KR20090125183A - 시변 채널들에 대한 주파수 영역 등화 - Google Patents

시변 채널들에 대한 주파수 영역 등화 Download PDF

Info

Publication number
KR20090125183A
KR20090125183A KR1020097021773A KR20097021773A KR20090125183A KR 20090125183 A KR20090125183 A KR 20090125183A KR 1020097021773 A KR1020097021773 A KR 1020097021773A KR 20097021773 A KR20097021773 A KR 20097021773A KR 20090125183 A KR20090125183 A KR 20090125183A
Authority
KR
South Korea
Prior art keywords
frequency domain
wireless communication
time change
domain equalization
time
Prior art date
Application number
KR1020097021773A
Other languages
English (en)
Inventor
홍은기
레 남 트란
피터 갈
Original Assignee
콸콤 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콸콤 인코포레이티드 filed Critical 콸콤 인코포레이티드
Publication of KR20090125183A publication Critical patent/KR20090125183A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03535Variable structures
    • H04L2025/03541Switching between domains, e.g. between time and frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03617Time recursive algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03292Arrangements for operating in conjunction with other apparatus with channel estimation circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

무선 통신 시스템을 위한 시스템들 및 방법들이 제공된다. 상기 방법은 채널의 시간 변화를 추정하는 단계 ― 상기 채널을 통해 상기 무선 통신 시스템이 송신함 ―를 포함한다. 이는 또한 상기 무선 통신 시스템에 의해 송신되는 신호로부터 상기 채널의 상기 추정된 시간 변화를 감소시키는 단계를 포함한다. 반복적인 프로세스 및 컴포넌트들이 효율적이고 정밀한 주파수 영역 등화를 가능하게 하기 위하여 제공된다. 다양한 프로세스 컴포넌트들은 채널 변화의 컴포넌트들을 제거 또는 완화시키며 정적 채널들을 위해 개발된 주파수 영역 등화(FDE) 구조들이 시변 채널들에서 유효해 지도록 원형 컨볼루션을 복구한다. 시변 채널들에 대해서, 주파수 영역 등화에 의해 의존하는 시간 영역과 주파수 영역 사이의 대응하는 등가성의 열화를 나타내는 벡터가 결정된다. 따라서, 시간 변화 취소 프로세스가 수행되고, 상기 벡터는 주파수 영역 등화로부터 반복적으로 차감된다. 이러한 방식으로, 주파수 영역 등화 성능은 시변 채널들의 존재하에서 개선된다.

Description

시변 채널들에 대한 주파수 영역 등화{FREQUENCY DOMAIN EQUALIZATION FOR TIME VARYING CHANNELS}
본 출원은 2007년 3월 17일 출원된 발명의 명칭이 "FREQUENCY DOMAIN EQUALIZATION FOR TIME VARYING CHANNELS"인 미국 임시특허출원 번호 제60/895,452호에 우선권을 주장하며, 이 출원의 전체 내용은 참조에 의해 본원에 통합된다. 본 출원은 또한 2007년 3월 19일 출원된 발명의 명칭이 "FREQUENCY DOMAIN EQUALIZATION FOR TIME VARYING CHANNELS"인 미국 임시특허출원 번호 제60/895,583호에 우선권을 주장하며, 이 출원의 전체 내용은 참조에 의해 본원에 통합된다.
다음의 기재는 일반적으로 통신 시스템들에 관한 것이고 보다 구체적으로는, 시변 채널들의 존재시에 주파수 영역 등화를 적용하면서 이러한 채널들의 효과들을 완화시키는 것에 관한 것이다.
무선 통신 시스템들은 예를 들어, 음성, 데이터 등과 같은 다양한 형태의 통신 콘텐츠를 제공하기 위해 널리 이용된다. 이러한 시스템들은 이용가능한 시스템 리소스들(가령, 대역폭, 송신 전력)을 공유함으로써 다수의 사용자들과의 통신을 지원할 수 있는 다중-액세스 시스템들일 수 있다. 이러한 다중-액세스 시스템들의 예는 코드 분할 다중 접속(CDMA) 시스템, 시분할 다중 접속(TDMA) 시스템, 주파수 분할 다중 접속 시스템(FDMA), 3GPP 롱텀 에볼루션(LTE), 직교 주파수 분할 다중 접속(OFDMA) 시스템을 포함한다.
일반적으로, 무선 다중-액세스 통신 시스템들은 순방향 링크 및 역방향 링크상에서의 송신들을 통해 하나 이상의 기지국과 통신하는 다수의 무선 단말들에 대한 통신을 동시에 지원할 수 있다. 순방향 링크(또는 다운링크)는 기지국들로부터 단말들로의 통신 링크를 지칭하고, 역방향 링크(또는 업링크)는 단말들로부터 기지국들로의 통신 링크를 지칭한다. 이러한 통신 링크는 단일-입력-단일-출력 시스템, 다중-입력-단일-출력 시스템, 다중-입력-다중-출력(MIMO) 시스템을 통해 성립될 수 있다.
MIMO 시스템은 데이터 송신을 위한 다수의(NT) 송신 안테나들 및 다수의(NR) 수신 안테나들을 이용한다. NT개의 송신 안테나 및 NR개의 수신 안테나에 의해 형성된 MIMO 채널은 공간 채널들이라고도 불리는 NS개의 독립 채널들로 분해될 수 있다(여기서, NS≤min{NT, NR}). 일반적으로, 각각의 NS개의 독립 채널들은 차원(dimension)에 대응한다. 다수의 송신 안테나 및 수신 안테나에 의해 생성된 부가적인 차원들(dimensionalities)이 이용된다면, MIMO 시스템은 개선된 성능을 제공할 수 있다(예, 더 많은 처리량 및/또는 더 나은 신뢰성).
MIMO 시스템은 또한 시분할 듀플렉스(TDD) 및 주파수 분할 듀플렉스(FDD) 시스템을 지원한다. 시 분할 듀플렉스(TDD) 시스템에서, 상호주의 원리가 역방향 링크 채널로부터의 순방향 링크 채널의 추정을 가능하게 하도록 순방향 및 역방향 링 크 송신들은 동일한 주파수 영역상에서 이루어진다. 이는 다수의 안테나들이 액세스 포인트에서 이용가능할 때, 액세스 포인트가 순방향 링크상에서의 송신 빔-형성 이득을 추출할 수 있게 해준다.
최근에는, 긴 임펄스 응답을 갖는 다중-경로 채널들의 송신들에 대해 보상하기 위하여 주파수 영역 등화(FDE)가 연구되어 왔다. 동작들을 시간 영역에서 주파수 영역으로 변환시킴으로써, FDE는 수신기 복잡성을 감소시킬 수 있다. FDE의 개발은 시간 영역에서의 두 시퀀스들의 순환 컨볼루션(circular convolution)과 이들의 주파수 응답들의 원소 연산( element - wise ) 곱 사이의 대응성에 기초한다. 정보 데이터가 주기적이도록 강제되고 채널이 하나의 데이터 블록의 송신 동안 정적(준-정적(quasi-static) 채널들이라고 지칭됨)이라고 가정된다면, 수신된 신호의 스펙트럼은 채널의 주파수 응답과 송신된 데이터의 스펙트럼의 곱과 동일하다. 그러나, 시간 영역과 주파수 영역 사이의 등가성은 채널이 정적이 아니면 더 이상 참이 아니다. 시변 채널에 기인한 비등가성은 FDE의 성능을 열화시킨다. 결과적으로, FDE는 시변 채널들에 의해 발생되는 변형을 대처하기에는 효과적이지 않다.
시변 채널들에서의 성능의 열화에도 불구하고, FDE들은 채널 시간 변화에 대한 보정 없이 시변 채널이 실제로 정적이라는 무조건적 가정하에서 적용된다.
하기 설명은 청구된 내용의 몇몇 양상들의 기본적인 이해를 제공하기 위해서 간략화된 요약을 제공한다. 본 요약은 포괄적인 개요는 아니며, 청구된 내용의 핵심/중요 엘리먼트들을 식별하거나, 범위를 서술하고자 할 의도도 아니다. 그 유일한 목적은 후에 제시되는 상세한 설명에 대한 도입부로서 간략화된 형태로 일부 개념들을 제공하기 위함이다.
다중-입력-단일-출력 시스템 또는 다중-입력-다중-출력(MIMO) 시스템에 대한 효율적이고 정밀한 주파수 영역 등화를 가능하게 하는 반복적 프로세스 및 컴포넌트들이 제공된다. 정적 채널들을 위해 개발된 주파수 영역 등화(FDE) 구조들이 시변 채널들에서 유효해 지도록, 다양한 프로세싱 컴포넌트들이 채널 변화의 컴포넌트들을 제거 또는 완화시킨다. 따라서, 시변 채널들에서의 주파수 영역 등화의 비트 에러율(BER) 성능이 개선된다. 무선 신호들이 고속 푸리에 변환들과 같은 입력 컴포넌트들에 의해 처음으로 프로세싱되고, 이 경우 최초의 주파수 영역 등화가 실행된다. 수신된 무선 신호들은, 예를 들어 주파수 영역 등화를 위한 기저값을 결정하기 위하여, P-포인트 이산 푸리에 변환을 통해 시간 영역으로부터 주파수 영역으로 변환된다. 그러나, 시변 채널들에 대해서는, 주파수 영역 등화에 의해 의존하는 시간 영역과 주파수 영역 사이의 대응하는 등가성의 열화를 나타내는 벡터 β가 결정된다. 따라서, 시간 변화 취소 프로세스가 수행되고, β는 주파수 영역 등화로부터 반복적으로 차감된다. 이러한 방식으로, 주파수 영역 등화 성능은 시변 채널들의 존재하에서 개선된다.
전술한 그리고 관련된 목적들의 성취를 위하여, 소정의 예시적인 양상들이 다음의 기재 및 첨부된 도면들과 관련하여 본원에서 기재된다. 이러한 양상들은, 그러나, 청구된 내용의 원리들이 사용될 수 있는 단지 몇 개의 다양한 방법들을 나타내며 청구된 내용은 모든 이러한 양상들 및 이들의 등가물들을 포함하고자 하려는 의도이다. 다른 이점들 및 신규한 특징들은 도면들과 결합하여 고려될 때 다음의 상세한 설명으로부터 명백해질 것이다.
도 1은 통신 환경에서 주파수 영역 등화를 도시하기 위해 제공된 시스템의 하이 레벨 블록 다이어그램이다.
도 2는 주파수 영역 등화 방법의 하이 레벨 흐름도이다.
도 3 및 도 4는 주파수 영역 등화에 대한 예시적인 프로세싱 시스템들이다.
도 5 및 도 6은 주파수 영역 등화에 대한 예시적인 성능 데이터를 도시한다.
도 7 및 도 8은 주파수 영역 등화를 위한 예시적인 논리 모듈들을 도시한다.
도 9는 주파수 영역 등화를 사용하는 예시적인 통신 장치를 도시한다.
도 10 및 도 11은 주파수 영역 등화와 함께 사용될 수 있는 예시적인 통신 시스템들을 도시한다.
무선 통신 시스템에서 주파수 영역 등화를 용이하게 하기 위한 시스템들 및 방법들이 제공된다. 일 양상에서, 무선 통신 시스템을 위한 방법이 제공된다. 상기 방법은 채널의 시간 변화를 추정하는 단계 ― 상기 채널을 통해 상기 무선 통신 시스템이 송신함 ―를 포함한다. 이는 또한 상기 무선 통신 시스템에 의해 송신되는 신호로부터 상기 채널의 상기 추정된 시간 변화를 감소시키는 단계를 포함한다. 일 양상에서, 시간 변화 컴포넌트들은 주파수 영역 등화 계산들로부터 반복적으로 차감될 수 있다.
또한, 다양한 양상들이 단말과 관련하여 설명된다. 단말은 시스템, 유저 디바이스, 가입자 유닛, 가입자국, 이동국, 이동 디바이스, 원격국, 원격 단말, 액세스 단말, 사용자 단말, 사용자 에이전트, 또는 사용자 장비로 지칭될 수 있다. 사용자 디바이스는 셀룰러 전화, 코드리스 전화, 세션 개시 프로토콜(SIP) 전화, 무선 로컬 루프(WLL) 스테이션, 개인 휴대 단말기(PDA), 무선 연결 능력을 구비한 핸드헬드 장치, 단말 내부의 모듈, 호스트 디바이스(예, PCMCIA 카드)에 장착되거나 그 내부에 내장될 수 있는 카드, 또는 무선 모뎀에 연결되는 다른 처리 장치일 수 있다.
또한, 청구된 내용의 양상들은 청구된 내용의 다양한 양상들을 실시하기 위하여 컴퓨터 또는 컴퓨팅 컴포넌트들을 제어하도록 소프트웨어, 펌웨어, 하드웨어, 또는 이들의 임의의 조합을 생성하는 표준 프로그래밍 및/또는 엔지니어링 기술을 사용한 방법, 장치, 또는 제조 물품으로 구현될 수 있다. 용어 "제조 물품(article of manufacture)"은 임의의 컴퓨터 판독가능한 장치, 캐리어, 또는 매체로부터 액세스 가능한 컴퓨터 프로그램을 포함하도록 본원에서 사용된다. 예를 들어, 컴퓨터 판독가능한 매체는 자기 저장 장치(예를 들면, 하드 디스크, 플로피 디스크, 자기 스트립, 등), 광학 디스크(예를 들면, CD, DVD, 등), 스마트 카드, 및 플래시 메모리 장치(예를 들면, 카드, 스틱, 키 드라이브, 등)를 포함할 수 있지만, 이들로 제한되는 것은 아니다. 또한, 반송파는 음성 메일을 송수신하는 데 사용되거나 셀룰러 네트워크와 같은 네트워크를 액세스하는 데 사용되는 데이터와 같은 컴퓨터 판독가능 전자 데이터를 반송하기 위하여 사용될 수 있음이 이해되어 야 한다. 물론, 당업자는 본원에 기재된 것의 범위 또는 사상을 일탈하지 않고 이러한 구조에 많은 변경들이 이루어질 수 있음을 이해할 것이다.
이제 도 1을 참조하면, 시스템(100)은 통신 환경을 위한 주파수 영역 등화를 도시한다. 시스템(100)은 다중-입력-단일-출력 시스템 또는 다중-입력-다중-출력(MIMO) 시스템(또는 후술하는 다른 유형의 시스템들)에 대한 효율적이고 정밀한 주파수 영역 등화를 가능하게 하는 컴포넌트들이 제공되는 반복적 프로세스 또는 다단계 프로세스를 제공한다. 정적 채널들을 위해 개발된 주파수 영역 등화(FDE) 구조들이 시변 채널들에서 유효해 지도록, 다양한 프로세싱 컴포넌트들이 채널 변화의 컴포넌트들을 제거, 완화, 또는 감소시키며 순환 컨볼루션을 복구한다. 따라서, 시변 채널들에서의 주파수 영역 등화의 비트 에러율(BER) 성능이 개선된다. 무선 신호들(110)(심볼들 및 다른 구조들 포함)이 고속 푸리에 변환들과 같은 입력 프로세싱 컴포넌트들(120)에 의해 처음으로 프로세싱되고, 이 경우 최초의 주파수 영역 등화(FDE)는 주파수 영역 등화 컴포넌트(130)에 의해 실행된다. 수신된 무선 신호들(110)은, 예를 들어 130에서의 주파수 영역 등화를 위한 기저값을 결정하기 위하여, P-포인트 이산 푸리에 변환을 통해 시간 영역으로부터 주파수 영역으로 변환된다.
그러나, 시변 채널들에 대해서는, 주파수 영역 등화 컴포넌트(130)에 의존하는 시간 영역과 주파수 영역 사이의 대응성의 열화를 나타내는 값 β가 결정된다. 시간 변화 취소 컴포넌트(140)는 130에서의 주파수 영역 등화로부터 β를 반복적으로 차감시킴으로써 β의 효과를 제거하거나 감소시킨다. 이러한 방식으로, 주파수 영역 등화 성능은 시변 채널들의 존재하에서 개선된다. 도시된 것처럼, 임계 컴포넌트(150)는 β의 효과들이 제거되거나, 감소되거나, 목표값으로 최소화된 시기를 결정하기 위하여 사용될 수 있다. 예를 들어, 신호 품질 또는 다른 성능 파라미터가 임계값에 의해 설정된 목표값을 초과하거나 목표값 미만인 시기를 결정한다. β가 목표값으로 감소된 후, 출력(160)은 각각의 수신기(이하에 도시 및 기재)에 대하여 생성된다.
일 양상에서, 시스템(100)은 채널 변화의 컴포넌트를 감소시키고 순환 컨볼루션을 복구하여, 정적 채널들에 대해 개발된 FDE 구조들은 시변 채널들에서 유효하게 된다. 일 양상에 다르면, 시변 채널들에서의 주파수 영역 등화의 비트 에러율(BER) 성능이 개선된다. 시변 채널들은 FDE 실행의 실질적인 열화를 발생시키는 신호 변화들을 생성한다. 시간 영역에서의 수신된 신호는 다음과 같이 주어진다:
Figure 112009063838652-PCT00001
(1)
여기서,
ρ는 전파 경로들의 수를 나타낸다.
h l (n)은 블록내의 시간 인덱스 n에서의 l번째 경로의 채널 계수이다.
τ l 은 제1 경로에 대한 l번째 경로의 지연이다.
{s n }은 송신된 신호들의 시퀀스이다. FDE의 사용을 위하여, {sn}은 사이클릭 프리픽스 또는 유니크 워드 확장(unique word extension)에 의해 주기적이되도 록 강제된다.
{r n }은 수신된 신호이다.
{η n }은 수신된 노이즈 및 다른 간섭이다.
수신된 신호들(110)을 주파수 영역으로 변환하기 위하여, P-포인트 이산 푸리에 변환(DFT)이 수신된 신호들 {r n }에 적용되며, 이는 다음과 같다:
Figure 112009063838652-PCT00002
(2)
만약 채널이 DFT 프로세싱 블록의 주기 동안 정적이라면, h l (n)n에 대해 독립적이다. 그러나, h l (n)의 값들은 상기 수학식 2에서 시변 채널에 대해 변한다. 용어 h l (n)은 다음과 같이 시불변 양 및 시변 양의 항으로 분해될 수 있다:
Figure 112009063838652-PCT00003
(3)
여기서, h l (0)은 데이터 블록내의 시간 인덱스 0에서 l번째 경로의 채널 이득의 값을 나타낸다. 이 항은 하나의 블록내의 채널 임펄스 응답의 상수(시불변) 컴포넌트를 나타낸다.
f l (n)은 l번째 경로의 시간 n 및 시간 0에서의 채널 계수들 간의 차이다. 이 항은 l번째 경로의 시간 0로부터 시간 n에서의 시간 변화의 양을 나타낸다. f l (n)의 계산은 만약 h l (n)h l (0)의 값들을 추정할 수 있다면 식 3으로부터 추론될 수 있다
Figure 112009063838652-PCT00004
.
전술한 식 2 및 식 3으로부터, 주파수 영역에서의 수신된 신호는 다음과 같이 쓰여질 수 있다:
Figure 112009063838652-PCT00005
(4)
식 4의 우변의 첫번째 항 α는 다음과 같이 간략화될 수 있다:
Figure 112009063838652-PCT00006
(5a)
다음, 채널 경로 지연들 τ l 이 시간 샘플 포인트들로 정렬된다고 가정함으로써 표기법이 약간 변경되고, 따라서 식 5b에서 τ l l로 대체한다.
Figure 112009063838652-PCT00007
(5b)
실제로 경로 지연들은 통상 시간 샘플들과 정렬되지 않지만, 유사한 최종 결과를 얻기 위해 정렬되지 않은 경로들을 다수의 정렬된 서브경로들로 분해할 수 있음에 주의하여야 한다. 따라서, 표기법 변경은 설명의 일반성을 감소시키지 않는다. 따라서, ρ는 여전히 경로들의 수를 나타내지만 이 포인트로부터의 ρ는 전술한 서브-경로 분해를 포함하는, 채널의 지연 확산을 커버하는 샘플 포인트들의 총 수를 의미한다고 이해된다. {s n }은 주기적이기 때문에, 다음의 등식은 참이다.
Figure 112009063838652-PCT00008
(4)
따라서, α는 다음과 같이 다시 쓰여진다:
Figure 112009063838652-PCT00009
(5)
여기서,
Figure 112009063838652-PCT00010
(6)
식 (4)에서 제 2 항, β는 다음과 같이 다시 쓰여진다:
Figure 112009063838652-PCT00011
(7)
두 시퀀스 {f l (n)}{ s n -l }의 곱의 이산 푸리에 변환인
Figure 112009063838652-PCT00012
(8)
에 대하여, 식 (4)의 간략한 표현은 다음과 같이 주어질 수 있다:
Figure 112009063838652-PCT00013
(11)
채널이 하나의 DFT 프로세싱 블록 주기 내에서 상수라고 가정되면(예, f l (n) =0), β는 시간 영역 내의 컨볼루션과 주파수 영역 내의 원소 연산( element - wise ) 곱 사이의 대응성이 유지된다. 따라서, 주파수 영역 등화의 개념이 적용될 수 있다. 시변 채널에 대하여, β는 시간 영역 및 주파수 영역 사이의 대응하는 등가성을 파괴하고, 주파수 영역 등화의 성능이 열화될 수 있다. 양 β의 값은 채널 변화의 양에 의존한다. 따라서, 이동성이 증가함에 따라, β는 현저한 값을 가진다.
채널의 시간 변화로 인해 항 β를 제거하거나 실질적으로 감소시키는 것이 바람직지만, 이렇게 하면 채널 계수들뿐만 아니라 송신된 신호들 sn의 사전 지식도 필요로 한다. 도 2와 관련하여 이후에 보다 상세히 기재될 것처럼, 채널의 시간 변화에 의해 발생되는 영향을 감소시키도록 다단계 등화의 예시적인 양상이 사용된다. β를 추산하고 제거하는 다른 방법들이 또한 사용될 수도 있다.
시변 채널들에 대하여, 수신된 신호들의 주파수 응답이 일반적으로 송신된 신호들의 주파수 응답들과 채널 임펄스 응답의 곱과 더 이상 동일하지 않기 때문에 식 (11)에서 β의 존재로 인해 주파수 영역 등화는 개념적으로 적용할 수 없다. FDE가 효율적으로 처리될 수 있도록 β를 제거하거나 완화시키는 것이 바람직하다. 전술한 식 (9) 및 식 (10)으로부터, β의 계산은 다음을 사용한다:
{f l (n)}의 값들: 이는 채널 추정 방법에 의해 획득될 수 있다. 따라서, 주어진 채널 추정 방법 알고리즘을 이용하여, h l (n)h l (0)을 획득할 수 있다. f l (n)의 추정은 다음과 같이 주어질 수 있다:
Figure 112009063838652-PCT00014
(9)
송신된 시퀀스{s n-l }의 값들: 실제로, 이 값들은 알려져 있지 않다; 그러나, 시변 컴포넌트들에 대한 어떠한 처리도 없이 시변 채널에 FDE를 적용함으로써 획득되는 임시의 신호 추정들이 사용될 수 있다.
전술한 것처럼, β를 추정하는 것은 다른 기술들을 통해 실시될 수 있다. 예를 들어, 신호에 대한 시간 변화를 추정하기 위하여, 공지된 파일럿 톤(tone)이 파일럿 톤들을 반송하는 신호들의 파일럿 부분으로부터 차감될 수 있다. 파일럿 톤은 알려져 있고, 따라서 β의 추정을 위한 좋은 소스이지만, 신호의 데이터-반송 부분들을 명백히 포함하는 것이 아니라 전체 신호의 작은 부분을 포함하므로, 데이터의 실제 디코딩에 대해 신호들의 덜 관련된 부분들에 대한 β의 추정이다.
두 단계의 또 다른 양상이 제공될 수도 있다. 제1 단계에서, 주파수 영역 등화가 송신된 신호들의 임시의 추정들을 획득하기 위하여 시변 채널들에 대해 수행된다. 이러한 임시적인 검출된 심볼들 및 채널 추정을 이용하여, β의 취소가 가능하다. 제2 단계에서, β의 취소 이후에, 주파수 영역 등화가 적어도 이후의 시간에 수행된다.
시스템(100)은 액세스 단말 또는 모바일 디바이스와 함께 사용될 수 있고, 예를 들면, SD 카드, 네트워크 카드, 무선 네트워크 카드, 컴퓨터(랩탑, 데스크탑, PDA 포함), 휴대폰, 스마트 폰, 또는 네트워크에 액세스하기 위하여 이용될 수 있 는 임의의 적절한 단말과 같은 모듈일 수 있다. 단말은 액세스 컴포넌트(비도시)를 이용하여 네트워크에 액세스한다. 일 예에서, 단말과 액세스 컴포넌트 사이의 접속은 본질적으로 무선일 수 있고, 여기서 액세스 컴포넌트들은 기지국일 수 있고 모바일 디바이스는 무선 단말이다. 예를 들어, 단말과 기지국들은, 시분할 다중 접속(TDMA), 코드 분할 다중 접속(CDMA), 주파수 분할 다중 접속(FDMA), 직교 주파수 분할 다중화(OFDM), FLASH OFDM, 직교 주파수 분할 다중 접속(OFDMA)을 포함하지만, 이에 제한되지 않는 임의의 적절한 무선 프로토콜을 이용하여 통신할 수 있다.
액세스 컴포넌트들은 무선 네트워크 또는 유선 네트워크와 관련된 액세스 노드일 수 있다. 이러한 목적을 위하여, 액세스 컴포넌트들은, 예를 들어, 라우터, 스위치, 등일 수 있다. 액세스 컴포넌트는 다른 네트워크 노드들과 통신하기 위한 하나 이상의 인터페이스들, 예를 들어, 통신 모듈을 포함할 수 있다. 또한, 액세스 컴포넌트는 셀룰러 타입 네트워크내의 기지국(또는 무선 액세스 포인트)일 수 있고, 여기서 기지국들(또는 무선 액세스 포인트들)은 다수의 가입자들에게 무선 커버리지 영역들을 제공하기 위해 이용된다. 이러한 기지국들(또는 무선 액세스 포인트들)은 하나 이상의 셀룰러 폰들 및/또는 다른 무선 단말들에 연속된 커버리지의 영역들을 제공하도록 배열될 수 있다.
도 2를 참조하면, 주파수 영역 등화 방법(200)이 도시된다. 설명의 간략화를 위하여, 방법들(및 본원에 기재된 다른 방법들)은 일련의 행위들로 도시되고 기재되지만, 일부 행위들은 하나 이상의 실시예들에 따라서 본원에 도시되고 기재된 것과는 다른 행위들과 동시에 및/또는 상이한 순서들로 발생할 수 있기 때문에, 방법은 행위들의 순서에 의해 제한되지 않음이 이해되고 인식되어야 한다. 예를 들어, 당업자는 방법이 상태도와 같은 상호관련된 일련의 상태들 또는 이벤트들로서 대안적으로 표현될 수 있음을 이해하고 인식할 것이다. 또한, 모든 도시된 행위들이 청구된 내용에 따라 방법을 실시하기 위해 이용되는 것은 아니다.
구체적인 방법(200)으로 진행하기 전에, 몇몇 일반적인 주파수 영역 프로세스 행위들이 기재된다:
행위 1: 임시의 심볼 추정들
Figure 112009063838652-PCT00015
을 획득하기 위하여 시변 채널들에 대해 FDE를 적용한다. 이는 송신된 신호들의 임시 추정들을 생성한다. 따라서, 실질적으로 모든 형태의 주파수 영역 등화 구조들이 이 포인트에서 관여될 수 있다. 주파수 영역 등화는 시불변 채널이 아닌 시변 채널에 적용되기 때문에, 오류 심볼 추정들이 발생할 수 있다.
행위 2: 행위 1에서의 임시의 심볼 추정들로부터 β를 계산한다.
Figure 112009063838652-PCT00016
(10)
행위 3: 전술한 식 (4)에서 R k 로부터 β를 뺀다. β의 추정이 수용가능하면, R k 는 α가 될 것이다. 그러나, 단계 2에서 이상적인 데이터 검출을 성취하지 못할 수 있고 간섭 항목의 부분적인 양이 제거된다.
Figure 112009063838652-PCT00017
(11)
행위 4: 심볼 추정들을 획득하기 위하여 행위 3에서 계산된 R k 에 주파수 영역 등화를 적용한다. 이 행위는 행위 2와 유사하다. β의 영향이 부분적으로 감소되기 때문에, 개선된 심볼 추정들이 이 행위에서 성취될 수 있다. 따라서, 전체적인 주파수 영역 등화의 성능이 개선된다.
이제 도 2를 참조하면, 전술한 일반적인 행위들 1 내지 4와 유사한 상세한 프로세스(200)가 도시된다. 프로세스(200)의 210으로 진행하면, 시간 영역으로부터 주파수 영역으로 신호들을 변환하기 위하여 FFT가 입력 무선 신호들 r n 에 대하여 실행된다. 212에서, 반복 플래그는 0으로 리셋되고 이러한 플래그는 프로세스(200)가 완료된 시기(예, 임계 조건이 만족된 시기)를 결정하기 위하여 시험될 것이다. 220에서, 주파수 영역 등화가 210으로부터의 송신된 데이터에 대해 실행된다. 224에서, 심볼 검출 시퀀스가 수행된다. 이 시퀀스는 212의 플래그가 상태들을 변경하게 할 수 있다. 플래그가 상태들을 변경했는지 여부를 결정하기 위한 테스트가 230에서 실행된다. 플래그가 변경되었다면(예, 플래그가 여전히 0), 프로세스(200)는 종료되고 등화된 데이터는 234에서 출력된다. 만약 플래그가 230에서 상태들을 변경하지 않았다면(예, 플래그 = 0), 프로세스는 플래그를 1로 설정하기 위하여 240으로 진행한다. 이 경우, 이는 프로세스(200)가 두 번 실행되는 것을 가능하게 한다.
그러나, 프로세스(200)는 원한다면 두 번 이상 실행될 수 있음이 인식되어야 한다. 예를 들어, 실행 플래그가 원하는 품질까지 변하지 않는 신호 품질에 대한 임계치 또는 다른 파라미터가 설정될 수 있을 것이다. 또한, 230에서의 테스트는 프로세스(200)가 더 많은 회수를 실행하도록 하는 1보다 큰 플래그 번호에 대한 것일 수 있다. 250에서, 유니크 워드가 생성되며, 데이터 프리픽스(prefix)들 및 서픽스(suffix)들이 프로세스 데이터에 첨부될 수 있다. 이런 형태의 데이터는 주어진 신호를 주기적인 것처럼 만드는 것에 의해 FFT의 성능을 보조한다. 사이클릭 프리픽스들이 또한 250에서 사용될 수 있다. 260에서, β 계산이 전술한 것처럼 수행된다. 270에서, 시간 변화 취소가 수행되며, 여기서 β는 이전의 주파수 영역 등화 계산들로부터 차감된다. 취소 이후에, 프로세스는 다시 이후의 주파수 영역 등화를 위해 220으로 돌아간다. 채널 추정이 280에서(예, 최초 프로세싱 동안 또는 백그라운드에서) 수행되고 프로세스(200)에 의해 사용됨에 주의하여야 한다.
이제 도 3 및 도 4를 함께 참조하면, 전술한 컴포넌트들 및 방법들에 따른 예시적인 시스템들(300 및 400)은 주파수 영역 등화 프로세싱을 도시한다. 도 3과 관련하여, 수신된 무선 신호들(310)은 직렬 대 병렬(serial to parallel) 컨버터(312)를 통해 처리되고, DFT 컴포넌트(320)를 통해 변환된다. IDFT가 340에서 수행되기 전에 위상 및 진폭 조정들이 330 및 334에서 이루어진다. 병렬 대 직렬 컨버터가 350에서 사용되고, 역확산기(360)가 출력(370)을 생성한다. 도 4와 관련하여, 하이브리드 접근법이 도시된다. 프로세싱 블록(410)은 도 3에 기재된 유사한 기능을 제공한다. 피드백 요소가 부가되고, 프로세싱 블록(410)으로부터의 출력이 다른 프로세싱된 데이터와 420에서 합산된다. 역확산기(430)는 중간 출 력(440)을 생성하고, 상기 출력은 β를 생성하는 재확산기 컴포넌트를 통해 합산기 컴포넌트(420)로 피드백되고, 상기 β는 블록(410)으로부터의 주파수 영역 등화 출력으로부터 420에서 궁극적으로 차감된다. 다음의 기재는 도 3 및 도 4에서 도시된 시스템들(300 및 400)에 대한 추가적인 배경을 제공한다.
일 양상에서, 시변 채널들에서의 주파수 영역 등화(FDE)에 대해 전술된 방법들의 성능은 컴퓨터 시뮬레이션을 이용하여 평가될 수 있다. 예를 들어, DS-CDMA 시스템은 시뮬레이션에서 고려되는 예시적인 시스템이다. 양상들은 비확산 스펙트럼 시스템들에도 또한 적용될 수 있다. 레커멘데이션(Recommendation) ITU-R M.1225에 기재된 차량 환경의 채널 B가 고려된다. 칩 속도는 3x cdm2000에서와 같이 3.6864Mbps로 선택된다; 다중-경로들 사이의 지연은 기본적인 칩 간격(
Figure 112009063838652-PCT00018
)의 정수배라고 가정되고; 수정된 채널 B의 6개의 독립적인 경로들에 대한 전력 지연 프로파일은 이하의 표 1에 열거된다. 이상적인 채널 추정을 가정하고 QPSK 변조를 이용하는 코딩되지 않은 시스템의 성능을 고려하자. 16-ary 월시 코드가 확산 코드로서 사용된다. 1024의 FFT 크기를 이용하여, 하나의 송신 블록에서 변조된 심볼들의 수는 64개이다. 채널 B의 최대 초과 지연은 20054/271=74 칩들로 확장하고 80 칩들의 PN 시퀀스는 각각의 데이터 블록으로 삽입된다. 결과적으로, 정보-포함 심볼들의 수는 59개이다. 시뮬레이션 파라미터들은 이하의 표 2에 요약된다.
Figure 112009063838652-PCT00019
표 1: 차량 환경에 대한 탭핑된-지연-라인 파라미터들
Figure 112009063838652-PCT00020
표 2: 시뮬레이션 파라미터들
성능 개선이 주파수 영역 선형 등화(FD-LE) 및 하이브리드 결정 피드백 등화(HDFE)를 이용한 알고리즘에 대해 증명되었다. DS-CDMA에 대한 FD-LE 구성이 도 3에 도시된다.
선형 등화 계수들{W k }은 다음과 같이 주어진다:
Figure 112009063838652-PCT00021
(12)
여기서 {H k }는 채널 임펄스 응답의 DFT이고,
Figure 112009063838652-PCT00022
는 백색 노이즈 편차(variance)이다.
FD에서의 DFE의 한 가지 가능한 실현은 하이브리드 구조이며, 여기서 피드-포워드 필터가 주파수 영역에서 실시되며 피드백 필터가 시간 영역에서 실시된다. 칩-레벨 HDFE가 도 4에 도시된다. 다른 적절한 구조들 및 실현들이 가능함이 이해 되어야 한다.
도 5 및 도 6을 함께 참조하면, 예시적인 주파수 영역 성능 데이터가 도시된다. 전술한 피드백 필터 계수들{β i }은 다음과 같은 선형 방정식의 세트를 푸는 것에 의해 찾을 수 있다:
Figure 112009063838652-PCT00023
(13)
여기서, N b 는 피드백 필터의 탭들의 수이고, λ m 은 다음과 같이 정의된다
Figure 112009063838652-PCT00024
(14)
피드-포워드 필터 계수들은 다음과 같이 표현된다
Figure 112009063838652-PCT00025
(15)
예시적인 방법의 양상들이 60km/h 및 120km/h의 속도로 여행하는 모바일 유닛에 대해 평가되었고 이상적인 채널 추정이 가정된다. 시뮬레이션은 도 5의 500 및 510에 도시된다. 중간 속도 페이딩 채널(v=60km/h)에서, 작은 성능 이득이 관측된다. 적당한 이득에 대한 이유는 이 속도 및 선택된 FFT 크기에서, 채널 이득들이 하나의 데이터 블록에 대하여 많이 변하지 않기 때문이다. 전술한 방정식 (4)에서의 β의 효과는 거의 무시할만하다. 그러나, 모바일 유닛이 120km/h의 속도로 이동할 때, 하나의 블록 지속기간 동안 채널 이득들이 상수로 유지된다는 가 정이 심하게 위배된다. β의 양을 부분적으로 제거시킴으로써, 제안된 접근법은 FDE 구조들; FD-LE 및 칩-레벨 HDFE 모두에 대해 전통적인 FDE보다 더 나은 성능을 보여준다. 시변 채널에서 FDE를 위한 방법의 성능은 제1 단계에서 검출된 데이터의 정확성에 의존할 수 있기 때문에, 칩-레벨 HDFE는 고속 페이딩 채널에서의 FD-LE보다 더 많은 성능 이득을 제공한다.
도 6의 차트들(600 및 610)은 실용적인 채널 추정에 기초한 알고리즘의 성능을 도시한다. 유니크 워드(UW) 송신 포맷에 대하여, UW는 각각의 블록의 끝에 부가되고 채널을 추정하기 위하여 파일럿 신호들로서 사용될 수 있다. 보다 정확한 채널 추정을 획득하기 위하여, UW의 길이는 288 칩들로 확장될 수 있다. 보간이 시간-다중화된 파일럿 심볼 구조에 대한 데이터 필드에서 채널 계수들을 획득하기 위해 사용될 수 있다. 따라서, 채널 추정은 두 단계들을 통해 수행될 수 있다: 첫째, UW 위치에서의 채널은 다단계 직렬 간섭 취소 접근법을 이용하여 추정된다. 둘째, 싱크 보간법(sync interpolation) 기술이 이용되어 데이터 필드에서의 채널 이득들을 획득한다. 보간법 시간 계수는 채널 조건들에 대하여 이루어진 가정들에 의존할 수 있다. 예를 들어, 최대 사용자 속도가 120km/h이고 반송파 주파수가 2GHz라면, 중심과 제1 널(first null) 사이에서 4.5ms 이하를 갖는 싱크 보간기가 적절할 수 있다. 임의의 다른 적절한 채널 추정 기법이 사용될 수도 있다.
이제 도 7 및 도 8을 함께 참조하면, 단말, 동작기 네트워크, 액세스 노드들, 및 이들간의 트래픽 플로우들와 관련하여 명령하는 시퀀스에 관한 시스템들이 제공된다. 시스템들은 일련의 상호관련된 기능 블록들로 표현되며, 이는 프로세 서, 소프트웨어, 하드웨어, 펌웨어, 또는 임의의 적절한 이들의 조합에 의해 구현되는 기능들을 나타낼 수 있다.
도 7을 참조하면, 모바일 디바이스로부터의 통신들을 용이하게 하는 시스템이 도시된다. 시스템(700)은 디바이스에서 시간 변화를 결정하기 위한 논리 모듈(702) 및 디바이스에서 주파수 영역 등화를 결정하기 위한 논리 모듈(704)를 포함한다. 시스템(700)은 또한, 디바이스에서 주파수 영역 등화로부터 시간 변화를 감소시키기 위한 논리 모듈(706)을 포함한다.
이제 도 8을 참조하면, 기지국으로부터의 통신을 용이하게 하는 시스템(800)이 도시된다. 시스템(800)은 액세스 포인트에서의 시간 변화를 결정하기 위한 논리 모듈(802) 및 액세스 포인트에서의 주파수 영역 등화를 결정하기 위한 논리 모듈(804)을 포함한다. 시스템(800)은 또한, 액세스 포인트에서의 주파수 영역 등화로부터 시간 변화를 제거하기 위한 논리 모듈(806)을 포함한다.
도 9는 무선 단말과 같은 무선 통신 장치일 수 있는 통신 장치(900)를 도시한다. 부가적으로 또는 대안으로, 통신 장치(900)는 유선 네트워크내에 존재할 수 있다. 통신 장치(900)는 무선 통신 단말에서 수신된 신호에 대한 시간 변화를 결정하기 위한 명령들을 보유할 수 있는 메모리(902)를 포함할 수 있고, 여기서 시간 변화는 주파수 영역 등화로부터 차감된다. 부가적으로, 통신 장치(900)는 메모리(902)내의 명령들 및/또는 다른 네트워크 디바이스로부터 수신된 명령들을 실행할 수 있는 프로세서(904)를 포함할 수 있고, 여기서 명령들은 통신 장치(900) 또는 관련된 통신 장치를 설정하거나 동작시키는 것과 관련될 수 있다.
이제 도 10을 참조하면, 일 양상에 따른 다중 액세스 무선 통신 시스템이 도시된다. 액세스 포인트(1000)(AP)는 다수의 안테나 그룹들로서, 1004 및 1006을 포함하는 그룹, 1008 및 1010을 포함하는 그룹, 및 1012 및 1014를 포함하는 부가적인 그룹을 포함한다. 도 10에서, 두 개의 안테나들이 각각의 안테나 그룹에 대해 도시되지만, 더 많거나 더 적은 안테나들이 각각의 안테나 그룹에 이용될 수 있다. 액세스 단말(1016, AT)은 안테나들(1012 및 1014)과 통신하며, 안테나들(1012 및 1014)은 순방향 링크(1020)를 통해 정보를 액세스 단말(1016)로 송신하고 역방향 링크(1018)를 통해 정보를 액세스 단말(1016)로부터 수신한다. 액세스 단말(1022)은 안테나들(1006 및 1008)과 통신하며, 안테나들(1006 및 1008)은 순방향 링크(1026)를 통해 정보를 액세스 단말(1022)로 송신하고 역방향 링크(1024)를 통해 정보를 액세스 단말(1022)로부터 수신한다. FDD 시스템에서, 통신 링크(1018, 1020, 1024 및 1026)는 통신을 위해 상이한 주파수를 이용할 수 있다. 예를 들어, 순방향 링크(1020)는 역방향 링크(1018)에 의해 사용되는 것과 상이한 주파수를 사용할 수 있다.
안테나들의 각각의 그룹 및/또는 이들이 통신하도록 지정되는 영역은 종종 액세스 포인트의 섹터라고 한다. 안테나 그룹들 각각은 액세스 포인트(1000)에 의해 커버되는 영역들의 섹터에서 액세스 단말들과 통신하도록 지정될 수 있다. 순방향 링크들(1020 및 1026)을 통한 통신에서, 액세스 포인트(1000)의 송신 안테나들은 상이한 액세스 단말들(1016 및 1024)에 대한 순방향 링크의 신호-대-잡음비를 개선하기 위하여 빔형성(beam-forming)을 이용한다. 또한, 자신의 커버리지를 통 해 무작위로 분산된 액세스 단말들로 송신하기 위해 빔형성을 이용하는 액세스 포인트는, 모든 액세스 단말들로 하나의 안테나를 통해 송신하는 액세스 단말과 비교하여 이웃하는 셀들에 있는 액세스 단말들로 더 적은 간섭을 발생시킨다.
액세스 포인트는 단말들과 통신하기 위해 사용되는 고정국일 수 있고 액세스 포인트, 노드 B, 또는 일부 다른 용어로 지칭될 수도 있다. 액세스 단말은 액세스 단말, 사용자 장비(UE), 무선 통신 디바이스, 단말, 액세스 단말 또는 일부 다른 용어로 지칭될 수 있다.
도 11을 참조하면, MIMO 시스템(1100) 내의 송신기 시스템(1110)(액세스 포인트라고도 알려져 있음) 및 수신기 시스템(1150)(액세스 단말이라고도 알려져 있음)을 도시한다. 송신기 시스템(1110)에서, 다수의 데이터 스트림들에 대한 트래픽 데이터가 데이터 소스(1112)로부터 송신(TX) 데이터 프로세서(1114)로 제공된다. 각각의 데이터 스트림은 각각의 송신 안테나를 통해 송신될 수 있다. TX 데이터 프로세서(1114)는 코드화된 데이터를 제공하기 위해 상기 데이터 스트림에 대하여 선택된 특정 코딩 방식에 기초하여 각각의 데이터 스트림에 대한 트래픽 데이터를 포맷, 코딩, 및 인터리빙한다.
각각의 데이터 스트림에 대하여 코드화된 데이터는 직교 주파수 분할 다중화(OFDM) 기술을 이용하여 파일럿 데이터와 멀티플렉싱될 수 있다. 파일럿 데이터는 일반적으로 공지된 방식으로 처리되는 공지된 데이터 패턴이며 채널 응답을 추정하기 위하여 수신기 시스템에서 사용될 수 있다. 각각의 데이터 스트림에 대한 코드화된 데이터 및 멀티플렉싱된 파일럿은 그 후 변조 심볼들을 제공하기 위해 상 기 데이터 스트림에 대해 선택된 특정 변조 방식(예, BPSK, QPSK, M-PSK, M-QAM 등)에 기초하여 변조(예, 심볼 맵핑)된다. 각각의 데이터 스트림에 대한 데이터 레이트, 코딩, 및 변조는 프로세서(1130)에 의해 수행되는 명령들에 의해 결정될 수 있다.
데이터 스트림들에 대한 변조 심볼들은 그 후 TX MIMO 프로세서(1120)에 제공될 수 있고, 이는 (가령 OFDM를 위해) 변조 심볼들을 추가로 처리할 수 있다. TX MIMO 프로세서(1120)는 그 후 N T 변조 심볼 스트림을 N T 송신기(TMTR, 1122a 내지 1122t)로 제공한다. 일부 실시예에서, TX MIMO 프로세서(1120)는 빔형성 웨이트들을 데이터 스트림들의 심볼들에 그리고 심볼을 송신하고 있는 안테나로 적용한다.
각각의 송신기(1122)는 하나 이상의 아날로그 신호들을 제공하기 위하여 각각의 심볼 스트림을 수신 및 처리하고, MIMO 채널을 통해 송신에 적합한 변조된 신호를 제공하기 위하여 상기 아날로그 신호를 추가로 컨디셔닝(가령, 증폭, 필터링 및 업컨버팅)한다. 송신기들(1122a 내지 1122t)로부터의 N T 변조된 신호들은 그 후 각각 N T 안테나들(1124a 내지 1124t)로부터 송신된다.
수신기 시스템(1150)에서, 송신되고 변조된 신호들이 NR 안테나들(1152a 내지 1152r)에 의해 수신되고 각각의 안테나(1152)로부터의 수신된 신호는 각각의 수신기(RCVR)(1154a 내지 1154r)에 제공된다. 각각의 수신기(1154)는 각각의 수신된 신호를 컨디셔닝(가령, 필터링, 증폭 및 다운컨버팅)하고, 샘플들을 제공하기 위해 컨디셔닝된 신호를 디지털화하고, 대응하는 "수신된" 심볼 스트림을 제공하기 위하여 샘플들을 더 처리한다.
RX 데이터 프로세서(1160)는 그 후 N T "검출된" 심볼 스트림들을 제공하기 위하여 특정 수신기 처리 기술에 기초하여 N R 수신기들(1154)로부터의 N R 수신된 심볼 스트림들을 수신하고 처리한다. RX 데이터 프로세서(1160)는 그 후 데이터 스트림에 대한 트래픽 데이터를 회복하기 위하여 각각의 검출된 심볼 스트림을 복조, 디인터리빙(deinterleave), 및 디코딩한다. RX 데이터 프로세서(1160)에 의한 프로세싱은 송신기 시스템(1110)에 있는 TX MIMO 프로세서(1120) 및 TX 데이터 프로세서(1114)에 의해 수행되는 것에 상보적이다.
프로세서(1170)는 어떤 프리-코딩 매트릭스를 (후술할 것처럼) 이용할 것인지를 주기적으로 결정한다. 프로세서(1170)는 매트릭스 인덱스 부분과 랭크 값 부분을 포함하는 역방향 링크 메시지를 형성할 수 있다. 역방향 링크 메시지는 통신 링크 및/또는 수신된 데이터 스트림에 관한 다양한 형태의 정보를 포함할 수 있다. 역방향 링크 메시지는 그 후 TX 데이터 프로세서(1138)에 의해 처리될 수 있고, 상기 TX 데이터 프로세서(1138)는 또한 변조기(1180)에 의해 변조되고, 송신기(1154a 내지 1154r)에 의해 컨디셔닝되어, 송신기 시스템(1110)으로 다시 송신되는, 데이터 소스(1136)로부터의 다수의 데이터 스트림들에 대한 트래픽 데이터도 수신한다.
송신기 시스템(1110)에서, 수신기 시스템(1150)으로부터의 변조된 신호들이 안테나들(1124)에 의해 수신되고, 수신기들(1122)에 의해 컨디셔닝되고, 복조 기(1140)에 의해 복조되고, RX 데이터 프로세서(1142)에 의해 처리되어 수신기 시스템(1150)에 의해 송신된 역방향 링크 메시지를 추출한다. 프로세서(1130)는 그 후 상기 추출된 메시지를 처리하여 어느 프리코딩 매트릭스가 빔형성 웨이트들을 결정하기 위해 사용될지를 결정한다.
일 양상에서, 논리채널들은 제어 채널들 및 트래픽 채널들로 분류된다. 논리 제어 채널들은 방송 시스템 제어 정보를 위한 DL 채널인 방송 제어 채널(BCCH)을 포함한다. 페이징 제어 채널(PCCH)은 페이징 정보를 전송하는 DL 채널이다. 멀티캐스트 제어 채널(MCCH)은 멀티미디어 방송 및 멀티캐스트 서비스(MBMS) 스케줄링 및 하나 또는 다수의 MTCH들을 위한 제어 정보를 송신하기 위해 사용되는 포인트-대-다중포인트 DL 채널이다. 일반적으로, RRC 접속을 설정한 후, 이 채널은 MBMS (주: 옛 MCCH + MSCH)를 수신하는 UE들에 의해서만 사용된다. 전용 제어 채널(DCCH)은 전용 제어 정보를 송신하고 RRC 접속을 갖는 UE들에 의해 이용되는 포인트-대-포인트 양방향 채널이다. 논리 트래픽 채널들은 사용자 정보의 전송을 위해 하나의 UE에 전용되는, 포인트-대-포인트 양방향 채널인 전용 트래픽 채널(DTCH)을 포함한다. 또한, 멀티캐스트 트래픽 채널(MTCH)은 트래픽 데이터를 송신하기 위한 포인트-대-다중포인트 DL 채널이다.
수송 채널들(Transport Channels)은 DL 및 UL로 분류된다. DL 수송 채널들은 방송 채널(BCH), 다운링크 공유된 데이터 채널(DL-SDCH) 및 페이징 채널 (PCH)을 포함하고, 상기 PCH 채널은 다른 제어/트래픽 채널들을 위해 사용될 수 있는 PHY 리소스들에 맵핑되고 전체 셀을 통해 방송되며, UE 전력 절약(DRX 사이클이 UE 에 대한 네트워크에 의해 표시된다)의 지원을 위한 것이다. UL 수송 채널들은 랜덤 액세스 채널(RACH), 요청 채널(REQCH), 업링크 공유된 데이터 채널 (UL-SDCH) 및 다수의 PHY 채널들을 포함한다. PHY 채널들은 DL 채널들 및 UL 채널들의 세트를 포함한다.
DL PHY 채널들은 다음을 포함한다:
공통 파일럿 채널(Common Pilot Channel, CPICH)
동기화 채널(Synchronization Channel, SCH)
공통 제어 채널(Common Control Channel, CCCH)
공유된 DL 제어 채널(Shared DL Control Channel, SDCCH)
멀티캐스트 제어 채널(Multicast Control Channel, MCCH)
공유된 UL 할당 채널(Shared UL Assignment Channel, SUACH)
확인 채널(Acknowledgement Channel, ACKCH)
DL 물리적 공유된 데이터 채널(DL Physical Shared Data Channel, DL-PSDCH)
UL 전력 제어 채널(UL Power Control Channel, UPCCH)
페이징 표시자 채널(Paging Indicator Channel, PICH)
부하 표시자 채널(Load Indicator Channel, LICH)
UL PHY 채널들은 다음을 포함한다:
물리적 랜덤 액세스 채널(Physical Random Access Channel, PRACH)
채널 품질 표시자 채널(Channel Quality Indicator Channel, CQICH)
확인 채널(Acknowledgement Channel, ACKCH)
안테나 서브셋 표시자 채널(Antenna Subset Indicator Channel, ASICH)
공유된 요청 채널(Shared Request Channel, SREQCH)
UL 물리적 공유된 데이터 채널(UL Physical Shared Data Channel, UL-PSDCH)
광대역 파일럿 채널(Broadband Pilot Channel, BPICH)
일 양상에서, 단일 반송 파형의 낮은 PAR 특성을 보존하는 채널 구조가 제공된다(임의의 주어진 시간에, 채널은 연속적이고 주파수에 있어서 균일하게 이격된다).
위에서 기재된 것은 하나 이상의 실시예들을 포함한다. 물론, 전술한 실시예들을 기재하는 목적을 위한 컴포넌트들 또는 방법들의 모든 도출가능한 조합을 기재하는 것은 가능하지 않지만, 당업자라면 다양한 실시예들의 많은 추가적인 조합 및 순열이 가능함을 인식할 수 있을 것이다. 따라서, 기재된 실시예들은 첨부된 청구범위의 사상과 범위내에 드는 모든 이러한 변경(alterations), 수정(modifications), 및 변화(variations)를 포함하기 위한 의도이다. 또한, 용어 "포함한다(include)"가 상세한 설명 또는 청구범위에서 사용되는 한도에서, 이러한 용어는 "포함한다(comprising)"가 청구항에서 전이구로서 사용될 때 해석되는 것처럼 용어 "포함한다(comprising)"와 유사한 방식으로 포괄적일 것을 의도한다.

Claims (35)

  1. 무선 통신 단말을 위한 방법으로서,
    채널의 시간 변화를 추정하는 단계 ― 상기 채널을 통해 상기 무선 통신 단말이 정보를 송신하거나 수신함 ―; 및
    상기 무선 통신 단말에 의해 송신되거나 수신되는 신호로부터 상기 채널의 상기 추정된 시간 변화를 감소시키는 단계
    를 포함하는 무선 통신 단말을 위한 방법.
  2. 제 1 항에 있어서,
    상기 신호는:
    Figure 112009063838652-PCT00026
    에 의해 표현되고, 여기서
    ρ는 전파 경로들의 수를 나타내고;
    h l (n)은 블록내의 시간 인덱스 n에서의 l번째 경로의 채널 계수이고;
    τ l 은 제1 경로에 대한 l번째 경로의 지연이고;
    {s n }은 송신된 신호들의 시퀀스이고;
    {r n }은 수신된 신호이고;
    {η n }은 수신된 노이즈 및 다른 간섭인,
    무선 통신 단말을 위한 방법.
  3. 제 2 항에 있어서,
    주파수 영역에서 Rk를 생성하기 위하여 rn의 고속 푸리에 변환(FFT)을 생성하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  4. 제 3 항에 있어서,
    시변 표현:
    Figure 112009063838652-PCT00027
    을 결정하는 단계를 더 포함하고, 여기서
    f l (n)은 l번째 경로의 시간 n 및 시간 0에서의 채널 계수들 사이의 차인,
    무선 통신 단말을 위한 방법.
  5. 제 4 항에 있어서,
    상기 추정된 시간 변화를 감소시키는 단계는, 주파수 영역 등화(FDE)로부터 증분 단계들에서의 β를 차감하는 단계를 포함하는,
    무선 통신 단말을 위한 방법.
  6. 제 5 항에 있어서,
    Figure 112009063838652-PCT00028
    를 통해 시간 변화 취소(time variation cancellation)를 수행하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  7. 제 6 항에 있어서,
    사이클릭 프리픽스(cyclic prefix)를 통해 시퀀스를 주기적이 되도록 강제하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  8. 제 6 항에 있어서,
    유니크 워드 확장(unique word extension)을 통해 시퀀스를 주기적이 되도록 강제하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  9. 제 1 항에 있어서,
    상기 추정된 시간 변화를 감소시키는 것을 결정하기 위하여 임계값을 사용하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  10. 제 9 항에 있어서,
    상기 임계값은 신호 품질 파라미터와 연관된,
    무선 통신 단말을 위한 방법.
  11. 제 9 항에 있어서,
    상기 임계값은 반복 수와 연관된,
    무선 통신 단말을 위한 방법.
  12. 제 1 항에 있어서,
    주파수 영역 등화의 결정을 용이하게 하기 위하여 채널 추정을 수행하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  13. 제 12 항에 있어서,
    상기 주파수 영역 등화를 결정하기 위하여 적어도 하나의 이산 푸리에 변환을 수행하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  14. 제 13 항에 있어서,
    상기 주파수 영역 등화로부터의 출력을 생성하기 위하여 역확산(de-spreading) 기능을 수행하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  15. 제 14 항에 있어서,
    시간 영역에서 상기 주파수 영역 등화의 적어도 일부를 수행하는 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  16. 제 15 항에 있어서,
    상기 주파수 영역 등화를 위해 시간 영역 정보를 상기 주파수 영역으로 피드백하는(feeding back) 단계를 더 포함하는,
    무선 통신 단말을 위한 방법.
  17. 통신 장치로서,
    무선 통신 단말에서 수신된 신호에 대한 시간 변화를 결정하기 위한 명령들을 보유하는 메모리 ― 상기 시간 변화는 주파수 영역 등화로부터 차감됨 ―; 및
    상기 명령들을 실행하는 프로세서
    를 포함하는, 통신 장치.
  18. 제 17 항에 있어서,
    상기 메모리는 상기 시간 변화를 반복적으로 차감하기 위한 명령들을 더 포함하는,
    통신 장치.
  19. 제 18 항에 있어서,
    상기 메모리는 상기 주파수 영역에서의 시간 변화의 일부와 시간 영역에서의 시간 변화의 일부를 차감하기 위한 명령들을 더 포함하는,
    통신 장치.
  20. 제 19 항에 있어서,
    상기 메모리는 상기 시간 변화를 결정하기 위하여 피드백을 사용하기 위한 명령들을 더 포함하는,
    통신 장치.
  21. 통신 장치로서,
    디바이스에서 시간 변화를 결정하기 위한 수단;
    상기 디바이스에서 주파수 영역 등화를 결정하기 위한 수단; 및
    상기 디바이스에서 상기 주파수 영역 등화로부터 상기 시간 변화를 감소시키 기 위한 수단
    을 포함하는, 통신 장치.
  22. 기계-판독가능 매체로서,
    디바이스에서 시간 변화를 결정하고;
    상기 디바이스에서 주파수 영역 등화를 결정하고; 및
    상기 디바이스에서 상기 주파수 영역 등화로부터 상기 시간 변화를 차감하기 위한
    기계-실행가능한 명령들이 저장된 기계-판독가능 매체.
  23. 제 22 항에 있어서,
    사이클릭 프리픽스 또는 유니크 워드 확장을 통해 시퀀스를 주기적이 되도록 강제하기 위한 기계-실행가능한 명령들을 더 포함하는,
    기계-판독가능 매체.
  24. 제 22 항에 있어서,
    주파수 영역에서의 시간 변화 취소 루틴의 일부와 시간 영역에서의 시간 변화 취소 루틴의 일부를 수행하기 위한 명령들을 더 포함하는,
    기계-판독가능 매체.
  25. 디바이스에서 수신된 신호들로부터 시간 변화를 결정하고;
    상기 디바이스에서 주파수 영역 등화를 수행하고;
    반복된 프로세스를 통해 상기 디바이스에서 상기 주파수 영역 등화로부터 상기 시간 변화를 감소시키기 위한
    명령들을 실행하는 프로세서.
  26. 무선 통신 액세스 포인트를 위한 방법으로서,
    채널의 시간 변화를 추정하는 단계 ― 상기 채널을 통해 상기 무선 통신 액세스 포인트가 정보를 송신하거나 수신함 ―; 및
    상기 무선 통신 액세스 포인트에 의해 송신되거나 수신되는 신호로부터 상기 채널의 상기 추정된 시간 변화를 감소시키는 단계
    를 포함하는, 무선 통신 액세스 포인트를 위한 방법.
  27. 제 26 항에 있어서,
    상기 신호는:
    Figure 112009063838652-PCT00029
    으로 표현되고, 여기서
    ρ는 전파 경로들의 수를 나타내고;
    h l (n)은 블록내의 시간 인덱스 n에서의 l번째 경로의 채널 계수이고;
    τ l 은 제1 경로에 대한 l번째 경로의 지연이고;
    {s n }은 송신된 신호들의 시퀀스이고;
    {r n }은 수신된 신호인,
    무선 통신 액세스 포인트를 위한 방법.
  28. 제 27 항에 있어서,
    주파수 영역에서 Rk를 생성하기 위하여 rn의 고속 푸리에 변환(FFT)을 생성하는 단계를 더 포함하는,
    무선 통신 액세스 포인트를 위한 방법.
  29. 제 28 항에 있어서,
    시변 표현:
    Figure 112009063838652-PCT00030
    을 결정하는 단계를 더 포함하고, 여기서
    f l (n)은 l번째 경로의 시간 n 및 시간 0에서의 채널 계수들 사이의 차인,
    무선 통신 액세스 포인트를 위한 방법.
  30. 제 29 항에 있어서,
    상기 추정된 시간 변화를 감소시키는 단계는, 주파수 영역 등화(FDE)로부터 증분 단계들에서의 β를 차감하는 단계를 포함하는,
    무선 통신 액세스 포인트를 위한 방법.
  31. 제 30 항에 있어서,
    Figure 112009063838652-PCT00031
    를 통해 시간 변화 취소를 수행하는 단계를 더 포함하는,
    무선 통신 액세스 포인트를 위한 방법.
  32. 통신 장치로서,
    무선 통신 액세스 포인트에서 수신된 신호들에 대한 시간 변화를 결정하기 위한 명령들을 보유하는 메모리 ― 상기 시간 변화는 주파수 영역 등화로부터 차감됨 ―; 및
    상기 명령들을 실행하는 프로세서
    를 포함하는, 통신 장치.
  33. 통신 장치로서,
    액세스 포인트에서 시간 변화를 결정하기 위한 수단;
    상기 액세스 포인트에서 주파수 영역 등화를 결정하기 위한 수단; 및
    상기 액세스 포인트에서 상기 주파수 영역 등화로부터 상기 시간 변화를 제거하기 위한 수단
    을 포함하는, 통신 장치.
  34. 기계-판독가능 매체로서,
    액세스 포인트에서 수신된 신호들로부터 시간 변화를 결정하고;
    상기 수신된 신호들에 따라 주파수 영역 등화를 결정하고;
    상기 주파수 영역 등화로부터 상기 시간 변화를 차감하기 위한
    기계-실행가능한 명령들이 저장된,
    기계-판독가능 매체.
  35. 액세스 포인트에서 수신된 신호들로부터 시간 변화를 결정하고;
    상기 수신된 신호들로부터 주파수 영역 등화를 결정하고;
    상기 액세스 포인트에서 상기 주파수 영역 등화로부터 상기 시간 변화를 감소시키기 위한
    명령들을 실행하는, 프로세서.
KR1020097021773A 2007-03-17 2008-03-17 시변 채널들에 대한 주파수 영역 등화 KR20090125183A (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US89545207P 2007-03-17 2007-03-17
US60/895,452 2007-03-17
US89558307P 2007-03-19 2007-03-19
US60/895,583 2007-03-19
US12/049,236 US8155218B2 (en) 2007-03-17 2008-03-14 Frequency domain equalization for time varying channels
US12/049,236 2008-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020127000667A Division KR101323232B1 (ko) 2007-03-17 2008-03-17 시변 채널들에 대한 주파수 영역 등화

Publications (1)

Publication Number Publication Date
KR20090125183A true KR20090125183A (ko) 2009-12-03

Family

ID=39762646

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020097021773A KR20090125183A (ko) 2007-03-17 2008-03-17 시변 채널들에 대한 주파수 영역 등화
KR1020127000667A KR101323232B1 (ko) 2007-03-17 2008-03-17 시변 채널들에 대한 주파수 영역 등화

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020127000667A KR101323232B1 (ko) 2007-03-17 2008-03-17 시변 채널들에 대한 주파수 영역 등화

Country Status (7)

Country Link
US (1) US8155218B2 (ko)
EP (1) EP2127283A2 (ko)
JP (1) JP5384373B2 (ko)
KR (2) KR20090125183A (ko)
CN (1) CN101690051B (ko)
TW (1) TW200904081A (ko)
WO (1) WO2008115898A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664190B1 (en) * 2008-08-04 2010-02-16 Mediatek Inc. Multi-carrier receiver with dynamic power adjustment and method for dynamically adjusting the power consumption of a multi-carrier receiver
WO2010081896A2 (en) * 2009-01-16 2010-07-22 Abilis Systems Sarl Interpolated channel estimation for mobile ofdm systems
CN101515914B (zh) * 2009-03-25 2015-06-03 北京中星微电子有限公司 一种信道均衡方法、装置及一种信道估计方法、装置
US8391399B2 (en) * 2009-05-13 2013-03-05 Elbit Systems Of America, Llc Single carrier waveform system with frequency domain equalization
US8385387B2 (en) * 2010-05-20 2013-02-26 Harris Corporation Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
US8804808B1 (en) 2014-01-14 2014-08-12 The Aerospace Corporation Dynamic equalization systems and methods for use with a receiver for a multipath channel
US9628122B1 (en) 2016-07-25 2017-04-18 The Aerospace Corporation Circuits and methods for reducing interference that spectrally overlaps a desired signal based on dynamic gain control and/or equalization
EP4109983A1 (en) * 2017-04-21 2022-12-28 Cohere Technologies, Inc. Communication techniques using quasi-static properties of wireless channels
US10056675B1 (en) 2017-08-10 2018-08-21 The Aerospace Corporation Systems and methods for reducing directional interference based on adaptive excision and beam repositioning
WO2019173775A1 (en) * 2018-03-08 2019-09-12 Cohere Technologies, Inc. Scheduling multi-user mimo transmissions in fixed wireless access systems
US12003350B1 (en) * 2020-02-29 2024-06-04 Space Exploration Technologies Corp. Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for user terminal to satellite uplink communications
US11212015B2 (en) 2020-05-19 2021-12-28 The Aerospace Corporation Interference suppression using machine learning
US11646777B2 (en) * 2021-04-30 2023-05-09 Qualcomm Incorporated Detecting static channels

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099299B2 (en) 2002-03-04 2006-08-29 Agency For Science, Technology And Research CDMA system with frequency domain equalization
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
KR100447201B1 (ko) * 2002-08-01 2004-09-04 엘지전자 주식회사 채널 등화 장치 및 이를 이용한 디지털 tv 수신기
AU2003259435A1 (en) * 2002-08-30 2004-03-19 Koninklijke Philips Electronics N.V. Frequency-domain equalization for single carrier signals
KR100511559B1 (ko) * 2002-11-28 2005-08-31 한국전자통신연구원 시변 채널 왜곡 제거 기능을 가지는 주파수 분할 다중시스템에서의 송수신 방법
US7551691B2 (en) 2003-06-11 2009-06-23 Nxp B.V. Receiver for a multi-carrier communication system
KR100556403B1 (ko) 2003-12-12 2006-03-03 엘지전자 주식회사 Vsb 수신 시스템에서 채널 등화 장치 및 그 방법
KR100698630B1 (ko) 2004-06-28 2007-03-21 삼성전자주식회사 스텝사이즈 조정기능을 구비한 등화기 및 등화방법
US7619964B2 (en) * 2004-07-08 2009-11-17 Nokia Corporation High doppler channel estimation for OFD multiple antenna systems
US7324591B2 (en) 2004-08-17 2008-01-29 Zenith Electronics Corporation Adaptive equalizer
US8218615B2 (en) * 2005-03-29 2012-07-10 Qualcomm Incorporated Method and apparatus for block-wise decision-feedback equalization for wireless communication
US7646833B1 (en) * 2005-05-23 2010-01-12 Marvell International Ltd. Channel equalization in receivers

Also Published As

Publication number Publication date
CN101690051A (zh) 2010-03-31
EP2127283A2 (en) 2009-12-02
WO2008115898A3 (en) 2009-02-05
JP5384373B2 (ja) 2014-01-08
US8155218B2 (en) 2012-04-10
KR20120034725A (ko) 2012-04-12
KR101323232B1 (ko) 2013-10-30
WO2008115898A2 (en) 2008-09-25
JP2010521936A (ja) 2010-06-24
CN101690051B (zh) 2014-01-29
TW200904081A (en) 2009-01-16
US20080225936A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
KR101323232B1 (ko) 시변 채널들에 대한 주파수 영역 등화
RU2345496C2 (ru) Связной приемник с адаптивным эквалайзером, который использует канальную оценку
US7092431B2 (en) Receiver, transmitter, communication system, and method of communication
CA2788698C (en) Channel estimation and data detection in a wireless communication system in the presence of inter-cell interference
RU2475981C2 (ru) Оценка канала с эффективным подавлением внутриканальных помех
US8446967B2 (en) Preamble sequences for wireless communication systems
KR101423601B1 (ko) 무선 통신 시스템에서의 데이터 및 기준 정보의 멀티플렉싱
JP5247807B2 (ja) 適応受信機方法及び装置
US20100158078A1 (en) Method and apparatus for frequency assignment in a frequency hopping mode of a wireless communication system
MX2010010221A (es) Metodo y aparato para generacion de secuencia de mezclado en un sistema de comunicacion.
TW200948117A (en) TDD operation in wireless communication systems
CN102067645A (zh) 改进经扩展物理层小区身份空间下的加扰
JP2008530865A (ja) レガシーシステムの相互動作性によるパイロット推定におけるマルチパス干渉の低減
KR20070095309A (ko) 다중 캐리어 시스템들을 위한 지연 제한된 채널 추정
KR101485785B1 (ko) 무선 통신 시스템에서 주파수 추정 방법 및 장치
KR102635622B1 (ko) 프리코더 모드 선택에 기초한 사이클릭 프리픽스 (cp) 길이의 변경
JP2007214750A (ja) 無線受信機および雑音推定値補正方法
CA2443414A1 (en) Frequency domain channel estimation for multiple channels using wiener minimum mean squared error (mmse) filtering
US20140010272A1 (en) Pilot Signal Cancellation Scheme for Mobile Broadband Systems Based on OFDM
US9100228B2 (en) Long term evolution (LTE) uplink canonical channel estimation
EP1197026A1 (en) Method and apparatus for channel estimation with transmit diversity
KR20090093025A (ko) 단일 반송파 주파수 분할 다중 접속 시스템 및 직교 주파수분할 다중 접속 시스템에서 채널 품질 추정을 위한 파일럿할당 방법, 그리고 이를 이용한 채널 품질 추정을 위한송신기 및 수신기
KR20180027300A (ko) 통신 시스템에서 간섭을 제어하는 통신장치 및 방법
Choi et al. Effect of timing misalignment on in-band full-duplex communications
Moon et al. Novel channel estimation scheme in fast fading channel applied to sidehaul system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
WITB Written withdrawal of application
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20120109

Effective date: 20130107