KR20090126009A - Manufacturing process of high conductive carbon fibers by metal electroplating method - Google Patents

Manufacturing process of high conductive carbon fibers by metal electroplating method Download PDF

Info

Publication number
KR20090126009A
KR20090126009A KR1020080052141A KR20080052141A KR20090126009A KR 20090126009 A KR20090126009 A KR 20090126009A KR 1020080052141 A KR1020080052141 A KR 1020080052141A KR 20080052141 A KR20080052141 A KR 20080052141A KR 20090126009 A KR20090126009 A KR 20090126009A
Authority
KR
South Korea
Prior art keywords
carbon fiber
metal
plated
conductive carbon
metal plate
Prior art date
Application number
KR1020080052141A
Other languages
Korean (ko)
Other versions
KR101096531B1 (en
Inventor
박수진
김병주
최웅기
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020080052141A priority Critical patent/KR101096531B1/en
Publication of KR20090126009A publication Critical patent/KR20090126009A/en
Application granted granted Critical
Publication of KR101096531B1 publication Critical patent/KR101096531B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE: A manufacturing method for high conductive carbon fibers by metal electroplating surface treatment is provided to produce the high conductive carbon fibers by increasing the thickness of metal electroplating on the carbon fiber. CONSTITUTION: A manufacturing method for high conductive carbon fibers includes the following steps of: processing the surface with an electrolysis plating solution; applying a cathode on the carbon fibers in the plating solution; applying an anode on a metal plate; and producing the carbon fiber having high electrical conductivity by applying the current between the metal plate and the carbon fiber. The metal plate is comprised of transition metals. The metal plate is comprised of metal selected from a group consisting of platinum, copper, nickel, silver, iron, chrome, aluminum, cobalt, ruthenium and zinc.

Description

금속 전해도금 표면처리에 의한 고전도성 탄소섬유의 제조방법{Manufacturing process of high conductive carbon fibers by metal electroplating method}Manufacturing process of high conductive carbon fibers by metal electroplating method

본 발명은 금속 전해도금 표면처리에 의한 고전도성 탄소섬유의 제조방법에 관한 것으로, 더욱 상세하게는 종래 탄소섬유의 제조방법에 있어서 전해도금 용액을 사용하여 표면처리를 하되, 도금용액 중에서 탄소섬유에 음극을, 금속판에 양극을 부여하여 상기 금속판과 탄소섬유 간에 전류를 인가함으로써 높은 전기적 전도성을 갖는 탄소섬유를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a highly conductive carbon fiber by metal electroplating surface treatment, and more specifically, in the conventional method for producing carbon fiber surface treatment using an electroplating solution, the carbon fiber in the plating solution The present invention relates to a method for producing carbon fibers having high electrical conductivity by applying an anode to a metal plate and applying an electric current between the metal plate and the carbon fiber.

탄소섬유는 우주항공산업과 핵 및 일반기술과 관련된 첨단기술(high technology) 분야 및 베어링, 기어, 캠, 그리고 자동차 동체 등과 같은 운송 분야에서 주로 적용되어 왔으며, 최근에는 그 응용범위가 군사장비, 스포츠 용품 분야 등에까지도 본격적으로 사용되고 있는 유망한 신소재이다.Carbon fiber has been applied mainly to the aerospace industry, high technology fields related to nuclear and general technology, and transportation fields such as bearings, gears, cams, and automotive fuselage. It is a promising new material that is being used even in the field of supplies.

특히, 고전도성 탄소섬유는 내열성, 화학적 안정성, 전기전도성, 전자파 차폐성, 생체 친화성, 유연성 등의 우수한 특성을 갖고 있어, 여러 산업 분야에서 폭넓은 응용이 가능하다. 그 중에서도 우수한 전도성은 면상 발열체 및 전자파차 폐(electromagnetic interference shielding)의 소재로서 전자기파의 상호 간섭현상 및 전자기파의 인체 유해성을 막아주는 목적으로 사용될 수 있을 뿐만 아니라 환경오염 문제 해결을 위해 화석 연료를 대신할 청정 에너지원인 수소연료전지 스택의 기본 골격을 이루는 바이폴라 플레이트(bipolar plate)의 주재료인 흑연을 대체할 만한 물질로도 연구가 진행되고 있다.In particular, the highly conductive carbon fiber has excellent characteristics such as heat resistance, chemical stability, electrical conductivity, electromagnetic shielding properties, biocompatibility, flexibility, and the like, and thus can be widely applied in various industrial fields. Among them, excellent conductivity is a material of surface heating element and electromagnetic interference shielding, which can be used for the purpose of preventing mutual interference of electromagnetic waves and human harmfulness of electromagnetic waves, and replace fossil fuel for solving environmental pollution problem. Research is also underway to replace graphite, which is the main material of bipolar plates, which form the basic framework of the hydrogen fuel cell stack, which is a clean energy source.

종래 금속염 용액으로부터 금속 이온을 피도금물 위에 환원 석출시켜 금속막을 형성하여 고전도성 탄소섬유를 제조하는 방법으로는 외부전역에 의해 전해 석출시키는 전해도금법, 용액 중의 금속 이온을 화학약품에 의해 환원 석출시키는 화학 환원도금법, 용액 중의 금속이온을 피도금물에 의해 치환 석출시키는 치환도금법이 있었다.Conventionally, a method of manufacturing a highly conductive carbon fiber by reducing and depositing metal ions from a metal salt solution on a plated product to form a metal film, electrolytic plating method in which electrolytic precipitation is carried out by the whole global area, and metal ions in the solution are reduced and precipitated by a chemical agent. There has been a chemical reduction plating method and a substitution plating method in which metal ions in a solution are substituted and precipitated by a plated object.

화학환원도금법의 경우, 장시간의 도금 시간을 필요로 하고, 폐수가 발생하며, 관리비용이 필요하다는 단점이 있다. 또한, 종래 탄소섬유는 전기 전도도가 103 ~ 101 S/㎝에 불과해 고분자 연료전지(polymer electrolyte membrane fuel cell)의 바이폴라 플레이트와 같이 높은 전기 전도도를 필요로 하는 분야에는 적용하기 곤란하였다.In the case of the chemical reduction plating method, a long plating time is required, waste water is generated, and a management cost is required. In addition, the conventional carbon fiber is difficult to apply to the field requiring high electrical conductivity, such as a bipolar plate of a polymer electrolyte membrane fuel cell because the electrical conductivity is only 10 3 ~ 10 1 S / ㎝.

이에 본 발명자들은 높은 전기 전도도를 갖는 탄소섬유를 개발하기 위하여 계속 연구한 결과, 전해도금을 통해 표면처리를 실시하고, 탄소섬유 표면에 금속 도금 두께를 일정하게 증가시켜 고전도성의 탄소섬유를 제조함으로써 본 발명을 성공적으로 완성하였다.Accordingly, the present inventors continue to research to develop a carbon fiber having a high electrical conductivity, by performing a surface treatment through electroplating, by increasing the metal plating thickness on the surface of the carbon fiber to produce a highly conductive carbon fiber The present invention has been successfully completed.

결국, 본 발명의 목적은 금속 전해도금 표면처리에 의한 고전도성 탄소섬유의 제조방법을 제공하는데 그 주된 목적이 있다.After all, an object of the present invention is to provide a method for producing a highly conductive carbon fiber by metal electroplating surface treatment.

상기 목적을 달성하기 위하여, 본 발명은 금속 전해도금 고전도성 탄소섬유 제조방법을 제공한다.In order to achieve the above object, the present invention provides a metal electroplating high conductive carbon fiber manufacturing method.

구체적으로, 본 발명은 전해도금 용액을 사용하여 표면처리를 하되, 도금 용액 중에서 탄소섬유에 음극을, 금속판에 양극을 부여하고 상기 금속판과 탄소섬유 간에 전류를 인가함으로써 높은 전기적 전도성을 갖는 금속 전해도금 고전도성 탄소섬유의 제조방법을 제공한다.Specifically, the present invention is a surface treatment using an electroplating solution, but the metal electrolytic plating having a high electrical conductivity by applying a negative electrode to the carbon fiber in the plating solution, an anode to the metal plate and applying a current between the metal plate and the carbon fiber Provided is a method for producing a highly conductive carbon fiber.

본 발명에 있어서, 상기 전해도금 용액은 당 분야에서 일반적으로 사용되는 방법에 따라 특별히 한정하지는 않으나, 바람직하게는 수용액 상에서 이온화가 쉬운 설파이드(sulfide)계, 클로라이드(chloride)계 및 나이트라이드(nitride)계 금속염 등 적어도 1종 이상을 단독 또는 병행하여 사용하는 것이 좋다. 더욱 바람직 하게는 니켈도금의 경우 NiSO4 (250 g/ℓ)와 NiCl2(45 g/ℓ)을 혼합하여 사용하는 것이 좋으며, 구리와 철의 경우 각각 CuSO4 (10 g/ℓ)와 FeSO4 (20 g/ℓ)을 단독으로 사용하는 것이 좋고, pH 완충제로서 H3BO3 (45 g/ℓ)와 H2SO4 (20 ㎖)를 사용하여도 좋다.In the present invention, the electroplating solution is not particularly limited according to a method generally used in the art, but preferably a sulfide-based, chloride-based and nitride-based ionized solution in an aqueous solution. It is preferable to use at least 1 type or more, such as a system metal salt individually or in parallel. More preferably, in the case of nickel plating, NiSO 4 (250 g / ℓ) and NiCl 2 (45 g / ℓ) may be mixed and used. In the case of copper and iron, CuSO 4 (10 g / ℓ) and FeSO 4 may be used. (20 g / L) may be used alone, and H 3 BO 3 (45 g / L) and H 2 SO 4 (20 mL) may be used as the pH buffer.

또한, 상기 도금용액 중에서의 도금 전류밀도는 5 ~ 80 ㎃/㎠인 것이 바람직한데, 5 ㎃/㎠ 미만에서는 음극에서 방출되는 전자 및 양극에서 산화되어 나오는 금속이온의 농도가 낮아져 탄소섬유 표면에서 생성되는 금속막의 두께가 얇아지기 때문이며, 80 ㎃/㎠를 초과하면 과도한 금속의 도입으로 인해 탄소섬유의 금속화 현상 및 섬유간의 합사가 발생할 수 있기 때문이다.In addition, the plating current density in the plating solution is preferably 5 ~ 80 ㎃ / ㎠, below 5 ㎃ / ㎠ the concentration of metal ions oxidized in the electron and anode emitted from the cathode is lowered to generate on the surface of the carbon fiber This is because the thickness of the metal film becomes thin, and if it exceeds 80 mW / cm 2, the metallization phenomenon of carbon fiber and coalescence between fibers may occur due to the introduction of excessive metal.

또한, 전해도금 시 전류는 10 ~ 300초 동안 인가하는 것이 좋다. 10초 미만에서는 음극에서 방출되는 전자 및 양금에서 산화되어 나오는 금속이온의 농도가 낮아지며, 300초를 초과하면 금속의 양이 급격히 상승하여 탄소섬유의 금속화 현상 및 섬유간의 합사의 원인이 되기 때문이다.In addition, during electroplating, the current is preferably applied for 10 to 300 seconds. In less than 10 seconds, the concentration of metal ions oxidized from the electrons and the positrons emitted from the cathode is lowered, and if it exceeds 300 seconds, the amount of metal rapidly rises, which causes the metallization phenomenon of carbon fiber and the coordination between fibers. .

또한, 본 발명에 있어서, 탄소섬유 표면에 도금되는 금속막의 두께는 0.1 ~ 3.5 ㎛인 것이 바람직하다. 상기 금속막의 두께가 0.1 ㎛ 미만이면 금속막이 너무 얇아서 전지 전도성을 측정하기가 어려울 뿐더러, 3.5 ㎛를 초과할 경우에는 금속막이 너무 두꺼워져 섬유 간의 합사 및 가공성이 떨어지는 현상이 발생하기 때문에 부적합하다.In the present invention, the thickness of the metal film plated on the surface of the carbon fiber is preferably 0.1 to 3.5 탆. When the thickness of the metal film is less than 0.1 μm, the metal film is too thin to make it difficult to measure battery conductivity, and when the thickness of the metal film is greater than 3.5 μm, the metal film becomes too thick, resulting in poor weaving and workability between fibers.

또한, 상기 양극으로 사용되는 금속판은 전이금속인 것이 바람직하며, 더욱 바람직하게는 백금(Pt), 구리(Cu), 니켈(Ni), 은(Ag), 철(Fe), 크롬(Cr), 알루미늄(Al), 코발트(Co), 루테늄(Ru), 및 아연(Zn)으로 이루어진 군에서 선택되는 것이 좋다. In addition, the metal plate used as the anode is preferably a transition metal, more preferably platinum (Pt), copper (Cu), nickel (Ni), silver (Ag), iron (Fe), chromium (Cr), It is preferably selected from the group consisting of aluminum (Al), cobalt (Co), ruthenium (Ru), and zinc (Zn).

또한, 본 발명은 상기 방법에 의해 제조된 전이금속이 도금된 고전도성 탄소섬유를 제공한다. The present invention also provides a highly conductive carbon fiber plated with a transition metal produced by the above method.

본 발명에 있어서, 상기 전이금속은 백금(Pt), 구리(Cu), 니켈(Ni), 은(Ag), 철(Fe), 크롬(Cr), 알루미늄(Al), 코발트(Co), 루테늄(Ru), 및 아연(Zn)으로 이루어진 군에서 선택되는 것이 바람직하며, 탄소섬유 표면에 도금되는 금속막의 두께는 0.1 ~ 3.5㎛인 것이 바람직하다. In the present invention, the transition metal is platinum (Pt), copper (Cu), nickel (Ni), silver (Ag), iron (Fe), chromium (Cr), aluminum (Al), cobalt (Co), ruthenium (Ru), and zinc (Zn) is preferably selected from the group consisting of, the thickness of the metal film plated on the surface of the carbon fiber is preferably 0.1 ~ 3.5㎛.

또한, 상기 전이금속이 도금된 고전도성 탄소섬유의 비저항은 1×10-4 ~ 1×10-6Ω㎝인 것이 바람직하다.In addition, the specific resistance of the highly conductive carbon fiber plated with the transition metal is preferably 1 × 10 −4 to 1 × 10 −6 μm cm.

상술한 바와 같이, 본 발명은 금속 전해도금 고전도성 탄소섬유 제조방법 및 상기 방법으로 제조된 전이금속이 도금된 고전도성 탄소섬유를 제공하는 효과가 있다.As described above, the present invention has the effect of providing a metal electroplating high conductivity carbon fiber manufacturing method and a transition metal plated high conductivity carbon fiber prepared by the above method.

본 발명에 따른 금속 전해도금 고전도성 탄소섬유의 제조방법은 연속공정과 안정적인 처리가 가능함과 동시에 탄소섬유 표면에 금속을 도입시킴으로써 높은 전도성을 가질 수 있다. Metal electroplating high conductive carbon fiber manufacturing method according to the present invention can have a high conductivity by introducing a metal on the surface of the carbon fiber and at the same time a continuous process and a stable treatment.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

실험예 1. 금속 도금된 탄소섬유의 전기전도도 측정Experimental Example 1. Measurement of electrical conductivity of metal plated carbon fiber

하기의 실시예에서 제조된 금속 도금 탄소섬유의 전기전도도 측정을 위하여, 4-probe volume resistivity tester(Mitubishi Chemical Co., MCP-T610)을 이용하여 저항(V/I)을 측정한 후 시편의 치수(W×T: 섬유 측면의 단면적; L: 전압 접촉부 사이의 거리)와의 관계를 이용하여 전기전도도(σ)를 계산하였다.In order to measure the electrical conductivity of the metal-plated carbon fiber prepared in the following examples, the dimensions of the specimen after measuring the resistance (V / I) using a 4-probe volume resistivity tester (Mitubishi Chemical Co., MCP-T610) The electrical conductivity σ was calculated using the relationship with (W × T: cross-sectional area of the fiber side; L: distance between voltage contacts).

실험예 2. 금속 도금된 탄소섬유의 표면구조, 두께변화 및 특성 확인Experimental Example 2. Confirmation of Surface Structure, Thickness Change and Characteristics of Metal Plated Carbon Fiber

하기의 실시예에서 제조된 금속 도금된 탄소섬유의 표면구조, 두께 변화 및 특성을 관찰하기 위하여 주사전자현미경(Scanning electron microscope, SEM JEOL JSM0840A)와 X선 회절(X-ray diffraction) 분석을 실시하였으며, 발생원으로는 CuKα를 장착한 Rigaku Model D/MAX-Ⅲ를 사용하였다.Scanning electron microscope (SEM JEOL JSM0840A) and X-ray diffraction (X-ray diffraction) analysis were performed to observe the surface structure, thickness variation and characteristics of the metal-plated carbon fiber prepared in the following examples. As a generator, Rigaku Model D / MAX-III equipped with CuK α was used.

실시예 1. 금속 도금된 탄소섬유의 제조 Ⅰ Example 1 Preparation of Metal Plated Carbon Fiber I

본 발명에서 사용된 탄소섬유는 Formosa Platic Co.에서 생산된 폴리아크릴로니트릴(polyacrylonitrile, PAN)계 고강도 탄소섬유(TC-3K-36)로, 아세톤으로 2 시간 동안 desizing 처리된 장섬유를 사용하여 금속 도금 전 표면의 불순물 제거를 위해 0.1M HNO3로 30분 동안 전처리한 다음 사용하였다.Carbon fiber used in the present invention is a polyacrylonitrile (PAN) -based high-strength carbon fiber (TC-3K-36) produced by Formosa Platic Co., using long fibers desizing with acetone for 2 hours It was used after pretreatment with 0.1M HNO 3 for 30 minutes to remove impurities on the surface before metal plating.

탄소섬유의 금속 도금은 연속공정이 가능한 전해도금 방법을 사용하였으며, 양극에는 금속판을, 음극에는 탄소섬유를 각각 넣고 전압장치를 이용하여 일정한 속도로 전해도금 시켰다.Metal plating of carbon fiber was carried out using an electroplating method capable of a continuous process, and a metal plate was inserted into the positive electrode and carbon fiber into the negative electrode, respectively, and electroplated at a constant speed using a voltage device.

이때, 전해도금액은 니켈도금의 경우 NiSO4 (250g/ℓ)와 NiCl2(45g/ℓ)을 혼합하여 사용하였으며, 구리와 철의 경우에는 각각 CuSO4 (10g/ℓ)와 FeSO4 (20g/ℓ)을 단독으로 사용하였다.At this time, the electroplating solution was used by mixing NiSO 4 (250g / ℓ) and NiCl 2 (45g / ℓ) in the case of nickel plating, CuSO 4 (10g / ℓ) and FeSO 4 (20g) in the case of copper and iron, respectively / l) was used alone.

금속판은 전이금속인 Ni을 사용하여 30초 동안 20㎃/㎠의 전류밀도로 전해도금 후 건조기에서 완전하게 건조시켜 금속 도금된 탄소섬유를 제조하였다.The metal plate was electroplated at a current density of 20 mA / cm 2 for 30 seconds using Ni, a transition metal, and then completely dried in a dryer to prepare metal plated carbon fibers.

하기 표 1에는 본 발명에서 사용된 전이금속의 종류, 전류밀도와 도금 시간에 따라 제조된 탄소섬유의 도금막 두께 및 전기전도도의 결과를 나타내었다. Table 1 shows the results of the plating film thickness and electrical conductivity of the carbon fiber prepared according to the type, current density and plating time of the transition metal used in the present invention.

실시예 2. 금속 도금된 탄소섬유의 제조Example 2 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Ni을 사용하여 40초 동안 20㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was plated with Ni at a current density of 20 mA / cm 2 for 40 seconds.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 3. 금속 도금된 탄소섬유의 제조Example 3 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Ni을 사용하여 60초 동안 10㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was metal-plated at a current density of 10 mA / cm 2 for 60 seconds using Ni.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 4. 금속 도금된 탄소섬유의 제조Example 4 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Ni을 사용하여 60초 동안 80㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was plated with Ni at a current density of 80 mA / cm 2 for 60 seconds.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 5. 금속 도금된 탄소섬유의 제조Example 5 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Cu를 사용하여 10초 동안 5㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was plated with a current density of 5 mA / cm 2 for 10 seconds using Cu.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 6. 금속 도금된 탄소섬유의 제조Example 6 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Cu를 사용하여 180초 동안 5㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was metal-plated at a current density of 5 mA / cm 2 for 180 seconds using Cu.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 7. 금속 도금된 탄소섬유의 제조Example 7 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Cu를 사용하여 30초 동안 30㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was plated with a current density of 30 mA / cm 2 for 30 seconds using Cu.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 8. 금속 도금된 탄소섬유의 제조Example 8 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Cu를 사용하여 30초 동안 50㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was plated with a current density of 50 mA / cm 2 for 30 seconds using Cu.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 9. 금속 도금된 탄소섬유의 제조Example 9 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Fe을 사용하여 20초 동안 60㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was plated with Fe at a current density of 60 mA / cm 2 for 20 seconds.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예 10. 금속 도금된 탄소섬유의 제조Example 10 Preparation of Metal Plated Carbon Fiber

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Fe을 사용하여 120초 동안 60㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was metal-plated at a current density of 60 mA / cm 2 for 120 seconds using Fe.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예Example 11. 금속 도금된  11. Metal plated 탄소섬유의Carbon fiber 제조 Produce ⅩⅠⅩⅠ

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Fe을 사용하여 300초 동안 40㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was metal plated with a current density of 40 mA / cm 2 for 300 seconds using Fe.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

실시예Example 12. 금속 도금된  12. Metal plated 탄소섬유의Carbon fiber 제조 Produce ⅩⅡXII

상기 실시예 1과 동일한 공정을 수행하되, 전이금속은 Fe을 사용하여 300초 동안 80㎃/㎠의 전류밀도로 금속 도금을 하였다. The same process as in Example 1 was performed, but the transition metal was metal plated with a current density of 80 mA / cm 2 for 300 seconds using Fe.

상기와 같이 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.The plated film thickness and electrical conductivity were measured in the metal plated carbon fiber prepared as described above, and the results are shown in Table 1.

비교예 1. Comparative Example 1.

상기 실시예와 동일한 공정으로 수행하되, 전이금속은 Ni을 사용하였으며, 500초 동안 0.1㎃/㎠의 전류밀로도 금속 도금을 실시하고, 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다. Performed in the same process as in the above example, using a transition metal, Ni, metal plating with a current mill of 0.1 ㎃ / ㎠ for 500 seconds, and measuring the thickness and electrical conductivity of the plated film from the metal-plated carbon fiber prepared The results are shown in Table 1.

비교예Comparative example 2.  2.

상기 실시예와 동일한 공정으로 수행하되, 전이금속은 Ni을 사용하였으며, 500초 동안 80㎃/㎠의 전류밀로도 금속 도금을 실시하고, 제조된 금속 도금 탄소섬유에서 도금막 두께 및 전기 전도도를 측정하고 그 결과는 표 1에 나타내었다.Performed in the same process as in the above embodiment, using the transition metal, Ni, metal plating with a current mill of 80 ㎃ / ㎠ for 500 seconds, and measuring the thickness and electrical conductivity of the plated film from the metal plated carbon fiber prepared The results are shown in Table 1.

본 발명에 따른 금속 도금된 탄소섬유의 도금막 두께 및 전기전도도Plating film thickness and electrical conductivity of metal plated carbon fiber according to the present invention 구분division 전이금속Transition metal 두께 (㎛)Thickness (㎛) 비저항 (Ω·㎝)Specific resistance (Ωcm) 전해도금Electroplating 전류밀도 (㎃/㎠)Current density (㎃ / ㎠) 시간 (초)Time in seconds 실시예 1Example 1 NiNi 0.530.53 0.83×10-4 0.83 × 10 -4 2020 3030 실시예 2Example 2 0.630.63 0.43×10-4 0.43 × 10 -4 2020 4040 실시예 3Example 3 0.450.45 0.81×10-4 0.81 × 10 -4 1010 6060 실시예 4Example 4 1.031.03 3.17×10-5 3.17 × 10 -5 8080 6060 실시예 5Example 5 CuCu 0.140.14 7.08×10-4 7.08 × 10 -4 55 1010 실시예 6Example 6 1.501.50 0.21×10-5 0.21 × 10 -5 55 180180 실시예 7Example 7 0.910.91 8.02×10-5 8.02 × 10 -5 3030 3030 실시예 8Example 8 1.011.01 1.12×10-5 1.12 × 10 -5 5050 3030 실시예 9Example 9 FeFe 1.301.30 5.12×10-5 5.12 × 10 -5 6060 2020 실시예10Example 10 2.502.50 0.12×10-5 0.12 × 10 -5 6060 120120 실시예11Example 11 2.942.94 4.12×10-6 4.12 × 10 -6 4040 300300 실시예12Example 12 3.103.10 2.32×10-6 2.32 × 10 -6 8080 300300 비교예 1Comparative Example 1 NiNi -- 0.94×10-3 0.94 × 10 -3 0.10.1 500500 비교예 2Comparative Example 2 NiNi -- 5.34×10-7 5.34 × 10 -7 8080 500500

상기와 같이 제조한 흑연 층간 증대율이 제어된 기능성 흑연은 그 층간 증대율 정도에 따라 높은 수소 저장이 유도되었다. 그러나 과다하게 증대율이 증가된 경우, 수소 저장값이 도리어 감소되는 것이 확인되었으며, 이는 과다하게 증대율이 증가된 경우 기능성 흑연에 부여되는 초미세기공의 기공경 증대에 따른 초미세 가스입자인 수소의 저장값의 감소를 일으킨 것으로 사료되었다. 따라서, 적절한 층간 증대율을 부여할 경우 최적화된 수소 저장값의 확보와 함께 수소자동차용 수소저장 소재로서 높은 응용이 가능할 수 있을 것으로 기대된다.Functional graphite having a controlled graphite interlayer growth rate produced as described above induced high hydrogen storage depending on the degree of interlayer growth rate. However, when excessively increasing the increase rate, it was confirmed that the hydrogen storage value is reduced, which is the ultra-fine gas particles of hydrogen according to the increase in the pore size of the ultra-fine pores imparted to the functional graphite when the increase rate is excessively increased. It is thought that this resulted in a decrease in the storage value of. Therefore, if the appropriate interlayer growth rate is given, it is expected that high application as a hydrogen storage material for a hydrogen vehicle with an optimized hydrogen storage value is secured.

도 1은 본 발명에 따른 전해도금법에 의한 금속 도금된 탄소섬유의 표면처리 장치이다. 1 is a surface treatment apparatus of a metal plated carbon fiber by the electroplating method according to the present invention.

도 2는 본 발명의 일실시예에 따른 금속 도금된 탄소섬유의 SEM 사진을 나타낸 것으로, (a)는 전이금속 도금 전의 탄소섬유의 SEM사진이고; (b)는 전이금속(Ni) 도금된 탄소섬유의 SEM(측면) 사진이며; (c)는 전이금속(Fe) 도금된 탄소섬유의 SEM(단면) 사진이다.Figure 2 shows a SEM picture of the metal-plated carbon fiber according to an embodiment of the present invention, (a) is a SEM picture of the carbon fiber before the transition metal plating; (b) is a SEM (side) photograph of a transition metal (Ni) plated carbon fiber; (c) is a SEM (cross section) photograph of a transition metal (Fe) plated carbon fiber.

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

1. 탄소섬유 2. 금속도금조1. Carbon fiber 2. Metal plating bath

3. 세척조 4. 음극봉3. Wash bath 4. Cathode rod

5. 양극 금속판 6. 건조기5. Anode metal plate 6. Dryer

7. 권취(take-up) 모터7. Take-up Motor

Claims (10)

전해도금 용액을 사용하여 표면처리를 하되, 도금용액 중에서 탄소섬유에 음극을, 금속판에 양극을 부여하고 상기 금속판과 탄소섬유 간에 전류를 인가함으로써 높은 전기적 전도성을 갖는 금속 전해도금 고전도성 탄소섬유의 제조방법.Preparation of metal electroplating high conductive carbon fiber having high electrical conductivity by surface treatment using an electroplating solution, but by applying a cathode to a carbon fiber, a cathode to a metal plate and applying a current between the metal plate and the carbon fiber in the plating solution. Way. 제 1항에 있어서,The method of claim 1, 상기 도금용액 중에서의 도금 전류밀도는 5 ~ 80 ㎃/㎠인 것을 특징으로 하는 제조방법.Plating current density in the plating solution is a production method, characterized in that 5 ~ 80 ㎃ / ㎠. 제 1항에 있어서,The method of claim 1, 상기 전해도금 시 전류는 10 ~ 300초 동안 인가하는 것을 특징으로 하는 제조방법.The electroplating method is characterized in that the current is applied for 10 to 300 seconds. 제 1항에 있어서,The method of claim 1, 탄소섬유 표면에 도금되는 금속막의 두께는 0.1 ~ 3.5㎛인 것을 특징으로 하는 제조방법. The thickness of the metal film plated on the surface of the carbon fiber is 0.1 ~ 3.5㎛ manufacturing method characterized in that. 제 1항에 있어서,The method of claim 1, 상기 양극으로 사용되는 금속판은 전이금속인 것인 특징으로 하는 제조방법.The metal plate used as the anode is a manufacturing method characterized in that the transition metal. 제 1항 또는 제 5항에 있어서,The method according to claim 1 or 5, 상기 양극으로 사용되는 금속판은 백금(Pt), 구리(Cu), 니켈(Ni), 은(Ag), 철(Fe), 크롬(Cr), 알루미늄(Al), 코발트(Co), 루테늄(Ru), 및 아연(Zn)으로 이루어진 군에서 선택되는 것을 특징으로 하는 제조방법. The metal plate used as the anode is platinum (Pt), copper (Cu), nickel (Ni), silver (Ag), iron (Fe), chromium (Cr), aluminum (Al), cobalt (Co), ruthenium (Ru) ), And zinc (Zn). 제 1항의 방법에 의해 제조된 전이금속이 도금된 고전도성 탄소섬유.A highly conductive carbon fiber plated with a transition metal prepared by the method of claim 1. 제 7항에 있어서, The method of claim 7, wherein 상기 전이금속은 백금(Pt), 구리(Cu), 니켈(Ni), 은(Ag), 철(Fe), 크롬(Cr), 알루미늄(Al), 코발트(Co), 루테늄(Ru), 및 아연(Zn)으로 이루어진 군에서 선택되는 것을 특징으로 하는 탄소섬유.The transition metal is platinum (Pt), copper (Cu), nickel (Ni), silver (Ag), iron (Fe), chromium (Cr), aluminum (Al), cobalt (Co), ruthenium (Ru), and Carbon fiber, characterized in that selected from the group consisting of zinc (Zn). 제 7항에 있어서,The method of claim 7, wherein 상기 도금된 금속막의 두께는 0.1 ~ 3.5㎛인 것을 특징으로 하는 탄소섬유.The plated metal film has a thickness of 0.1 to 3.5㎛ carbon fiber. 제 7항에 있어서,The method of claim 7, wherein 상기 전이금속이 도금된 고전도성 탄소섬유의 비저항은 1×10-4 ~ 1×10-6Ω㎝인 것을 특징으로 하는 탄소섬유.The specific resistance of the highly conductive carbon fiber plated with the transition metal is 1 × 10 -4 ~ 1 × 10 -6 Ωcm carbon fiber, characterized in that.
KR1020080052141A 2008-06-03 2008-06-03 Manufacturing process of high conductive carbon fibers by metal electroplating method KR101096531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080052141A KR101096531B1 (en) 2008-06-03 2008-06-03 Manufacturing process of high conductive carbon fibers by metal electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080052141A KR101096531B1 (en) 2008-06-03 2008-06-03 Manufacturing process of high conductive carbon fibers by metal electroplating method

Publications (2)

Publication Number Publication Date
KR20090126009A true KR20090126009A (en) 2009-12-08
KR101096531B1 KR101096531B1 (en) 2011-12-20

Family

ID=41687310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080052141A KR101096531B1 (en) 2008-06-03 2008-06-03 Manufacturing process of high conductive carbon fibers by metal electroplating method

Country Status (1)

Country Link
KR (1) KR101096531B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028772B1 (en) * 2009-07-09 2011-04-14 (주)청송기공 Water tank for electrolytic processing of a carbon fiber
CN102305001A (en) * 2011-02-23 2012-01-04 李钢坤 Non-metal wrist-wear electronic monitoring terminal
KR101314672B1 (en) * 2011-12-13 2013-10-04 최대규 A electroplating carbon fiber and the methode
KR101645944B1 (en) 2016-03-09 2016-08-05 (주)다인스 Metal coated carbon fiber bundle manufacturing process for braid
KR20180078487A (en) * 2016-12-30 2018-07-10 한국과학기술연구원 Methods of preparing graphene fiber complexes, and graphene fiber complexes prepared by the method
KR102080025B1 (en) * 2018-12-05 2020-02-21 재단법인 한국탄소융합기술원 High Strength Carbon Fiber Using Electrical Surface Treatment and Manufacturing Method Thereof
KR102084947B1 (en) 2018-11-21 2020-03-05 재단법인 한국탄소융합기술원 Method for manufacturing sliver coated carbon fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101898524B1 (en) 2017-02-20 2018-09-13 한국과학기술연구원 Methods of manufacturing metal-carbon lmaterial complexed films

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572995B1 (en) * 2001-12-17 2006-04-24 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028772B1 (en) * 2009-07-09 2011-04-14 (주)청송기공 Water tank for electrolytic processing of a carbon fiber
CN102305001A (en) * 2011-02-23 2012-01-04 李钢坤 Non-metal wrist-wear electronic monitoring terminal
KR101314672B1 (en) * 2011-12-13 2013-10-04 최대규 A electroplating carbon fiber and the methode
KR101645944B1 (en) 2016-03-09 2016-08-05 (주)다인스 Metal coated carbon fiber bundle manufacturing process for braid
KR20180078487A (en) * 2016-12-30 2018-07-10 한국과학기술연구원 Methods of preparing graphene fiber complexes, and graphene fiber complexes prepared by the method
KR102084947B1 (en) 2018-11-21 2020-03-05 재단법인 한국탄소융합기술원 Method for manufacturing sliver coated carbon fiber
KR102080025B1 (en) * 2018-12-05 2020-02-21 재단법인 한국탄소융합기술원 High Strength Carbon Fiber Using Electrical Surface Treatment and Manufacturing Method Thereof

Also Published As

Publication number Publication date
KR101096531B1 (en) 2011-12-20

Similar Documents

Publication Publication Date Title
KR101096531B1 (en) Manufacturing process of high conductive carbon fibers by metal electroplating method
US20200373586A1 (en) Highly corrosion-resistant porous metal body
DE2821271C2 (en) Method and device for the electrolytic deposition of metals on a solid electrolyte and coated solid electrolyte
EP3012893B1 (en) Porous metal body and method for producing same
WO2015133296A1 (en) Porous metal body and method for producing porous metal body
JP2012149282A (en) Porous metal having high corrosion resistance, and process for producing the same
Oloruntoba et al. Effect of some process variables on nickel electroplating of low carbon steel
EP2356267A1 (en) Electrodeposition baths, systems and methods
CN114059116B (en) Method for preparing FeCoNiCuSn high-entropy alloy through electrodeposition
Kamel et al. Nickel electrodeposition from novel lactate bath
CN104911643A (en) Method for electrodepositing nano-iron from iron oxide in choline chloride ionic liquid
Ebrahimifar et al. Influence of electrodeposition parameters on the characteristics of Mn–Co coatings on Crofer 22 APU ferritic stainless steel
CN114622238B (en) Preparation and application of transition metal-based hydrogen and oxygen evolution dual-functional electrode
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
CN112048744B (en) Process for improving platinum plating uniformity on surface of titanium substrate
JP5635382B2 (en) Method for producing porous metal body having high corrosion resistance
Fujiwara et al. Optimization of bath composition for hard Fe–C alloy plating
Zhou et al. Production of low-Sn Cu-Sn alloy coatings onto steel substrate using sodium citrate bath–part 1: the effect of current mode (DC or SPC) and applied current on the chemical, morphological, and anticorrosive properties of the coatings
JP6812606B1 (en) Porous materials, electrochemical cells, and methods for producing porous materials
Ye et al. Formation of Nanocrystalline Surface of Cu–Sn Alloy Foam Electrochemically Produced for Li-Ion Battery Electrode
ROSLEY et al. Effect of pH in Production of Cu-Sn-Zn via Electroplating Using Less Hazardous Electrolyte
EP2644722B1 (en) Method for producing highly corrosion-resistant porous metal body
KR100571796B1 (en) The method of electro co-deposition to Ag-Cu eutectic alloy
Dong et al. Investigation on the current efficiency of Ni/Graphite powders fabricated by electroplating
Saatcı et al. Investigating The Corrosion Behavior of Electrodeposited Nickel-Nano Diamond Composite Coating On Porous Materials by The Cyclic Voltammetry Method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 8