KR20100001907A - Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger - Google Patents

Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger Download PDF

Info

Publication number
KR20100001907A
KR20100001907A KR1020080061997A KR20080061997A KR20100001907A KR 20100001907 A KR20100001907 A KR 20100001907A KR 1020080061997 A KR1020080061997 A KR 1020080061997A KR 20080061997 A KR20080061997 A KR 20080061997A KR 20100001907 A KR20100001907 A KR 20100001907A
Authority
KR
South Korea
Prior art keywords
quercetin
glucoside
rhamnosidase
aspergillus niger
rutin
Prior art date
Application number
KR1020080061997A
Other languages
Korean (ko)
Inventor
유현주
박세진
박명수
지근억
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080061997A priority Critical patent/KR20100001907A/en
Publication of KR20100001907A publication Critical patent/KR20100001907A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/062Ascomycota

Abstract

PURPOSE: A method for preparing quercetin glucoside from rutin using rhamnosidase(EC 3.2.1.40) is provided to improve productivity of quercetin-3-glucoside having apoptosis ability to cancer cells. CONSTITUTION: A quercetin-3-glucoside having anticancer activity is converted from Aspergillus niger(KCTC 6906)-derived rhamnosidase. A method for isolating the rhamnosidase comprises: a step of shaking Aspergillus niger(KCTC 6906) in PD(potato dextrose) and ME(malt extract) at 30°C for five days; a step of filtering the culture medium using Whatman Glass Microfibre filter; a step of filtering again with bottle top filter at 0.22μm; a step of dissolving the filtered liquid in 85% ammonium sulfate, centrifuging to remove supernatant, and dissolving precipitate in buffer; and a step of isolating through DEAE-cellulose ion chromatography sephacryl S-200 gel chromatography.

Description

아스퍼질러스 나이거 유래의 람노시데이즈를 이용한 루틴에서 쿼세틴 -3- 글루코사이드를 제조하는 방법{method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from Aspergillus niger}Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from Aspergillus niger}

본 발명은 메밀 등 식물체 내에 존재하는 파이토케미칼(phytochemical) 중 하나인 루틴(rutin)을 아스퍼질러스 나이거(Aspergillus niger) 유래의 람노시데이즈(rhamnosidase, EC 3.2.1.40) 효소로 생물전환시 생기는 쿼세틴 배당체 (isoquercitrin, quercetin-3-glucoside)에 관한 것으로, quercetin-3-glucoside는 지금까지 알려진 여러 종류의 파이토케미칼 보다 훨씬 적은 수준의 농도에서 암세포주에 대한 세포사멸 효과를 보인다.The present invention is produced by bioconversion of rutin, one of the phytochemicals present in plants, such as buckwheat, with a rhamnosidase (EC 3.2.1.40) enzyme from Aspergillus niger. It relates to quercetin glycosides (isoquercitrin, quercetin-3-glucoside), quercetin-3-glucoside shows apoptosis effect on cancer cell lines at a much lower concentration than the various phytochemicals known to date.

식물 유래의 여러 가지 파이토케미칼, 특히 플라보노이드(flavonoid)는 자유라디칼 소거능, 활성산소 생성 억제, 세포내 지질, 단백질 등의 산화 방지 등 높은 항산화능력을 비롯, 인체에 대한 다양한 생물학적 기능을 수행하는 것으로 알려져 있다. 특히, 4000여 가지가 넘는 이들 플라보노이드 가운데 양파, 사과 등에 많은 쿼세틴은 항산화 능력 이외에도 암세포에 대한 세포 독성 및 자연사멸 효과 및 그 기작에 대해 세포주를 이용한 in vitro 실험, 동물 실험, 인체 실험, 역학 조사 등을 통한 항암 효과에 관한 연구가 수행되어 왔다.Plant-derived phytochemicals, especially flavonoids, are known to perform various biological functions on the human body, including high antioxidant capacity such as free radical scavenging ability, inhibition of free radical formation, and prevention of oxidation of intracellular lipids and proteins. have. Among the more than 4,000 of these flavonoids, quercetin, which is found in onions and apples, is not only for its antioxidant capacity, but also for its cytotoxic and apoptosis effects and its mechanisms against cancer cells in vitro, animal, human, and epidemiological studies. Studies on the anticancer effect through the has been performed.

쿼세틴은 플라보노이드 가운데 플라보놀(falvonol) 계열에 속하며, 캠페롤(kaempferol), 미리세틴(myricetin) 등과 함께 이들을 대표하는 비배당체(aglycone) 중 하나이다. 그러나, 식물체 내에서 쿼세틴은 비배당체 형태 보다는 glucose, rhamnose, galactose, arabinose 등 여러 종류의 단일 또는 다수의 당과 결합된 배당체(glycone)의 형태로 존재한다. 차와 메밀 등에 풍부하게 함유되어 있는 루틴(rutin)의 경우도, 쿼세틴에 글루코오스(glucose)와 람노오스(rhamnose)로 이루어진 루티노오스(rutinose)가 결합된 배당체의 하나이다. (도1) Quercetin belongs to the flavonol family of flavonoids, and is one of the aglycones representing them together with kaempferol, myricetin and the like. However, in the plant, quercetin is present in the form of glycoside combined with several single or multiple sugars such as glucose, rhamnose, galactose, and arabinose rather than nonglycoside. Rutin, which is abundantly contained in tea and buckwheat, is also one of the glycosides in which quercetin is combined with rutinose consisting of glucose and rhamnose. (Figure 1)

항암활성의 측면에서 지금까지 이루어진 연구 결과들은 배당체인 루틴의 경우는 암세포에 대한 사멸능을 보이지 않으며 비배당체인 쿼세틴의 활성에 집중되어 왔다. 항암활성 연구의 측면에서 쿼세틴은 세포의 증식억제 및 아폽토시스 유도, 실제 종양마우스 모델에서의 종양형성 억제능 연구들을 통해 그 항암능이 평가되어 왔다. 항암활성을 나타내는 쿼세틴의 유효농도(IC50 농도로 평가)는 사용한 실험 방법 및 평가에 이용된 세포주의 종류, 실험 모델 등에 따라 조금씩 다르지만 대략 50 μM 이상의 수준으로 보여진다. 그러나, 본 기술 개발에 의하여 신규로 제안된 방법으로 얻어진 quercetin-3-glucoside는 항 종양 활성이 다른 소재보다 우수함을 발명하기에 이른다.In terms of anti-cancer activity, the research results thus far have been focused on the activity of the non-glycoside quercetin, which does not show the ability to kill cancer cells in the glycoside routine. In terms of anticancer activity studies, quercetin has been evaluated for its anticancer activity through studies on cell proliferation inhibition and apoptosis induction, and tumor suppression studies in a real tumor mouse model. The effective concentration of quercetin (evaluated by IC50 concentration) showing anticancer activity is shown to be approximately 50 μM or more depending on the experimental method used, the type of cell line used in the evaluation, and the experimental model. However, the quercetin-3-glucoside obtained by the method newly proposed by the present technology development leads to the invention that the antitumor activity is superior to other materials.

식물 유래의 파이토케미칼, 특히 플라보노이드 섭취시의 생체기능적 유용성은 실제 식품중의 플라보노이드의 함량 및 존재형태, 생체내 흡수율 및 노출농도에 의해 영향을 받는다. 이때, 기존의 in vitro 실험에서 보여지는 기능적 유효농도는 암세포 생성의 예방의 측면에서 볼 때 상당히 높은 수준이며, 실제적 노출농도와 많은 차이가 있다. 한편, 당과 결합하여 배당체의 형태로 존재하는 플라보노이드를 보다 흡수되기 쉽고 효과적인 형태로 변형한다면, 그 기능성을 더욱 높일 수 있다. The biofunctional utility of phytochemicals derived from plants, in particular flavonoids, is influenced by the content and type of flavonoids present in food, in vivo absorption and exposure concentrations. At this time, the functional effective concentration seen in the existing in vitro experiments is considerably high in terms of the prevention of cancer cell production, and there are many differences from the actual exposure concentration. On the other hand, if the flavonoids present in the form of glycosides in combination with sugar is transformed into a more easily absorbed and effective form, its functionality can be further enhanced.

본 발명은 다른 플라보노이드들이 암세포 사멸능을 보이는 농도보다 더욱 낮은 농도에서 암세포에 대한 사멸능을 보이는 배당체인 쿼세틴-3-글루코사이드의 용도 및 이의 생산성을 높힐 수 있는 방법을 제공하고자 한다. The present invention is to provide a method for increasing the productivity and use of the quercetin-3-glucoside, a glycoside that exhibits the ability to kill cancer cells at a lower concentration than other flavonoids show the ability to kill cancer cells.

본 발명의 목적을 달성하기 위하여, In order to achieve the object of the present invention,

루티노오스의 람노오스 결합을 분해할 수 있는 Aspergillus niger 균주 유래의 람노오시데이즈 효소를 루틴의 쿼세틴-3-글루코사이드의 전환에 이용하였다. 그 결과, A. niger 균주에서 분리한 효소가 rutin을 쿼세틴-3-글루코사이드로 전환하였다. (도2)Rhamnosidase enzyme from Aspergillus niger strain capable of degrading the rhamnose bond of lutinose was used for the conversion of quercetin-3-glucoside of rutin. As a result, the enzyme isolated from the A. niger strain converted rutin to quercetin-3-glucoside. (Figure 2)

수십여 종의 프로바이오틱 미생물 및 식용가능한 식품 미생물 균주들을 이용하여, 배당체의 당 결합을 가수분해 할 수 있는 균주들을 미리 평가 선발하고, 그 결과 루티노오스의 람노오스 결합을 분해할 수 있는 Aspergillus niger 균주를 선발하였다. Using several dozen probiotic and edible food microbial strains, strains capable of hydrolyzing glycosides of glycosides can be evaluated in advance, resulting in Aspergillus being able to degrade the rhamnose bonds of lutinose. niger strains were selected.

본 연구에서 루틴을 아스퍼질러스 나이거 (Aspergillus niger) 유래의 당분해 효소로 전환하였을 때 생성되는 쿼세틴-3-글루코사이드(quercetin-3-glucoside, Q3G) 의 경우가 배당체인 쿼세틴보다 더 낮은 수준의 농도인 20 μM 에서도 암세포 사멸능을 보였다.In this study, quercetin-3-glucoside (Q3G), which is produced when the routine is converted to glycosylase from Aspergillus niger, is lower than the glycoside quercetin. Cancer cell death was also observed at the concentration of 20 μM.

Filamentous Fungi에 속하는 Aspergillus niger KCTC 6906의 배양액에서 람노시데이즈를 분리, 정제하였다.Rhamnosids were isolated and purified from the culture solution of Aspergillus niger KCTC 6906 belonging to Filamentous Fungi.

균체의 배양은 일반적 곰팡이 균주 배양에 사용되는 PD(potato dextrose), ME(malt extract)배지에 하였다. 호기조건에서 진탕 배양 하였으며 배양온도는 30℃로 하였다. 배양기간은 5일 동안 진탕 배양 하였을 때 람노시데이즈의 생산량이 최고에 달았다. Cell culture was carried out in PD (potato dextrose), ME (malt extract) medium generally used for culturing fungal strains. Shaking culture was carried out under aerobic conditions and the incubation temperature was 30 ℃. The incubation period was the highest in the production of rhamnosides when shaken for 5 days.

상기한 바와 같은 배양 조건 하에서 균주를 배양하여 효소를 얻는다. 활성 물질을 배양액에 존재하므로 배양 후, Whatman Glass Microfibre filter로 배양액을 필터한 후, 포자를 완전히 제거하기 위하여, 효소가 포함된 0.22㎛의 bottle top filter로 다시 한 번 필터 해주었다. 효소가 포함된 단백질만을 수득하기 위하여, 필터한 배양액을 ammonium sulfate 85%로 녹인 후, 침전된 단백질을 원심분리 하여 상등액을 제거 한 후, 20ml의 완충액에 용해시켰다. The enzyme is obtained by culturing the strain under the culture conditions as described above. Since the active substance is present in the culture solution, after culturing, the culture solution was filtered with a Whatman Glass Microfibre filter, and then filtered again with a 0.22 μm bottle top filter containing enzyme to completely remove spores. In order to obtain only the protein containing the enzyme, the filtered culture solution was dissolved in 85% ammonium sulfate, the precipitated protein was centrifuged to remove the supernatant, and then dissolved in 20 ml of buffer.

이렇게 얻어진 효소액은 DEAE-Cellulose 이온 크로마토그래피(pH4.0, piperazine buffer)를 사용하여 0-0.5M NaCl의 gradient로 분리되었다. 0.17M의 NaCl 농도 부근에서 효소 활성을 나타내는 fraction을 얻을 수 있었으며 해상도를 높이기 위하여 같은 조건에서 다시 한 번 분리정제 하였다. 이 후, 활성 fraction을 Sephacryl S-200 Gel chromatography를 통해 분자량별로 분리하여 약 85kDa의 람노시데이즈 효소를 얻었다. The enzyme solution thus obtained was separated by a gradient of 0-0.5M NaCl using DEAE-Cellulose ion chromatography (pH4.0, piperazine buffer). A fraction representing the enzyme activity was obtained near the NaCl concentration of 0.17M, and once again separated and purified under the same conditions to increase the resolution. Thereafter, the active fractions were separated by molecular weight through Sephacryl S-200 Gel chromatography to obtain about 85 kDa of rhamnosidase enzyme.

쿼세틴이 암세포사멸능을 보였던 농도인 25μM 수준에서, 우선적으로 20여 가지 이상의 플라보노이드를 처리했을 때, 세포의 생존정도를 측정하는 MTT assay 방법을 이용해 어떤 물질이 가장 큰 활성을 가지는지 스크리닝하였다. (도3) 한편, 구조적으로 연관되어 있는 여러 가지 배당체들에 있어 어떤 당구조가 쿼세틴의 항암활성을 높이는데 큰 영향을 미치는 것인가를 평가하기 위해 quercetin (QUE) (aglycone), rutin (RUT) (glycone; QUE-rutinose), quercitrin (QUI) (glycone; QUE-rhamnose), isoquercitrin (IQI) (glycone; QUE-glucose), hyperin (HYP) (glycone; QUE-galactose), and reinutrin(RIN) (glycone; QUE-xylose)와 같은 배당체들의 세포사멸능 역시 평가하였다. 그 결과, 쿼세틴의 배당체들 중, 쿼세틴-3-글루코사이드 만이 쿼세틴보다 높은 항암활성을 보이는 것으로 평가되었다. At 25 μM, the concentration of quercetin that showed cancer cell death, when the 20 or more flavonoids were treated preferentially, the MTT assay method used to measure the survival of the cells was screened for the most active substance. (Figure 3) On the other hand, in order to evaluate which glycostructures have a significant effect on the antitumor activity of quercetin in various structurally related glycosides, quercetin (QUE) (aglycone) and rutin (RUT) ( glycone; QUE-rutinose), quercitrin (QUI) (glycone; QUE-rhamnose), isoquercitrin (IQI) (glycone; QUE-glucose), hyperin (HYP) (glycone; QUE-galactose), and reinutrin (RIN) (glycone Cell death of glycosides such as QUE-xylose) was also evaluated. As a result, among the quercetin glycosides, only quercetin-3-glucoside was shown to have higher anticancer activity than quercetin.

세포주의 차이에 따른 특이성 및 민감도의 변화를 평가하기 위해 실험에 사용한 암세포주의 종류는 대장암 세포주 3종, 유방암, 전립선암, 폐암, 흑색종 세포 등으로 다양화 하였으며, 암세포가 아닌 정상 대장 세포주에 대한 영향도 함께 평 가하였다. The types of cancer cell lines used in the experiment to evaluate the specificity and sensitivity change according to the difference of cell lines were diversified into three types of colorectal cancer cell lines, breast cancer, prostate cancer, lung cancer, and melanoma cells. The impact was also evaluated.

모든 암세포주에서 쿼세틴-3-글루코사이드의 IC50 농도는 25μM 수준, 혹은 그 보다 약간 높은 농도에서 나타났는데, 대장암 세포주인 HT-29, HCT-116 과 유방암 세포주인 MCF-7과 전립선암 세포주인 PC-3 등에서 특히 높은 민감성과 사멸유도 패턴을 보였다. In all cancer cell lines, the IC50 concentration of quercetin-3-glucoside was at or above 25 μM, including colorectal cancer cell lines HT-29, HCT-116 and breast cancer cell lines MCF-7 and prostate cancer cell lines PC. -3 showed high sensitivity and death induction pattern.

HT-29과 MCF-7 세포주를 이용해 루틴 및 쿼세틴-3-글루코사이드(Q3G) 같은 배당체 및 비배당체인 쿼세틴의 농도에 따른 세포사멸 패턴을 평가한 결과는 [도 4]와 같다. 이 중, 25μM 수준의 농도로 HT-29 암세포주를 3일간 배양했을 때, 세포사멸의 유도와 함께 나타나는 형태적인 변화는 [도 5]와 같다.The HT-29 and MCF-7 cell lines were used to evaluate apoptosis patterns according to the concentrations of quercetin, a glycoside and a non-glycoside such as rutin and quercetin-3-glucoside (Q3G), as shown in FIG. 4. Among them, when the HT-29 cancer cell line was cultured for 3 days at a concentration of 25 μM, the morphological changes appearing with the induction of apoptosis are as shown in FIG. 5.

도 1은 루틴, 쿼세틴-3-글루코사이드, 쿼세틴의 구조 1 shows the structure of rutin, quercetin-3-glucoside, quercetin

도 2는 배당체인 루틴을 Aspergillus niger 유래 효소들을 이용해 시간별로 배양시, Q3G 전환도에 대한 TLC 분석결과.  2 is a TLC analysis of Q3G conversion when the glycoside routine is incubated with Aspergillus niger-derived enzymes over time.

도 3은 여러 암세포주에 대한 다양한 플라보노이드 들의 세포 사멸능 평가   3 is a cell death capacity evaluation of various flavonoids for various cancer cell lines

도 4는 HT-29, MCF-7 세포주에 대한 배당체 및 비 배당체의 농도에 따른 세포 사멸능 평가  4 is a cell death capacity evaluation according to the concentration of glycosides and non-glycosides for HT-29, MCF-7 cell line

도 5는 25μM 수준으로 HT-29 대장암 세포주를 3일간 배양시 나타나는 형태적인 변화  Figure 5 shows the morphological changes of the HT-29 colorectal cancer cell line when cultured for 3 days at 25 μM level.

Claims (3)

항암활성을 갖는 퀴세틴 -3- 글루코사이드(quercetin -3- glucoside).Quercetin-3-glucoside with anticancer activity. 아스퍼질러스 나이거(Aspergillus niger) 유래의 람노시데이즈를 이용하여 루틴으로 부터 퀴세틴 -3- 글루코사이드(quercetin -3- glucoside)를 제조하는 방법.A method for preparing quercetin-3-glucoside from rutin using rhamnosidase from Aspergillus niger . 제 2항에 있어서, 아스퍼질러스 나이거(Aspergillus niger)는 아스퍼질러스 나이거(Aspergillus niger) KCTC 6906인 것을 특징으로 하는 퀴세틴 -3- 글루코사이드(quercetin -3- glucoside)를 제조하는 방법.3. The method of claim 2, wherein Aspergillus niger is Aspergillus niger KCTC 6906. 4. A method of preparing quercetin-3-glucoside according to claim 2, wherein Aspergillus niger is Aspergillus niger .
KR1020080061997A 2008-06-27 2008-06-27 Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger KR20100001907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080061997A KR20100001907A (en) 2008-06-27 2008-06-27 Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080061997A KR20100001907A (en) 2008-06-27 2008-06-27 Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger

Publications (1)

Publication Number Publication Date
KR20100001907A true KR20100001907A (en) 2010-01-06

Family

ID=41812160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080061997A KR20100001907A (en) 2008-06-27 2008-06-27 Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger

Country Status (1)

Country Link
KR (1) KR20100001907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419217B1 (en) * 2012-06-04 2014-07-14 한국생명공학연구원 Method for bioconversion of quercetin 3,4'-O-β-D-glucoside in onion to isoquercitrin using Aureobasidium pullulans
KR20200135621A (en) 2019-05-23 2020-12-03 주식회사 하람 Obesity prevention and treatment materials with Quercetin-3-O-glucuronide as a valid ingredient
KR102615753B1 (en) * 2022-11-30 2023-12-19 주식회사 다인소재 Method of preparing isoquercetin having excellent antibacterial and antioxidant activity.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419217B1 (en) * 2012-06-04 2014-07-14 한국생명공학연구원 Method for bioconversion of quercetin 3,4'-O-β-D-glucoside in onion to isoquercitrin using Aureobasidium pullulans
KR20200135621A (en) 2019-05-23 2020-12-03 주식회사 하람 Obesity prevention and treatment materials with Quercetin-3-O-glucuronide as a valid ingredient
KR102615753B1 (en) * 2022-11-30 2023-12-19 주식회사 다인소재 Method of preparing isoquercetin having excellent antibacterial and antioxidant activity.

Similar Documents

Publication Publication Date Title
JP4953547B2 (en) Ginsenoside glycosidase hydrolyzing ginsenoside sugar group and use thereof
US20060099690A1 (en) Extraction, purification and conversion of flavonoids from plant biomass
Lee et al. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: Enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori
KR101362351B1 (en) Ginseng process method for increasing ginsenoside quantity and processed goods thereof
KR101124783B1 (en) Medium composition for Phellinus linteus culture
KR20130077802A (en) The preparing method of immune improving agents
Liu et al. Selenium-containing polysaccharides isolated from Rosa laevigata Michx fruits exhibit excellent anti-oxidant and neuroprotective activity in vitro
Chang et al. Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases
Kannan et al. A review of applications of β-glucosidase in food, brewery, pharmaceutical and cosmetic industries
KR20100001907A (en) Method for preparation of quercetin -3-glucoside from rutin using rhamnosidase originated from aspergillus niger
KR102258788B1 (en) Novel Aspergillus niger C2-2 isolated from Nu-ruk producing ginsenoside compound K biotransformation enzyme and use thereof
KR20120017733A (en) A bioconversion method of ginsenoside rb1 and product thereby
KR20080081544A (en) Novel method of producing ginsenosides by biotransformation of ginseng through liquidl culture of phellinus linteus strain
Ye et al. Hydroxylation of naringin by Trichoderma harzianum to dramatically improve its antioxidative activity
KR100491186B1 (en) THE ISOFLAVONE-β-D-GLUCAN PRODUCED BY AGARICUS BLAZEI IN THE SUBMERGED LIQUID CULTUR AND THE PRODUCING METHOD THERE OF
Jing-Yuan et al. Selective hydrolysis of flavonoid glycosides by Curvularia lunata
Abbate et al. Production of a α-L-rhamnosidase from aspergillus terreus using citrus solid waste as inducer for application in juice industry
Kotik et al. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry
KR101525956B1 (en) preparation method of quercetin or isoquecitrin using β-glucosidase
Pauliuc et al. Antitumor activity of Pleurotus ostreatus gemmotherapic extract
KR101419217B1 (en) Method for bioconversion of quercetin 3,4'-O-β-D-glucoside in onion to isoquercitrin using Aureobasidium pullulans
Mal'ucka et al. Free-radical scavenging activities of cultured mycelia of Paecilomyces hepiali (Ascomycetes) extracts and structural characterization of bioactive components by nuclear magnetic resonance spectroscopy
Katsuragi et al. Glycosylation of capsaicinoids with Panax ginseng stimulated by salicylic acid
Maľučká et al. Antioxidant activity and infrared spectroscopy analysis of alcoholic extracts obtained from Paecilomyces hepiali (ascomycetes)
KR20110122389A (en) Fermented plant germ extract which inhibits the growth of cancer cells and method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application