KR20100020919A - 기상 증착 반응기 - Google Patents

기상 증착 반응기 Download PDF

Info

Publication number
KR20100020919A
KR20100020919A KR1020090074133A KR20090074133A KR20100020919A KR 20100020919 A KR20100020919 A KR 20100020919A KR 1020090074133 A KR1020090074133 A KR 1020090074133A KR 20090074133 A KR20090074133 A KR 20090074133A KR 20100020919 A KR20100020919 A KR 20100020919A
Authority
KR
South Korea
Prior art keywords
substrate
injection
compound
reaction
precursor
Prior art date
Application number
KR1020090074133A
Other languages
English (en)
Other versions
KR101076172B1 (ko
Inventor
이상인
Original Assignee
시너스 테크놀리지, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시너스 테크놀리지, 인코포레이티드 filed Critical 시너스 테크놀리지, 인코포레이티드
Priority to PCT/KR2009/004529 priority Critical patent/WO2010019008A2/en
Publication of KR20100020919A publication Critical patent/KR20100020919A/ko
Application granted granted Critical
Publication of KR101076172B1 publication Critical patent/KR101076172B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

기상 증착 반응기는, 제1 물질을 기판에 주입하는 제1 주입부; 및 상기 제1 주입부 내에 위치하며 제2 물질을 기판에 주입하는 하나 이상의 제2 주입부를 포함하는 반응 모듈을 포함할 수 있다. 상기 반응 모듈은 기판과의 상대적인 이동으로 기판이 상기 반응 모듈을 통과하는 구조를 가질 수 있다. 상기 기상 증착 반응기는 반응 모듈을 통과하는 기판을 챔버 내의 분위기에 노출하지 않고 기판에 복수 개의 물질을 주입할 수 있는 이점이 있다.
Figure P1020090074133
원자층, 증착, 반응기, ALD, 챔버, 전구체

Description

기상 증착 반응기{Vapor Deposition Reactor}
실시예들은 기상 증착 반응기에 대한 것이다.
반도체용 재료로는 Si, SiGe 등의 실리콘계 반도체, ZnO 등의 금속산화물 반도체, GaAs, GaP, GaN, AlGaAs, InP 등의 III-V계 화합물 반도체, 또는 CdSe, CdTe, ZnS, CdHgTe 등의 II-VI계 화합물 반도체 등이 있다. 이들을 기판 재료로 사용하고 기판 위에 금속막, 절연막 등을 형성하여 사진, 식각, 세정, 박막 증착 등의 공정을 거쳐 반도체 소자를 제작하게 된다.
고집적화에 널리 이용되고 있는 금속산화막 전계효과 트랜지스터(Metal-Oxide-Semiconductor Field Effect Transistor; MOSFET)는 반도체 기판 위에 절연막을 형성하여 트랜지스터의 게이트 절연막으로 사용하며, 기판 위에 금속막을 형성하여 소자의 구동에 필요한 전압이나 전류를 흐르게 한다. 이때 기판과 금속막 또는 절연막 간의 반응은 매우 중요하며, 때로는 이들의 미미한 반응마저 반도체의 소자 특성을 좌우하게 되므로 정확한 계면 제어가 필요하다.
이를 위한 증착 공법도 노(furnace) 장치에서 얻어지는 저압 화학 기상 증착법(Low Pressure Chemical Vapor Deposition; LPCVD) 등의 CVD로부터 점차 원자층 증착법(Atomic Layer Deposition; ALD)으로 바뀌어가고 있는 추세이다. ALD는 원료전구체(source precursor) 주입, 물리흡착층 제거, 반응전구체(reactant precursor) 주입 및 물리흡착층 제거의 4단계로 이루어진다.
도 1은 종래 기술에 따른 원자층 증착법을 도시한 순서도이다.
도 1을 참조하면, 원자층 증착법은 기판을 로딩하는 단계(S11), 기판을 원료전구체 공급 모듈에 통과시켜 원료전구체를 주입하는 단계(S12), 기판을 퍼지(purge)/펌핑(pumping) 모듈에 통과시켜 원료전구체의 물리흡착층을 제거하는 단계(S13), 기판을 반응전구체 공급 모듈에 통과시켜 반응전구체를 주입하는 단계(S14) 및 기판을 퍼지/펌핑 모듈에 통과시켜 반응전구체의 물리흡착층을 제거하는 단계(S15)를 포함할 수 있다.
이상의 단계들은 목적하는 원자층의 최종 두께가 얻어질 때까지 반복적으로 수행될 수 있다(S16). 이때 각각의 단계를 구현할 수 있도록 고가의 원자층 증착법 전용 밸브를 사용하여 원료전구체, 퍼지 기체(purge gas), 반응전구체, 퍼지 기체 등을 순차적으로 기판에 공급한다.
피증착물인 반도체 기판에서 HF 또는 기타 다른 화학물질로 자연 산화막을 제거한 후 원료전구체가 증착되므로, 원료전구체는 반도체 기판과 직접 접촉하게 된다. 원료전구체가 기판에 최초로 흡착되어 있는 동안 상호확산을 일으키거나 또는 기판과 원료전구체와의 반응에 의하여 반도체 기판 면에 원치 않는 계면을 형성할 수 있다.
반도체 소자의 디자인 룰(design-rule)이 충분히 클 경우, 이러한 현상이 미 미하여 반도체 소자의 특성에 미치는 영향이 작을 수 있으나 소자가 점차 미세화되어 약 32 nm 이하의 디자인 룰을 갖게 되거나 또는 나노 소자나 양자 디바이스(quantum device) 등에서는 계면에서의 반응이나 원하지 않는 계면 형성이나 반응은 심각한 영향을 미칠 수 있게 된다.
실시예들은 기상 증착 반응기의 반응 모듈을 하나의 주입부 내에 다른 주입부가 위치하는 형태로 구성함으로써, 반응 모듈을 통과하는 기판에 각 주입부에 의해 복수 개의 서로 상이한 물질을 주입할 수 있는 기상 증착 반응기를 제공할 수 있다.
일 실시예에 따른 기상 증착 반응기는, 제1 물질을 기판에 주입하는 제1 주입부; 및 상기 제1 주입부 내에 위치하며 제2 물질을 기판에 주입하는 하나 이상의 제2 주입부를 포함하는 반응 모듈을 포함할 수 있다. 상기 반응 모듈은 기판과의 상대적인 이동으로 기판이 상기 반응 모듈을 통과하는 구조를 가질 수 있다.
실시예들에 따른 기상 증착 반응기는 반응 모듈의 제1 주입부 내에 하나 이상의 제2 주입부가 위치하도록 구성되므로, 제1 주입부 및 제2 주입부 각각에 의해 서로 상이한 복수 개의 물질을 기판에 주입할 수 있다. 따라서 기판을 챔버 내의 분위기에 노출하지 않은 채로 기판에 원료전구체 또는 반응전구체를 주입하여 박막을 형성할 수 있다. 상기 기상 증착 반응기는 원자층 증착법(Atomic Layer Deposition; ALD)에 이용될 수도 있다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 몇몇 실시예들에 대하여 상 세히 살펴본다.
도 2는 일 실시예에 따른 기상 증착 반응기를 도시한 개략적인 사시도이다.
도 2를 참조하면, 기상 증착 반응기는 하나 이상의 반응 모듈(20)을 포함할 수 있다. 상기 하나 이상의 반응 모듈(20)은 챔버(10) 내에 위치할 수 있으며, 챔버(10)에는 하나 이상의 기판(1)이 지지부(100)에 로딩(loading)될 수 있다. 챔버(10) 내는 진공 상태일 수 있다. 예컨대, 금속막과 같이 잔류 산소에 영향을 받는 박막을 형성하기 위해 챔버(1)의 기초 진공 레벨(base vacuum level)을 10-3 Torr 이하로 낮출 필요가 있는 경우에는, 챔버(10)에 터보-분자 펌프(turbo-molecular pump; TMP) 등의 진공 펌프를 설치할 수도 있다. 또는, 챔버(10) 내는 소정의 물질로 충진되어 있을 수도 있다.
기판(1)의 온도 및 챔버(10)의 분위기의 온도도 반응에 영향을 미치기 때문에 챔버(10)에는 온도를 조절하기 위한 가열 장치(미도시)가 구비될 수도 있다. 기판(1)의 가열 장치가 챔버(10)의 하부에 위치하여 기판(1)을 간접 가열하는 방식의 경우, 증착에 사용되는 공간과 가열 장치의 공간은 챔버(10) 및 지지부(100) 등에 의해 분리가 되어있다. 이때 증착에 소요되는 물질이 가열 장치로 혼입되지 않도록 Ar 등의 불활성 가스를 주입시킴으로써 가열 장치를 퍼지(purge)시킬 수도 있다. 주입되는 퍼지용 가스의 압력은 증착 공간의 압력보다 낮지 않도록, 그리고 증착 특성을 저하시키지 않도록 조절될 수 있다.
도 2에는 원통 형상의 챔버(10)를 도시하였으나, 이는 예시적인 것으로서 챔 버(10)는 기판(1) 및 반응 모듈(20)을 수용 가능한 임의의 형상을 가질 수도 있다. 기판(1)의 형상 또한 도 2에 도시된 디스크 형상에 제한되지 않으며 임의의 형상을 갖는 기판이 사용될 수도 있다.
하나 이상의 반응 모듈(20)은 챔버(10) 내의 고정된 위치에 배치될 수 있다. 반면 기판(1)이 탑재된 지지부(100)는 회전할 수 있다. 이때 지지부(100)의 회전 속도는 일정할 수도 있고, 위치에 따라 상이한 속도를 갖도록 컴퓨터에 의해 프로그래밍될 수도 있다. 지지부(100)가 회전하여 기판(1)이 반응 모듈(20)의 하부를 통과할 수 있다. 반면 다른 실시예에서는 반대로 기판(1)의 위치를 고정시키고 반응 모듈(20)을 회전시킴으로써 기판(1)과 반응 모듈(20)의 상대적인 이동을 발생시킬 수도 있다.
상기 기상 증착 반응기는 회전형으로서 기판(1)이 회전 운동에 의하여 반응 모듈(20)에 대해 상대적으로 이동하였으나, 다른 실시예에 따른 기상 증착 반응기에서 기판(1)과 반응 모듈(20)의 상대적인 이동은 직선 운동 또는 왕복 운동일 수도 있다.
기판(1)이 반응 모듈(20)의 하부를 통과하는 동안, 기판(1)과 반응 모듈(20)은 서로 이격되어 비접촉 상태를 유지할 수 있다. 반응 모듈(20)을 통과하는 기판(1)은 반응 모듈(20)에서 주입되는 물질에 노출되어, 기판(1)상에 흡착층이 형성될 수 있다.
각 반응 모듈(20)에서 주입하는 물질은 서로 동일할 수도 있으며, 또는 서로 상이할 수도 있다. 예컨대, 하나의 반응 모듈(20)을 이용하여 반응전구체(reactant precursor)를 주입하고, 다른 반응 모듈(20)을 이용하여 원료전구체(source precursor)를 주입함으로써 두 반응 모듈(20)을 통과한 기판(1)상에 원자층 박막을 형성할 수도 있다. 이는 도 3a 및 3b를 참조하여 상세히 후술한다.
일 실시예에서, 반응 모듈(20)은 형성하고자 하는 박막의 종류에 따라 플라즈마(plasma), 초고주파 또는 자외선 발생기를 포함할 수도 있다. 나아가, 하나의 공정에서 전술한 에너지원들을 둘 이상 병행하여 사용하거나, 또는 공정별로 전술한 에너지원들을 단계적으로 사용하여 박막을 형성할 수도 있다. 이에 대해서도 상세히 후술한다.
도 3a는 일 실시예에 따른 기상 증착 반응기의 단면도이며, 도 3b는 도 3a에서 기판(1)과 반응 모듈(20)이 인접한 영역의 부분 확대도이다.
도 3a 및 3b를 참조하면, 기판(1)은 지지부(100)의 서셉터(susceptor)(101)에 의하여 고정되며 도면 좌측으로부터 우측 방향으로 이동할 수 있다. 즉, 기판(1)은 반응 모듈(20)의 하부를 좌측으로부터 우측으로 통과하게 된다. 기판(1)과 반응 모듈(20)은 이격되어 비접촉 상태를 유지할 수 있다. 예컨대, 기판(1)과 반응 모듈(20) 사이의 간격은 약 1 mm 내지 수 mm 일 수도 있다. 반응 모듈(20)의 하부로 이동하기 전에 기판(1)의 표면에는 챔버(10) 내의 분위기에 의한 불순물 또는 흡착물 등이 형성되어 있을 수 있다.
일 실시예에서, 챔버(10)는 기판(1)과 인접한 영역에 채널(115)을 포함할 수도 있다. 이 경우 채널(115)을 제외한 챔버(10) 내의 나머지 영역은 충진재(110)로 채워질 수 있다. 상기 충진재(110)는 챔버(10)의 외벽과 동일한 물질로 이루어질 수도 있다. 챔버(10) 내에 물질을 충진시키는 경우, 이와 같은 구성을 이용하면 충진되는 물질의 양을 감소시킬 수 있어 경제적인 이점이 있다.
반응 모듈(20)은 제1 주입부(201), 및 제1 주입부(201) 내에 위치하는 제2 주입부(202)를 포함할 수 있다. 또한, 제1 및 제2 주입부(201, 202)는 배기부(203) 내에 위치할 수도 있다. 반응 모듈(20)의 크기 및 제1 주입부(201), 제2 주입부(202) 및 배기부(203) 각각의 크기는 주입되는 물질 또는 형성하고자 하는 박막의 종류 등에 기초하여 적절히 결정될 수 있다.
배기부(203)와 제1 주입부(201)는 기판(1)의 이동 방향에 수직한 방향으로 일정 간격(H) 이격될 수 있다. 또한, 제1 주입부(201)와 제2 주입부(202)도 기판(1)의 이동 방향에 수직한 방향으로 일정 간격(Z) 이격될 수 있다. 또한, 제1 및 제2 주입부(201, 202)는 기판(1)의 이동 방향 및 이의 역방향으로도 각각 일정 간격(X, Y) 이격될 수 있다. 전술한 간격들(H, X, Y, Z)은 주입되는 물질 또는 형성하고자 하는 박막의 종류 등에 기초하여 적절히 결정될 수 있다.
좌측으로부터 이동해온 기판(1)의 일부 또는 전체 영역이 반응 모듈(20)의 배기부(203)의 하부에 위치되면, 배기부(203)에 의하여 해당 영역의 불순물 또는 흡착물 등이 챔버(10)외부로 배출될 수 있다. 그리고 기판(1)이 더 우측으로 이동하여 해당 영역이 제1 주입부(201)의 하부에 위치되면, 제1 주입부(201)는 기판(1)에 제1 물질을 주입할 수 있다.
예컨대, 제1 물질은 퍼지 기체(purge gas)일 수도 있다. 퍼지 기체를 기 판(1)에 주입함으로써, 기판(1)상에 물리적으로 흡착된 분자들을 제거할 수 있다. 그 결과, 기판(1)상에는 선행하는 공정에서 생성된 화학흡착층만이 남아있거나, 또는 선행 공정이 없었을 경우에는 흡착층이 없는 상태가 될 수 있다. 퍼지 기체로는 비활성 기체가 사용될 수 있다. 예를 들어, 퍼지 기체는 N2 기체, Ar 기체, He 기체, 또는 다른 적당한 물질을 포함할 수 있으며, 전술한 물질들의 2 이상의 조합을 포함할 수 있다. 제1 물질은 원자층 형성을 위한 원료전구체 또는 반응전구체를 포함할 수도 있다.
기판(1)이 더 우측으로 이동하여 일부 또는 전체 영역이 제2 주입부(202)의 하부에 위치되면, 제2 주입부(202)는 기판(1)에 제2 물질을 주입할 수 있다. 제2 물질은 기판(1)상에 박막을 형성하기 위한 물질일 수 있다. 예컨대, 제2 물질은 원자층 형성을 위한 원료전구체 또는 반응전구체를 포함할 수도 있다.
이때 반응전구체로는, 화학원료로부터 금속, 산화물, 질화물, 탄화물 및 반도체용 재료 등을 얻기 위한 물질이 사용될 수 있다. 예컨대, 반응전구체로는 H2O, H2O2, O2, N2O, O3, O* 라디칼(radical), NH3, NH2-NH2, N2, N* 라디칼, CH4, C2H6 등 유기탄소화합물, H2, H* 라디칼, 또는 다른 적당한 물질을 포함할 수 있으며, 전술한 물질들의 2 이상의 조합을 포함할 수도 있다.
또한 원료전구체로는, 반응전구체와 반응 및/또는 치환되어 기판(1) 상에 박막을 형성할 수 있는 물질이 사용될 수 있다. 원료전구체의 종류는 형성하고자 하는 박막의 종류에 따라 다양할 수 있으며, 예컨대 반도체 박막의 경우 원료전구체 는 IV족 화합물, III-V계 화합물, 또는 II-VI계 화합물 등일 수 있다. 또한 금속 박막의 경우 원료전구체는 Ni계 화합물, Co계 화합물, Al계 화합물, Ti계 화합물, Hf계 화합물, Zr계 화합물, Ta계 화합물, Mo계 화합물, W계 화합물 또는 이들 물질과 Si의 화합물일 수도 있다. 나아가 유전체 또는 도전 유전체 박막의 경우 원료전구체는 Ni계 화합물, Zn계 화합물, Cu계 화합물, Co계 화합물, Al계 화합물, Si계 화합물, Hf계 화합물, Ti계 화합물, Zr계 화합물, 또는 Ta계 화합물 등일 수 있다. 원료전구체는 이상에서 나열한 물질의 2 이상의 조합을 포함할 수도 있다.
원료전구체로 사용될 수 있는 Si계 화합물로는 SiH4 또는 SiH2Cl2 등이 있다. Ti계 화합물로는 TiCl4 등이 있다. Al계 화합물로는 트리메틸알루미늄(trimethyl aluminum; TMA) 등이 있다. Hf계 화합물로는 테트라키스 에틸메틸아미노하프늄(Tetrakis-ethylmethylaminohafnium; TEMAHf) 등이 있다. Zr계 화합물로는 테트라키스 에틸메틸아미노지르코늄(tetrakis-ethylmethylaminozirconium; TEMAZr) 등이 있다. 원료전구체의 종류는 전술한 물질에 제한되지 않으며, 최종 생성물인 박막의 종류에 따라 나열된 것 외에도 다양한 물질이 사용될 수 있다.
한편, 반응전구체는 전술한 물질들의 플라즈마(plasma) 형태일 수도 있으며, 또는 자외선 등의 광과 함께 인가될 수도 있다. 플라즈마, 라디칼, 또는 광자(photon)를 인가하여 반응전구체를 분해시키더라도 그 부산물(by-product)이 최종 생성되는 박막 내에 남을 가능성이 없으며, 박막의 특성을 열화시키거나 악화시키지 않는다. 이들 에너지에 의하여 활성화된 반응전구체를 사용하면 박막 형성이 원활하지 않은 Si계 화합물 또는 TiCl4 등을 원료전구체로 사용하는 경우에도 충분한 흡착 분자가 얻어질 수 있다. 따라서, 박막의 증착 속도를 증가시킬 수 있으며, 기판(1)의 표면 처리 또는 계면 처리를 수월하게 할 수 있다.
전술한 제1 및 제2 주입부(201, 202)는 직사각형의 샤워헤드(showerhead) 형태의 분사기일 수도 있다. 또는, 지지대(100)가 회전하는 경우 기판(1)의 안쪽과 바깥쪽의 각속도가 다르기 때문에, 박막의 균일도를 향상시키기 위하여 제1 및 제2 주입부(201, 202)는 각속도에 비례하는 파이(pie)형 샤워헤드 형태의 분사기일 수도 있다.
기판(1)이 더 우측으로 이동하여 해당 영역이 제2 주입부(202)를 통과하게 되면, 다시 제1 주입부(201)의 하부에 위치된다. 제1 주입부(201)는 퍼지 기체 등의 제1 물질을 기판(1)에 주입할 수 있다. 제2 주입부(202)를 통과한 기판(1)의 영역에는 제2 물질의 물리흡착층 및 화학흡착층이 위치하는데, 제1 주입부(201)에 의해 주입되는 퍼지 기체에 의하여 물리흡착층이 기판(1)으로부터 분리될 수 있다.
기판(1)이 더 우측으로 이동하면 해당 영역은 배기부(203)의 하부에 위치하게 되므로, 퍼지 기체 및 제2 물질의 물리흡착층은 챔버(10) 외부로 펌핑되어 제거될 수 있다. 결과적으로 반응 모듈(20)을 통과한 기판(1)의 표면에는 제2 물질의 화학흡착층만이 남아 있게 된다.
즉, 기판(1)이 하나의 반응 모듈(20)을 통과하는 동안 기판(1)상에는 제1 물질 주입 -> 제2 물질(반응전구체 또는 원료전구체) 주입 -> 제1 물질 주입의 3 가 지 단계를 거치게 된다. 상기 3가지 단계의 전후로 배기부(203)에 의한 펌핑 단계가 추가될 수도 있다. 제 2 주입부(202)의 위치를 변화(또는, 제1 주입부(201)로부터 이격)시킴에 따라, 기판(1)이 제2 주입부(202)를 통과한 후 제1 주입부(201)와 제2 주입부(202) 사이의 간격(Y)을 통과하는 시간이 변하게 되므로, 제1 물질의 주입 시간이 변하게 된다. 따라서 흡착 특성이 다른 전구체를 사용하는 경우 퍼지되는 양 또는 시간을 최적화하기 유리하다. 그 결과, 반응 모듈(20)을 통과한 기판(1)상에는 반응전구체 또는 원료전구체의 화학흡착층만이 남아있게 될 수 있다.
일 실시예에서 제1 주입부(201)와 제2 주입부(202) 사이의 간격(Y)을 짧게 할 경우, 반응전구체 또는 원료전구체가 퍼지되는 시간이 충분하지 못하기 때문에 반응전구체 또는 원료전구체의 물리흡착층의 일부를 기판(1)상에 남겨둘 수도 있다. 이 경우 잔여 물리흡착층으로 인하여 순수한 원자층 증착에 비해 박막의 증착 속도가 향상될 수 있다.
반응전구체 또는 원료전구체의 화학흡착층이 형성된 기판(1)을 또 다른 반응 모듈(20)에 통과시킴으로써 기판(1)상에 박막을 형성할 수 있다. 예컨대, 하나의 반응 모듈(20)을 통과하여 반응전구체의 화학흡착층이 형성된 기판(1)을, 원료전구체를 주입하는 다른 반응 모듈(20)에 통과시킬 수 있다. 그 결과, 반응전구체와 원료전구체의 치환 및/또는 반응에 의하여 기판(1)상에 원자층 박막이 형성될 수 있다. 또는 반대로, 하나의 반응 모듈(20)에 의해 기판(1)상에 원료전구체의 화학흡착층을 먼저 형성하고, 다른 반응 모듈(20)에 의해 반응전구체를 주입함으로써 원자층 박막을 형성할 수도 있다.
도 3c 및 3d는 다른 실시예들에 따른 기상 증착 반응기에서 반응 모듈의 단면도들이다.
도 3c를 참조하면, 기판(1)의 이동 방향의 역방향을 따른 제1 주입부(201) 및 제2 주입부(202) 사이의 이격 거리(X; 도 3b 참조)가 0 이 될 수 있다. 즉, 제2 주입부(201)는 제1 주입부(201)의 내측 벽 중 어느 한 쪽에 접촉되어 있을 수도 있다. 한편 도 3d를 참조하면, 반대로 제2 주입부(202)는 제1 주입부(201)의 내측 벽 중에서 도 3c의 경우와 반대편의 벽에 접촉되어 있을 수도 있다.
도 3c 및 3d에 예시적으로 도시된 것과 같이, 제1 및 제2 주입부(201, 202) 사이의 각 방향을 이격 간격(X, Y, Z)을 조절함으로써 다양한 방식의 증착을 수행할 수 있다.
도 3e는 또 다른 실시예에 따른 기상 증착 반응기의 단면도이다. 상기 실시예에서는 제 1 주입부 (201)의 측벽에서 퍼지 기체가 분사된 후 기판(1) 위를 지나면서 기판(1)에 흡착된 전구체의 일부분을 기판(1)으로부터 탈착시킬 수 있다. 탈착된 전구체는 배기부(203)로 배기될 수 있다. 제 2 주입부(202)는 제1 주입부(201)의 내측의 상부와 접촉을 하고 있는 상태일 수 있다. 퍼지 기체는 제1 주입부(201)의 측벽에서 분사되므로 기판(1)의 이동 방향과 반대 방향으로 분사된 후 배기부(203)로 배기된다. 한편, 다른 실시예에서는, 제1 주입부(201)에서 도 3e에 도시된 것과 반대편의 측벽에서 퍼지 기체가 분사될 수도 있다.
도 3c 내지 도 3e에 도시된 기상 증착 반응기의 동작에 대해서는 도 3a 및 3b를 참조하여 전술한 설명으로부터 당업자에게 용이하게 이해될 수 있으므로 자세 한 설명을 생략한다.
도 4a는 일 실시예에 따른 기상 증착 반응기에서 제1 주입부(201)의 측단면도이다. 도시되는 바와 같이, 제1 주입부(201)는 제1 물질이 주입되어 운반되는 파이프 형태의 채널(2)을 포함할 수 있다. 채널(2)을 통해 운반된 제1 물질은 채널(2)에 형성된 하나 이상의 홀(3)을 통하여 하부의 기판에 주입될 수 있다. 각각의 홀(3)의 크기는 일정할 수 있으며, 또는 서로 상이할 수도 있다. 도 4a는 제1 주입부(201)의 구성을 예시적으로 도시하였으나, 제2 주입부(202)의 구성 역시 이와 동일할 수 있다.
도 4b는 일 실시예에 따른 기상 증착 반응기의 반응 모듈의 저면도이다. 도시되는 바와 같이, 제1 주입부(201) 내에 제1 주입부(201)와 이격되어 제2 주입부(202)가 위치할 수 있다. 제2 주입부(202)의 하나 이상의 홀(3)을 통하여 제2 물질이 주입될 수 있다. 도 4b의 저면도에서 제1 주입부(201)의 홀은 제2 주입부(202)에 가려 도시되지 않았다.
도 4c는 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 저면도이다. 도시되는 바와 같이, 제2 주입부(202)는 제1 주입부(201) 내에 위치하되, 제1 주입부(201)의 내측 벽 중 하나 이상과 접촉되어 있을 수도 있다. 그러나 제1 주입부(201)에 의해 기판에 제1 물질이 주입될 수 있어야 하므로, 이 경우에도 제2 주입부(202)는 제1 주입부(201)의 내측 벽 중 적어도 어느 하나와는 이격되어 있어야 한다.
도 4d는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 저면도이다. 도시되는 바와 같이, 제1 주입부(201)와 제2 주입부(202)는 원형의 단면을 가질 수 있으며, 예컨대 원형 실린더 형태일 수도 있다. 제1 주입부(201) 내에 제1 주입부9201)와 이격되어 제2 주입부(202)가 위치할 수 있다. 제2 주입부(202)의 하나 이상의 홀(3)을 통하여 제2 물질이 주입될 수 있다. 도 4d의 저면도에서 제1 주입부(201)의 홀은 제2 주입부(202)에 가려 도시되지 않았다.
도 4e 및 4f는 또 다른 실시예들에 따른 기상 증착 반응기의 반응 모듈의 저면도들이다. 도 4e를 참조하면, 제2 주입부(202)는 제1 주입부(201) 내에 위치하되, 제1 주입부(201)의 내측 벽에 접촉되어 있을 수도 있다. 한편 도 4f를 참조하면, 제2 주입부(202)는 도 4e에 도시된 것과 상이한 방향의 제1 주입부(201)의 내측 벽에 접촉되어 있을 수도 있다.
또한 도 4b 내지 4f에 도시된 반응 모듈의 단면 형상은 예시적인 것으로서 반응 모듈은 다른 상이한 형상의 단면을 가질 수도 있다.
도 5a는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다. 도 5a를 참조하면, 반응 모듈은 제1 주입부(201) 및 제2 주입부(202)를 포함하되, 제1 주입부(201)는 복수 개의 채널(2) 및 각각의 채널(2)과 연결된 홀(3)을 구비할 수 있다. 제1 물질이 운반되는 채널(2)을 복수 개로 구성함으로써, 기판(1)상의 넓은 면적에 균일하게 제1 물질을 분사하는 것이 가능하다.
도 5b는 도 5a에 도시된 반응 모듈의 저면도이다. 도시되는 바와 같이, 제1 주입부(201)의 저면에 복수 개의 홀(3)이 일정한 간격으로 배열되어 기판상에 균일하게 제1 물질을 분사할 수 있다. 한편, 도 5b에서 홀(4)은 제2 주입부(202)가 제2 물질을 분사하기 위한 부분이다.
도 6a는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다. 도 6a를 참조하면, 반응 모듈은 제1 주입부(201) 및 제2 주입부(202)를 포함하되, 제1 주입부(201)는 하나 이상의 제1 채널(5) 및 하나 이상의 제2 채널(6)을 구비할 수 있다. 제1 채널(5) 및 제2 채널(6)에는 서로 상이한 제1 물질이 주입될 수 있다. 또한, 제1 채널(5) 및 제2 채널(6)에는 각각 제1 홀(7) 및 제2 홀(8)이 형성될 수 있다.
도 6b는 도 6a에 도시된 반응 모듈의 저면도이다. 도시되는 바와 같이, 제1 주입부(201)의 저면에 제1 홀(7) 및 제2 홀(8)이 서로 교번하여 배치될 수 있다. 이상의 구성을 이용하면, 기판상에 서로 상이한 두 종류의 제1 물질을 균일하게 분사할 수 있다. 도 6a 및 6b에서는 2 종류의 제1 물질을 주입하기 위해 2 종류의 채널(5, 6) 및 2 종류의 홀(7, 8)이 포함된 예를 도시하였으나, 주입되는 물질의 종류에 따라 채널 및 홀의 종류는 더 많을 수도 있다.
도 7a는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 저면도이다. 도 7a를 참조하면, 반응 모듈은 제1 주입부(201) 및 제2 주입부(202)를 포함하되, 제2 주입부(202)는 서로 상이한 제2 물질이 주입되는 제1 홀(4) 및 제2 홀(9)을 구비할 수 있다. 제1 및 제2 홀(4, 9)은 서로 상이한 채널에 연결될 수 있으며 이는 도 6a를 참조하여 전술한 실시예로부터 당업자에게 용이하게 이해될 것이다.
도 7b는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 저면도이다. 도 7b를 참조하면, 제2 주입부(202)는 서로 상이한 제2 물질이 주입되는 제1 홀(4) 및 제2 홀(9)을 구비할 수 있다. 도 7a에서 제1 및 제2 홀(4, 9)은 하나의 열에서 서로 교번하여 배치된 반면, 도 7b에서 제1 및 제2 홀(4, 9)은 서로 평행한 2개의 열로 배치될 수도 있다.
도 7a 또는 7b에 도시된 실시예와 같이 구성함으로써, 서로 상이한 복수 개의 제2 물질을 기판상에 주입할 수 있다. 예컨대, 제1 홀(4)을 통해 기판상에 원료전구체를 주입하고, 제2 홀(9)을 통해 기판상에 반응전구체를 주입할 수 있다. 이 경우, 하나의 반응 모듈을 통과하는 기판상에 원료전구체 및 반응전구체가 모두 주입되므로 하나의 반응 모듈을 이용하여 기판상에 원자층 박막을 형성할 수도 있다.
도 7a 및 7b에 도시된 제1 홀(4) 및 제2 홀(9)의 배열 형태는 예시적인 것으로서, 제1 홀(4) 및 제2 홀(9)의 배열 형태는 실시예에 따라 상이할 수 있다. 또한 도 7a 및 7b에서는 2 종류의 제2 물질을 주입하기 위해 2 종류의 홀(4, 9)이 포함된 예를 도시하였으나, 주입되는 물질의 종류에 따라 홀의 종류는 더 많을 수도 있다.
도 8은 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다.
도 8을 참조하면, 반응 모듈은 제1 주입부(201), 제2 주입부(202), 및 배기부(203)를 포함할 수 있다. 이때, 제1 주입부(201)는 라디칼을 사용한(Radical-assisted) ALD를 위해 플라즈마 발생기(30)를 구비하여, 제1 물질을 플라즈마 형태 로 기판(1)에 인가할 수 있다. 플라즈마 발생기(30)는 공지된 다양한 형태의 장치일 수 있으며, 예컨대 서로 대면하는 동심원 형상의 전극들 사이에 전력을 인가함으로써 그 사이에 반응 기체의 플라즈마를 형성하도록 구성될 수도 있다.
이러한 형태의 제1 주입부(201)는 통상적으로 원자층 증착이 잘 이루어지지 않는 무기 원료전구체를 플라즈마에 의하여 여기(또는 분해)시킨 후 원자층 박막을 형성하기 위한 용도로 사용될 수 있다. 즉, 플라즈마 에너지에 의하여 원료전구체의 1차 반응(또는 분해)을 유도한 후 반응전구체와 최종적으로 반응시키기 위한 것이다.
예를 들어, 제1 주입부(201)에서 원료전구체로서 무기 금속 원료인 TiCl4 또는 SiH4을 주입하고, 제2 주입부(202)에서 반응전구체로서 NH3를 주입하면, 기판(1)상에 TiN 또는 SiN 박막이 생성될 수 있다. 그러나 이렇게 얻어진 박막에는 잔류 Cl이나 잔류 H가 포함되어 있을 뿐만 아니라, NH3와 Cl의 반응에 의한 NH4Cl이 포함될 수도 있다.
그러나 상기 실시예에서와 같이 제1 주입부(201)를 이용하여 플라즈마의 형태로 TiCl4을 주입하게 되면, Ti 원자 및 Cl 원자가 분해되므로 낮은 온도에서 Ti 원자를 흡착시킬 수 있게 되므로TiN 박막을 증착할 수 있다. 또한, 제1 주입부(201)에서 TiCl4 및 H2를 혼합한 원료전구체를 주입하게 되면, 플라즈마 에너지에 의해 Ti 원자층 또는 이의 유사한 흡착층을 얻을 수 있기 때문에 인큐베이 션(incubation) 현상 또는 흡착이 덜 되어 증착률이 낮아지는 현상을 개선할 수 있다. 이때 제2 주입부(202)에서 반응전구체로 N2+H2의 형성 기체(forming gas)를 사용하게 되면 기판(1)상에 Ti 박막을 얻을 수 있으며, 이와 동일한 방법으로 Si 박막을 얻을 수도 있다.
상기 실시예에서 제1 주입부(201)는 플라즈마 발생기(30)를 구비하였으나, 다른 실시예에서는 플라즈마 외에도 자외선 또는 초고주파 발생기를 구비하여 유사한 효과를 얻을 수도 있다.
도 9a는 플라즈마를 이용하는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다. 도 9a를 참조하면, 반응 모듈은 제1 주입부(201) 및 제2 주입부(202)를 포함하되, 제1 주입부(201)와 제2 주입부(202) 사이에 위치하며 플라즈마를 발생시키기 위한 제1 전극(41) 및 제2 전극(42)을 더 포함할 수 있다.
제1 전극(41)은 제1 주입부(201)의 내벽에 접촉하여 위치할 수 있으며, 제2 전극(42)은 제2 주입부(202)의 내벽에 접촉하여 위치할 수 있다. 제1 및 제2 전극(41, 42)은 소정의 간격만큼 서로 이격될 수 있다. 제1 전극(41)이 제1 주입부(201)의 채널과 인접하여 위치하는 경우, 제1 전극(41)은 제1 물질의 주입을 위한 홀을 포함할 수도 있다. 제1 주입부(201)는 제1 물질과 더불어 플라즈마 발생을 위한 반응 기체를 주입하도록 구성될 수도 있다.
제1 및 제2 전극(41, 42) 사이에는 전원(40)에 의하여 교류 전력 또는 펄스 형태의 전력이 인가될 수 있다. 제1 및 제2 전극(41, 42) 사이에 인가된 전력에 의 하여 반응 기체로부터 플라즈마가 생성되며, 플라즈마에 의해 활성화된 라디칼이 제1 물질과 함께 기판(1)에 인가될 수 있다. 플라즈마에 의한 라디칼을 이용하는 효과에 대해서는 도 8에 도시된 실시예와 관련하여 전술하였으므로 자세한 설명을 생략한다.
도 9b는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다. 도 9b를 참조하면, 제1 및 제2 전극(41, 42)은 기판(1)의 이동 방향에 평행한 방향으로 전계를 인가하도록 위치될 수도 있다. 제1 및 제2 전극(41, 42)은 복수 개의 쌍으로 구비될 수도 있다. 이때 각각의 제1 및 제2 전극(41, 42) 쌍 사이에는 전원(40)에 의하여 전력이 인가될 수 있다.
이상과 같이 구성된 반응 모듈에 의하면, 기판(1)의 바로 위에서 플라즈마가 발생되므로 수소 라디칼 또는 질소 라디칼과 같이 수명이 극히 짧은 라디칼을 기판(1)에 인가할 수 있다. 또한, 기판(1)의 표면에 평행한 방향으로 플라즈마가 발생되므로, 플라즈마에 의한 기판(1)의 손상을 최소화할 수 있다.
셀프-리미팅(self-limiting) 현상이 없는, 즉, 화학 흡착시 포화(saturation)가 되지 않는 원료전구체(예컨대, TiCl4, SiH4 등)를 사용할 경우 기존의 반응기에서는 싸이클(cycle) 회수를 늘려서 한 층의 원자층을 형성하는 방법밖에 없었다. 그러나 실시예들에 따른 기상 증착 반응기를 사용하면 플라즈마에 의한 표면활성화로 인해 충분한 원료전구체의 흡착이 유도되어 별도의 핵 생성(nucleation) 단계가 필요 없고, 또한 인큐베이션(incubation) 현상이 없는 원자 층 박막을 얻을 수 있다.
도 10은 또 다른 실시예에 따른 기상 증착 반응기의 단면도이다. 도 10을 참조하면, 기상 증착 반응기의 반응 모듈(20)은 복수 개의 제1 주입부(201, 211) 및 상기 각 제1 주입부(201, 211) 내에 위치하는 복수 개의 제2 주입부(202, 212)를 포함할 수 있다. 복수 개의 제1 주입부(201, 211) 및 제2 주입부(202, 212)는 하나의 배기부(203) 내에 위치할 수도 있다.
이상과 같이 구성된 기상 증착 반응기를 이용한 박막 형성 과정의 일 예를 설명한다. 좌측으로부터 이동된 기판(1)이 반응 모듈(20)의 하부로 유입되면, 배기부(203)에 의하여 기판(1)상의 불순물 또는 흡착물이 제거될 수 있다. 기판(1)이 더 우측으로 이동하여 제1 주입부(201)의 하부에 위치하게 되면, 제1 주입부(201)에 의해 기판(1)상에 제1 물질이 주입될 수 있다. 이때 제1 물질은 퍼지 기체일 수도 있다.
기판(1)이 더 우측으로 이동하여 제2 주입부(202)의 하부에 위치하게 되면, 제2 주입부(202)에 의해 기판(1)상에 제2 물질이 주입될 수 있다. 예컨대, 제2 주입부(202)는 기판(1)상에 반응전구체를 주입할 수 있다. 제2 주입부(202)를 통과한 기판(1)은 제1 주입부(201) 및 또 다른 제1 주입부(211)를 순차적으로 통과할 수 있으며, 이 과정에서 기판(1)상에는 다시 제1 물질이 주입될 수 있다.
기판이 더 우측으로 이동하여 제2 주입부(212)의 하부에 위치하게 되면, 제2 주입부(212)에 의해 기판(1)상에 제2 물질이 주입될 수 있다. 예컨대, 제2 주입 부(212)는 기판(1)상에 원료전구체를 주입할 수 있다. 이때, 제2 주입부(202)에 의하여 주입된 반응전구체의 화학흡착층과 제2 주입부(212)에 의하여 주입된 원료전구체가 치환 및/또는 반응하여 기판(1)상에 박막을 형성할 수 있다. 기판(1)이 더 우측으로 이동하면 다시 제1 주입부(211) 및 배기부(203)를 거쳐 반응 모듈(20)을 완전히 통과할 수 있다.
즉, 반응 모듈(20)을 통과하는 동안 기판(1)은 제1 물질 주입 -> 제2 물질(반응전구체) 주입 -> 제1 물질 주입 -> 제2 물질(원료전구체) -> 제1 물질 주입의 5가지 단계를 거치게 되며 그 결과 기판(1) 상에 박막이 형성될 수 있다. 또한, 전술한 5가지 단계의 전후에 배기부(203)에 의한 펌핑 단계가 추가될 수도 있다.
도 10에 도시된 제1 주입부들(201, 211) 및 제2 주입부들(211, 212)은, 도 2 내지 도 9를 참조하여 전술한 실시예들 중 임의의 것에 따라 구성될 수 있다. 즉, 제1 주입부들(201, 211) 중 하나 이상은 플라즈마 발생기를 구비할 수 있으며, 각 제1 주입부-제2 주입부 쌍(201-211, 202-212) 사이에 플라즈마 발생을 위한 하나 이상의 전극을 포함할 수도 있다. 또한 제1 주입부들(201, 211) 및 제2 주입부들(211, 212) 중 하나 이상은 복수 개의 채널 및 홀을 포함할 수도 있다. 하나의 제1 주입부(201)와 다른 제1 주입부(211)의 구성이 서로 상이할 수도 있으며, 마찬가지로 하나의 제2 주입부(211)와 다른 제2 주입부(212)의 구성이 서로 상이할 수도 있다.
이상에서 살펴본 실시예들에 따른 기상 증착 반응기는 반응 모듈의 제1 주입부 내에 하나 이상의 제2 주입부가 위치하도록 구성되므로, 제1 주입부 및 제2 주 입부 각각에 의해 서로 상이한 복수 개의 물질을 기판에 주입할 수 있다. 따라서 기판을 챔버 내의 분위기에 노출하지 않은 채로 기판에 원료전구체 또는 반응전구체를 주입하여 박막을 형성할 수 있다. 상기 기상 증착 반응기는 ALD에 이용될 수도 있다.
이상에서 살펴본 본 발명은 도면에 도시된 실시예들을 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 그러나, 이와 같은 변형은 본 발명의 기술적 보호범위 내에 있다고 보아야 한다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해서 정해져야 할 것이다.
도 1은 종래 기술에 따른 원자층 증착법을 도시한 순서도이다.
도 2는 일 실시예에 따른 기상 증착 반응기의 개략적인 사시도이다.
도 3a는 일 실시예에 따른 기상 증착 반응기의 단면도이다.
도 3b는 도 3a에 도시된 기상 증착 반응기의 부분 확대도이다.
도 3c 및 3d는 다른 실시예들에 따른 기상 증착 반응기의 반응 모듈의 단면도들이다.
도 3e는 또 다른 실시예에 따른 기상 증착 반응기의 단면도이다.
도 4a는 일 실시예에 따른 기상 증착 반응기의 제1 반응 모듈의 측단면도이다.
도 4b 내지 도 4f는 실시예들에 따른 기상 증착 반응기의 반응 모듈의 저면도들이다.
도 5a는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다.
도 5b는 도 5a에 도시된 반응 모듈의 저면도이다.
도 6a는 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다.
도 6b는 도 6a에 도시된 반응 모듈의 저면도이다.
도 7a 및 7b는 또 다른 실시예들에 따른 기상 증착 반응기의 반응 모듈의 저면도들이다.
도 8은 또 다른 실시예에 따른 기상 증착 반응기의 반응 모듈의 단면도이다.
도 9a 및 9b는 또 다른 실시예들에 따른 기상 증착 반응기의 반응 모듈의 단면도들이다.
도 10은 또 다른 실시예에 따른 기상 증착 반응기의 단면도이다.

Claims (18)

  1. 제1 물질을 기판에 주입하는 제1 주입부; 및
    상기 제1 주입부 내에 위치하며 제2 물질을 기판에 주입하는 하나 이상의 제2 주입부를 포함하는 반응 모듈을 포함하되,
    상기 반응 모듈은 기판과의 상대적인 이동으로 기판이 상기 반응 모듈을 통과하는 구조를 갖는 것을 특징으로 하는 기상 증착 반응기.
  2. 제 1항에 있어서,
    상기 반응 모듈은 물질을 외부로 배출하는 배기부를 더 포함하며,
    상기 제1 주입부 및 상기 제2 주입부는 상기 배기부 내에 위치하는 것을 특징으로 하는 기상 증착 반응기.
  3. 제 1항에 있어서,
    하나 이상의 상기 반응 모듈이 위치되는 챔버를 더 포함하는 것을 특징으로 하는 기상 증착 반응기.
  4. 제 1항에 있어서,
    상기 제1 물질은 퍼지 기체를 포함하는 것을 특징으로 하는 기상 증착 반응기.
  5. 제 4항에 있어서,
    상기 퍼지 기체는 N2, Ar 및 He로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 2 이상의 조합을 포함하는 것을 특징으로 하는 기상 증착 반응기.
  6. 제 1항에 있어서,
    상기 반응 모듈은 복수 개의 반응 모듈을 포함하며,
    상기 복수 개의 반응 모듈의 상기 제2 주입부는 각각 서로 상이한 복수 개의 제2 물질을 기판에 주입하는 것을 특징으로 하는 기상 증착 반응기.
  7. 제 6항에 있어서,
    상기 복수 개의 제2 물질은 서로 반응 또는 치환하여 기판상에 박막을 형성 하는 것을 특징으로 하는 기상 증착 반응기.
  8. 제 1항에 있어서,
    상기 하나 이상의 제2 주입부는 복수 개의 제2 주입부를 포함하며,
    상기 복수 개의 제2 주입부는 각각 서로 상이한 복수 개의 제2 물질을 기판에 주입하는 것을 특징으로 하는 기상 증착 반응기.
  9. 제 8항에 있어서,
    상기 복수 개의 제2 물질은 서로 반응 또는 치환하여 기판상에 박막을 형성하는 것을 특징으로 하는 기상 증착 반응기.
  10. 제 1항에 있어서,
    상기 제1 주입부와 상기 하나 이상의 제2 주입부 사이의 간격은 상기 기상 증착 반응기에 의해 형성되는 박막의 증착 특성에 기초하여 결정되는 것을 특징으로 하는 기상 증착 반응기.
  11. 제 1항에 있어서,
    상기 제2 물질은 반응전구체 또는 원료전구체를 포함하는 것을 특징으로 하는 기상 증착 반응기.
  12. 제 11항에 있어서,
    상기 반응전구체는, H2O, H2O2, O2, N2O, O3, O* 라디칼, NH3, NH2-NH2, N2, N* 라디칼, CH4, C2H6, H2 및 H* 라디칼로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 2 이상의 조합을 포함하는 것을 특징으로 하는 기상 증착 반응기.
  13. 제 11항에 있어서,
    상기 원료전구체는, IV 족 화합물, III-V계 화합물, II-VI계 화합물, Ni계 화합물, Co계 화합물, Cu계 화합물, Al 계 화합물, Ti계 화합물, Hf계 화합물, Zr계 화합물, Ta계 화합물, Mo계 화합물, W 계 화합물, Si계 화합물 및 Zn계 화합물로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 2 이상의 조합을 포함하는 것을 특징으로 하는 기상 증착 반응기.
  14. 제 1항에 있어서,
    상기 제1 주입부는 플라즈마 발생기, 초고주파 발생기 또는 자외선 발생기를 포함하는 것을 특징으로 하는 기상 증착 반응기.
  15. 제 1항에 있어서,
    상기 반응 모듈은,
    상기 제1 주입부 및 상기 제2 주입부 사이에 위치하며 플라즈마를 발생시키기 위한 하나 이상의 전극을 더 포함하는 것을 특징으로 하는 기상 증착 반응기.
  16. 제 15항에 있어서,
    상기 하나 이상의 전극은 기판의 이동 방향과 평행한 방향으로 전계를 인가하도록 위치되는 것을 특징으로 하는 기상 증착 반응기.
  17. 제 1항에 있어서,
    상기 제1 주입부 및 상기 제2 주입부는,
    직선 파이프 형상의 하나 이상의 채널; 및
    상기 하나 이상의 채널 각각에 형성된 하나 이상의 홀을 포함하는 것을 특징 으로 하는 기상 증착 반응기.
  18. 제 17항에 있어서,
    상기 하나 이상의 채널은, 서로 상이한 물질이 주입되는 제1 채널 및 제2 채널을 포함하는 것을 특징으로 하는 기상 증착 반응기.
KR1020090074133A 2008-08-13 2009-08-12 기상 증착 반응기 KR101076172B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/004529 WO2010019008A2 (en) 2008-08-13 2009-08-13 Vapor deposition reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080079510 2008-08-13
KR20080079510 2008-08-13

Publications (2)

Publication Number Publication Date
KR20100020919A true KR20100020919A (ko) 2010-02-23
KR101076172B1 KR101076172B1 (ko) 2011-10-21

Family

ID=42090834

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090074133A KR101076172B1 (ko) 2008-08-13 2009-08-12 기상 증착 반응기

Country Status (1)

Country Link
KR (1) KR101076172B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191469A1 (ko) * 2012-06-20 2013-12-27 주식회사 엠티에스나노테크 원자층 증착 장치
KR20150012588A (ko) * 2013-07-25 2015-02-04 삼성디스플레이 주식회사 기상 증착 장치
US9163310B2 (en) 2011-02-18 2015-10-20 Veeco Ald Inc. Enhanced deposition of layer on substrate using radicals
US9543518B2 (en) 2013-04-25 2017-01-10 Samsung Display Co., Ltd. Vapor deposition apparatus, deposition method using the same, and method of manufacturing organic light-emitting display apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542736B1 (ko) * 2002-08-17 2006-01-11 삼성전자주식회사 원자층 증착법을 이용한 산화막의 형성방법 및 이를이용한 반도체 장치의 캐패시터 형성방법
KR100760428B1 (ko) * 2005-05-13 2007-09-20 오재응 기상 증착 반응기

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163310B2 (en) 2011-02-18 2015-10-20 Veeco Ald Inc. Enhanced deposition of layer on substrate using radicals
WO2013191469A1 (ko) * 2012-06-20 2013-12-27 주식회사 엠티에스나노테크 원자층 증착 장치
US9543518B2 (en) 2013-04-25 2017-01-10 Samsung Display Co., Ltd. Vapor deposition apparatus, deposition method using the same, and method of manufacturing organic light-emitting display apparatus
KR20150012588A (ko) * 2013-07-25 2015-02-04 삼성디스플레이 주식회사 기상 증착 장치

Also Published As

Publication number Publication date
KR101076172B1 (ko) 2011-10-21

Similar Documents

Publication Publication Date Title
US20100037820A1 (en) Vapor Deposition Reactor
US8691669B2 (en) Vapor deposition reactor for forming thin film
KR101099191B1 (ko) 기상 증착 반응기 및 이를 이용한 박막 형성 방법
US8877300B2 (en) Atomic layer deposition using radicals of gas mixture
US10351954B2 (en) Deposition system and method using a delivery head separated from a substrate by gas pressure
JP6359567B2 (ja) 空間分離原子層堆積のための装置およびプロセス閉じ込め
US20120225191A1 (en) Apparatus and Process for Atomic Layer Deposition
US20140030447A1 (en) Deposition of Graphene or Conjugated Carbons Using Radical Reactor
US20090324971A1 (en) Method and apparatus for atomic layer deposition using an atmospheric pressure glow discharge plasma
US20120114877A1 (en) Radical Reactor with Multiple Plasma Chambers
US20130337172A1 (en) Reactor in deposition device with multi-staged purging structure
KR20150074178A (ko) 불소/탄소-부재 콘포멀한 텅스텐을 증착시키는 방법
TW201511159A (zh) 具備紫外線處理之沉積室及其使用方法
WO2008085468A1 (en) Delivery device for deposition
US20120027953A1 (en) Rotating Reactor Assembly for Depositing Film on Substrate
US20130323422A1 (en) Apparatus for CVD and ALD with an Elongate Nozzle and Methods Of Use
KR101076172B1 (ko) 기상 증착 반응기
WO2010019007A2 (en) Vapor deposition reactor for forming thin film
JP2013197291A (ja) 成膜装置及び成膜方法
US20140205769A1 (en) Cascaded plasma reactor
JP2009203533A (ja) 原子層成長装置
KR101099223B1 (ko) 기상 증착을 위한 반응 모듈 및 기상 증착 반응기
WO2010019008A2 (en) Vapor deposition reactor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee