량 산화안정화 하였다. 이때 1℃/분씩 승온하고, 280℃에서 1시간가량 유지하였다.The separated fibrous web was oxidatively stabilized at 280 ° C. for 1 hour in an air atmosphere. At this time, it heated up at 1 degree-C / min, and maintained at 280 degreeC for about 1 hour.
충분히 산화안정화를 거친 후, 1000℃에서 1시간 가량 탄화과정을 거친 후 30 부피% 스팀(H2O/N2)을 이용하여 800℃에서 30분간 활성화하였다. 이때 승온속도는 5℃/분으로 하였다.After sufficiently oxidative stabilization, the carbonization process was performed at 1000 ° C. for about 1 hour and then activated at 800 ° C. for 30 minutes using 30% by volume steam (H 2 O / N 2 ). The temperature increase rate was 5 degrees C / min.
이렇게 제조된 섬유상 흡착제의 주사현미경사진 및 투과현미경사진을 도 1에 나타내었다. 또한, 질소흡탈착 등온선을 도 4에 나타내었으며, 섬유의 세공분포는 도 5에 나타내었으며, 톨루엔흡착의 파괴곡선(Breakthrough)을 도 6에 나타내었다.
Scanning micrographs and transmission micrographs of the fibrous adsorbent thus prepared are shown in FIG. 1. In addition, the nitrogen adsorption and desorption isotherm is shown in FIG. 4, the pore distribution of the fiber is shown in FIG. 5, and the breakthrough curve of toluene adsorption is shown in FIG. 6.
[실시예 2]Example 2
상기 고분자용액에 망간아세테이트를 1.0 중량%로 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Except for mixing 1.0% by weight of manganese acetate in the polymer solution was prepared in the same manner as in Example 1.
이렇게 제조된 섬유상 흡착제의 주사현미경사진 및 투과현미경사진을 도 2에 나타내었다. 또한, 질소흡탈착 등온선을 도 4에 나타내었으며, 섬유의 세공분포는 도 5에 나타내었으며, 톨루엔흡착의 파괴곡선(Breakthrough)을 도 6에 나타내었다.
Scanning micrographs and transmission micrographs of the fibrous adsorbent thus prepared are shown in FIG. 2. In addition, the nitrogen adsorption and desorption isotherm is shown in FIG. 4, the pore distribution of the fiber is shown in FIG. 5, and the breakthrough curve of toluene adsorption is shown in FIG. 6.
[실시예 3]Example 3
상기 고분자용액에 망간아세테이트를 1.5 중량%로 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 제조하였다.Except for mixing the manganese acetate 1.5% by weight in the polymer solution was prepared in the same manner as in Example 1.
이렇게 제조된 섬유상 흡착제의 주사현미경사진 및 투과현미경사진을 도 3에 나타내었다. 또한, 질소흡탈착 등온선을 도 4에 나타내었으며, 섬유의 세공분포는 도 5에 나타내었으며, 톨루엔흡착의 파괴곡선(Breakthrough)을 도 6에 나타내었다.
Scanning micrographs and transmission micrographs of the fibrous adsorbent thus prepared are shown in FIG. 3. In addition, the nitrogen adsorption and desorption isotherm is shown in FIG. 4, the pore distribution of the fiber is shown in FIG. 5, and the breakthrough curve of toluene adsorption is shown in FIG. 6.
도 1, 2, 3은 800℃에서 30분간 스팀활성화 방법으로 제조한 섬유상 흡착제에 대한 주사현미경사진과 투과현미경 사진을 나타낸다. 900℃이상의 고온에서 활성 할 경우 최종생산물의 거의 남지 않고 번-오프(burn-off) 되었는데, 이는 전기방사로 제조된 섬유의 직경이 매우 작고 혼입된 망간에 의해 촉매활성도가 증가되었기 때문이라고 판단되어 본 발명에서는 800℃로 활성화 하였다. 1, 2, and 3 show scanning micrographs and transmission micrographs of fibrous adsorbents prepared by a steam activation method at 800 ° C. for 30 minutes. When activated at a temperature higher than 900 ℃, the final product was burned off with almost no remaining product. This is because the diameter of the fiber produced by electrospinning was very small and the catalytic activity was increased by the mixed manganese. In the present invention, it was activated at 800 ℃.
상기 제조방법에 의해 제조된 활성탄소나노섬유의 평균직경은 약 250nm로 나타났으며 이는 일반적인 섬유제조 방법인 용융방사, 용액방사, 겔상태 방사로부터 만들어진 섬유직경이 약 10㎛인데 반해 훨씬 가는 섬유로 제조되었음을 알 수 있다. 또한 섬유의 표면을 보면 중대기공들이 망간의 함량이 증가할수록 많아지는 것을 알 수 있었다. The average diameter of the activated carbon nanofibers prepared by the manufacturing method was about 250 nm, which is much thinner than the fiber diameter made from melt spinning, solution spinning, and gel spinning, which is a general fiber manufacturing method. It can be seen that manufactured. Also, the surface of the fiber showed that the mesopores increased as the content of manganese increased.
이하 투과현미경사진의 결과에 대해 상세히 설명한다. Hereinafter, the results of transmission micrographs will be described in detail.
투과현미경사진의 흰색을 띄는 덩어리는 망간원소 집합체로 판단되며, 망간집합체의 앞뒤로 나타나는 검은색 기공채널(Pore)은 망간입자의 이동경로를 따라 만들어진 것으로 보인다. 0.5 중량%의 망간이 함유된 실시예 1의 경우 수개의 망간원소 집합체와 그 집합체의 이동경로를 따라 기공채널이 관찰되었다. 1.0 중량% 망간이 함유된 실시예 2의 경우 실시예 1과 비슷한 크기의 망간원소 집합체와 그로 인한 기공 채널수가 0.5 중량%에 비해 훨씬 많이 나타났다. 이런 기공채널의 형성은 활성화 과정에서 망간 입자들의 열에 의한 이동에 기인한다. 망간입자의 크기는 약 5 내지 10 nm로 이는 다른 방법에 의해 제조된 금속함유 활성탄소섬유에서 나타나는 10 내지 40 nm 보다는 매우 작을 뿐만 아니라 그 분포도 훨씬 고르게 분포하는 것으로 나타났다. 1.5 중량% 망간이 함유된 활성탄소섬유는 50 nm 정도로 기공채널의 길이가 훨씬 짧아진 것으로 나타났다. 이는 망간의 함유량이 증가할수록 망간 원소들의 합체가 증가하고 증가된 망간 원소 집합체는 함유량이 적은 경우에 비해 상대적으로 부피와 무게가 크기 때문에 기공채널의 형성이 용이하지 않은 결과로 판단된다. 이에 본 발명에 따른 전기방사법을 이용한 기공채널 함유 활성탄소나노섬유의 제조법은 나노사이즈의 균일한 탄소섬유를 제조할 수 있음을 알 수 있었으며 섬유의 치수 및 구조를 잘 유지 할 수 있는 것으로 보아 안정화 및 활성화 조건이 적절함을 알 수 있었다. The white lumps of the transmission micrographs are considered to be manganese element aggregates, and the black pore channels appearing in front and back of the manganese aggregates appear to be made along the migration path of manganese particles. In Example 1 containing 0.5% by weight of manganese, pore channels were observed along several manganese element aggregates and their migration paths. In Example 2 containing 1.0 wt% manganese, the aggregate of manganese elements of the same size as in Example 1 and the resulting pore channel number were much higher than 0.5 wt%. The formation of such pore channels is due to the thermal movement of manganese particles during the activation process. The size of the manganese particles was about 5 to 10 nm, which was much smaller than the 10 to 40 nm shown in the metal-containing activated carbon fibers produced by other methods, and their distribution was evenly distributed. Activated carbon fiber containing 1.5 wt% manganese was found to have a much shorter pore channel length of about 50 nm. This is due to the increase in the content of manganese increases the coalescing of the manganese elements, and the increased manganese element aggregates are relatively large volume and weight compared to the case of low content, it is determined that the formation of pore channels is not easy. Therefore, it can be seen that the method for preparing activated carbon nanofibers containing the pore channel using the electrospinning method according to the present invention can produce nano-sized uniform carbon fibers, and it is possible to maintain the dimensions and structure of the fibers well to stabilize and It was found that the activation conditions were appropriate.
도 4는 망간의 함유량에 따른 활성탄소나노섬유의 질소흡탈착 등온선을 나타내는 도표이며, 도 5는 망간의 함유량이 각기 다른 활성탄소나노섬유의 세공분포를 나타내는 도표이다. 4 is a chart showing nitrogen adsorption and desorption isotherms of activated carbon nanofibers according to the content of manganese, and FIG. 5 is a chart showing pore distribution of activated carbon nanofibers having different manganese contents.
망간아세테이트 전구체를 폴리아크릴로나이트릴 용액에 혼합하여 제조한 탄소나노섬유는 폴리아크릴로나이트릴 단독 방사하여 제조한 탄소나노섬유의 표면적이 853㎡/g 인데 반해 비교적 표면적이 커지는 경향을 보였고, 망간의 함유량이 0.5 중량%인 경우 1053㎡/g, 1.0 중량%인 경우 1229㎡/g으로 가장 높은 표면적이 나타났고 1.5 중량%인 경우 918㎡/g으로 오히려 표면적은 감소하는 경향을 보였다.Carbon nanofibers prepared by mixing a manganese acetate precursor with a polyacrylonitrile solution showed a relatively large surface area, whereas the surface area of carbon nanofibers prepared by spun with polyacrylonitrile alone was 853 m 2 / g. When the content of 0.5% by weight 1053㎡ / g, 1.0% by weight was 1229㎡ / g showed the highest surface area, 1.5% by weight was 918㎡ / g tended to decrease the surface area.
따라서 망간의 함유량을 컨트롤하면 표면적을 조절할 수 있음을 알 수 있었다. 또한 세공크기도 망간이 증가할수록 커지는 경향을 보였으며, 0.5 중량%인 경우 5.7Å, 1.0 중량%인 경우 5.8Å으로 가장 높은 표면적을 보였으며, 1.5 중량%인 경우 5.6Å으로 마찬가지로 감소하는 경향을 보였다. 즉, 망간전구체는 일정량 첨가할 경우 비표면적 및 세공크기를 증가시키는데 좋은 역할을 하지만 일정량 이상으로 첨가할 경우 표면적 및 세공크기가 줄어드는 것으로 판단된다. 따라서 망간 전구체의 컨트롤은 표면적 및 기공크기를 컨트롤하는데 중요한 작용을 할 수 있음을 본 발명을 통해 개시한다. Therefore, it can be seen that the surface area can be controlled by controlling the content of manganese. In addition, the pore size also tended to increase as manganese increased, showing the highest surface area with 5.7Å for 0.5% by weight and 5.8Å for 1.0% by weight, and 5.6Å for 1.5% by weight. Seemed. That is, the manganese precursor plays a good role in increasing the specific surface area and pore size when a certain amount is added, but when it is added above a certain amount, the surface area and the pore size are judged to be reduced. Therefore, it is disclosed through the present invention that the control of the manganese precursor can play an important role in controlling the surface area and pore size.
상기의 탄화 및 활성화과정이 완료된 기공채널이 발달된 활성탄소나노섬유의 흡착실험은 흡착제의 입출구에서 흡착가스의 농도 변화인 파과 곡선으로부터 계산식에 의해 흡착량을 구하는 방식으로 행해졌다. 스테인레스재질로 길이 약 15 mm, 내경 약 6 mm인 흡착셀에 흡착시료 약 0.05내지 0.06g을 충진하여 표준가스농도는 200ppmw 톨루엔(질소 발란스)을 180ml/min의 유속으로 흘리면서 흡착실험을 실시하였다. 본 발명에서 흡착실험은 실온에서 수행하였다.Adsorption experiments of activated carbon nanofibers in which the pore channel is completed by the carbonization and activation process were carried out by calculating the amount of adsorption from a breakthrough curve, which is a change in concentration of adsorption gas at the inlet and outlet of the adsorbent. Adsorption experiments were carried out by filling the adsorption cells of about 15 mm in length and about 6 mm in diameter by filling stainless steel with about 0.05 to 0.06 g of the adsorption sample. Adsorption experiment in the present invention was performed at room temperature.
도 7은 각 망간 함유 탄소나노섬유의 톨루엔 흡착성질을 나타내는 도표이다. 망간 함유량에 따른 활성탄소나노섬유의 파과시간은 폴리아크릴로나이트릴 단독 방사섬유를 이용한 활성탄소나노섬유의 경우 1.5시간이며, 망간의 함유량이 0.5, 1.0, 1.5 중량%일 때 각각 2.3, 3.3, 2.0시간 이였고 최종 흡착량은 40/100g, 50g/100g, 68g/100g, 47g/100g으로 나타났으며, 1.0 중량%를 함유한 경우 가장 긴 파과시간과 가장 높은 흡착량을 보였다. 7 is a graph showing toluene adsorption properties of each manganese-containing carbon nanofibers. Breakthrough time of activated carbon nanofibers according to manganese content is 1.5 hours for activated carbon nanofibers using polyacrylonitrile-only spun fiber, and when the contents of manganese are 0.5, 1.0, 1.5 wt%, 2.3, 3.3, It was 2.0 hours and the final adsorption amount was 40 / 100g, 50g / 100g, 68g / 100g, 47g / 100g. When 1.0 wt% was contained, the longest breakthrough time and the highest adsorption amount were obtained.
이 결과는 폴리아크릴로나이트를 단독으로 방사하여 제조한 활성탄소나노섬유에 비해 모두 높은 값으로 망간 혼합에 의해 제조된 활성탄소나노섬유가 흡착량이 높음을 알 수 있었다. 이는 비표면적값과 세공크기, 그리고 세공부피와 연관이 있는 것으로 망간이 1.0 중량% 함유된 탄소나노섬유의 경우 톨루엔 흡착에 최적인 비표면적과 기공크기를 갖기 때문인 것으로 판단된다.This result shows that the adsorption amount of the activated carbon nanofibers prepared by the manganese mixture is higher than that of the activated carbon nanofibers prepared by spinning the polyacrylonitrile alone. This is related to the specific surface area, pore size, and pore volume. It is believed that the carbon nanofibers containing 1.0 wt% of manganese have a specific surface area and pore size that are optimal for toluene adsorption.
이에 본 발명에 따른 망간전구체와 폴리아크릴로나이트릴의 혼합 전기방사 후 제조된 활성탄소나노섬유는 기공채널을 잘 형성할 수 있었으며, 적절한 크기의 기공채널은 톨루엔 흡착에 더 용이한 것을 알 수 있었다.
Accordingly, the activated carbon nanofibers prepared after the mixed electrospinning of manganese precursor and polyacrylonitrile according to the present invention were able to form pore channels well, and the pore channels of appropriate size were easier to adsorb toluene. .
[실시예 4]Example 4
상기 실시예 1과 동일하게 제조하면서, 800℃, 900℃, 1000℃에서 각각 탄화를 실하여하여 탄화온도에 따른 흡착량를 비교하였다. While preparing in the same manner as in Example 1, carbonization was carried out at 800 ° C., 900 ° C. and 1000 ° C., respectively, to compare the adsorption amount according to the carbonization temperature.
그 결과 높은 온도로 활성화한 탄소나노섬유의 톨루엔 흡착성질이 더 높아지는 경향을 보였으며 800℃에서 톨루엔 42g /흡착체 100g, 900℃에서 55g/100g, 1000℃에서 68g/100g, 의 톨루엔 흡착량을 나타내었다.As a result, the toluene adsorption properties of carbon nanofibers activated at high temperature tended to be higher. Toluene adsorption of toluene 42g / adsorbent 100g at 800 ℃, 55g / 100g at 900 ℃, 68g / 100g at 1000 ℃, Indicated.
이와 같이, 탄화온도가 높아질수록 흡착량이 증가하는 경향을 보이며, 1000℃에서 활성화한 경우 800℃에서 활성화한 경우에 비해 1.6배 높은 흡착량을 나타났다. As such, as the carbonization temperature increases, the adsorption amount tends to increase, and when activated at 1000 ° C, the adsorption amount is 1.6 times higher than when activated at 800 ° C.
이는 높은 온도에서 탄화 할수록 섬유의 표면적이 증가하고 세공직경 또한 증가하여 1000℃에서 활성화 한 경우 톨루엔이 흡착 가능한 유효한 세공분포를 가장 많이 지니고 있기 때문으로 보이며, 이에 1000℃에서 탄화한 활성탄소나노섬유가 가장 긴 파과시간과 가장 많은 흡착량을 보이는 것을 알 수 있었다.
This is because carbonization at high temperature increases the surface area of the fiber and also increases the pore diameter, which means that the activated carbon nanofibers carbonized at 1000 ° C have the most effective pore distribution that can be adsorbed when activated at 1000 ° C. The longest breakthrough time and the most adsorption amount were found.
[실시예 5]Example 5
본 발명의 실시예 1 ~ 3에서 제조한 섬유상 흡착제와 기존에 휘발성유기화합물의 흡착제로 사용되던 입자상활성탄의 흡착용량을 비교실험하였다. 이때 입자상 활성탄은 유니온카본사(나주)에서 구입하였으며, 흡착셀에 일정량 충진하여 흡착특성을 조사하였다. The adsorption capacities of the fibrous adsorbents prepared in Examples 1 to 3 of the present invention and the particulate activated carbon, which were previously used as adsorbents of volatile organic compounds, were compared. At this time, granular activated carbon was purchased from Union Carbon Co., Ltd. (Naju), and the adsorption characteristics were investigated by filling a certain amount into the adsorption cell.
그 결과, 실시예 1은 50g/100g, 실시예 2는 68g/100g, 실시예 3은 47g/100g이었으며, 입자상활성탄은 24g/100g이었다. 따라서 본 발명에 따른 실시예 1 ~ 3의 경우 기존의 입자상 활성탄에 비해 2배 이상의 높은 흡착용량을 나타내었으며, 휘발성 유기화합물 흡착제로 주로 사용되는 입상활성탄의 대체를 가져올 정도로 큰 파급효과가 있을 것으로 판단된다.As a result, Example 1 was 50g / 100g, Example 2 was 68g / 100g, Example 3 was 47g / 100g, and the particulate activated carbon was 24g / 100g. Therefore, in Examples 1 to 3 according to the present invention, the adsorption capacity was two times higher than that of the conventional granular activated carbon, and it was judged to have a large ripple effect such that the replacement of the granular activated carbon mainly used as the volatile organic compound adsorbent. do.
Claims (9)
b) 상기 섬유전구체 조성물을 이용하여 20 ~ 30kV의 전압을 가하여 전기방사하여 섬유를 제조하는 단계;
c) 상기 섬유를 250 ~ 300℃까지 승온시키고, 공기분위기 하에서 0.5 ~ 3시간 동안 산화안정화시키는 단계;
d) 상기 산화안정화된 섬유를 불활성분위기 또는 진공상태에서 800 ~ 1000℃로 탄화시키는 단계;
e) 상기 탄화된 섬유를 600 ~ 800℃, 스팀분위기에서 활성화하는 단계;
를 포함하는 것을 특징으로 하는 휘발성유기화합물 흡착용 섬유상 흡착제의 제조방법.a) preparing a fiber precursor composition by dissolving polyacrylonitrile resin in a solvent and then adding manganese precursor in an amount of 0.1 to 5% by weight based on the total solid content;
b) producing a fiber by applying a voltage of 20 ~ 30kV and electrospinning using the fiber precursor composition;
c) heating the fiber to 250 to 300 ° C., and oxidatively stabilizing for 0.5 to 3 hours in an air atmosphere;
d) carbonizing the oxidative stabilized fiber at 800 to 1000 ° C. in an inert atmosphere or in a vacuum state;
e) activating the carbonized fiber at 600 ~ 800 ℃, steam atmosphere;
Method for producing a fibrous adsorbent for volatile organic compound adsorption comprising a.
상기 섬유전구체 조성물은 고형분 함량이 10 ~ 30 중량%인 것을 특징으로 하는 휘발성유기화합물 흡착용 섬유상 흡착제의 제조방법.The method of claim 1,
The fiber precursor composition is a method for producing a fibrous adsorbent for adsorbing volatile organic compounds, characterized in that the solid content of 10 to 30% by weight.
상기 망간전구체는 망간아세테이트, 망간아세테이트테트라하이드레이트, 망간아세테이트 디하이드레이트, 망간아세티아세토네이트, 망간클로라이트에서 선택되는 어느 하나 이상인 것을 특징으로 하는 휘발성유기화합물 흡착용 섬유상 흡착제의 제조방법.The method of claim 1,
The manganese precursor is a manganese acetate, manganese acetate tetrahydrate, manganese acetate dihydrate, manganese acethiaacetonate, manganese chlorite, characterized in that any one or more selected from the fibrous adsorbent for adsorbing volatile organic compounds.
상기 폴리아크릴로나이트릴수지는 중량평균분자량이 50,000 ~ 500,000인 것을 특징으로 하는 휘발성유기화합물 흡착용 섬유상 흡착제의 제조방법.The method of claim 1,
The polyacrylonitrile resin is a method of producing a fibrous adsorbent for adsorbing volatile organic compounds, characterized in that the weight average molecular weight is 50,000 ~ 500,000.
상기 용매는 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 테트라하이드로퓨란(THF)에서 선택되는 어느 하나 이상인 것을 특징으로 하는 휘발성유기화합물 흡착용 섬유상 흡착제의 제조방법.The method of claim 1,
The solvent is any one or more selected from dimethylformamide (DMF), dimethylacetamide (DMAc), tetrahydrofuran (THF), the method of producing a fibrous adsorbent for adsorption of volatile organic compounds.
상기 섬유상 흡착제는 휘발성유기화합물의 흡착량이 40 ~ 68g/100g 인 것을 특징으로 하는 섬유상 흡착제.The method of claim 6,
The fibrous adsorbent is a fibrous adsorbent, characterized in that the adsorption amount of the volatile organic compound is 40 ~ 68g / 100g.
상기 섬유상 흡착제는 섬유의 평균직경이 200 ~ 400 nm인 것을 특징으로 하는 섬유상 흡착제.The method of claim 7, wherein
The fibrous adsorbent is a fibrous adsorbent, characterized in that the average diameter of the fiber 200 ~ 400 nm.
상기 섬유상 흡착제는 비표면적이 853 ~ 1300 ㎡/g이고, 미세기공의 직경이 5.6 내지 6.0 Å, 중대기공의 직경이 59 ~ 91Å 인 것을 특징으로 하는 섬유상 흡착제.
The method of claim 8,
The fibrous adsorbent has a specific surface area of 853 to 1300 m 2 / g, the diameter of the fine pores is 5.6 to 6.0 mm 3, the diameter of the medium and large pores is 59 to 91 mm 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100014616A KR20100023946A (en) | 2010-02-18 | 2010-02-18 | Fibrous adsorbent and manufacturing method for voc absorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100014616A KR20100023946A (en) | 2010-02-18 | 2010-02-18 | Fibrous adsorbent and manufacturing method for voc absorbent |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080020834A Division KR100952945B1 (en) | 2008-03-06 | 2008-03-06 | Fibrous Adsorbent and manufacturing method for VOC absorbent |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100023946A true KR20100023946A (en) | 2010-03-04 |
Family
ID=42175957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100014616A KR20100023946A (en) | 2010-02-18 | 2010-02-18 | Fibrous adsorbent and manufacturing method for voc absorbent |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100023946A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8911537B2 (en) | 2010-10-29 | 2014-12-16 | Lg Chem, Ltd. | Adsorbent of volatile organic compounds and adsorption method using thereof |
KR101947308B1 (en) * | 2018-01-30 | 2019-02-12 | 연세대학교 산학협력단 | Activated hollow porous carbon nano fiber for decreasing voc and its method |
-
2010
- 2010-02-18 KR KR1020100014616A patent/KR20100023946A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8911537B2 (en) | 2010-10-29 | 2014-12-16 | Lg Chem, Ltd. | Adsorbent of volatile organic compounds and adsorption method using thereof |
KR101947308B1 (en) * | 2018-01-30 | 2019-02-12 | 연세대학교 산학협력단 | Activated hollow porous carbon nano fiber for decreasing voc and its method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review | |
US6030698A (en) | Activated carbon fiber composite material and method of making | |
CN104583120B (en) | Activated carbon with high active surface area | |
JP6902536B2 (en) | Activated carbon, and adsorption filters and water purifiers using it | |
JP7491506B2 (en) | Activated charcoal | |
KR100952945B1 (en) | Fibrous Adsorbent and manufacturing method for VOC absorbent | |
Tiwari et al. | Synthesis of nitrogen enriched porous carbons from urea formaldehyde resin and their carbon dioxide adsorption capacity | |
Park et al. | CO 2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity | |
JP2022132348A (en) | Activated carbon and production method thereof | |
Tajer et al. | Fabrication of polyacrylonitrile hybrid nanofiber scaffold containing activated carbon by electrospinning process as nanofilter media for SO2, CO2, and CH4 adsorption | |
Thu et al. | Highly microporous activated carbon from acorn nutshells and its performance in water vapor adsorption | |
KR100967622B1 (en) | Manufacturing method of Fibrous Adsorbent by blend electrospinning for VOC absorbent | |
JP2004182511A (en) | Activated carbon and method of manufacturing the same | |
Gomez-Delgado et al. | Influence of the carbonization atmosphere on the development of highly microporous adsorbents tailored to CO2 capture | |
KR20100023946A (en) | Fibrous adsorbent and manufacturing method for voc absorbent | |
KR102571710B1 (en) | Method for producing activated carbon | |
KR20210021451A (en) | Activated carbon | |
JP6719709B2 (en) | Activated carbon | |
JPH03151041A (en) | Molded adsorbent | |
JPH11240707A (en) | Activated carbon | |
TW202222705A (en) | Carbonaceous material and method for producing same, and fluorine-containing organic compound removing material, water purification filter, and water purifier | |
CA2347009C (en) | Carbon fiber composite molecular sieve electrically regenerable air filter media | |
KR102588393B1 (en) | Surface of copper-based coordination polymer particles for capturing carbon dioxide and absorbing volatile organic compounds, and method for manufacturing the same | |
JPH0280315A (en) | Granulated active carbon | |
WO2019235043A1 (en) | Active carbon molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
WITB | Written withdrawal of application |