KR20100011780A - A green fluorescent substance - Google Patents

A green fluorescent substance Download PDF

Info

Publication number
KR20100011780A
KR20100011780A KR1020080073141A KR20080073141A KR20100011780A KR 20100011780 A KR20100011780 A KR 20100011780A KR 1020080073141 A KR1020080073141 A KR 1020080073141A KR 20080073141 A KR20080073141 A KR 20080073141A KR 20100011780 A KR20100011780 A KR 20100011780A
Authority
KR
South Korea
Prior art keywords
green phosphor
cie
manganese
activated aluminate
phosphor
Prior art date
Application number
KR1020080073141A
Other languages
Korean (ko)
Other versions
KR101081579B1 (en
Inventor
김시석
김부경
Original Assignee
나노씨엠에스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노씨엠에스(주) filed Critical 나노씨엠에스(주)
Priority to KR1020080073141A priority Critical patent/KR101081579B1/en
Publication of KR20100011780A publication Critical patent/KR20100011780A/en
Application granted granted Critical
Publication of KR101081579B1 publication Critical patent/KR101081579B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/576Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Abstract

PURPOSE: A manganese-activated aluminate green fluorescent substance is provided to ensure excellent photoluminescence intensity due to β-alumina structure stable in a luminescence center, high luminous efficiency and wide NTSC range. CONSTITUTION: A manganese-activated aluminate green fluorescent substance is represented by chemical formula: (Ba_0.0796)(Mg_0.6924M_z)5.7(Al_2O_3):Eu_0.03Mn_0.296, wherein M_z is selected from Ag or Ga. A method for preparing the manganese-activated aluminate green fluorescent substance comprises a step of plasticizing a compound containing Ba, Mg, Mn, Al and Ag or Ga at 1100 - 1300 °C for 1 ~ 10 hours in a mixed gas atmosphere of nitrogen/hydrogen through a solid-state reaction.

Description

망간 활성 알루미네이트 녹색 형광체{A green fluorescent substance}Manganese-activated aluminate green phosphor

본 발명은 망간 활성 알루미네이트 녹색 형광체에 관한 것으로, 좀 더 상세하게는 형광체를 구성하는 발광중심이 안정적인 β-알루미나 구조를 가짐에 따라 발광강도(PhotoLuminescence Intensity)가 상당히 뛰어나며, 고순도 및 고휘도의 특성을 보이는 녹색 형광체에 관한 것이다.The present invention relates to a manganese-activated aluminate green phosphor, and more particularly, as the light emitting center constituting the phosphor has a stable β-alumina structure, the light intensity (PhotoLuminescence Intensity) is considerably excellent, and high purity and high brightness characteristics are achieved. It relates to the visible green phosphor.

현재 형광체는 형광램프와 같은 조명 장치, PDP와 같은 표시장치, X선 촬상관용 등의 다양한 분야에서 사용되고 있으며, 통상적으로 적색, 청색 및 녹색의 3색 형광체를 조합함으로써 백색이 얻어진다. 그 중 녹색 형광체는 백색의 휘도 및 고색 재현의 범위를 결정하는 중요한 형광체이기 때문에 고휘도의 색범위 및 높은 색순도의 형광을 생성하는 것이 요구되고 있다.Currently, phosphors are used in various fields such as lighting devices such as fluorescent lamps, display devices such as PDPs, and X-ray imaging tubes. White phosphors are usually obtained by combining red, blue, and green three-color phosphors. Among them, the green phosphor is an important phosphor that determines the range of white luminance and high color reproduction. Therefore, it is required to generate fluorescence of high luminance color range and high color purity.

이와 같은 기존의 녹색 형광체로는 (Y,Tb)BO3, Zn2SiO4:MnLaPO4가 잘 알려져 있으며, 청색 형광체이지만 BaMgAl10O17:Eu2 + (Mg의 일부를 Ca, Cu, Zn, Pb, Cd, Mg, Sn으로 치환)로 표시되는 형광체도 알려져 있다. 또한, Zn2SiO4:Mn에 부가하여 자외 선으로 여기되는 녹색 형광체로서, Mn-활성 알칼리토류 알루미네이트 형광체 BaAl12O19:Mn 및 BaMgAl14O23:Mn이 고효율적으로 발광할 수 있는 것으로 알려져 있다.[Nikkei Micro Device Journal 의 별책, 'Flat PanelDisplay', 1994, Nikki BP 사가 발행). (일본 특허공개 2002-173677호 공보). [예 : 'Phosphor Handbook', Phorphor Research Society 편, p. 330 - 335, Ohm Company 발행].Such conventional green phosphors are well known (Y, Tb) BO 3 , Zn 2 SiO 4 : MnLaPO 4 and are blue phosphors, but BaMgAl 10 O 17 : Eu 2 + (parts of Mg are Ca, Cu, Zn, Phosphors represented by Pb, Cd, Mg, and Sn) are also known. In addition, Zn 2 SiO 4 : Mn-activated alkaline earth aluminate phosphors BaAl 12 O 19 : Mn and BaMgAl 14 O 23 : Mn as green phosphors excited with ultraviolet rays in addition to Mn, which can emit light with high efficiency. Known (separately from Nikkei Micro Device Journal, Flat Panel Display, 1994, published by Nikki BP). (Japanese Patent Laid-Open No. 2002-173677). [E.g. 'Phosphor Handbook', Phorphor Research Society, p. 330-335 issued by Ohm Company.

그 외에도, JP-A-52-143987에는 Ba0 .9Mg0 .16Al23 또는 Ba0 .3Mg0 .6Mn0 .1:8Al2O3을 사용하는 자외선-여기 발광소자가 소개된 바 있으며, 또한, A(Zn1 - xMnx)Al10O17(식 중, A는 Ca, Ba 또는 Sr이고, x는 0.02≤x≤0.14를 만족시키는 수를 나타냄)로 표시되며, 화학식 중 A는, Ca, Ba 또는 Sr 중 어느 하나일 수 있고, 이들 원소를 2개 및 전부 포함할 수는 형광체도 소개된 바 있다. In addition, in JP-A-52-143987 Ba 0 .9 Mg 0 .16 Al 23 or Ba 0 .3 Mg 0 .6 Mn 0 .1: UV using a 8Al 2 O 3 - the excited light-emitting device is introduced In addition, A (Zn 1 - x Mn x ) Al 10 O 17 (wherein A is Ca, Ba or Sr, x represents a number satisfying 0.02≤x≤0.14), A may be any one of Ca, Ba, or Sr, and a phosphor which may include two and all of these elements has also been introduced.

그러나, 이와 같은 녹색 형광체의 경우 (Ba, Mn)Al12O19는 색 순도는 높지만 저휘도라는 문제점이 있었으며, (Y, Tb)BO3은 고 휘도이지만 색순도가 낮다는 문제점이 있었고, Zn2SiO4:Mn은 전술한 녹색 형광체에 비해 색순도와 휘도의 균형이 양호하나 전체적인 효율은 낮다는 문제점이 있었다.However, in the case of the green phosphor, (Ba, Mn) Al 12 O 19 had a problem of high color purity but low brightness, and (Y, Tb) BO 3 had high brightness but low color purity, and Zn 2 SiO 4 : Mn has a good balance of color purity and luminance compared to the above-described green phosphor, but has a problem in that the overall efficiency is low.

한편, 최근에는 BAM(Barium-Magnesium-Aluminate) 형광체가 작은 입도와 균일한 입도분포, 높은 발광효율로 인하여 많이 사용되고 있으며, 이러한 BAM 형광체는 바륨헥사알루미네이트의 광학적 흡수 및 발광 스펙트럼을 기초로 하고 있다.On the other hand, recently, BAM (Barium-Magnesium-Aluminate) phosphors have been widely used due to their small particle size, uniform particle size distribution and high luminous efficiency. Such BAM phosphors are based on the optical absorption and emission spectrum of barium hexaaluminate. .

상기 바륨헥사알루미네이트는 Mn2+의 5개의 전자가 tetrahedral crystal filed의 영향 아래에 있을 때 에너지준위에 따른 전이로서, 녹색 발광의 발광중심은 미량 함유된 Mn이 4개의 산소와 사면체배위를 이룬 결정장(crystalline filed)에서 4T16A1전이는 스핀이 바뀌는 spin flip transition으로 정상적인 spin selection rule에 의하면 금지된 전이에 의한다. 바륨헥사알루미네이트는 마그네토 플럼바니트 구조와 β-알루미나구조의 중간 형태를 취하거나, β-알루미나 구조에 가깝고, 바륨양에 따라서 바륨 헥사알루미네이트는 바륨이 적은 경우(Ba-poor,β-알루미나)와 많은 경우(Ba-rich,β'-알루미나)가 존재하며, 활성제 Eu2+,Mn2+양 및 바륨 첨가량에 따른 광학적 흡수 및 발광스펙트럼은 Mn2+의 5개의 3d전자가 tetra- hedral crystal filed의 영향 아래에 있을 때의 에너지준위에 따른 전이이다. The barium hexaaluminate is a transition according to the energy level when five electrons of Mn 2+ are under the influence of tetrahedral crystal filed, and the emission center of green emission is a crystal in which a small amount of Mn is tetrahedral with four oxygens. In the crystalline filed, the 4 T 16 A 1 transition is a spin flip transition in which the spin changes, due to the forbidden transition according to the normal spin selection rule. Barium hexaaluminate takes the intermediate form of magneto plumvanite structure and β-alumina structure, or is close to β-alumina structure, and depending on the amount of barium, barium hexaaluminate is low in barium (Ba-poor, β-alumina ) And many cases (Ba-rich, β'-alumina), and the optical absorption and emission spectra according to the amount of activator Eu 2+ , Mn 2+ and the amount of barium added are tetra-hedral of 5 3d electrons of Mn 2+ . This is the transition of the energy level when under the influence of the crystal filed.

특히, 녹색 발광은 금지된 전이이므로 잔광시간은 허용된 전이인 Eu2+의 4f65d1→4f7에 비해 상당히 길다. 예를 들어, BaMgAl10O17: Eu2+, Mn2+ 구조 Mn2+의 첨가량이 증가함에 따라 점점 강한 녹색발광을, 청색발광은 Mn2+을 첨가할수록 감소하며 첨가된(BaMgAl10O17:Eu)Mn2+계 형광체의 Mg2+와 유사한 역할을 한다. In particular, since green light emission is a forbidden transition, the afterglow time is considerably longer than 4f 6 5d 1 → 4f 7 of Eu 2+ , which is an allowed transition. For example, BaMgAl 10 O 17 : Eu 2+, Mn 2+ structure Mn 2+ increases with increasing amount of green light, and blue light decreases with addition of Mn 2+ and added (BaMgAl 10 O 17 It plays a role similar to Mg 2+ of: Eu) Mn 2+ based phosphor.

즉, 바륨알루미네이트 형광체에 Mg2+을 도핑하면, Mg2+는 Al3+자리에 치환되어 Eu2+가 바륨자리에 치환되며 BAM계열 형광체는 바륨알루미네이트계 형광체에 비해 녹색발광 영역이 줄어들면서 Al3+는 octahedral 과 tetrahedral의 두자리에 서로 공존하는데, Mn2+는 tetrahedral자리에 치환될 때 녹색 발광을 하는 것으로 알려져 왔다.That is, when Mg 2+ is doped into the barium aluminate phosphor, Mg 2+ is substituted at the Al 3+ site, Eu 2+ is substituted at the barium site, and the BAM-based phosphor reduces the green light emitting area as compared with the barium aluminate phosphor. Al 3+ coexists at the two sites of octahedral and tetrahedral, and Mn 2+ is known to emit green light when substituted at tetrahedral site.

따라서, 바륨알루미네이트에서도 치환된 Mn2+는 모두 Al3+의 tetrahedral 자리에 치환된 Mn2+와 Ba2+ 자리에 치환된 Eu2+ 사이의 상호 작용에 의해 청색 발광은 현저히 줄어들고, 매우 강한 녹색 발광을 하며, 바륨알루미네트에 Eu2+와 Mn2+를 동시에 첨가할 경우 Mn2+는 활성제, Eu2+가 부활제 역할을 하여 녹색 형광체로 적용가능함에 따라 이에 따른 제품들에 대한 연구가 활발하게 이루어지고 있는 실정이다.Thus, the barium aluminate in all the Mn 2+ substituted carbonate by the interaction between the Eu 2+ and Mn 2+ Ba 2+ substitution in the position substituted in tetrahedral position of Al 3+ blue light emission is significantly reduced, very strong When emitting light green and adding Eu 2+ and Mn 2+ to barium aluminium at the same time, Mn 2+ is an activator and Eu 2+ acts as an activator, so it can be applied as a green phosphor. Is actively being done.

그러나, 현재까지 개발된 BAM 녹색 형광체는 충분한 발광강도를 보여주지 못하고 있으며, 특히 고효율 고색 재현의 특성을 향상시키기 위해서는 형광체의 발광 효율과 같은 특성을 더욱 향상시켜야 하나, 이를 만족할 만한 수준의 제품의 개발은 아직 이루어지지 않고 있는 실정이다.However, the BAM green phosphors developed to date do not show sufficient luminescence intensity. Especially, in order to improve the characteristics of high-efficiency, high color reproduction, characteristics such as luminescence efficiency of phosphors should be further improved. Is not happening yet.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 형광체를 구성하는 발광중심이 안정적인 β-알루미나 구조를 가짐에 따라 발광강도(PhotoLuminescence Intensity)가 상당히 뛰어난 특성을 보이는 망간 활성 알루미네이트 녹색 형광체를 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the above problems, to provide a manganese-activated aluminate green phosphor that exhibits a very excellent characteristic of the light intensity (PhotoLuminescence Intensity) as the emission center constituting the phosphor has a stable β-alumina structure It aims to do it.

상기와 같은 목적을 달성하기 위하여 본 발명은, The present invention to achieve the above object,

화학식 (Ba0.0796)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296로 표시되며, 상기 Mz은 Ag 또는 Ga 중에 선택된 것임을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체를 제공함으로써 달성된다.Achieved by providing a manganese activated aluminate green phosphor characterized by the formula (Ba 0.0796 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 , wherein M z is selected from Ag or Ga do.

또한, 본 발명은 상기 화학식의 Mz가 Ag일 경우 그 몰수가 0.05~0.1몰인 것을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체를 제공한다.In another aspect, the present invention provides a manganese-activated aluminate green phosphor, characterized in that the mole number is 0.05 ~ 0.1 mol when M z of the above formula.

또한, 본 발명은 상기 화학식의 Mz가 Ga일 경우 그 몰수가 0.02~0.03인 것을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체를 제공한다.In another aspect, the present invention provides a manganese-activated aluminate green phosphor, characterized in that the mole number is 0.02 ~ 0.03 when M z of the formula.

또한, 본 발명은 공침법에 의한 고상합성(solid-state reaction)법에 의거하여, Ba,Mg, Mn, Al 및 Ag 또는 Ga을 함유하는 화합물을 1100 내지 1300 ℃에서 1 내지 10 시간 동안 질소/수소의 혼합가스 분위기하에 소성시켜 화학식 (Ba0.0796)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296(상기 Mz은 Ag 또는 Ga 중에 선택된 금속)로 표시되며 화합물을 제조하는 것을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체의 제조방법을 제공한다.In addition, the present invention provides a compound containing Ba, Mg, Mn, Al and Ag or Ga at 1100 to 1300 ° C. for 1 to 10 hours based on a solid-state reaction method by coprecipitation. The mixture was calcined under a mixed gas atmosphere of hydrogen, represented by the formula (Ba 0.0796 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 (wherein M z is a metal selected from Ag or Ga) to prepare a compound. It provides a method for producing a manganese activated aluminate green phosphor, characterized in that.

또한, 본 발명은 상기 화학식의 Mz은 Ag일 경우 그 몰수가 0.05~0.1몰이 되도록 하고, Ga일 경우 그 몰수가 0.02~0.03이 되도록 첨가됨을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체의 제조방법을 제공한다.In addition, the present invention provides a method for producing a manganese-activated aluminate green phosphor, characterized in that M z of the above formula is added so that the mole number is 0.05 to 0.1 mol when Ag, and the mole number is 0.02 to 0.03 when Ga. to provide.

또한, 본 발명은 외위기의 내부에 형광막을 갖고, 그 외위기에 봉입된 희가스의 방전에 의하여 생기는 진공자외선에 의하여 상기 형광막을 여기하여 발광시키는 진공 자외선 여기 발광소자에 있어서, 상기 형광막이 청구항 2 또는 청구항 3의 녹색 형광체를 사용함을 특징으로 하는 진공 자외선 여기 발광소자를 제공한다.In addition, the present invention provides a vacuum ultraviolet excitation light emitting device which has a fluorescent film inside the envelope and excites and emits the fluorescent film by vacuum ultraviolet rays generated by the discharge of the rare gas enclosed in the envelope. Another object of the present invention is to provide a vacuum ultraviolet excitation light emitting device, characterized in that the green phosphor of claim 3 is used.

상술한 바와 같이 본 발명의 망간 활성 알루미네이트 녹색 형광체는 화학식 (Ba0.792)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296으로 표시되며, Mz가 Ag인 경우 0.05~0.1몰의 범위에서, Mz가 Ga인 경우 0.025~0.03몰에서 발광중심이 안정적인 β-알루미나 구조를 가짐에 따라 발광강도(PhotoLuminescence Intensity)가 뛰어나고, 청색을 나타내는 420~480㎚에서는 상용화된 BAM 녹색 형광체 보다는 낮은 발광효율을 보이는 반면, 220~300㎚와 500~5500㎚의 구간에서는 반대로 더욱 향상된 발광효율을 보임에 따라 청색의 발광율은 낮고 더욱 높은 순도의 녹색 발광이 이루어져 RGB로 혼 용하여 CCFL에 적용시 색온도가 높게 나타낼 수 있으며, 이에 따라 고순도 및 고휘도이면서 높은 발광효율과 넓은 NTSC의 범위를 갖는 형광체의 제작이 가능하다는 효과를 가져온다.As described above, the manganese-activated aluminate green phosphor of the present invention is represented by the formula (Ba 0.792 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 , and when M z is Ag, 0.05˜0.1 In the range of moles, when M z is Ga, the light emitting center has a stable β-alumina structure at 0.025 to 0.03 moles, thus exhibiting excellent PhotoLuminescence Intensity. On the contrary, in the range of 220 ~ 300nm and 500 ~ 5500nm, the luminous efficiency of blue is low and the green light of higher purity is achieved and applied to CCFL as RGB. The color temperature can be shown to be high, thereby bringing the effect that it is possible to manufacture a phosphor having high purity and high brightness, high luminous efficiency and a wide range of NTSC.

이하에서는 본 발명에 대하여 좀 더 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 망간 활성 알루미네이트 녹색 형광체는 화학식 (Ba0.792)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296으로 표시되며, 상기 Mz 은 Ag 또는 Ga 중에 선택되며, 상기 Mz가 Ag일 경우 0.05~0.1몰 이고, 상기 Mz가 Ga일 경우 0.02~0.03몰이다. 또한, 본 발명의 녹색 형광체의 효과를 저해하지 않는 범위에서, Mg의 일부를 Ag 또는 Ga 치환할 수도 있다. The manganese-activated aluminate green phosphor of the present invention is represented by the formula (Ba 0.792 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 , wherein M z is selected from Ag or Ga, and the M 0.05 to 0.1 mol when z is Ag, and 0.02 to 0.03 mol when M z is Ga. In addition, a portion of Mg may be substituted with Ag or Ga within a range not impairing the effect of the green phosphor of the present invention.

이를 통하여 Mn을 발광 중심으로 하면서 410~46nm의 범위에서 청색 발광강도가 약하며 고색을 발광하는(Ba0.0796)(Mg0.6924Ag0.05~0.1)5.7(Al2O3):Eu0.03Mn0.296와 (Ba0.0796)(Mg0.6924Ga0.025~0.03)5.7(Al2O3):Eu0.03Mn0.296의 식을 얻었을 수 있으며, 이와 같은 녹색 형광체의 결정구조는 발광 중심이 안정적인 β-알루미나 구조를 가짐에 따라 종래 녹색 형광체보다 고휘도이면서 높은 색순도를 보이는 것을 후술되는 실시예를 통하여 확인할 수 있었다This, while the Mn as a luminescence center through which the blue light emission intensity in a range of 410 ~ 46nm weak emitting gosaek (Ba 0.0796) (Mg 0.6924 Ag 0.05 ~ 0.1) 5.7 (Al 2 O 3): Eu 0.03 Mn 0.296 and (Ba 0.0796 ) (Mg 0.6924 Ga 0.025 ~ 0.03 ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 . The crystal structure of the green phosphor has a β-alumina structure with stable emission center. It was confirmed through the examples described later that the high luminance and high color purity than the conventional green phosphor.

이는, 종래 BAM 형광체의 경우 입자의 크기가 균일하지 못하고 큰 입자와 작은 입자가 혼재하는 반면, 본 발명에 해당하는 Ag 또는 Ga를 함유하는 녹색형광체 의 경우 그 구조가 일정하게 형성됨에 따라 보다 안정적인 β-알루미나 구조를 형성하기 때문에 기인되는 효과로 보여진다.In the case of the conventional BAM phosphor, the particle size is not uniform and large particles and small particles are mixed, whereas in the case of the green phosphor containing Ag or Ga according to the present invention, the structure is formed to be more stable β. It is seen as an effect due to the formation of the alumina structure.

이러한 본 발명의 녹색 형광체는 공지된 방법으로 형성할 수 있으며 Ba,Mg, Mn, Al, Ag 또는 Ga을 함유하는 화합물을 원하는 몰비가 되도록 계량하여 1100 내지 1300 ℃에서 1 내지 10 시간, 질소/수소의 혼합가스 분위기하에 화합물을 소성시킨다. 또한, 반응 촉진제를 할로겐화물로 이루어지는 본 발명의 효과를 방해하지 않는 범위 내에서 사용할 수도 있다.The green phosphor of the present invention can be formed by a known method, and a compound containing Ba, Mg, Mn, Al, Ag or Ga is weighed to a desired molar ratio for 1 to 10 hours at 1100 to 1300 ° C. and nitrogen / hydrogen. The compound is calcined in a mixed gas atmosphere. Moreover, reaction promoter can also be used in the range which does not prevent the effect of this invention which consists of halides.

아울러, 상기와 같은 녹색 형광체로부터 형광이 나오도록 조사되는 빛의 파장은 특별히 한정되지 않지만, 254nm 자외선 영역의 파장인 것이 바람직하다. In addition, the wavelength of light irradiated to emit fluorescence from the above green phosphor is not particularly limited, but is preferably a wavelength of 254 nm ultraviolet region.

이상과 같은 본 발명의 녹색 형광체는 형광 램프와 같은 가스 방전 장치, 형광 표시관 등의 표시장치에 사용할 수 있다. The green phosphor of the present invention as described above can be used for display devices such as gas discharge devices such as fluorescent lamps and fluorescent display tubes.

이하 본 발명을 하기와 같은 실시예를 통하여 보다 상세하게 설명하기는 하나 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐, 본 발명이 하기의 실시예 만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are only presented to aid the understanding of the present invention, and the present invention is not limited to the following examples.

먼저, (Ba1-x Eux)O · (Mg1-y-zMnyMz)O · 5.7(Al2O3)계 물질은 녹색 발광 형광체의 모체로 적절하며 형광체에서 Mz자리를 Ag, Ga으로 치환시키는 것에 의해 넓은 파장의 발광을 유지하면서 보다 좋은 발광특성을 얻을 수 있음을 인지하고, 412nm~ 490nm 영역에서 청색 영역의 발광효율을 줄이고, 우수한 광특성을 갖는(Ba1-x Eu)O · (Mg1-y-zMnyMz)O· 5.7(Al2O3) 형광체의 조성식을 찾아 형광체를 최적화를 위해서 각원소의 감소의 조상비를 변형하여 Mg를 감소하며 Ag, Ga 원소의 일정량을 증가하여도 바륨 알루미네이트 구조가 잘 유지되었고 고색 재현성을 색좌표 부분과 휘도, 발광강도와 함께 비교하였다. First, (1-x Eu x Ba ) O · (Mg 1-yz Mn y M z) O · 5.7 (Al 2 O 3) based material is suitably in the matrix of the green light-emitting fluorescent substance and Ag a M z place in the fluorescent substance, Recognizing that better emission characteristics can be obtained while maintaining emission of a wider wavelength by substituting Ga, reducing emission efficiency in the blue region in the range of 412 nm to 490 nm, and having excellent optical characteristics (Ba 1-x Eu) Find the composition formula of O · (Mg 1-yz Mn y M z ) O · 5.7 (Al 2 O 3 ) phosphors and modify the ancestor ratio of the reduction of each element to reduce the Mg to optimize the phosphors. The barium aluminate structure was well maintained even with the increase of certain amount, and high color reproducibility was compared with the color coordinate part, luminance and emission intensity.

<제조예 1><Manufacture example 1>

공침법에 의한 고상합성(solid-state reaction)법으로 (Ba1-x Eux)O · (Mg1-y-zMnyMz)O · 5.7(Al2O3)계 형광체를 합성하였으며, 이때 공정시간은 16시간으로 설정되었고 승온시간 5시간, 반응시간 4.5시간, 반응온도 1275℃, 냉각 8~10 시간, N2/H2 혼합가스를 사용하면서 산소농도를 측정하면서 분위기를 유지하면서 합성하였다.(Ba 1-x Eu x ) O. (Mg 1-yz Mn y M z ) O.5.7 (Al 2 O 3 ) -based phosphors were synthesized by solid-state reaction by coprecipitation method. The process time was set to 16 hours and synthesized while maintaining the atmosphere while measuring the oxygen concentration using a temperature rise time of 5 hours, reaction time of 4.5 hours, reaction temperature of 1275 ° C., cooling of 8 to 10 hours, and N 2 / H 2 mixed gas. .

상기 합성과정에서 사용된 원료의 선별은 고상합성법으로 (Ba1-x Eux)O · (Mg1-y-zMnyMz)O · 5.7(Al2O3)계 형광체의 합성 가능성을 확인하기 위해 하기 표 1에 기재된 원료물질은 분석하여 순도 99.9% 이상, 입도 50㎛ 미만을 사용하였다. Selection of the raw materials used in the synthesis process is a solid phase synthesis method to determine the possibility of synthesis of (Ba 1-x Eu x ) O · (Mg 1-yz Mn y M z ) O · 5.7 (Al 2 O 3 ) -based phosphor In order to analyze the raw materials described in Table 1 below, a purity of 99.9% or more and a particle size of less than 50 μm were used.

또한, 상기 선별된 원료의 경우 혼합 상태가 형광체 구조를 결정하는데 많은 영향을 주기 때문에 균질한 상태로 혼합된 시료를 사용할 수 있도록 Ball mill에 의한 균질화를 실시하였다. In addition, in the case of the selected raw material, since the mixed state has a large influence on determining the phosphor structure, homogenization by a ball mill was performed to use a sample mixed in a homogeneous state.

원료Raw material Purity(%)Purity (%) 원료Raw material Purity(%)Purity (%) 원료Raw material Purity(%)Purity (%) BaCO3 BaCO 3 99.099.0 Ga2O3 Ga 2 O 3 99.999.9 AgClAgCl 99.999.9 CaCO3 CaCO 3 99.099.0 Y2O3 Y 2 O 3 99.999.9 BaF2 BaF 2 99.099.0 MnCO3 MnCO 3 99.099.0 Eu2O3 Eu 2 O 3 99.999.9 AlF3 AlF 3 99.999.9 La2O3 La 2 O 3 99.099.0 Al2O3 Al 2 O 3 99.999.9 NH4FNH 4 F 99.999.9 MgOMgO 99.999.9 Gd2O3 Gd 2 O 3 99.999.9 NH4ClNH 4 Cl 99.999.9 Tb4O7 Tb 4 O 7 99.999.9 CeO2 CeO 2 99.999.9 H3BO3 H 3 BO 3 99.999.9

<실시예 1><Example 1>

상기 제조예 1과 같이 선별 및 혼합된 원료를 이용하여 (Ba1-x Eux)O · (Mg1-y-zMnyMz)O · 5.7(Al2O3)계 형광체를 합성하는 과정에서 각 원료 물질의 양을 조절하면서 효율분석을 통해 최적의 혼합량을 산출하였다.In the process of synthesizing (Ba 1-x Eu x ) O. (Mg 1-yz Mn y M z ) O.5.7 (Al 2 O 3 ) -based phosphors using the raw materials selected and mixed as in Preparation Example 1 above. The optimum mixing amount was calculated through efficiency analysis while adjusting the amount of each raw material.

-Barium량 조절에 의한 효율 분석-Efficiency analysis by adjusting barium amount

하기 표 2의 결과와 같이, 바륨의 경우 0.65~0.85몰 사이에서 합성하여 확인한 결과, 0.792~0.793몰 사이에서 발광효율도 높고, 색좌표 CIE X:0.1464 CIE X:0.6727의 범위를 최적조건으로 설정하였다. As shown in Table 2, in the case of barium synthesized and confirmed between 0.65 ~ 0.85 mol, the luminous efficiency is also high between 0.792 ~ 0.793 mol, color coordinates CIE X: 0.1464 CIE X: 0.6727 was set to the optimum conditions .

Ba 몰수Ba forfeiture CIE XCIE X CIE YCIE Y LumiLumi 1One 0.7900.790 0.14820.1482 0.67300.6730 57.257.2 22 0.7910.791 0.14640.1464 0.67490.6749 58.358.3 33 0.7920.792 0.14610.1461 0.67140.6714 61.361.3 44 0.7930.793 0.14640.1464 0.67270.6727 61.161.1 55 0.7940.794 0.14580.1458 0.67240.6724 61.661.6 66 0.7950.795 0.14670.1467 0.66680.6668 56.656.6

-Mg-Mg XX 량 조절에 의한 효율 분석-Efficiency analysis by volume control

하기 표 3의 결과와 같이, 마그네슘의 경우 0.5 ~1.5 몰로 합성하여 얻은 결과 0.5 ~ 0.9 몰 사이에서 발광효율이 예상되어 0.6 ~ 0.75 몰에서 실시하여 색좌표에서 CIE X:0.1463 CIE X:0.6730의 범위에서 적절하다고 판단되어 0.69~0.699 몰비 범위가 최적조건으로 설정하였다.As shown in Table 3 below, the result obtained by synthesizing with 0.5 to 1.5 moles of magnesium is expected to be luminous efficiency between 0.5 to 0.9 moles and carried out at 0.6 to 0.75 moles in the range of CIE X: 0.1463 CIE X: 0.6730 in color coordinates. As judged appropriate, the molar ratio range of 0.69 ~ 0.699 was set as the optimum condition.

MgX 0.5~1.5 몰비 조절Mg X 0.5 ~ 1.5 molar ratio control MgX 0.6~0.75몰비 조절 Mg X 0.6 ~ 0.75 molar ratio adjustment 00 Mg몰 Mg Mall CIE X CIE X CIE Y CIE Y LumiLumi 00 Mg몰 Mg Mall CIE X CIE X CIE Y CIE Y LumiLumi 1One 0.50 0.50 0.16720.1672 0.64710.6471 97.797.7 1One 0.60 0.60 0.16050.1605 0.66830.6683 86.986.9 22 0.90 0.90 0.14410.1441 0.65630.6563 99.699.6 22 0.65 0.65 0.15070.1507 0.67700.6770 85.585.5 33 1.00 1.00 0.1482 0.1482 0.62200.6220 8080 33 0.70 0.70 0.1463 0.1463 0.67300.6730 84.484.4 44 1.50 1.50 0.14810.1481 0.57000.5700 52.952.9 44 0.75 0.75 0.14430.1443 0.66960.6696 83.783.7

-Al-Al XX 량 조절에 의한 효율 분석-Efficiency analysis by volume control

하기 표 4의 결과와 같이, 알루미늄의 경우 9.0 ~12 몰로 합성하여 얻은 결과는 11~12몰 사이서 세부적으로 발광효율, 색좌표 분석한 결과 11.4 ~ 11.5 몰 사이에서 발광효율이 높고, CIE X:0.1543 CIE X:0.6618의 범위를 최적조건으로 설정하였다. As shown in Table 4 below, the result obtained by synthesizing 9.0 to 12 moles of aluminum is 11 to 12 moles in detail, and the luminous efficiency is high between 11.4 to 11.5 moles as a result of color coordinate analysis. The range of CIE X: 0.6618 was set to the optimum condition.

Al 9~12 몰비 조절Al 9 ~ 12 molar ratio adjustment Al 11~11.8 몰비 조절 Al 11 ~ 11.8 molar ratio adjustment Al몰Al Mall CIE X CIE X CIE Y CIE Y LumiLumi Al몰Al Mall CIE X CIE X CIE Y CIE Y LumiLumi 00 stdstd 0.16930.1693 0.64050.6405 17.617.6 00 stdstd 0.16930.1693 0.64050.6405 17.617.6 1One 99 0.16190.1619 0.6440.644 16.916.9 1One 11.011.0 0.15130.1513 0.66110.6611 49.249.2 22 1010 0.17090.1709 0.63940.6394 16.616.6 22 11.211.2 0.16050.1605 0.63930.6393 42.942.9 33 1111 0.16780.1678 0.63350.6335 18.418.4 33 11.411.4 0.15380.1538 0.66210.6621 55.055.0 44 1212 0.16900.1690 0.64050.6405 17.617.6 44 11.611.6 0.15430.1543 0.66180.6618 52.952.9 55 11.811.8 0.15390.1539 0.65960.6596 52.552.5

-Mn-Mn X X 량 조절에 의한 효율 분석-Efficiency analysis by volume control

하기 표 5의 결과와 같이, 망간의 경우 0.1 ~0.35몰로 합성하여 얻은 결과 0.29~0.34몰 사이에서 발광효율이 예상되어, 0.29 ~ 0.34몰에서 실시한 결과 0.29몰에서 발광효율이 높게 분석되었다. 0.296~0.297몰 사이에서 발광효율이 높고, 색좌표 CIE X: 0.1454~0.1475 CIE X:0.6765~0.6810의 범위를 최적조건으로 설정하였다.As shown in Table 5, in the case of manganese, the result obtained by synthesizing with 0.1 to 0.35 moles was expected to be luminous efficiency between 0.29 and 0.34 moles. The luminous efficiency was high between 0.296 and 0.297 moles, and the color coordinate CIE X: 0.1454 to 0.1475 CIE X: 0.6765 to 0.6810 was set as an optimum condition.

Mn몰Mn Mall CIE X CIE X CIE YCIE Y LumiLumi 1One 0.2950.295 0.15230.1523 0.67280.6728 65.465.4 22 0.2960.296 0.14540.1454 0.67650.6765 68.068.0 33 0.297 0.297 0.14750.1475 0.68100.6810 67.567.5 44 0.2980.298 0.1473 0.1473 0.67970.6797 66.866.8 55 0.2990.299 0.15080.1508 0.67680.6768 66.966.9

-Eu X 량 조절에 의한 효율 분석- -Efficiency analysis by adjusting the amount of Eu X-

하기 표 6의 결과와 같이, 유로폼은 기초연구 얻은 결과를 토대로 발광효율이 예상되는 0.01 ~ 0.05몰에서 실시한 결과, 0.02 ~0.03 몰에서 발광효율이 높게 분석되었고, 색좌표 고려시 0.03몰에서 발광효율도 높고, 색좌표 CIE X:0.1505 CIE X:0.6512의 범위가 최적조건을 설정하였다. As shown in the following Table 6, Euroform was carried out at 0.01 ~ 0.05 moles of the expected luminous efficiency based on the results obtained from the basic research, it was analyzed that the luminous efficiency was high at 0.02 ~ 0.03 moles, the luminous efficiency at 0.03 moles considering the color coordinates High, and the color coordinate range CIE X: 0.1505 CIE X: 0.6512 set the optimum condition.

Eu 몰 Eu Mall CIE X CIE X CIE Y CIE Y Lumi  Lumi 1One 0.01 0.01 0.15550.1555 0.66040.6604 48.248.2 22 0.02 0.02 0.15150.1515 0.65770.6577 55.955.9 33 0.03 0.03 0.15050.1505 0.65120.6512 54.954.9 44 0.04 0.04 0.14990.1499 0.64420.6442 4949 55 0.05 0.05 0.15330.1533 0.66470.6647 5757

-- AlFAlF 33 량 조절에 의한 효율 분석-Efficiency analysis by volume control

하기 표 7의 결과와 같이, AlF3의 경우 0.098~ 0.1몰에서 발광효율이 높게 분석되었고, 색좌표 CIE X:0.1484 CIE X:0.6740의 범위가 최적조건을 설정하였다. As shown in Table 7 below, in the case of AlF 3 , the luminous efficiency was analyzed at 0.098 to 0.1 mole, and the color coordinate CIE X: 0.1484 CIE X: 0.6740 was set to the optimum condition.

AlF3AlF 3 Mall CIE X  CIE X CIE Y  CIE Y Lumi Lumi 00 StdStd 0.14630.1463 0.67040.6704 94.894.8 1One 0.0980.098 0.14840.1484 0.67400.6740 94.694.6 22 0.100.10 0.14960.1496 0.67240.6724 91.491.4 33 0.150.15 0.14930.1493 0.67320.6732 91.591.5 44 0.200.20 0.14930.1493 0.67240.6724 91.491.4

-- AgAg 량 조절에 의한 효율 분석-Efficiency analysis by volume control

하기 표 8의 결과와 같이, 은의 경우 0.1~0.2몰, 0.01~0.05몰비로 합성하여 분석한 결과 발광효율, 색좌표 CIE X:0.1464 CIE Y:0.6871을 고려할 때 0.05 ~0.1몰 범위를 최적 조건으로 설정하였다As shown in the following Table 8, in the case of silver, 0.1 ~ 0.2 mol, 0.01 ~ 0.05 molar ratio synthesized analysis results, considering the luminous efficiency, color coordinates CIE X: 0.1464 CIE Y: 0.6871 to set the optimum range of 0.05 ~ 0.1 mol Was

Ag몰 Ag Mall CIE X CIE X CIE YCIE Y LumiLumi 00 StdStd 0.14630.1463 0.67040.6704 62.162.1 1One 0.050.05 0.14640.1464 0.68710.6871 60.060.0 22 0.100.10 0.14900.1490 0.66200.6620 63.563.5 33 0.150.15 0.14550.1455 0.67790.6779 59.459.4 44 0.200.20 0.14580.1458 0.67650.6765 5959

-Ga량 조절에 의한 효율 분석-Efficiency analysis by Ga amount control

하기 표 9의 결과와 같이, 갈륨의 경우 0.01~0.05몰비로 합성하여 얻은 결과 발광효율, 색좌표 CIE X:0.1494~ 0.1493 CIE Y:0.6680~0.6774를 고려할 때 0.02~0.03몰 범위를 최적조건으로 설정하였다.As shown in Table 9, in the case of gallium, the result obtained by synthesizing at a molar ratio of 0.01 to 0.05 mole was set to 0.02 to 0.03 mole as the optimal condition in consideration of luminous efficiency and color coordinate CIE X: 0.1494 to 0.1493 CIE Y: 0.6680 to 0.6774. .

Ga 몰Ga Mall CIE X CIE X CIE Y CIE Y Lumi Lumi 1 One 0.010.01 0.15360.1536 0.65960.6596 49.549.5 2 2 0.020.02 0.14940.1494 0.66800.6680 62.762.7 3 3 0.030.03 0.14930.1493 0.67740.6774 65.465.4 4 4 0.040.04 0.15010.1501 0.68820.6882 63.163.1 5 5 0.050.05 0.14900.1490 0.67000.6700 44.344.3

-열화- Deterioration

하기 표 10의 결과와 같이, 형광체를 산화분위기에서 1시간, 600℃에서 열처리후의 발광 효율을 분석한 경우 열화면에서 우수한 것으로 분석되었다.As shown in Table 10, when the luminous efficiency of the phosphor after heat treatment at 600 ℃ for 1 hour in an oxidizing atmosphere was analyzed to be excellent in the thermal screen.

CIE XCIE X CIE YCIE Y LumiLumi %% 1One GreenGreen 0.14620.1462 0.67690.6769 66.566.5 100100 0.14550.1455 0.67640.6764 60.460.4 9191 2 2 Std Std 0.14170.1417 0.63160.6316 60.860.8 100100 0.14080.1408 0.61750.6175 50.450.4 8383

이상과 같은 각 원료의 최적의 혼합량을 종합한 결과, 하기 표 10과 같이 (Ba1-x Eux)O · (Mg1 -y- zMnyMz)O · 5.7(Al2O3) Mz:Ag,Ga 형광체에 대한 최적조건이 산출되었다. More than one general the respective optimum results mixing amount, to (Ba 1-x Eu x) as shown in Table 10, the raw materials such as O · (Mg 1 -y- z Mn y M z) O · 5.7 (Al 2 O 3) M z : Ag, Ga Optimum conditions for the phosphors were calculated.

원료명Raw material name 조성비Creation costs 최적 조건Optimum 1One 22 33 BaCO3BaCO3 0.770.77 0.780.78 0.7900.790 0.7910.791 0.7920.792 0.7930.793 0.7940.794 0.79260.7926 0.79260.7926 0.79260.7926 MgOMgO 0.650.65 0.660.66 0.670.67 0.680.68 0.690.69 0.700.70 0.710.71 0.69240.6924 0.69240.6924 0.69240.6924 Al2O3Al2O3 9.59.5 9.759.75 1010 10.510.5 10.7510.75 11.011.0 1212 11.411.4 11.411.4 11.411.4 MnCO3MnCO3 0.2940.294 0.2950.295 0.2960.296 0.2970.297 0.2980.298 0.2990.299 3.03.0 0.2960.296 0.2960.296 0.2960.296 Eu2O3Eu2O3 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05 0.070.07 0.100.10 0.030.03 0.030.03 0.050.05 AgClAgCl 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05 ~0.1~ 0.1 ~0.20~ 0.20 0.050.05 0.050.05 Ga2O3Ga2O3 0.010.01 0.020.02 0.0250.025 0.030.03 0.040.04 0.050.05 0.100.10 0.030.03 NH4FNH4F 0.0770.077 0.0780.078 0.0790.079 0.0800.080 0.0810.081 0.0820.082 0.0830.083 0.09880.0988 0.09880.0988 0.09880.0988 AlF3 AlF3 0.090.09 0.0920.092 0.0950.095 0.0970.097 0.0980.098 0.0990.099 0.10.1 0.08180.0818 0.08180.0818 0.08180.0818

상기 표 11의 결과에 의하여, (Ba0 .0796)(Mg0 .6924Mz)5.7(Al2O3):Eu0 .03Mn0 .296계 형광체의 합성 가능성을 확인하기 위해 BaMgAl10O17 : Eu+2Mn+2계 형광체 254nm의 여기 파장하에서 측정한 발광강도와 M을 Ag 와 Ga으로 치환하여 알루미네이트구조를 가지며 SEM의 전자현미경 사진에서도 녹색고유의 형광체가 형성됨을 알 수 있었으며, Ag의 몰비 0.05의 범위에서 발광강도 (Photo Luminescence Intensity)가 상당히 뛰어난 특성을 보이며, Ga을 0.025~0.03의 몰비 범위에서 발광강도가 향상되며 알루미네이트 구조가 형성됨을 확인하였다. Ag 0.05~0.1, Ga 0.03몰 인 경우 비교 예에서 대비 약 10~16% 정도의 향상된 특성을 보였다.By the results of Table 11, (Ba 0 .0796) ( Mg 0 .6924 M z) 5.7 (Al 2 O 3): Eu 0 .03 Mn 0 BaMgAl 10 to determine the synthetic potential of 0.296 based phosphor O 17 : Eu +2 Mn +2 phosphor The emission intensity measured under the excitation wavelength of 254nm and M was replaced by Ag and Ga to have an aluminate structure, and the SEM-electron micrograph showed that a green native phosphor was formed. It was confirmed that the luminescence intensity (Photo Luminescence Intensity) was significantly superior in the molar ratio of Ag, and the luminescence intensity was improved and the aluminate structure was formed in the molar ratio range of 0.025 to 0.03. Ag 0.05 ~ 0.1, Ga 0.03mol showed about 10 ~ 16% improvement compared to the comparative example.

<실험예 1>Experimental Example 1

상기 실시예 1을 통하여 설정된 (Ba0.0796)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296의 화학식을 갖는 녹색 형광체와, 현재 상용화된 BAM 녹색 형광체를 비교군으로 하여 UV 254nm 램프 전용 분석 장비를 이용하여 molding 후 발광상태를 육안으로 판정하였으며, 그 결과 첨부된 도 1에서 보여주는 바와 같이, 본 발명의 녹색 형광체(A)의 경우 비교군의 상용화된 BAM 녹색 형광체(B,C)와 비교하여 고색재현성임을 육안으로도 확인할 수가 있었다.UV (254 nm) using a green phosphor having a chemical formula of (Ba 0.0796 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 and BAM green phosphor currently commercialized as a comparative group. After molding using a lamp-specific analysis equipment was determined visually, as a result, as shown in the accompanying Figure 1, in the case of the green phosphor of the present invention (A) of the comparative group of commercialized BAM green phosphor (B, C) Compared with), it was possible to confirm the high color reproducibility with the naked eye.

<실험예 2>Experimental Example 2

상기 실시예 1을 통하여 설정된 (Ba0.0796)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296의 화학식을 갖는 녹색 형광체와, 현재 상용화된 BAN 녹색 형광체를 비교군으로 하여 휘도와 색좌표, 발광효율을 측정하였으며, 그 결과 하기 표 12와 첨부된 도 2의 색좌표 그래프 및 휘도 측정치를 통해 알 수 있듯이, 본 발명의 녹색 형광체(A)는 비교군의 상용화된 BAM 녹색형광체(B,C)와 비교하여 상용대비 상대휘도가 110 ~118% 가량 향상된 것을 확인할 수 있었다. The luminance of the green phosphor having a chemical formula of (Ba 0.0796 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 and BAN green phosphor, which is commercially available, was set as a comparative group. Color coordinates, luminous efficiency was measured, and as a result, as can be seen from the color coordinate graph and luminance measurement values of Table 12 and the accompanying FIG. 2, the green phosphor A of the present invention is a commercialized BAM green phosphor (B, Compared with C), relative luminance was improved by 110 ~ 118%.

아울러, 첨부된 도 3a와 3b의 여기 발광 스펙트럼을 확인한 결과, 본 발명의 녹색 형광체(A)의 경우 청색을 나타내는 420~480㎚에서는 비교군의 상용화된 BAM 녹색 형광체(B,C) 보다는 낮은 발광효율을 보이는 반면, 220~300㎚와 500~5500㎚의 구간에서는 반대로 본 발명의 녹색 형광체(A)가 더 높은 발광효율을 보이는 것을 확인할 수 있었으며, 이는 청색의 발광율이 낮아 더욱 높은 순도의 녹색 발광이 이루어지며 RGB로 혼용하여 CCFL에 적용시 색온도가 높게 나타냄을 알 수 있다.In addition, as a result of confirming the excitation emission spectra of the attached FIGS. 3A and 3B, in the case of the green phosphor (A) of the present invention, luminescence lower than that of the comparative group of commercially available BAM green phosphors (B, C) at 420 to 480 nm, which is blue. On the contrary, it was confirmed that the green phosphor (A) of the present invention exhibited a higher luminous efficiency in the section of 220 to 300 nm and 500 to 5500 nm. It can be seen that the light is emitted and the color temperature is high when mixed with RGB and applied to CCFL.

Mz가 Ag로서 0.05몰0.05 mol as M z is Ag Mz가 Ga로서 0.03몰M z is 0.03 mol as Ga CIE X CIE X CIE Y CIE Y Lumi Lumi CIE XCIE X CIE Y CIE Y LumiLumi 1One AA 0.14540.1454 0.67850.6785 67.467.4 0.14580.1458 0.67960.6796 64.464.4 22 BB -- -- -- 0.13920.1392 0.63300.6330 58.258.2 33 CC 0.14090.1409 0.62880.6288 61.261.2 0.13920.1392 0.63450.6345 58.358.3

도 1은 본 발명의 실시예에 따른 녹색형광체의 발광분석을 나타낸 사진1 is a photograph showing a luminescence analysis of a green phosphor according to an embodiment of the present invention

도 2는 본 발명의 실시예에 따른 녹색형광체의 색좌표를 나타낸 그래프2 is a graph showing color coordinates of a green phosphor according to an embodiment of the present invention

도 3은 본 발명의 실시예에 따른 녹색형광체의 여기 발광 스펙트럼을 나타낸 그래프 3 is a graph showing an excitation emission spectrum of a green phosphor according to an embodiment of the present invention

Claims (6)

화학식 (Ba0 .0796)(Mg0 .6924Mz)5.7(Al2O3):Eu0 .03Mn0 . 296로 표시되며, 상기 Mz은 Ag 또는 Ga 중에 선택된 것임을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체.Formula (Ba 0 .0796) (Mg 0 .6924 M z) 5.7 (Al 2 O 3): Eu 0 .03 Mn 0. A manganese-activated aluminate green phosphor, represented by 296 , wherein M z is selected from Ag or Ga. 청구항 1에 있어서, 상기 Mz은 Ag일 경우 그 몰수가 0.05~0.1몰인 것을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체.The manganese-activated aluminate green phosphor according to claim 1, wherein when M z is Ag, the number of moles thereof is 0.05 to 0.1 mole. 청구항 1에 있어서, 상기 Mz은 Ga일 경우 그 몰수가 0.02~0.03인 것을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체.The manganese-activated aluminate green phosphor according to claim 1, wherein when M z is Ga, the number of moles thereof is 0.02 to 0.03. 공침법에 의한 고상합성(solid-state reaction)법에 의거하여, Ba,Mg, Mn, Al 및 Ag 또는 Ga을 함유하는 화합물을 1100 내지 1300 ℃에서 1 내지 10 시간 동안 질소/수소의 혼합가스 분위기하에 소성시켜 화학식 (Ba0.0796)(Mg0.6924Mz)5.7(Al2O3):Eu0.03Mn0.296(상기 Mz은 Ag 또는 Ga 중에 선택된 금속)로 표시되며 화합물을 제조하는 것을 특징으로 하는 망간 활성 알루미네이트 녹색 형 광체의 제조방법.Based on the solid-state reaction method by coprecipitation method, a mixed gas atmosphere of nitrogen / hydrogen containing Ba, Mg, Mn, Al and Ag or Ga at 1100 to 1300 ° C. for 1 to 10 hours. Calcined under a formula (Ba 0.0796 ) (Mg 0.6924 M z ) 5.7 (Al 2 O 3 ): Eu 0.03 Mn 0.296 (wherein M z is a metal selected from Ag or Ga) to prepare a compound. Method for preparing activated aluminate green phosphor. 청구항 4에 있어서, 상기 화학식의 Mz은 Ag일 경우 그 몰수가 0.05~0.1몰이 되도록 하고, Ga일 경우 그 몰수가 0.02~0.03이 되도록 첨가됨을 특징으로 하는 망간 활성 알루미네이트 녹색 형광체의 제조방법.The method of claim 4, wherein M z of the chemical formula is added so that the mole number is 0.05 to 0.1 mole when Ag, and the mole number is 0.02 to 0.03 when Ga. 외위기의 내부에 형광막을 갖고, 그 외위기에 봉입된 희가스의 방전에 의하여 생기는 진공자외선에 의하여 상기 형광막을 여기하여 발광시키는 진공 자외선 여기 발광소자에 있어서,In a vacuum ultraviolet-excited light emitting device having a fluorescent film inside the envelope and exciting the fluorescent film by vacuum ultraviolet rays generated by the discharge of the rare gas enclosed in the envelope, 상기 형광막이 청구항 2 또는 청구항 3의 녹색 형광체을 사용함을 특징으로 하는 진공 자외선 여기 발광소자.A vacuum ultraviolet excitation light emitting element, wherein the fluorescent film uses the green phosphor of claim 2 or 3.
KR1020080073141A 2008-07-25 2008-07-25 A green fluorescent substance KR101081579B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080073141A KR101081579B1 (en) 2008-07-25 2008-07-25 A green fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080073141A KR101081579B1 (en) 2008-07-25 2008-07-25 A green fluorescent substance

Publications (2)

Publication Number Publication Date
KR20100011780A true KR20100011780A (en) 2010-02-03
KR101081579B1 KR101081579B1 (en) 2011-11-09

Family

ID=42086211

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080073141A KR101081579B1 (en) 2008-07-25 2008-07-25 A green fluorescent substance

Country Status (1)

Country Link
KR (1) KR101081579B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077978B2 (en) 2004-05-14 2006-07-18 General Electric Company Phosphors containing oxides of alkaline-earth and group-IIIB metals and white-light sources incorporating same
US7541728B2 (en) * 2005-01-14 2009-06-02 Intematix Corporation Display device with aluminate-based green phosphors

Also Published As

Publication number Publication date
KR101081579B1 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP5414957B2 (en) White light emitting phosphor blend for LED elements
US8808577B2 (en) Thermally stable oxynitride phosphor and light source comprising such a phosphor
USRE45640E1 (en) Phosphor for electron beam excitation and color display device using the same
US20060138388A1 (en) Phosphor for light sources and associated light source
KR101244620B1 (en) Oxynitride phospors and light emitting device using the same
KR20060094528A (en) Highly efficient luminous substance
JP4269880B2 (en) Fluorescent lamp and phosphor for fluorescent lamp
JP2014194019A (en) Lighting system
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
JP2011506655A5 (en)
JP2000144130A (en) Red light-emitting fluorescent material and luminous screen using the same
JPH1036835A (en) Photoluminescence phosphor
JP2000017257A (en) Fluorescent substance and luminous screen using the same
KR102631178B1 (en) Blue light-emitting phosphor, light-emitting element, light-emitting device, and white light-emitting device
KR101081579B1 (en) A green fluorescent substance
US8440105B2 (en) Phosphors and white light emitting devices including same
EP1783192B1 (en) Phosphor and light-emitting device using same
WO2023063251A1 (en) Phosphor, light emitting device, lighting device, image display device and indicator lamp for vehicles
JP2011202002A (en) Phosphor
KR20140000728A (en) Phospor and light emitting device comprising the phospor
JPH05302082A (en) Luminescent composition and fluorescent lamp
JP2006070077A (en) Rare earth boroaluminate fluorophor and light-emitting device using the same
JP2006073209A (en) Fluorescent lamp
JP2023057391A (en) Phosphor
JP2023057392A (en) Light emitting device, lighting device, image display device and indicator lamp for vehicles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171027

Year of fee payment: 7