KR20090123710A - 애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열 - Google Patents

애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열 Download PDF

Info

Publication number
KR20090123710A
KR20090123710A KR1020080049917A KR20080049917A KR20090123710A KR 20090123710 A KR20090123710 A KR 20090123710A KR 1020080049917 A KR1020080049917 A KR 1020080049917A KR 20080049917 A KR20080049917 A KR 20080049917A KR 20090123710 A KR20090123710 A KR 20090123710A
Authority
KR
South Korea
Prior art keywords
gene
ser
leu
amino acid
ala
Prior art date
Application number
KR1020080049917A
Other languages
English (en)
Inventor
김경태
조규형
남재성
김도훈
정영수
이재헌
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020080049917A priority Critical patent/KR20090123710A/ko
Publication of KR20090123710A publication Critical patent/KR20090123710A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 애기장대에서 유래된 잎의 극성신장에 관련된 ANGUSTIFOLIA (AN) 유전자의 기능을 조절하는 유전자 서열에 관한 것으로, AN 유전자산물에 존재하는 불활성화된 탈수소효소의 활성을 특이적 염기서열로 치환함으로서 조절하는 방법과, AN 유전자의 5'상류조절영역에 존재하는 전사조절기능에 관련한 uORF 염기서열에 관한 것이다.
본 발명은 애기장대 뿐 아니라 다른식물의 AN 유전자의 동형유전자 (isolog)의 기능조절에 활용할 수 있고, 이들 조절을 통하여 잎의 극성신장제어를 통한 식물의 생장 및 발달의 조절에 활용할 수 있다.
애기장대 ANGUSTIFOLIA (AN) 유전자, uORF, 프라이머.

Description

애기장대 AN 유전자의 탈수소효소 활성 및 uORF 조절에 관한 서열{SEQUENCES OF AN GENE FOR DEHDROGENASE ACTIVITY AND uORF REGULATION}
본 발명은 AN 유전자산물 중의 특정 아미노산을 치환함으로서 결손되어 있는 탈수소효소 기능을 활성화시키기 위하여 고안되었으며, 또한 AN 유전자의 5' 상류조절영역에 존재하는 전사조절기능에 관련된 uORF 조절에 관한 염기서열을 규명함으로써 유전자의 발현을 조절하는 방법에 관한 것이다.
특히, 본 발명은 애기장대 뿐 아니라 다른식물의 AN 유전자의 동형유전자(isolog)의 기능조절 및 잎의 극성신장제어를 통하여 식물의 생장 및 발달의 조절에 활용하는 것에 관한 것이다.
AN 유전자는 표층 미세소관을 제어하여 잎세포의 극성신장을 조절하는 것으로 밝혀졌으며, 식물에서는 처음으로 C 말단 결합단백질 (C-terminal Binding Protein, CtBP)을 코딩하는 것으로 밝혀졌다. 특히, 분자계통분석 결과 식물의 CtBP 유전자군 (애기장대 ANAN의 동형유전자인 나팔꽃 IAN 및 우산이끼 MAN)은 동물의 CtBP와는 다른 아족(subfamily)에 속하며 진화상 동물과의 다른 기능을 가지고 있는 것으로 시사되었다.
하지만, AN 유전자산물은 CtBP에 보존되어 있는 탈수소효소 모티프를 보존하고 있으며 이러한 기능이 전사억제인자의 기능에 중요한 역할을 할 것으로 생각되어진다. 일반적으로 탈수소효소는 특정 장소에 catalytic triad 라 불리는 효소활성에 중요한 부분이 보존되어 있으며 이들 영역에는 아르기닌(arginine), 글루타민(glutamine) 그리고 히스티딘(histidine)의 아미노산 서열이 존재한다.
지금까지 CtBP 단백질의 탈수소효소 활성에 관여하는 식물의 AN 유전자 및 동형유전자산물의 아미노산 서열에 대해서는 연구된 바 없다. 또한, 식물에서의 CtBP의 고유 기능에 대해서는 거의 알려지지 않고 있는데 특히 전사의 조절에 관한 유전자서열에 대해서는 분석이 이루어진 바 없다. 따라서, AN 유전자의 상세한 기능과 이들 유전자의 식물의 생장과 발달에의 영향에 대해서 알기 위해서는 유전자의 아미노산 서열에 대한 상세한 분석이 절실히 요구된다.
본 발명의 목적은 AN 유전자산물의 불활성화되어 있는 탈수소효소의 활성화에 관련된 아미노산의 서열을 제공하는 것이다.
특히, 이들 아미노산을 치환함으로서 AN 단백질에 탈수소효소 활성에 부여함과 동시에, 차후에 다른 단백질의 탈수소 효소의 기능을 부여하는 것을 목적으로 한다.
또한, AN 유전자의 5' 상류조절영역에 존재하는 새로운 전사조절에 관여하는 염기서열을 제공하고, 이들 염기서열을 활용하여 이들 유전자의 발현 조절을 통한 식물의 생장과 발달의 조절에 활용하고자 한다.
상기 목적을 달성하기 위하여, 본 발명에서는 AN 유전자산물에 대한 탈수소효소에 중요한 catalytic triad 를 분석하기 위하여 탈수소효소 모티브서열을 AN 아미노산 서열과 동물의 CtBP 아미노산 서열과의 alignment 해석을 진행하였다.
또한, 본 발명에서는 AN 유전자의 식물의 생장 발달시에 중요한 역할을 할 것으로 보이는 상류 전사해독 프레임 (upsteram Open Redaing Frame, uORF)의 서열에 대한 분석을 실시하고 AN 유전자의 발현을 조절하는 uORF의 염기서열을 제공한다.
또한, 상기 AN 유전자의 상류 uORF를 이용하여 AN 유전자의 발현조절을 통하여 식물의 생장과 발달을 조절하는 방법을 제공한다.
그리고 AN 유전자의 uORF 특이적 및 AN유전자 특이적인 프라이머 세트 염기서열을 제공한다.
이하 본 발명을 상세히 설명한다.
AN 유전자산물은 동물의 CtBP에 보존되어 있는 일반적인 탈수소효소 모티프를 보존하고 있으며 이러한 기능이 전사억제인자의 기능에 중요한 역할을 할 것으로 생각되어진다. 일반적으로 탈수소효소는 특정 장소에 catalytic triad라 불리는 효소활성에 중요한 부분이 보존되어 있으며 이들 영역에는 arginine, glutamine 그리고 histidine의 아미노산 서열이 존재한다.
이들의 아미노산 서열의 역할과 AN 유전자산물의 기능과의 상세한 관련을 밝히기 위하여, 본 발명에서는 AN 유전자산물에 대한 탈수소효소에 중요한 역할을 담당하고 있다고 사료되는 catalytic triad의 분석을 위하여, 탈수소효소의 공통적인 모티브서열을 AN 아미노산 서열 식물의 이들 동형아미노산 서열과 동물의 CtBP 아미노산 서열과의 alignment 해석을 진행하였다.
그 결과, 도 1에서와같이 탈수소효소에서 공통적으로 보여지는 catalytic triad의 266번째 아미노산인 arginine, 295번째 아미노산인 glutamine 그리고 315번째 아미노산인 histidine의 보존서열이 AN 아미노산에서는 260번째 아미노산이 serine으로, 287번째 아미노산이 glutamine으로 그리고 307번째 아미노산이 arginine으로 되어 있는 것으로 판명되었다.
도 1은 탈수소효소 관련 아미노산과 AN 아미노산 서열 및 식물의 이들 동형아미노산 서열, 그리고 동물의 CtBP에 존재하는 탈수소효소 motif간의 아미노산 alignment를 나타내는 그림이다. 해석에 사용된 아미노산은 다음과 같다. AN (Arabidopsis thaliana), IAN (Ipomoea nil), MAN(Marchantia polymorpha), hCtBP (Homo sapiens), dCtBP (Drosophila melanogaster).
역삼각형은 탈수소효소의 활성에 관련된 중요 아미노산인 catalytic triad를 나타낸다.
따라서, 이들 AN 아미노산 서열 중 catalytic triad의 차이가 C 말단 결합단백질이 가지고 있는 탈수소효소 활성과 같은 기능을 할 수 있는지에 대한 분석을 위해 탈수소효소 활성에 관련된 Catalytic triad 의 아미노산 서열이 변화된 AN 유전자산물의 탈수소효소 활성 측정하였다. AN 유전자산물의 탈수소효소 활성을 측정하기 위하여, 대장균에서 발현시킨 AN 유전자산물을 이용하여 NADH를 NAD+로의 산화반응에 대한 pyruvate의 lactic acid로의 전환양을 측정하였다.
AN 아미노산 서열을 이용하여 대장균에서 발현시킨 단백질을 이용하여 탈수소효소 활성을 측정한 결과, 도 1에 표시된 catalytic triad 의 아미노산 서열이 탈수소효소의 활성에 중요한 역할을 하고 있는 것으로 판명되었다.
따라서, catalytic triad 의 아미노산 서열을 조절하게 되면 본래 AN 유전자가 가지고 있는 기능을 변화시켜 탈수소효소의 활성을 나타내게 하여 식물의 생장과 발달의 조절을 가능하게 할 수 있음을 알 수 있다.
식물에서의 CtBP 유사유전자의 고유 기능에 대해서는 거의 알려지지 않고 있는데 특히 전사의 조절에 관한 유전자서열에 대해서는 분석이 이루어진 바 없다. 따라서, 본 발명에서는 AN 유전자의 발현을 조절하는 기작을 밝히기 위하여 상류 전사해독 프레임 (uORF)의 서열에 대한 분석을 실시하였다.
그 결과, 애기장대의 게놈 DNA상에서 AN 유전자의 5' 상류조절영역이 있다는 사실이 새로 발견되었으며, 도 3에 있어서 두줄로 표시된 영역이 uORF 배열을 나타내는 영역이며 박스로 표시된 부분이 AN 유전자의 개시코돈을 나타낸다.
한편 uORF 부분이 실질적으로 하나의 전사체로 조절받는지는 발현산물의 분석을 RT-PCR방법을 통하여 확인하였다 (도 4). 여기에 관련된 특이적 프라이머 세트를 개발하여 사용하였으며 표 1에 나타내었다.
ANGUSTIFOLIA의 uORF를 분석하기 위한 uORF 및 ANGUSTIFOLIA 유전자 특이적인 프라이머 세트.
Amplified Regions Primers
uORF 5-ATGTTCCCAAAATCAAAATTTCACTCCTCGAGA-3' 5-TTAATGCACAATGTAGCGAAATGACATCAC-3’ ANGUSTIFOLIA 5-ATGAGCAAGATCCGTTCGTCTGCGACAATG' 5-TTAATGCACAATGTAGCGAAATGACATCAC-3’
이 결과, AN 유전자의 상류에 또 하나의 mRNA의 발현이 확인이 되었으며, AN 유전자의 프로모터 부분의 전사조절이 새롭게 발견된 uORF의 영향을 받을 수 있는 것으로 판명되었다. 이는 발생단계에 있어서의 AN 유전자의 특이적 발현에 아주 중요한 역할을 할 것이라고 사료된다. 특히, 본 발명에서 얻어진 이 uORF 서열을 활용하여 유전자의 발현 조절에 응용하면 식물의 잎과 전체의 발달에 변화를 줄 수 있을 것이라 기대된다.
본 발명에서 규명한 AN 유전자산물의 catalytic triad의 아미노산 서열의 변형을 통하여 탈수소효소 활성을 조절함으로써 식물의 생장과 발달의 조절에 활용할 수 있다.
또한, AN 유전자의 5' 상류조절영역에 uORF 서열을 밝힘으로서 이를 활용한 AN 유전자의 발현조절을 통하여 쉽게 식물의 생장과 발달의 조절에 활용할 수 있다.
실시예 1. AN 유전자산물의 탈수소효소에 관련된 아미노산 서열 분석
탈수소효소, 인간과 초파리 유래의 C 말단 결합단백질 (CtBP), 애기장대 유래의 AN, 나팔꽂 유래의 IAN, 이끼 유래의 MAN의 아미노산 배열을 CLUSTALW 프로그램을 이용하여 서열 분석을 실시하였다. 도 1 에서 화살표로 표시된 아마노산 서열이 식물유래의 CtBP에서 동물과 다르게 나타난 것으로 판명되었다.
실시예 2 . AN 유전자산물에 대한 탈수소효소 활성 측정
탈수소효소 활성 측정을 위하여 적절량의 AN 유전자 염기서열을 pGEX-4T-3 (Amersham Bioscience Co., USA)에 도입하여 GST 유전자와의 결합 단백질을 만들 수 있도록 벡터구축을 하였다. 구축된 벡터를 대장균 (E. Coli XL1 세포)에 도입하여 100ug 암피실린 (ampicillin)이 함유된 2 x YT 배지에서 37℃에서 하룻밤 배양 한 후, 이 배양액을 10배 희석하여 OD 값이 0.3이 될 때까지 37℃에서 진탕배양하였다. 여기에 1mM의 IPTG를 넣고 12시간 배양한 후, 배양액을 6,000g 에서 20분 원심분리하여 대장균을 회수하였다. 회수된 대장균을 분쇄완충액 (breaking buffer, 1M KH2PO4, 0.5M EDTA, pH7.0)에 넣고 현탁한 후, 초음파 분쇄기 (Sonicator TM Cell Disruptor Model W-225R, Heat System-Ultrasonics, USA)로 얼음에서 분쇄하였다. AN-GST 결합단백질을 Glutathione sepharose 4B 컬럼(Amersham Pharmacia Biotech, Sweden)을 통하여 순수 분리하고 이를 SDS-PAGE방법에 의하여 확인하였다 (데이터미제시). 분리된 AN 단백질을 25℃에서 20 mM Na Pyruvate와 0.132 mM NADH가 포함된 0.2 M Tri-HCl 완충용액 (pH 7.3)을 사용하여, 흡광도 340 nm에서 탈수소효소의 활성을 측정하였다 (도 2). 그 결과, 도 1에 나타난 아미노산 보존 서열이 다른 아미노산으로 치환이 된 경우에는 탈수소효소의 활성이 없는 것으로 나타났다.
두줄로 표시된 영역이 발견된 uORF 서열을 나타내는 영역이며 박스로 표시된 부분이 원래 AN 유전자의 개시코돈을 나타내고 있다.
< 실시예 3. AN 유전자의 uORF의 분석을 위한 RT-PCR>
AN 유전자의 uORF의 분석을 위하여 상류 uORF 특이적인 프라이머와 AN 유전자 특이적인 프라이머 세트를 개발하였다 (표 1). RT-PCR은 SUPERSCRIPT one-step RT-PCR with PLATINUM Taq Kit (Invitrogen Crop.,USA)를 이용하여 실시하였으며, 여기에 사용된 mRNA는 애기장대의 잎에서 RNeasy Mini Kit (Qiagen Inc., Japan)을 이용하여 준비하였다.
개발된 프라이머 세트를 활용하여 uORF 및 AN 유전자 특이적인 발현을 확인하였다. PCR 반응은 먼저 50℃에서 30분간 first strand DNA를 합성한 후, 94℃에서 5분간 가열하여 DNA를 변성시킨 다음, 94℃에서 30초, 55℃에서 1분, 그리고 72℃에서 1분간 35회 반복 수행한 후, 72℃에서 10분간 최종 반응하였다. 그리고 0.8% 아가로스 겔(agarose gel)에서 100 볼트(volts)로 30분 동안 전기영동하였다. 도 4에서 좌측 lane은 크기마커인 1 kb ladder이고, 중간 lane은 uORF의 증폭영역, 그리고 우측 lane은 AN 유전자의 발현영역을 나타내는 밴드이다.
그 결과, AN 유전자의 시작코돈을 포함한 5'상류에 57bp의 uORF를 코딩하는 서열이 따로 발현되고 있는 것으로 판명되었다.
도 1은 탈수소효소와 AN 유전자산물과 동물의 CtBP에 존재하는 탈수소효소 motif 서열간의 alignment를 CLUSTALW로 해석한 그림이다.
도 2는 AN 유전자산물의 탈수소효소 활성을 나타내는 그림이다.
도 3은 AN 유전자의 상류에 존재하는 uORF 서열을 나타내는 그림이다.
도 4는 애기장대의 잎에서 추출한 mRNA로 부터 uORF영역을 포함하는 특이적인 프라이머 세트를 이용하여 증폭시킨 RT-PCR 산물을 나타내는 그림. 좌측 lane은 크기마커인 1 kb ladder이고, 중간 lane은 uORF의 증폭영역, 그리고 우측 lane은 AN 유전자의 발현영역을 나타내는 밴드이다.
<110> Dong-A University Research Foundation For Industry-Academy Cooperation <120> SEQUENCES OF AN GENE FOR DEHYDROGENASE ACTIVITY AND uORF REGULATION <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 636 <212> PRT <213> Arabidopsis thaliana <400> 1 Met Ser Lys Ile Arg Ser Ser Ala Thr Met Pro His Arg Asp Gln Pro 1 5 10 15 Ser Pro Ala Ser Pro His Val Val Thr Leu Asn Cys Ile Glu Asp Cys 20 25 30 Ala Leu Glu Gln Asp Ser Leu Ala Gly Val Ala Gly Val Glu Tyr Val 35 40 45 Pro Leu Ser Arg Ile Ala Asp Gly Lys Ile Glu Ser Ala Thr Ala Val 50 55 60 Leu Leu His Ser Leu Ala Tyr Leu Pro Arg Ala Ala Gln Arg Arg Leu 65 70 75 80 Arg Pro His Gln Leu Ile Leu Cys Leu Gly Ser Ala Asp Arg Ala Val 85 90 95 Asp Ser Thr Leu Ala Ala Asp Leu Gly Leu Arg Leu Val His Val Asp 100 105 110 Thr Ser Arg Ala Glu Glu Ile Ala Asp Thr Val Met Ala Leu Ile Leu 115 120 125 Gly Leu Leu Arg Arg Thr His Leu Leu Ser Arg His Ala Leu Ser Ala 130 135 140 Ser Gly Trp Leu Gly Ser Leu Gln Pro Leu Cys Arg Gly Met Arg Arg 145 150 155 160 Cys Arg Gly Met Val Leu Gly Ile Val Gly Arg Ser Val Ser Ala Arg 165 170 175 Tyr Leu Ala Ser Arg Ser Leu Ala Phe Lys Met Ser Val Leu Tyr Phe 180 185 190 Asp Val Pro Glu Gly Asp Glu Glu Arg Ile Arg Pro Ser Arg Phe Pro 195 200 205 Arg Ala Ala Arg Arg Met Asp Thr Leu Asn Asp Leu Leu Ala Ala Ser 210 215 220 Asp Val Ile Ser Leu His Cys Ala Leu Thr Asn Asp Thr Val Gln Ile 225 230 235 240 Leu Asn Ala Glu Cys Leu Gln His Ile Lys Pro Gly Ala Phe Leu Val 245 250 255 Asn Thr Gly Ser Cys Gln Leu Leu Asp Asp Cys Ala Val Lys Gln Leu 260 265 270 Leu Ile Asp Gly Thr Ile Ala Gly Cys Ala Leu Asp Gly Ala Glu Gly 275 280 285 Pro Gln Trp Met Glu Ala Trp Val Lys Glu Ile Pro Asn Val Leu Ile 290 295 300 Leu Pro Arg Ser Ala Asp Tyr Ser Glu Glu Val Trp Met Glu Ile Arg 305 310 315 320 Glu Lys Ala Ile Ser Ile Leu His Ser Phe Phe Leu Asp Gly Val Ile 325 330 335 Pro Ser Asn Thr Val Ser Asp Glu Glu Val Glu Glu Ser Glu Ala Ser 340 345 350 Glu Glu Glu Glu Gln Ser Pro Ser Lys His Glu Lys Leu Ala Ile Val 355 360 365 Glu Ser Thr Ser Arg Gln Gln Gly Glu Ser Thr Leu Thr Ser Thr Glu 370 375 380 Ile Val Arg Arg Glu Ala Ser Glu Leu Lys Glu Ser Leu Ser Pro Gly 385 390 395 400 Gln Gln His Val Ser Gln Asn Thr Ala Val Lys Pro Glu Gly Arg Arg 405 410 415 Ser Arg Ser Gly Lys Lys Ala Lys Lys Arg His Ser Gln Gln Lys Tyr 420 425 430 Met Gln Lys Thr Asp Gly Ser Ser Gly Leu Asn Glu Glu Ser Thr Ser 435 440 445 Arg Arg Asp Asp Ile Ala Met Ser Asp Thr Glu Glu Val Leu Ser Ser 450 455 460 Ser Ser Arg Cys Ala Ser Pro Glu Asp Ser Arg Ser Arg Lys Thr Pro 465 470 475 480 Leu Glu Val Met Gln Glu Ser Ser Pro Asn Gln Leu Val Met Ser Ser 485 490 495 Lys Lys Phe Ile Gly Lys Ser Ser Glu Leu Leu Lys Asp Gly Tyr Val 500 505 510 Val Ala Leu Tyr Ala Lys Asp Leu Ser Gly Leu His Val Ser Arg Gln 515 520 525 Arg Thr Lys Asn Gly Gly Trp Phe Leu Asp Thr Leu Ser Asn Val Ser 530 535 540 Lys Arg Asp Pro Ala Ala Gln Phe Ile Ile Ala Tyr Arg Asn Lys Asp 545 550 555 560 Thr Val Gly Leu Arg Ser Phe Ala Ala Gly Gly Lys Leu Leu Gln Ile 565 570 575 Asn Arg Arg Met Glu Phe Val Phe Ala Ser His Ser Phe Asp Val Trp 580 585 590 Glu Ser Trp Ser Leu Glu Gly Ser Leu Asp Glu Cys Arg Leu Val Asn 595 600 605 Cys Arg Asn Ser Ser Ala Val Leu Asp Val Arg Val Glu Ile Leu Ala 610 615 620 Met Val Gly Asp Asp Gly Ile Thr Arg Trp Ile Asp 625 630 635 <210> 2 <211> 53 <212> DNA <213> Arabidopsis thaliana <400> 2 atgttcccaa aatcaaaatt tcactcctcg agagtagcga gaagaaggag gag 53 <210> 3 <211> 30 <212> DNA <213> Arabidopsis thaliana <400> 3 ttaatgcaca atgtagcgaa atgacatcac 30

Claims (5)

  1. 식물의 AN 유전자산물 및 동형유전자산물의 탈수소효소 활성화를 조절하는 서열 1의 아미노산 서열.
  2. 제 1 항에 있어서, AN 유전자산물의 탈수소효소에 관련된 catalytic triad에서는 260번째 아미노산이 serine, 287번째 아미노산이 glutamine, 307번째 아미노산이 arginine 인 것을 특징으로 하는 서열 1의 아미노산 서열.
  3. 식물의 AN 유전자의 상류에 존재하여 AN 유전자의 발현을 조절하는 서열 2의 ORF의 염기서열.
  4. 서열 2의 uORF를 이용하여 AN 유전자의 발현조절을 함으로써 식물의 생장과 발달을 조절하는 방법.
  5. 식물의 AN 유전자의 uORF를 특이적으로 탐색가능한 서열3의 프라이머 세트.
KR1020080049917A 2008-05-28 2008-05-28 애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열 KR20090123710A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080049917A KR20090123710A (ko) 2008-05-28 2008-05-28 애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080049917A KR20090123710A (ko) 2008-05-28 2008-05-28 애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열

Publications (1)

Publication Number Publication Date
KR20090123710A true KR20090123710A (ko) 2009-12-02

Family

ID=41685910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080049917A KR20090123710A (ko) 2008-05-28 2008-05-28 애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열

Country Status (1)

Country Link
KR (1) KR20090123710A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097226A2 (en) 2012-12-21 2014-06-26 The New Zealand Institute For Plant And Food Research Limited Regulation of gene expression
KR102433452B1 (ko) 2022-03-10 2022-08-19 박재정 각도 학습교구

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097226A2 (en) 2012-12-21 2014-06-26 The New Zealand Institute For Plant And Food Research Limited Regulation of gene expression
EP2935590A4 (en) * 2012-12-21 2016-09-28 Nz Inst Plant & Food Res Ltd REGULATION OF GENE EXPRESSION
KR102433452B1 (ko) 2022-03-10 2022-08-19 박재정 각도 학습교구

Similar Documents

Publication Publication Date Title
US6177275B1 (en) Plant nitrogen regulatory P-PII genes
Stein et al. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants
US7038111B2 (en) Method for increasing stress tolerance in plants
Zhai et al. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants
EP2123753B1 (en) Plant having increased yield of seeds
Li et al. Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica)
BR112015020938B1 (pt) Construção compreendendo molécula de ácido nucleico de fatores de transcrição que regulam biossíntese de nicotina em tabaco, vetor, célula bacteriana transgênica e método de produção de uma planta
JP6163514B2 (ja) 増強された成長特性を有するトランスジェニック植物
CN110066773B (zh) 玉米ZmMPK11蛋白或其编码基因在调节植物耐逆性中的应用
Zheng et al. Overexpression of cysteine protease gene from Salix matsudana enhances salt tolerance in transgenic Arabidopsis
CN110714013B (zh) 大豆E2泛素结合酶基因GmUBC1的应用
Ferraro et al. Novel glutamate dehydrogenase genes show increased transcript and protein abundances in mature tomato fruits
WO2011106794A1 (en) Increasing plant growth by modulating omega-amidase expression in plants
US20110119792A1 (en) Genes Controlling Plant Root Growth And Development For Stress Tolerance And Method Of Their Use
Paul et al. An A20/AN1-zinc-finger domain containing protein gene in tea is differentially expressed during winter dormancy and in response to abiotic stress and plant growth regulators
JPWO2007034953A1 (ja) アシフルオルフェンに対する耐性を付与する活性を有するプロトポルフィリノーゲンオキシダーゼ及びその遺伝子
CN107326035B (zh) 一种调控水稻粒型和叶色的去泛素化酶基因ubp5及其应用
MX2011002111A (es) Gen de transaminasa de fenilpiruvato de glutamina de plantas y plantas transgeenicas que son portadoras del mismo.
KR20090123710A (ko) 애기장대 AN 유전자의 탈수소효소 활성 및 uORF조절에 관한 서열
Oh et al. Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in Arabidopsis
Tak et al. Molecular characterization of VvSDIR1 from Vitis vinifera and its functional analysis by heterologous expression in Nicotiana tabacum
US20030211490A1 (en) Plants tolerant of environmental stress conditions, methods of generating same and novel polynucleotide sequence utilized thereby
Liu et al. Expression and biological properties of a novel methionine sulfoxide reductase A in tobacco (Nicotiana tabacum)
Na et al. Genome-wide identification of the radiation sensitivity protein-23 (RAD23) family members in apple (Malus× domestica Borkh.) and expression analysis of their stress responsiveness
KR20100100097A (ko) 고구마 유래의 MuS1 유전자 및 이의 용도

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application