KR20090128913A - Texturing apparatus and method for solar battery silicon board - Google Patents

Texturing apparatus and method for solar battery silicon board Download PDF

Info

Publication number
KR20090128913A
KR20090128913A KR1020080054893A KR20080054893A KR20090128913A KR 20090128913 A KR20090128913 A KR 20090128913A KR 1020080054893 A KR1020080054893 A KR 1020080054893A KR 20080054893 A KR20080054893 A KR 20080054893A KR 20090128913 A KR20090128913 A KR 20090128913A
Authority
KR
South Korea
Prior art keywords
texturing
substrate
silicon substrate
solar cell
gas
Prior art date
Application number
KR1020080054893A
Other languages
Korean (ko)
Inventor
이내응
박성민
안정호
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020080054893A priority Critical patent/KR20090128913A/en
Publication of KR20090128913A publication Critical patent/KR20090128913A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A texturing apparatus and a method for a solar battery silicon board are provided to improve the efficiency of chemical dry etch by using first catalytic gas including oxygen, a nitrogen component and a second catalytic gas including nitric. CONSTITUTION: In a device, a texturing apparatus of a silicon substrate for the solar cell includes a chamber and a gas supply unit. A gas supply unit injects a reaction gas, first gas, and the second catalytic gas into the chamber. The gas supply unit includes the first feeding unit(120) injecting the reaction gas, a second feeding unit(130) injecting the first catalytic gas, and a third feeding unit(140) injecting the second catalytic gas. The reaction gas and the first catalytic gas which are plasma and provided to the chamber. The second catalytic gas which is not plasma is provided to the chamber.

Description

태양전지용 실리콘 기판의 텍스처링 장치 및 그 방법{TEXTURING APPARATUS AND METHOD FOR SOLAR BATTERY SILICON BOARD}TEXTURING APPARATUS AND METHOD FOR SOLAR BATTERY SILICON BOARD}

본 발명은 태양전지용 실리콘 기판의 텍스처링 장치 및 그 방법에 관한 것으로, 구체적으로는 텍스처링 공정 중 발생하는 기판 표면의 손상을 방지하고, 반사율을 효과적으로 줄일 수 있는 태양전지용 실리콘 기판의 텍스처링 장치 및 그 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a texturing apparatus and method for a silicon substrate for a solar cell, and more particularly, to a texturing apparatus and method for a silicon substrate for a solar cell, which can prevent damage to a surface of a substrate generated during a texturing process and effectively reduce reflectance. It is about.

일반적으로 태양전지(solar battery)는 태양에너지를 전기에너지로 변환할 목적으로 제작된 광전지로서, 금속과 반도체의 접촉면 또는 반도체의 PN접합에 빛이 조사(照射)되면 광전효과에 의해 광기전력이 일어나는 원리를 이용한 전지이다. 이러한 태양전지의 종류에는 금속과 반도체의 접촉을 이용한 셀렌광전지, 아황산구리 광전지 등과 반도체 PN접합을 이용한 실리콘광전지 등이 있다.In general, a solar battery is a photovoltaic cell manufactured for converting solar energy into electrical energy. When light is irradiated on a contact surface of a metal and a semiconductor or a PN junction of a semiconductor, photovoltaic power is generated by a photoelectric effect. It is a battery using the principle. Examples of such solar cells include selenium photovoltaic cells using metal and semiconductor contacts, copper sulfite photovoltaic cells, and silicon photovoltaic cells using semiconductor PN junctions.

상술한 바와 같은 다양한 종류의 태양전지 중 반도체 PN접합을 이용한 태양전지는 실리콘에 보론(B)을 첨가한 P형 실리콘 반도체의 표면에 인(P)을 확산시켜 N형 실리콘 반도체층이 형성된 구조로 이루어진다. 이러한 구조에 빛이 입사되면 반도체 내의 전자(-)와 정공(+)이 여기되어 반도체 내부를 자유로이 이동하는 상태 가 되고, 자유로이 이동하던 전자(-)와 정공(+)이 PN접합에 의해 생긴 전계에 들어오면 전자(-)는 N형 반도체로, 정공(+)은 P형 반도체로 이동함으로써 전력을 생산한다.Among the various types of solar cells described above, a solar cell using a semiconductor PN junction has a structure in which an N-type silicon semiconductor layer is formed by diffusing phosphorus (P) on the surface of a P-type silicon semiconductor in which boron (B) is added to silicon. Is done. When light enters the structure, electrons (-) and holes (+) in the semiconductor are excited to move freely inside the semiconductor, and the freely moving electrons (-) and holes (+) are generated by PN junctions. The electrons (-) move to the N-type semiconductor, and the holes (+) move to the P-type semiconductor.

한편, 최근에는 태양전지의 효율을 높이기 위하여 기판 표면을 텍스처링(texturing)하여 빛의 흡수를 극대화시키는 방법이 사용되고 있는 데, 이러한 텍스처링 방법으로는 플라즈마 식각을 이용한 방법, 기계적 스크라이빙(scribing) 방법 및 포토리소그라피를 이용한 방법 등이 있다.Recently, in order to increase the efficiency of solar cells, a method of maximizing light absorption by texturing the surface of a substrate has been used. Such texturing methods include plasma etching and mechanical scribing. And photolithography.

이 중에서 플라즈마 식각을 이용한 방법은 포토레지스트를 도포해 패턴을 형성한 후 플라즈마를 이용하여 식각하고 마스크 레이어를 제거하는 방법으로, 작업시간이 오래 걸리며 고가의 진공장비가 필요하기 때문에 상업적 이용 가능성이 적다.Among them, the plasma etching method is a method of applying a photoresist to form a pattern, followed by etching using a plasma and removing a mask layer, which requires a long time and requires expensive vacuum equipment, so it is less commercially available. .

또한, 기계적 스크라이빙 방법은 기판의 표면에 그루브(groove)를 형성하고 화학적인 식각을 이용하여 텍스처링하는 방법으로, 이 또한 작업시간이 오래 걸리기 때문에 상업적인 생산이 어렵고 박막에 적용하기 어려운 문제가 있다.In addition, the mechanical scribing method is a method of forming a groove on the surface of the substrate and texturing using chemical etching, which also takes a long time, making it difficult to commercially produce and apply to thin films. .

또한, 포토리소그라피를 이용한 방법은 산화막이 있는 기판에 포토레지스트를 도포하여 패턴을 형성하고 이를 이방성/등방성 식각 방법을 통해 텍스처링하는 방법으로 가격이 너무 비싼 공정이기 때문에 다결정 태양전지 제작에 상업적으로 적용하기 힘들다.In addition, the method using photolithography is a method that forms a pattern by applying a photoresist on the substrate with an oxide film and texturing it through anisotropic / isotropic etching method, which is too expensive to commercially apply to the production of polycrystalline solar cells Hard.

본 발명은 상술한 제반 문제점을 해결하기 위한 것으로서 텍스처링 공정 중 발생하는 기판 표면의 손상을 방지하고, 반사율을 효과적으로 줄일 수 있는 태양전지용 실리콘 기판의 텍스처링 장치 및 그 방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a texturizing apparatus and method for fabricating a silicon substrate for a solar cell, which can prevent damage to the surface of a substrate generated during a texturing process and effectively reduce reflectance.

또한, 본 발명의 다른 목적은 텍스처링 작업시간을 단축할 수 있으며, 작업 시 소요되는 인력 및 비용을 절감하여 상업적으로 이용 가능성이 높은 태양전지용 실리콘 기판의 텍스처링 장치 및 그 방법을 제공하는데 있다.In addition, another object of the present invention is to provide a texturing apparatus and method of the silicon substrate for solar cells, which can shorten the texturing work time, reduce the manpower and cost required during the work and commercially available.

상술한 목적을 달성하기 위한 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치는, 기판 스테이지가 마련되는 챔버와, 불소성분을 포함한 반응가스를 챔버로 공급하는 제1공급관과, 상기 제1공급관 상에 마련되어 반응가스를 플라즈마화하는 제1원격플라즈마발생기를 포함한다. 즉, 상기 제1원격플라즈마발생기를 통해 플라즈마화된 반응가스(불소성분을 포함한 반응가스)에 기판의 표면을 노출하여 건식 식각한다.According to another aspect of the present invention, a texturing apparatus for a silicon substrate for a solar cell according to the present invention includes a chamber in which a substrate stage is provided, a first supply pipe for supplying a reaction gas containing a fluorine component to the chamber, and the first supply pipe on the first supply pipe. And a first remote plasma generator configured to convert the reaction gas into plasma. That is, dry etching is performed by exposing the surface of the substrate to a reaction gas (reaction gas containing a fluorine component) that is plasmaized through the first remote plasma generator.

상술한 구성으로 이루어진 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치는 반응가스를 이용한 화학적 건식 식각 효율을 향상시키기 위하여 다양한 종류의 촉매를 사용할 수 있다.The texturing apparatus of the silicon substrate for a solar cell according to the present invention having the above-described configuration may use a variety of catalysts to improve the chemical dry etching efficiency using the reaction gas.

이를 위해서는 산소 및 질소성분을 포함한 제1촉매가스를 챔버로 공급하는 제2공급관과, 상기 제2공급관 상에 마련되어 상기 제1촉매가스를 플라즈마화하는 제2원격플라즈마발생기를 더 포함하여 구성될 수 있다. 또한, 산화질소성분을 포함한 제2촉매가스를 챔버로 직접 공급하는 제3공급수단을 더 포함하여 구성될 수 있다.To this end, it may further include a second supply pipe for supplying a first catalyst gas containing oxygen and nitrogen components to the chamber, and a second remote plasma generator provided on the second supply pipe for plasmalizing the first catalyst gas. have. In addition, it may further comprise a third supply means for supplying a second catalyst gas containing a nitrogen oxide component directly to the chamber.

한편, 반응가스를 이용한 화학적 건식 식각 효율을 향상시키기 위한 또 따른 장치인, 기판 스테이지의 내부에 마련되는 하부전극, 하부전극에서 상향으로 소정 간격 이격되는 상부전극, 상기 상부 및 하부전극에 고주파 전원을 공급하는 전원공급수단을 더 포함하여 구성될 수 있다.Meanwhile, another device for improving the chemical dry etching efficiency using the reaction gas, a lower electrode provided inside the substrate stage, an upper electrode spaced upwardly from the lower electrode by a predetermined interval, and a high frequency power source is applied to the upper and lower electrodes. It may further comprise a power supply means for supplying.

여기서 상기 반응가스는 상술한 바와 같이 불소성분을 포함하는 가스로 F2, NF3 중 하나 이상, 그리고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스인 것이 바람직하다. 또한, 상기 제1촉매가스는 산소 및 질소성분을 포함한 가스로 N2, O2, N2O, NO2를 포함하며, 상기 제2원격플라즈마발생기를 통해 플라즈마화되어 챔버로 공급되는 것이 바람직하다. 또한, 상기 제2촉매가스는 산화질소성분을 포함한 가스로 NXOX, Ar 중 하나 이상이 조합된 가스이며, 제3공급수단을 통해 챔버로 직접 공급되는 것이 바람직하다.Here, the reaction gas is a gas containing a fluorine component as described above, at least one of F 2 , NF 3 , and at least one of N 2 , O 2 , N 2 O, and NO 2 are preferably combined. The first catalyst gas may include N 2 , O 2 , N 2 O, and NO 2 as a gas including oxygen and nitrogen, and may be supplied to a chamber by being plasmaized through the second remote plasma generator. . In addition, the second catalyst gas is a gas containing a nitrogen oxide component, a gas in which one or more of N X O X and Ar are combined, and is preferably supplied directly to the chamber through a third supply means.

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법은 텍스처링 공정 중 발생하는 기판 표면의 손상을 방지하고 반사율을 효과적으로 줄일 수 있도록 불소성분을 포함한 반응가스를 사용한다. 즉, 불소성분을 포함한 반응가스를 플라즈마화하여 생성된 제1라디칼에 기판의 표면을 노출하여 화학적 건식 식각을 한다.The texturing method of the silicon substrate for a solar cell according to the present invention uses a reaction gas containing a fluorine component to prevent damage to the surface of the substrate generated during the texturing process and effectively reduce the reflectance. That is, chemical dry etching is performed by exposing the surface of the substrate to the first radical generated by plasma-forming a reaction gas containing a fluorine component.

여기서 본 발명은 화학적 건식 식각 효율을 향상시키기 위하여 다양한 종류의 촉매를 사용할 수 있는 데, 제1라디칼과 산소 및 질소성분을 포함한 제1촉매가 스를 플라즈마화하여 생성된 제2라디칼에 기판의 표면을 노출하여 건식 식각하거나, 제1라디칼과 산화질소성분을 포함한 제2촉매가스에 기판의 표면을 노출하여 건식 식각할 수 있다. 또한, 제1 및 제2라디칼과 제2촉매가스에 기판의 표면을 노출하여 건식 식각할 수 있다.Herein, the present invention may use various types of catalysts to improve chemical dry etching efficiency, wherein the surface of the substrate is formed on the second radical generated by plasmalizing the first catalyst gas including the first radical and oxygen and nitrogen components. The dry etching may be performed by exposing the surface of the substrate to the second catalyst gas including the first radical and the nitrogen oxide component. In addition, dry etching may be performed by exposing the surface of the substrate to the first and second radicals and the second catalyst gas.

한편, 텍스처링 효율 및 속도를 향상시킬 수 있도록 기판의 상부 및 하부에 고주파 전원을 인가하여 챔버 내부에서 플라즈마를 추가로 발생한다. 이때, 고주파 전원을 이용한 플라즈마 발생방법은 기판의 상부 및 하부에 모두 고주파 전원을 인가하는 연속적 방법과, 기판의 상부 및 하부 중 어느 일측에만 고주파 전원을 인가하는 단계적 방법과, 기판의 상부 및 하부에 교번하여 고주파 전원을 인가하는 순환적 방법이 있다.Meanwhile, high-frequency power is applied to the upper and lower portions of the substrate to further improve the texturing efficiency and speed, thereby further generating plasma inside the chamber. At this time, the plasma generation method using a high frequency power supply is a continuous method of applying a high frequency power to both the top and bottom of the substrate, a stepwise method of applying a high frequency power to only one side of the top and bottom of the substrate, and the top and bottom of the substrate There is a cyclic method of alternately applying high frequency power.

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치 및 방법은 기판을 용액에 침지시키지 아니하고 플라즈마화된 반응가스(불소성분을 포함한 반응가스)에 기판을 노출하여 건식 식각함으로써 텍스처링 공정 중 발생하는 기판 표면의 손상을 방지하고, 반사율을 효과적으로 줄일 수 있다.According to the present invention, an apparatus and method for texturing a silicon substrate for a solar cell is performed by dry etching by exposing the substrate to a plasmaized reaction gas (reaction gas containing a fluorine component) without immersing the substrate in a solution. It can prevent damage and reduce the reflectance effectively.

또한, 불소성분을 포함한 반응가스 이외에 산소 및 질소성분을 포함한 제1촉매가스 및 산화질소성분을 포함한 제2촉매가스를 사용함으로써 화학적 건식 식각 효율이 향상되어 텍스처링 작업시간을 단축할 수 있으며, 그에 따라 작업 시 소요되는 인력 및 비용을 절감되는바 상업적으로 이용 가능성이 높다.In addition, by using the first catalyst gas containing the oxygen and nitrogen components and the second catalyst gas containing the nitrogen oxide components in addition to the reaction gas containing the fluorine component, the chemical dry etching efficiency is improved, thereby reducing the texturing work time. It is highly commercially available because it saves manpower and money in the work.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.With reference to the accompanying drawings will be described embodiments of the present invention;

도 1은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치를 도시하는 개략도이다.1 is a schematic view showing a texturing apparatus for a silicon substrate for solar cell according to the present invention.

도 1에 도시된 바와 같이, 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치는 크게 챔버(110)와, 상기 챔버(110)로 반응가스 및 촉매가스를 공급하기 위한 가스공급수단(120~140)으로 구성된다.As shown in FIG. 1, the texturing apparatus for a silicon substrate for a solar cell according to the present invention includes a chamber 110 and a gas supply unit 120 to 140 for supplying a reaction gas and a catalyst gas to the chamber 110. It consists of.

상기 가스공급수단(120~140)에 대해 먼저 살펴보면, 챔버(110)의 내부로 반응가스, 제1 및 제2촉매가스를 주입하기 위한 수단으로, 반응가스가 주입되는 제1공급수단(120)과, 제1촉매가스가 주입되는 제2공급수단(130)과, 제2촉매가스가 주입되는 제3공급수단(140)을 포함한다. 이때, 상기 반응가스와 제1촉매가스는 플라즈마화된 상태로 챔버(110)에 공급되고, 상기 제2촉매가스는 플라즈마화되지 않은 상태로 챔버(110)에 직접 공급된다.Looking at the gas supply means 120 ~ 140 first, means for injecting the reaction gas, the first and second catalyst gas into the interior of the chamber 110, the first supply means 120 is injected reaction gas And a second supply means 130 into which the first catalyst gas is injected, and a third supply means 140 into which the second catalyst gas is injected. In this case, the reaction gas and the first catalyst gas are supplied to the chamber 110 in a plasma state, and the second catalyst gas is directly supplied to the chamber 110 in a non-plasma state.

이를 위한 각 가스공급수단(120~140)의 구성을 살펴보면, 상기 제1공급수단(120)은 반응가스를 공급하는 제1공급관(122)과 상기 제1공급관(122) 상에 마련되는 제1원격플라즈마발생기(124)로 구성되고, 상기 제2공급수단(130)은 제1촉매가스를 공급하는 제2공급관(132)과 상기 제2공급관(132) 상에 마련되는 제2원격플라즈마발생기(134)로 구성된다. 또한, 상기 제3공급수단(140)은 제2촉매가스를 공급하는 파이프이다.Looking at the configuration of each gas supply means (120 ~ 140) for this purpose, the first supply means 120 is a first supply pipe 122 for supplying the reaction gas and the first provided on the first supply pipe 122 Remote plasma generator 124, the second supply means 130 is a second supply pipe 132 for supplying a first catalyst gas and a second remote plasma generator provided on the second supply pipe (132) 134). In addition, the third supply means 140 is a pipe for supplying the second catalyst gas.

여기서 상기 반응가스는 실리콘 기판(이하 기판이라고 함, 150)의 화학적 건식 식각을 위한 가스로 불소성분을 포함하는 가스이다. 또한, 상기 제1 및 제2촉 매가스는 화학적 건식 식각 효율을 향상시키기 위한 가스로 상기 제1촉매가스는 산소 및 질소성분을 포함한 가스이고, 상기 제2촉매가스는 산화질소성분을 포함한 가스이다. 일례로, 상기 반응가스는 F2, NF3 중 하나 이상, 그리고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스인 것이 바람직하고, 상기 제1촉매가스는 N2, O2, N2O, NO2를 포함하는 것이 바람직하며, 상기 제2촉매가스는 NXOX, Ar 중 하나 이상이 조합된 가스인 것이 바람직하다.Here, the reaction gas is a gas for chemical dry etching of a silicon substrate (hereinafter, referred to as a substrate) 150 and includes a fluorine component. In addition, the first and second catalyst gas is a gas for improving chemical dry etching efficiency, the first catalyst gas is a gas containing oxygen and nitrogen components, the second catalyst gas is a gas containing nitrogen oxide components. . In one example, the reaction gas is preferably a combination of one or more of F 2 , NF 3 , and one or more of N 2 , O 2 , N 2 O, NO 2 , the first catalyst gas is N 2 , It is preferable to include O 2 , N 2 O, NO 2 , and the second catalyst gas is preferably a gas in which one or more of N X O X and Ar are combined.

한편, 반응가스 및 제1촉매가스를 플라즈마화하기 위한 제1 및 제2원격플라즈마발생기(124,134)는 발생된 제1 및 제2라디칼을 원격으로 챔버(110)에 공급한다. 따라서 상술한 제1 및 제2원격플라즈마발생기(124,134)는 발생된 제1 및 제2라디칼을 기판(150)에 직접 쏘지 아니하므로 텍스처링 공정 중 발생하는 기판(150) 표면의 손상을 방지할 수 있다.Meanwhile, the first and second remote plasma generators 124 and 134 for converting the reaction gas and the first catalyst gas into the chamber 110 remotely supply the generated first and second radicals. Therefore, the first and second remote plasma generators 124 and 134 described above do not shoot the generated first and second radicals directly on the substrate 150, thereby preventing damage to the surface of the substrate 150 generated during the texturing process. .

다른 한편, 상기 제1 및 제2원격플라즈마발생기(124,134)는 토로이달(toroidal) 타입으로 제1 및 제2공급관(122,132) 내에서 유도자기장을 발생하고, 이에 따른 2차 유도전류가 제1 및 제2원격플라즈마발생기(124,134)의 내부에 형성됨으로써 고밀도 플라즈마를 발생시킨다. 이와 같이, 본 발명은 토로이달 타입의 원격플라즈마발생기를 사용하고 있지만, 반드시 이에 한정되는 것은 아니며 마이크로웨이브(microwave) 타입 및 유도결합플라즈마(Inductively Coupled Plasma; ICP) 타입 등과 같이 다양한 종류의 원격플라즈마발생기가 적용될 수 있음은 물론이다.On the other hand, the first and second remote plasma generator (124,134) is a toroidal type (toroidal) generates an induction magnetic field in the first and second supply pipe (122,132), the secondary induction current according to the first and second The high density plasma is generated by being formed inside the second remote plasma generators 124 and 134. As such, the present invention uses a toroidal type remote plasma generator, but the present invention is not limited thereto, and various types of remote plasma generators such as microwave type and inductively coupled plasma (ICP) types may be used. Of course, can be applied.

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치의 다른 구성요소인 챔버(110)는 기판(150)의 텍스처링 공정이 수행되는 부분으로 그 내부에 소정의 반응공간(112)이 형성된다. 그리고 상기 반응공간(112)에는 기판(150)이 안착 및 고정되는 기판 스테이지(114)가 마련되며, 상기 기판 스테이지(114)의 내부에는 하부전극(116d)이 마련된다. 또한, 상기 하부전극(116d)에서 상향으로 소정 간격 이격되는 위치에는 상부전극(116u)이 마련된다.The chamber 110, which is another component of the texturing apparatus of the silicon substrate for solar cell according to the present invention, is a portion where the texturing process of the substrate 150 is performed, and a predetermined reaction space 112 is formed therein. In addition, a substrate stage 114 on which the substrate 150 is mounted and fixed is provided in the reaction space 112, and a lower electrode 116d is provided inside the substrate stage 114. In addition, an upper electrode 116u is provided at a position spaced apart upward from the lower electrode 116d by a predetermined interval.

이때, 상기 상부 및 하부전극(116u,116d)은 도전성 부재로 제작되고 고주파 전원을 공급하는 전원공급수단(118u,118d)과 연결된다. 따라서 상기 상부 및 하부전극(116u,116d)에 고주파 전원이 인가되면 그들(116u,116d) 사이의 전기장 영역에서 이온입자들이 가속화되어 주입된 가스를 이온화시켜 플라즈마가 발생된다. 즉, 상기 챔버(110)의 내부에서 플라즈마가 추가로 발생하게 되는바, 텍스처링 효율 및 속도를 향상시킬 수 있다.In this case, the upper and lower electrodes 116u and 116d are made of a conductive member and are connected to power supply means 118u and 118d for supplying high frequency power. Therefore, when high frequency power is applied to the upper and lower electrodes 116u and 116d, ion particles are accelerated in the electric field region between them 116u and 116d to ionize the injected gas to generate plasma. That is, since the plasma is further generated inside the chamber 110, texturing efficiency and speed may be improved.

상술한 상부 및 하부전극(116u,116d)을 이용하여 플라즈마를 발생하는 방법에는 연속적 방법, 단계적 방법 및 순환적 방법이 있다. 이 중에서 연속적 방법은 상기 상부 및 하부전극(116u,116d)에 고주파 전원을 인가하는 방법이고, 단계적 방법은 상부 및 하부전극(116u,116d) 중 어느 하나에만 고주파 전원을 인가하는 방법이며, 순환적 방법은 상부 및 하부전극(116u,116d)에 고주파 전원을 교번하여 인가하는 방법이다.The above-described method for generating plasma using the upper and lower electrodes 116u and 116d includes a continuous method, a stepped method, and a cyclic method. Among them, the continuous method is a method of applying a high frequency power to the upper and lower electrodes 116u and 116d, and the step method is a method of applying a high frequency power to only one of the upper and lower electrodes 116u and 116d. The method is a method of alternately applying high frequency power to the upper and lower electrodes 116u and 116d.

한편, 상기 기판(150)을 기판 스테이지(114)에 안착 및 고정하는 방법에는 척킹(chucking) 공구를 이용하는 기계적인 방법, 기판 스테이지(114)에 진공홀을 형성하여 진공력을 이용하는 방법 및 하부전극(116d)에 전원을 인가하여 흡착하는 방법이 있으며, 사용자의 필요 및 장치의 구조에 따라 어느 하나를 적용하여 사용할 수 있음은 물론이다.Meanwhile, a method of mounting and fixing the substrate 150 to the substrate stage 114 may include a mechanical method using a chucking tool, a method of using a vacuum force by forming a vacuum hole in the substrate stage 114, and a lower electrode. There is a method of applying power to 116d and absorbing it. Of course, any one can be applied according to the needs of the user and the structure of the device.

도 2 내지 도 4는 상술한 구성에 의한 태양전지용 실리콘 기판의 텍스처링 장치를 이용한 텍스처링 방법을 도시하는 도면이다. 이를 참조하여 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법의 여러 실시예를 살펴보면 다음과 같다.2 to 4 are diagrams showing a texturing method using a texturing apparatus for a silicon substrate for a solar cell according to the above configuration. Looking at the various embodiments of the texturing method of the silicon substrate for solar cells according to the present invention with reference to this.

제1실시예First embodiment

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제1실시예는 불소성분을 포함하는 반응가스를 이용하여 화학적 건식 식각공정을 진행한다. 이와 같이, 불소성분을 포함하는 라디칼에 실리콘 기판(150)이 노출되면 불소성분과 실리콘성분이 서로 결합하여 실리콘성분 사이의 결합을 약화시키고, 제거가 용이한 반응물인 SiF4의 생성을 촉진하여 기판(150)의 텍스처링 속도를 향상시킬 수 있기 때문이다.A first embodiment of the method for texturing a silicon substrate for a solar cell according to the present invention performs a chemical dry etching process using a reaction gas containing a fluorine component. As such, when the silicon substrate 150 is exposed to a radical containing a fluorine component, the fluorine component and the silicon component bind to each other to weaken the bond between the silicon components, and promote the formation of SiF 4 , which is an easy-to-remove reactant. This is because the texturing speed of 150 can be improved.

도 2를 참조하여 그 과정을 살펴보면, 제1공급관(122)을 통해 공급되는 반응가스를 제1원격플라즈마발생기(124)에서 플라즈마화한다. 그리고 이때 발생된 제1라디칼을 챔버(110)로 주입하여, 챔버(110)의 내부에 마련된 기판(150)이 제1라디칼에 노출되게 함으로써 기판(150)의 표면을 텍스처링 한다.Looking at the process with reference to Figure 2, the reaction gas supplied through the first supply pipe 122 is plasmalized in the first remote plasma generator (124). The first radical generated at this time is injected into the chamber 110, and the substrate 150 provided inside the chamber 110 is exposed to the first radical to texture the surface of the substrate 150.

이때, 사용되는 반응가스는 F2, NF3 중 하나 이상, 그리고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스로, F2/N2/O2, F2/N2O, F2/NO2, F2/N2/O2/Ar, F2/N2O/Ar, F2/NO2/Ar, NF3/N2/O2, NF3/N2O, NF3/NO2, NF3/N2/O2/Ar, NF3/N2O/Ar, NF3/NO2/Ar를 포함한다. 그리고 상기 반응가스를 이용하여 생성한 제1라디칼은 불소(F) 라디칼 또는 불소 라디칼과 산화질소(NXOX) 라디칼이 혼합된 형태이다.At this time, the reaction gas used is a combination of one or more of F 2 , NF 3 , and one or more of N 2 , O 2 , N 2 O, NO 2 , F 2 / N 2 / O 2 , F 2 / N 2 O, F 2 / NO 2 , F 2 / N 2 / O 2 / Ar, F 2 / N 2 O / Ar, F 2 / NO 2 / Ar, NF 3 / N 2 / O 2 , NF 3 / N 2 O, NF 3 / NO 2 , NF 3 / N 2 / O 2 / Ar, NF 3 / N 2 O / Ar, NF 3 / NO 2 / Ar. In addition, the first radical generated using the reaction gas is in a form in which a fluorine (F) radical or a fluorine radical and a nitrogen oxide (N X O X ) radical are mixed.

제2실시예Second embodiment

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제2실시예는 불소성분을 포함하는 반응가스와 산소 및 질소성분을 포함하는 제1촉매가스를 이용하여 화학적 건식 식각공정을 진행한다. 이러한 제2실시예는 불소성분을 포함하는 라디칼 이외에 산화질소성분을 포함하는 라디칼을 추가로 사용함으로써 반응물인 SiF4의 생성을 더욱 촉진하여 기판(150)의 텍스처링 속도를 급격히 향상시킬 수 있다.A second embodiment of the method for texturing a silicon substrate for a solar cell according to the present invention performs a chemical dry etching process using a reaction gas containing a fluorine component and a first catalyst gas containing oxygen and nitrogen components. In this second embodiment, by further using a radical containing a nitric oxide component in addition to the radical including a fluorine component, it is possible to further promote the generation of the reactant SiF 4 , thereby rapidly increasing the texturing speed of the substrate 150.

도 3에 도시된 바와 같이, 제1공급관(122)을 통해 공급되는 반응가스를 제1원격플라즈마발생기(124)에서 플라즈마화하여 제1라디칼을 생성하고, 그와 동시에 제2공급관(132)을 통하여 제1촉매가스를 제2원격플라즈마발생기(134)에서 플라즈마화하여 제2라디칼을 생성한다. 그리고 이렇게 생성된 제1 및 제2라디칼을 챔버(110)에 주입하여, 챔버(110)의 내부에 마련된 기판(150)이 제1 및 제2라디칼에 노출되게 함으로써 기판(150)의 표면을 텍스처링 한다.As shown in FIG. 3, the reaction gas supplied through the first supply pipe 122 is converted into plasma by the first remote plasma generator 124 to generate first radicals, and at the same time, the second supply pipe 132 is formed. Through the first catalyst gas to plasma in the second remote plasma generator 134 to generate a second radical. The first and second radicals generated in this way are injected into the chamber 110, and the substrate 150 provided inside the chamber 110 is exposed to the first and second radicals, thereby texturing the surface of the substrate 150. do.

이때, 사용되는 반응가스는 제1실시예와 동일한 F2, NF3 중 하나 이상, 그리 고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스이이고, 상기 제1촉매가스는 N2, O2, N2O, NO2를 포함하는 산화질소성분을 포함하는 가스이다. 그리고 상기 반응가스를 이용하여 생성한 제1라디칼은 불소(F) 라디칼 또는 불소 라디칼과 산화질소(NXOX) 라디칼이 혼합된 형태이고, 제1촉매가스를 이용하여 생성한 제2라디칼은 산화질소(NXOX) 라디칼이다.In this case, the reaction gas used is a gas in which one or more of F 2 and NF 3 , and one or more of N 2 , O 2 , N 2 O, and NO 2 are combined as the first embodiment, and the first catalyst gas is used. Is a gas containing a nitrogen oxide component including N 2 , O 2 , N 2 O, and NO 2 . The first radical generated using the reaction gas is in the form of a fluorine (F) radical or a mixture of fluorine radicals and nitrogen oxides (N X O X ) radicals, and the second radical generated using the first catalyst gas It is a nitrogen oxide (N X O X ) radical.

제3실시예Third embodiment

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제3실시예는 불소성분을 포함하는 반응가스와 산화질소성분을 포함하는 제2촉매가스를 이용하여 화학적 건식 식각공정을 진행한다. 이러한 제2실시예는 불소성분을 포함하는 라디칼 이외에 산화질소성분을 포함하는 라디칼을 추가로 사용함으로써 반응물인 SiF4의 생성을 더욱 촉진하여 기판(150)의 텍스처링 속도를 급격히 향상시킬 수 있다.A third embodiment of the method for texturing a silicon substrate for a solar cell according to the present invention performs a chemical dry etching process using a reaction gas containing a fluorine component and a second catalyst gas containing a nitrogen oxide component. In this second embodiment, by further using a radical containing a nitric oxide component in addition to the radical including a fluorine component, it is possible to further promote the generation of the reactant SiF 4 , thereby rapidly increasing the texturing speed of the substrate 150.

도 4를 참조하여 그 과정을 살펴보면, 제1공급관(122)을 통해 공급되는 반응가스를 제1원격플라즈마발생기(124)에서 플라즈마화하여 제1라디칼을 생성한다. 그리고 이렇게 생성된 제1라디칼과 제4공급수단(140)을 통하여 공급된 제2촉매가스를 챔버(110)에 주입하여, 챔버(110)의 내부에 마련된 기판(150)이 제1라디칼 및 제2촉매가스에에 노출되게 함으로써 기판(150)의 표면을 텍스처링 한다.Looking at the process with reference to Figure 4, the reaction gas supplied through the first supply pipe 122 to the plasma generated in the first remote plasma generator 124 to generate a first radical. In addition, the first radical and the second catalyst gas supplied through the fourth supply means 140 are injected into the chamber 110, so that the substrate 150 provided in the chamber 110 is formed of the first radical and the first radical. The surface of the substrate 150 is textured by being exposed to two catalyst gases.

이때, 사용되는 반응가스는 제1실시예와 동일한 F2, NF3 중 하나 이상, 그리 고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스이이고, 상기 제2촉매가스는 NXOX, Ar 중 하나 이상이 조합된 가스이다.In this case, the reaction gas used is a gas in which at least one of F 2 and NF 3 , and at least one of N 2 , O 2 , N 2 O, and NO 2 are combined as the first embodiment, and the second catalyst gas is used. Is a gas in which at least one of N X O X and Ar is combined.

제4실시예Fourth embodiment

본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제4실시예는 상술한 제1 내지 제3실시예를 기본으로 한다. 즉, 제1 내지 제3실시예 중에서 필요에 따라 선택된 하나를 실시하는 과정에서 챔버(110)의 내부에 고주파 전원을 인가하여 플라즈마를 추가로 발생한다(도 5참조).A fourth embodiment of the texturing method of a silicon substrate for a solar cell according to the present invention is based on the first to third embodiments described above. That is, the plasma is additionally generated by applying high frequency power to the inside of the chamber 110 in the process of performing one selected from the first to third embodiments as needed (see FIG. 5).

이때, 고주파 전원을 인가하여 플라즈마를 발생하는 방법에는 연속적 방법, 단계적 방법 및 순환적 방법이 있다. 이 중에서 연속적 방법은 상기 상부 및 하부전극(116u,116d)에 고주파 전원을 인가하는 방법이고, 단계적 방법은 상부 및 하부전극(116u,116d) 중 어느 하나에만 고주파 전원을 인가하는 방법이며, 순환적 방법은 상부 및 하부전극(116u,116d)에 고주파 전원을 교번하여 인가하는 방법이다.At this time, a method of generating a plasma by applying a high frequency power source includes a continuous method, a step method and a cyclic method. Among them, the continuous method is a method of applying a high frequency power to the upper and lower electrodes 116u and 116d, and the step method is a method of applying a high frequency power to only one of the upper and lower electrodes 116u and 116d. The method is a method of alternately applying high frequency power to the upper and lower electrodes 116u and 116d.

이와 같이 챔버(110)의 내부에서 플라즈마를 추가로 발생할 경우 제1 및 제2라디칼 및 제2촉매가스를 활성화하여 기판(150)의 텍스처링 효율 및 속도를 향상시킬 수 있다.As such, when the plasma is further generated inside the chamber 110, the texturing efficiency and speed of the substrate 150 may be improved by activating the first and second radicals and the second catalyst gas.

상술한 바와 같이 제1 내지 제4실시예에 따라 진행되는 태양전지용 실리콘 기판의 텍스처링 방법은 제1 및 제2라디칼, 제2촉매가스를 기판에 직접 접촉시키기 아니하고 제1 및 제2라디칼, 제2촉매가스에 기판을 노출하여 화학적 건식 식각함으로써 텍스처링 공정 중 발생하는 기판 표면의 손상을 방지할 수 있다.As described above, the method of texturing a silicon substrate for a solar cell according to the first to fourth embodiments includes the first and second radicals and the second and second radicals and the second catalyst gas without directly contacting the substrate. By exposing the substrate to the catalyst gas and chemically dry etching, damage to the surface of the substrate generated during the texturing process can be prevented.

또한, 불소 라디칼 또는 불소 라디칼과 산화질소 라디칼은 실리콘 기판(150)의 실리콘 성분과 결합하여 실리콘 사이의 결합을 약화시키고 제거가 용이한 반응물인 SiF4의 생성을 촉진시키므로 기판(150)의 텍스처링 속도를 향상시킬 수 있다. 특히, 제2 및 제3실시예와 같이 산화질소 라디칼 및 산화질소가스를 사용할 경우 반응물인 SiF4의 생성을 더욱 촉진하여 기판(150)의 텍스처링 속도를 급격히 향상시킬 수 있으며, 제4실시예와 같이 챔버(110)의 내부에서 플라즈마를 추가로 발생할 경우 제1 및 제2라디칼 및 제2촉매가스를 활성화하여 기판(150)의 텍스처링 효율 및 속도를 향상시킬 수 있다.In addition, the fluorine radical or the fluorine radical and the nitrogen oxide radical binds to the silicon component of the silicon substrate 150 to weaken the bond between the silicon and promote the generation of SiF 4 , which is an easy-to-remove reactant, thus the texturing rate of the substrate 150. Can improve. In particular, when using nitric oxide radicals and nitric oxide gas as in the second and third embodiments, it is possible to further promote the generation of the reactant SiF 4 , thereby rapidly increasing the texturing speed of the substrate 150. As described above, when the plasma is further generated in the chamber 110, the texturing efficiency and speed of the substrate 150 may be improved by activating the first and second radicals and the second catalyst gas.

한편, 상술한 제1 내지 제4실시예를 이용하여 기판(150)을 텍스처링하는 과정에서 상기 기판(150)의 온도는 25~300℃를 유지하는 것이 바람직하다. 또한, 상술한 제1 내지 제4실시예는 텍스처링의 방향성과 무관하므로 단결정 및 다결정 실리콘 기판을 모두 사용할 수 있다.Meanwhile, in the process of texturing the substrate 150 using the first to fourth embodiments described above, the temperature of the substrate 150 is preferably maintained at 25 to 300 ° C. In addition, since the first to fourth embodiments described above are independent of the direction of texturing, both single crystal and polycrystalline silicon substrates can be used.

도 6은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 시 제1실험예에 따른 반사도의 변화를 나타낸 그래프이다.6 is a graph showing a change in reflectivity according to the first experimental example when texturing a silicon substrate for a solar cell according to the present invention.

상기 제1실험예는 제1실시예에 예시된 방법을 이용한 기판(도 1의 150)의 텍스처링 시 산화질소가스의 유량비에 따른 반사도의 변화를 실험한 것이다. 이때의 실험조건을 살펴보면, 사용된 기판(150)은 단결정 기판이고, 반응가스와 제1 및 제2촉매가스는 Ar 등의 성분을 포함한다. 또한, 반응가스와 제1 및 제2촉매가스에 포함된 NF3의 유량은 2100~2700sccm이고 NO의 유량은 700~900sccm이며, 공정압력은 3Torr, 공정온도는 100℃, 텍스처링 시간은 1분으로 설정하였다.In the first experimental example, the change of reflectivity according to the flow rate ratio of the nitric oxide gas during texturing of the substrate (150 of FIG. 1) using the method illustrated in the first embodiment was tested. Looking at the experimental conditions at this time, the substrate 150 used is a single crystal substrate, the reaction gas and the first and second catalyst gas comprises a component such as Ar. In addition, the flow rate of the NF 3 contained in the reaction gas and the first and second catalyst gas is 2100 ~ 2700sccm, NO flow rate is 700 ~ 900sccm, process pressure is 3Torr, process temperature is 100 ℃, texturing time is 1 minute Set.

그 실험결과 도 6의 그래프와 같은 결과(기판의 반사율)를 얻을 수 있는 데, 그래프에 나타난 바와 같이 NF3의 유량은 2400sccm, NO의 유량은 800sccm인 상태에서 가장 낮은 반사율(%)을 얻을 수 있다.As a result, as shown in the graph of FIG. 6, the results (substrate reflectance) can be obtained. As shown in the graph, the lowest reflectance (%) can be obtained at a flow rate of 2400 sccm for NF 3 and 800 sccm for NO. have.

도 7은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 시 제2실험예에 따른 반사도의 변화를 나타낸 그래프이다.7 is a graph showing a change in reflectivity according to the second experimental example during texturing of the silicon substrate for a solar cell according to the present invention.

상기 제2실험예는 제1실험예 중 반사율이 가장 낮은 조건, 즉 NF3의 유량은 2400sccm, NO의 유량은 800sccm인 조건에서 텍스처링 시간에 따른 반사도 변화를 실험한 것이다.In the second experimental example, the reflectivity change according to the texturing time was tested under the condition of the lowest reflectance among the first experimental examples, that is, the flow rate of NF 3 is 2400sccm and the flow rate of NO is 800sccm.

그 실험결과 도 7의 그래프와 같이 텍스처링 시간이 늘어날수록 더 낮은 반사율(%)을 얻을 수 있다.As a result of the experiment, as the texturing time increases as shown in the graph of FIG. 7, a lower reflectance (%) can be obtained.

본 발명의 바람직한 실시예에 따른 태양전지용 실리콘 기판의 텍스처링 장치의 구성 및 그를 이용한 텍스처링 방법을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.Although the configuration of the texturing apparatus and the texturing method using the same of the silicon substrate for a solar cell according to the preferred embodiment of the present invention is shown in accordance with the above description and drawings, but this is only an example and the scope does not depart from the spirit of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made therein.

도 1은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 장치를 도시하는 개략도.1 is a schematic view showing a texturing apparatus for a silicon substrate for a solar cell according to the present invention.

도 2는 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제1실시예를 도시하는 도면.2 is a view showing a first embodiment of the texturing method of the silicon substrate for solar cells according to the present invention.

도 3은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제2실시예를 도시하는 도면.3 is a view showing a second embodiment of the texturing method of the silicon substrate for solar cells according to the present invention.

도 4는 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제3실시예를 도시하는 도면.4 is a view showing a third embodiment of the texturing method of the silicon substrate for solar cells according to the present invention.

도 5는 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 방법 중 제4실시예를 도시하는 도면.5 is a view showing a fourth embodiment of the texturing method of the silicon substrate for solar cells according to the present invention.

도 6은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 시 산화질소가스의 유량비에 따른 반사도 변화를 나타낸 그래프.Figure 6 is a graph showing the change in reflectivity according to the flow rate of nitric oxide gas during texturing of the silicon substrate for solar cells according to the present invention.

도 7은 본 발명에 의한 태양전지용 실리콘 기판의 텍스처링 시 중 텍스처링 시간에 따른 반사도 변화를 나타낸 그래프.7 is a graph showing a change in reflectivity according to texturing time during texturing of a silicon substrate for a solar cell according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

110: 챔버 120: 제1공급수단110: chamber 120: first supply means

130: 제2공급수단 140: 제3공급수단130: second supply means 140: third supply means

150: 기판150: substrate

Claims (18)

기판 스테이지가 마련되는 챔버;A chamber in which a substrate stage is provided; 불소성분을 포함한 반응가스를 상기 챔버로 공급하는 제1공급관; 및A first supply pipe supplying a reaction gas containing a fluorine component to the chamber; And 상기 제1공급관 상에 마련되어 상기 반응가스를 플라즈마화하는 제1원격플라즈마발생기를 포함하는 태양전지용 실리콘 기판의 텍스처링 장치.And a first remote plasma generator provided on the first supply pipe to plasma the reaction gas. 제1항에 있어서,The method of claim 1, 산소 및 질소성분을 포함한 제1촉매가스를 챔버로 공급하는 제2공급관과, 상기 제2공급관 상에 마련되어 상기 제1촉매가스를 플라즈마화하는 제2원격플라즈마발생기를 포함하는 태양전지용 실리콘 기판의 텍스처링 장치.Texturing of a silicon substrate for a solar cell comprising a second supply pipe for supplying a first catalyst gas containing oxygen and nitrogen to the chamber, and a second remote plasma generator provided on the second supply pipe for plasmalizing the first catalyst gas. Device. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 산화질소성분을 포함한 제2촉매가스를 챔버로 직접 공급하는 제3공급수단을 포함하는 태양전지용 실리콘 기판의 텍스처링 장치.And a third supply means for supplying a second catalyst gas containing a nitrogen oxide component directly to the chamber. 제3항에 있어서,The method of claim 3, 상기 기판 스테이지의 내부에 마련되는 하부전극과, 상기 하부전극에서 상향으로 소정 간격 이격되는 상부전극과, 상기 상부 및 하부전극에 고주파 전원을 공급하는 전원공급수단을 더 포함하는 태양전지용 실리콘 기판의 텍스처링 장치.Texturing of a silicon substrate for a solar cell further comprises a lower electrode provided inside the substrate stage, an upper electrode spaced upward from the lower electrode by a predetermined interval, and a power supply means for supplying high frequency power to the upper and lower electrodes. Device. 제4항에 있어서,The method of claim 4, wherein 상기 반응가스는 F2, NF3 중 하나 이상, 그리고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스인 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 장치.The reaction gas is one or more of F 2 , NF 3 , and at least one of N 2 , O 2 , N 2 O, NO 2 It is a gas texturing apparatus of a silicon substrate for a solar cell characterized in that combined. 제4항에 있어서,The method of claim 4, wherein 상기 제1촉매가스는 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스인 것을 태양전지용 실리콘 기판의 텍스처링 장치.And the first catalyst gas is a gas in which one or more of N 2 , O 2 , N 2 O, and NO 2 are combined. 제4항에 있어서,The method of claim 4, wherein 상기 제2촉매가스는 NXOX, Ar 중 하나 이상이 조합된 가스인 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 장치.The second catalyst gas is N X O X , Ar texturing apparatus for a silicon substrate for a solar cell, characterized in that the combination of at least one of Ar. 제4항에 있어서,The method of claim 4, wherein 상기 제1 및 제2원격플라즈마발생기는 토로이달 타입, 마이크로웨이브 타입 및 유도결합플라즈마 타입 중 어느 하나의 타입인 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 장치.And the first and second remote plasma generators are any one of a toroidal type, a microwave type, and an inductively coupled plasma type. 태양전지용 실리콘 기판의 텍스처링 방법에 있어서,In the texturing method of the silicon substrate for solar cells, 불소성분을 포함한 반응가스를 플라즈마화하여 생성된 제1라디칼에 기판의 표면을 노출하여 건식 식각하는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.A method of texturing a silicon substrate for a solar cell, comprising etching the dry gas by exposing the surface of the substrate to a first radical generated by plasma-forming a reaction gas containing a fluorine component. 제9항에 있어서,The method of claim 9, 산소 및 질소성분을 포함한 제1촉매가스를 플라즈마화하여 제2라디칼을 생성하고, 상기 제1 및 제2라디칼에 기판의 표면을 노출하여 건식 식각하는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.A method of texturing a silicon substrate for a solar cell, wherein the first catalyst gas including oxygen and nitrogen components is plasma-generated to generate second radicals, and dry etching is performed by exposing the surfaces of the substrate to the first and second radicals. 제9항 또는 제10항에 있어서,The method of claim 9 or 10, 산화질소성분을 포함한 제2촉매가스를 추가로 사용하여 기판의 표면을 건식 식각하는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.A method of texturing a silicon substrate for a solar cell, further comprising dry etching the surface of the substrate using a second catalyst gas containing a nitrogen oxide component. 제11항에 있어서,The method of claim 11, 기판의 상부 및 하부 중 적어도 일측에서 고주파 전원을 인가하는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.A method of texturing a silicon substrate for a solar cell, wherein a high frequency power is applied from at least one of the upper and lower portions of the substrate. 제12항에 있어서,The method of claim 12, 기판의 상부 및 하부에서 교번하여 고주파 전원이 인가되는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.Method for texturing a silicon substrate for a solar cell, characterized in that the high frequency power is applied alternately in the upper and lower portions of the substrate. 제13항에 있어서,The method of claim 13, 상기 반응가스는 F2, NF3 중 하나 이상, 그리고 N2, O2, N2O, NO2 중 하나 이상이 조합된 가스인 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.The reaction gas is one or more of F 2 , NF 3 , and at least one of N 2 , O 2 , N 2 O, NO 2 It is a combination method of texturing a silicon substrate for a solar cell. 제13항에 있어서,The method of claim 13, 상기 제1촉매가스는 N2, O2, N2O, NO2를 포함하는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.The first catalyst gas is N 2 , O 2 , N 2 O, NO 2 characterized in that the silicon substrate for a solar cell texturing method. 제13항에 있어서,The method of claim 13, 상기 제2촉매가스는 NXOX, Ar 중 하나 이상이 조합된 가스인 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.The second catalyst gas is a method of texturing a silicon substrate for a solar cell, characterized in that the combination of one or more of N X O X , Ar. 제13항에 있어서,The method of claim 13, 기판의 온도를 25~300℃로 유지하는 것을 특징으로 하는 태양전지용 실리콘 기판의 텍스처링 방법.A method of texturing a silicon substrate for a solar cell, wherein the temperature of the substrate is maintained at 25 to 300 ° C. 제13항에 있어서,The method of claim 13, 기판은 단결정 또는 다결정 실리콘 기판을 포함하는 것을 특징으로 하는 태 양전지용 실리콘 기판의 텍스처링 방법.A method of texturing a silicon substrate for a solar cell, characterized in that the substrate comprises a monocrystalline or polycrystalline silicon substrate.
KR1020080054893A 2008-06-11 2008-06-11 Texturing apparatus and method for solar battery silicon board KR20090128913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080054893A KR20090128913A (en) 2008-06-11 2008-06-11 Texturing apparatus and method for solar battery silicon board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080054893A KR20090128913A (en) 2008-06-11 2008-06-11 Texturing apparatus and method for solar battery silicon board

Publications (1)

Publication Number Publication Date
KR20090128913A true KR20090128913A (en) 2009-12-16

Family

ID=41689061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080054893A KR20090128913A (en) 2008-06-11 2008-06-11 Texturing apparatus and method for solar battery silicon board

Country Status (1)

Country Link
KR (1) KR20090128913A (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133967A1 (en) * 2013-03-01 2014-09-04 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9564296B2 (en) 2014-03-20 2017-02-07 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9659792B2 (en) 2013-03-15 2017-05-23 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
WO2014133967A1 (en) * 2013-03-01 2014-09-04 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9659792B2 (en) 2013-03-15 2017-05-23 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9704723B2 (en) 2013-03-15 2017-07-11 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9564296B2 (en) 2014-03-20 2017-02-07 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Similar Documents

Publication Publication Date Title
KR20090128913A (en) Texturing apparatus and method for solar battery silicon board
Yoo et al. Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE)
US7670638B2 (en) Protection layer for fabricating a solar cell
US7838400B2 (en) Rapid thermal oxide passivated solar cell with improved junction
KR101654691B1 (en) A method for cleaning the surface of a silicon substrate
AU2015284552A1 (en) Solar cell emitter region fabrication using ion implantation
Xiao et al. Plasma-aided fabrication in Si-based photovoltaic applications: an overview
KR20100087746A (en) Apparatus and method for manufacturing photoelectric conversion elements, and photoelectric conversion element
CN101667609A (en) Selective etching of silicon dioxide compositions
CN104685605A (en) Device for treating an object with plasma
CN111599898A (en) Method for manufacturing crystalline silicon solar cell and crystalline silicon solar cell
US20100210060A1 (en) Double anneal process for an improved rapid thermal oxide passivated solar cell
CN101764044B (en) Method for pretreating technical cavity of plasma device
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
TWI572052B (en) Method for manufacturing solar cell
CN112687762A (en) Solar cell surface passivation method
US20110294249A1 (en) Method for cleaning a substrate of solar cell
KR101555955B1 (en) Method for manufacturing Wafer type Solar Cell
KR101402741B1 (en) Method of forming quantum dots
KR20100032663A (en) Method of manufacturing silicon solar cell substrate formed concave and convex
KR101037043B1 (en) Method for forming via in a semiconductor substrate
KR100970118B1 (en) Method of texturing semiconductor substrate for solar cell using dry etching
CN115841946B (en) Deep silicon etching optimization method
KR101915161B1 (en) Method for manufacturing Solar Cell
KR102432550B1 (en) Method and System of manufacturing Wafer type Solar Cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application