KR20090117138A - A manufacturing method of a three dimensional scaffold - Google Patents

A manufacturing method of a three dimensional scaffold Download PDF

Info

Publication number
KR20090117138A
KR20090117138A KR1020080043048A KR20080043048A KR20090117138A KR 20090117138 A KR20090117138 A KR 20090117138A KR 1020080043048 A KR1020080043048 A KR 1020080043048A KR 20080043048 A KR20080043048 A KR 20080043048A KR 20090117138 A KR20090117138 A KR 20090117138A
Authority
KR
South Korea
Prior art keywords
solution
biopolymer
mold
sheet
biopolymerization
Prior art date
Application number
KR1020080043048A
Other languages
Korean (ko)
Inventor
김근형
손준곤
윤현
박종하
박수아
김완두
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020080043048A priority Critical patent/KR20090117138A/en
Publication of KR20090117138A publication Critical patent/KR20090117138A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3629Intestinal tissue, e.g. small intestinal submucosa
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A manufacturing process of a cell support with three dimensional composite structure is provided, which makes growth, differentiation, and movement of cell fast. CONSTITUTION: A manufacturing process of a cell support with three dimensional composite structure comprises a step(S10) of preparing living body polymerized solution; a step(S20) of injecting living body polymerized solution into the mold frame; a step(S30) of flatly molding the living body polymerized solution inserted in the mold frame through a blade; a step(S40) of preparing living body polymerized sheet by separating living body polymerized solution inserted in the mold frame; a step(S50) of forming a nanofiber layer by emitting nanofiber on the surface of the living body polymerized sheet; and a step(S60) of completing a cell support with three dimensional composite structure.

Description

튜브 형태의 3차원 복합구조 세포 지지체 제조방법{A manufacturing Method Of A Three Dimensional Scaffold}A manufacturing method of a three dimensional scaffold

본 발명은 나노섬유로 구현할 수 없는 탄성이나 기계적 강도를 갖도록 일정두께를 갖는 시트로 제작되는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것으로, 보다 상세하게는 시트의 일면 또는 양면에 나노섬유를 방사하되, 상기 시트 및 방사되는 나노섬유에는 인체 내 손상된 기관이나 조직, 혈관, 신경관 등에 사용 시 세포가 빨리 증식될 수 있도록 소장점막하조직을 첨가된 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것이다.The present invention relates to a method for producing a three-dimensional multi-structure cell support in the form of a tube made of a sheet having a certain thickness so as to have elastic or mechanical strength that can not be realized by nanofibers, and more particularly, nanofibers on one or both sides of the sheet. In the method of manufacturing a three-dimensional composite structure scaffold in the form of a tube-like submucosal tissue added to the sheet and the nanofibers to be injured organs or tissues, blood vessels, neural tube used in the human body so that the cells can multiply quickly. It is about.

일반적으로 인체내 기관이나 조직, 혈관, 신경이 손상될 경우에 세포, 약물 지지체 등을 제공하여 효과적으로 조직을 재생하고 있는데, 조직 재생용 지지체는 임플란트 부위에서 물리적으로 안정하고 재생 효능을 조절할 수 있는 생리 활성을 가져야 하며, 또한 새로운 조직을 형성한 후에는 생체 내에서 분해되어야 하고 이때, 분해산물이 독성을 갖지 않아야 한다.In general, when organs, tissues, blood vessels, and nerves in the human body are damaged, cells and drug supports are provided to effectively regenerate tissues. Tissue regeneration supports are physically stable at the implant site and can regulate regenerative efficacy. It must be active and, after forming new tissue, must be degraded in vivo and the degradation product must not be toxic.

이러한 조직 재생용 지지체는 종래 일정한 강도와 형태를 갖는 고분자를 이용한 스폰지 타입, 매트릭스 형태의 나노 섬유 또는 젤 타입의 세포 배양 지지체로 제조되며, 이러한 세포 배양 지지체는 특정 깊이 또는 높이를 갖는 3차원 형상의 조직을 만들기 위해 중요한 역할을 한다. The support for tissue regeneration is conventionally made of a cell culture support of sponge type, matrix type nanofiber or gel type using a polymer having a constant strength and shape, and the cell culture support has a three-dimensional shape having a specific depth or height. Plays an important role in creating an organization.

이러한 조직 재생의 뼈대로서 기능하는 지지체를 이식하고 자기치유능력을 이용하여 생체 내에서 조직을 재생하는 기술은 재생 의료 또는 조직 공학이라고 불린다. The technique of implanting a support functioning as a skeleton of such tissue regeneration and regenerating tissue in vivo using self-healing ability is called regenerative medicine or tissue engineering.

조직 공학의 일례로 초기세포 부착과 차후의 조직 형성을 위해 3차원적인 지지체로서 성장인자가 담긴 다공성 생분해성 담체로 구성하여, 인체조직에 삽입하여 인체조직이 재생되도록 하는 것이다.An example of tissue engineering is to construct a porous biodegradable carrier containing growth factors as a three-dimensional scaffold for initial cell attachment and subsequent tissue formation, so that human tissue is regenerated by insertion into human tissue.

일례로 상기 3차원 인공 담체를 튜브형태로 구성하여 신경이나 혈관 등에 이식함으로써, 손상된 신경이나 혈관이 재생할 수 있는 것이다.For example, by constructing the three-dimensional artificial carrier in the form of a tube and implanting it in a nerve or a blood vessel, damaged nerves or blood vessels can be regenerated.

이러한 3차원 튜브 형상의 지지체는 탄성이나 기계적 강도, 내구성 및 세포 의 성장, 분화, 이동과 갖는 조건을 만족해야 한다.This three-dimensional tubular support must satisfy the conditions of elasticity, mechanical strength, durability, and growth, differentiation, and movement of cells.

하지만 종래에는 3차원 튜브 형상의 지지체는 나노섬유로만 이루어지기 때문에 상기의 요구조건을 갖는 3차원 형상의 지지체가 요원한 실정이다.However, in the related art, since the three-dimensional tubular support is made of only nanofibers, a three-dimensional support having the above requirements is far from being desired.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명은 생체중합용액을 생성하는 단계;와, 상기 생체중합용액을 형틀에 주입하는 단계;(S20)와, 상기 형틀에 주입된 생체중합용액을 블레이드를 통해 평편하게 성형하는 단계;(S30)와, 상기 형틀에 주입된 생체중합용액을 탈거하여 생체중합시트를 생성하는 단계;(S40)와, 상기 생체중합시트의 표면에 나노섬유를 방사하여 나노섬유층을 형성하는 단계;(S50)와, 상기 생체중합시트를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체를 완성하는 단계;(S60)를 포함하여 이루어지되, 상기 생체중합용액에는 소장점막하조직이 포함되어 있는 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법을 제공하는데 있다.The present invention has been made in view of the above problems, the present invention comprises the steps of generating a biopolymer solution; and injecting the biopolymer solution into the mold; (S20) and the biopolymerization injected into the mold Forming a flat solution through the blade; (S30) and the step of removing the biopolymer solution injected into the mold to produce a biopolymer sheet; (S40), and the nanofiber on the surface of the biopolymer sheet Forming a nanofiber layer by spinning; (S50), and rolling the biopolymer sheet into a tube shape to form a tube support to form a three-dimensional complex structure cell support; (S60), wherein the biopolymerization solution is made. To provide a method for producing a three-dimensional complex structure cell support in the form of a tube, characterized in that it contains a small intestinal submucosa.

본 발명에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 따르면, 시트와 방사되는 나노섬유가 동일 재질로 이루어지기 때문에 제조가 편리한 장점이 있다.According to the method for producing a three-dimensional complex structure cell support in the form of a tube according to the present invention, since the sheet and the nanofibers are made of the same material, there is an advantage of convenient manufacturing.

또한 시트와 나노섬유에는 소장점막하조직(SIS)이 포함되어 있어 세포의 세 포의 성장, 분화, 이동이 빠른 장점이 있다.In addition, the sheets and nanofibers include small intestinal submucosa (SIS), which has the advantage of rapid cell growth, differentiation and migration.

또한 일정두께를 갖는 시트로 제작되어 나노섬유만으로 구현할 수 없는 탄성이나 기계적 강도를 갖는 특징이 있다.In addition, the sheet has a certain thickness and is characterized by having elasticity or mechanical strength that cannot be realized by using only nanofibers.

이하에서는 본 발명에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.Hereinafter will be described in detail with the accompanying drawings with respect to the method for producing a three-dimensional complex structure cell support in the form of a tube according to the present invention.

도 1은 본 발명의 제 1실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도이고, 도 2a 및 도 2b는 도 a의 단계별 개념도이다.1 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a first embodiment of the present invention, Figures 2a and 2b is a step-by-step conceptual diagram of FIG.

도 1 내지 도 2b에 도시된 바와 같이, 본 발명은 나노섬유로 구현할 수 없는 탄성이나 기계적 강도를 갖도록 일정두께를 갖는 시트로 제작되되, 인체 내 손상된 기관이나 조직, 혈관, 신경관 등에 사용 시 세포가 빨리 증식될 수 있도록 소장점막하조직을 첨가한 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것이다.As shown in Figure 1 to 2b, the present invention is made of a sheet having a certain thickness to have elastic or mechanical strength that can not be realized with nanofibers, the cells are used when used in organs, tissues, blood vessels, neural tubes, etc. The present invention relates to a method for producing a three-dimensional complex cell support in the form of a tube to which a small intestinal submucosa is added so as to rapidly proliferate.

이를 위해 먼저 생체중합용액(14)을 생성하게 되는데, 상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화시켜 생성한다.(S10)To this end, first, a biopolymer solution 14 is generated. The biopolymer solution 14 is composed of PCL (Poly ε-carprolatone) and small intestinal submucosa (SIS: Small Intestinal Submucosa) and is a solvent of MC (Methylene). Chloride) and DMF (dimethyl formamide) are added to form a solution (S10).

상기 생체중합용액(14)을 시트로 성형하기 위해 형틀(30)에 주입한다. 이 때 상기 형틀(30)은 생체중합용액(14)이 얇은 시트로 성형될 수 있도록 먼저 그 크기 나 두께(높이)가 선행되어야 한다.(S20)The biopolymerization solution 14 is injected into the mold 30 to form a sheet. At this time, the mold 30 should be preceded by its size or thickness (height) so that the biopolymer solution 14 may be formed into a thin sheet. (S20)

그리고 상기 형틀(30)에 주입된 생체중합용액(14)은 블레이드(31)를 통해 평편하게 성형한다.(S30)And the biopolymerization solution 14 injected into the mold 30 is formed flat through the blade 31. (S30)

그 다음 성형된 생체중합용액(14)을 건조시킨 후 상기 형틀(30)에 주입된 생체중합용액을 탈거하여 생체중합시트(12)를 생성한다.(S40)Then, after drying the molded biopolymer solution 14, the biopolymer solution injected into the mold 30 is removed to generate the biopolymer sheet 12. (S40)

그리고 이렇게 생성된 생체중합시트(23)의 일면에 나노섬유층을 형성하기 위해 생체중합용액(14)을 별도의 나노방사기(20)에 투입하고, 나노방사기(20)를 통해 생체중합용액(14)을 섬유 형태로 상기 생체중합시트(12)의 표면에 전기 방사하여 나노섬유층을 형성한다.(S50)Then, in order to form a nanofiber layer on one surface of the biopolymer sheet 23 generated as described above, the biopolymerization solution 14 is added to a separate nanospinner 20 and the biopolymerization solution 14 through the nanospinner 20. To form a nanofiber layer by electrospinning the surface of the biopolymer sheet 12 in the form of fibers.

여기서 생체중합시트(14)를 형틀(30)에 탈거하지 않고, 나노방사기(20)를 통해 나노섬유를 방사하여 나노섬유층(11)을 형성하고, 이 후 탈거하는 방법도 가능하다.Here, without removing the biopolymer sheet 14 to the mold 30, it is also possible to spin the nanofibers through the nanospinner 20 to form a nanofiber layer 11, after which the method of stripping.

마지막으로 생체중합시트(12)를 인체의 혈관이나 신경관 등에 쓰일 수 있도록 튜브 형태의 관체로 성형하여 3차원 복합구조 세포 지지체(10)를 완성한다.(S60) 이 때 나노섬유층(11)이 바깥쪽으로 노출되도록 성형하는 것이 선행되어야 한다. Finally, the biopolymer sheet 12 is formed into a tube-shaped tube to be used for blood vessels or neural tubes of the human body to complete the three-dimensional complex structure cell support 10. (S60) At this time, the nanofiber layer 11 is outside Molding to be exposed to the side should be preceded.

다른 일예로, 본 발명에 따른 제 1실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에서 S50단계와, S60단계의 내용 순서를 반대로 하여 제조할 수 있다.As another example, in the method for producing a three-dimensional complex structure cell support in the form of a tube according to the first embodiment according to the present invention, the content sequence of step S50 and step S60 may be reversed.

상기의 제조방법은 먼저 S50단계에서 생체중합시트(12)를 둥글게 말아 튜브 형태의 관체로 성형하고, S60단계에서 생체중합시트(12)의 표면에 나노섬유를 전기 방사하여 나노섬유층(11)을 형성한 후 3차원 복합구조 세포 지지체(10)를 완성하는 제조방법이다.In the manufacturing method, first, the biopolymer sheet 12 is rounded to form a tubular tube in step S50, and in step S60, the nanofiber layer 11 is formed by electrospinning the nanofibers on the surface of the biopolymer sheet 12. It is a manufacturing method for completing the three-dimensional complex structure cell support 10 after formation.

도 3은 본 발명의 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도이고, 도 4a 및 도 4b는 도 3의 단계별 개념도이다.Figure 3 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a second embodiment of the present invention, Figures 4a and 4b is a step-by-step conceptual diagram of FIG.

도 3 내지 도 4b에 도시된 바와 같이, 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법은 내주면 및 외주면에 나노섬유층(11)이 형성되고, 상기 각 나노섬유층(11)의 사이에는 생체중합시트(12)가 형성된 구조이다.As shown in Figures 3 to 4b, in the tube-shaped three-dimensional complex structure cell support manufacturing method according to the second embodiment the nanofiber layer 11 is formed on the inner and outer peripheral surfaces, each of the nanofiber layer 11 The biopolymer sheet 12 is formed therebetween.

이를 위해 먼저 생체중합용액(14)을 생성하게 되는데, 상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화시켜 생성한다.(S10)To this end, first, a biopolymer solution 14 is generated. The biopolymer solution 14 is composed of PCL (Poly ε-carprolatone) and small intestinal submucosa (SIS: Small Intestinal Submucosa) and is a solvent of MC (Methylene). Chloride) and DMF (dimethyl formamide) are added to form a solution (S10).

그리고 상기 생체중합용액(14)을 나노섬유 형태로 방사하기 위해 나노방사기(20)에 투입시킨다. 이 후 형틀(30)의 바닥면에 나노섬유를 방사하여 제 1나노섬유층(11)을 형성한다.(S20)Then, the biopolymerization solution 14 is added to the nanospinner 20 to spin in the form of nanofibers. Thereafter, the first nanofiber layer 11 is formed by spinning the nanofibers on the bottom surface of the mold 30.

이 후 제 1나노섬유층(11)을 충분히 완전건조시킨 후, 상기 생체중합용액(14)을 제 1나노섬유층(11)이 형성된 형틀(30)에 직접 주입한다.(S30)Thereafter, the first nanofiber layer 11 is completely dried, and then the biopolymerization solution 14 is directly injected into the mold 30 on which the first nanofiber layer 11 is formed.

그리고 제 1실시예와 같은 일련의 S40, S50단계를 거친다.And the same goes through a series of steps S40, S50 as in the first embodiment.

아울러 제 1나노섬유층(11)이 형성되지 않은 생체중합시트(12)의 바깥면에 나노섬유를 방사하여 2나노섬유층(13)을 형성한다.(S60) 이때 생체중합시트(12)를 형틀(30)에 탈거하지 않고 제 2나노섬유층(13)을 형성할 수 있다.In addition, the second nanofiber layer 11 is formed on the outer surface of the biopolymer sheet 12 is not formed to spin the nanofiber to form a 2 nanofiber layer 13 (S60) At this time the biopolymer sheet 12 The second nanofiber layer 13 can be formed without removing the 30.

마지막으로 생체중합시트(12)를 인체의 혈관이나 신경관 등에 쓰일 수 있도록 튜브 형태의 관체로 성형하여 3차원 복합구조 세포 지지체(10)를 완성한다.(S70)Finally, the biopolymer sheet 12 is formed into a tube-shaped tube so as to be used for blood vessels or neural tubes of the human body, thereby completing the three-dimensional complex structure cell support 10. (S70)

다른 일예로, 본 발명에 따른 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에서 S60단계와, S70단계의 내용 순서를 반대로 하여 제조할 수 있음은 물론이다.As another example, in the method of manufacturing a three-dimensional complex structure cell support in the form of a tube according to the second embodiment of the present invention, the contents of steps S60 and S70 may be reversed.

한편, 상기 서술한 예는, 본 발명을 설명하고자하는 예일 뿐이다. 따라서 본 발명이 속하는 기술분야의 통상적인 전문가가 본 상세한 설명을 참조하여 부분변경 사용한 것도 본 발명의 범위에 속하는 것은 당연한 것이다.In addition, the above-mentioned example is only an example to demonstrate this invention. Therefore, it is obvious that the ordinary skilled in the art to which the present invention pertains uses the partial change with reference to the detailed description.

도 1은 본 발명의 제 1실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도,1 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a first embodiment of the present invention;

도 2a 및 도 2b는 도 1의 단계별 개념도,2a and 2b is a step-by-step conceptual diagram of FIG.

도 3은 본 발명의 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도,Figure 3 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a second embodiment of the present invention,

도 4a 및 도 4b는 도 3의 단계별 개념도이다.4A and 4B are conceptual diagrams of the process of FIG. 3.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10: 3차원 복합구조 세포 지지체10: three-dimensional complex cell support

11: 나노섬유층, 제 1나노섬유층 12: 생체중합시트11: nanofiber layer, first nanofiber layer 12: biopolymer sheet

13: 제 2나노섬유층 14: 생체중합용액13: second nanofiber layer 14: biopolymer solution

20: 나노방사기20: nanospinner

30 형틀 31: 블레이드30 mold 31: blade

Claims (3)

생체중합용액(14)을 생성하는 단계;(S10)Generating the biopolymerization solution 14; (S10) 상기 생체중합용액(14)을 형틀(30)에 주입하는 단계;(S20)Injecting the biopolymerization solution 14 into the mold 30; (S20) 상기 형틀(30)에 주입된 생체중합용액을 블레이드를 통해 평편하게 성형하는 단계;(S30)Flattening the biopolymerization solution injected into the mold 30 through the blade; (S30) 상기 형틀(30)에 주입된 생체중합용액(14)을 탈거하여 생체중합시트(12)를 생성하는 단계;(S40)Removing the biopolymer solution 14 injected into the mold 30 to generate a biopolymer sheet 12; (S40) 상기 생체중합시트(12)의 표면에 나노섬유를 방사하여 나노섬유층(11)을 형성하는 단계;(S50)Radiating nanofibers on the surface of the biopolymer sheet 12 to form a nanofiber layer 11; (S50) 상기 생체중합시트(12)를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체(10)를 완성하는 단계;(S60)를 포함하여 이루어지되,Rolling the biopolymer sheet 12 round to form a tube to form a three-dimensional complex structure cell support 10; (S60) 상기 생체중합용액(14)에는 소장점막하조직이 포함되어 있는 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법.Method for producing a three-dimensional complex structure cell support in the form of a tube, characterized in that the biopolymer solution 14 contains small intestinal submucosa. 생체중합용액(14)을 생성하는 단계;(S10)Generating the biopolymerization solution 14; (S10) 상기 생체중합용액(14)을 나노방사기(20)에 투입시켜 형틀(30)의 표면에 나노섬유를 방사하여 제 1나노섬유층(11)을 형성하는 단계;(S20) Injecting the biopolymer solution 14 into the nanospinning machine 20 to form a first nanofiber layer 11 by spinning the nanofibers on the surface of the mold 30; (S20) 상기 생체중합용액(14)을 제 1나노섬유층(11)이 형성된 형틀(30)에 주입하는 단계;(S30)Injecting the biopolymerization solution 14 into the mold 30 in which the first nanofiber layer 11 is formed; (S30) 상기 형틀(30)에 주입된 생체중합용액(14)을 블레이드(31)를 통해 평편하게 성형하는 단계;(S40)Flat molding the biopolymerization solution 14 injected into the mold 30 through the blade 31; (S40) 상기 형틀(30)에 주입된 생체중합용액(14)을 탈거하여 생체중합시트(12)를 생성하는 단계;(S50)Removing the biopolymer solution 14 injected into the mold 30 to generate the biopolymer sheet 12; (S50) 상기 나노방사기(20)를 통해 제 1나노섬유층(11)의 반대면인 생체중합시트(12)의 표면에 나노섬유를 방사하여 제 2나노섬유층(13)을 형성하는 단계;(S60)Forming a second nanofiber layer 13 by spinning nanofibers on the surface of the biopolymer sheet 12 which is the opposite surface of the first nanofiber layer 11 through the nanospinner 20; (S60) 상기 생체중합시트(12)를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체(10)를 완성하는 단계;(S70)를 포함하여 이루어지되,Rolling the biopolymer sheet 12 round to form a tube to form a three-dimensional complex structure cell support 10; (S70) 상기 생체중합용액(14)에는 소장점막하조직이 포함되어 있는 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법.Method for producing a three-dimensional complex structure cell support in the form of a tube, characterized in that the biopolymer solution 14 contains small intestinal submucosa. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화된 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법.The biopolymerization solution (14) is composed of PCL (Poly ε-carprolatone), small intestinal submucosa (SIS), liquefied by adding a solvent MC (Methylene Chloride) and DMF (dimethyl formamide) Method for producing a three-dimensional complex structure cell support in the form of a tube.
KR1020080043048A 2008-05-08 2008-05-08 A manufacturing method of a three dimensional scaffold KR20090117138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080043048A KR20090117138A (en) 2008-05-08 2008-05-08 A manufacturing method of a three dimensional scaffold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080043048A KR20090117138A (en) 2008-05-08 2008-05-08 A manufacturing method of a three dimensional scaffold

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020100072354A Division KR101092577B1 (en) 2010-07-27 2010-07-27 A manufacturing Method Of A Three Dimensional Scaffold

Publications (1)

Publication Number Publication Date
KR20090117138A true KR20090117138A (en) 2009-11-12

Family

ID=41601660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080043048A KR20090117138A (en) 2008-05-08 2008-05-08 A manufacturing method of a three dimensional scaffold

Country Status (1)

Country Link
KR (1) KR20090117138A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170044250A (en) * 2015-10-14 2017-04-25 단국대학교 천안캠퍼스 산학협력단 An artificial vessel comprising cell layer on the inside and outside surfaces and a process for preparing the same
KR20180052163A (en) * 2016-11-09 2018-05-18 단국대학교 천안캠퍼스 산학협력단 Stem cell culture, differentiation and transplantable biodegradable microporous micropatterned nerve guidance conduit for nerve regeneration, and biodegradable microporous micropatterned nerve guidance conduit manufactured thereby
KR20190007267A (en) * 2017-07-12 2019-01-22 서울대학교병원 3D printing artificial trachea scaffold and manufacturing method thereof
KR20190048529A (en) * 2017-10-31 2019-05-09 경북대학교 산학협력단 Manufacturing method of fibrous/hydrogel complex scaffold and fibrous/hydrogel complex scaffold
KR20200000364A (en) * 2018-06-22 2020-01-02 아주대학교산학협력단 Double layered nanofiber sheet using small intestinal submucosa for skin regenration or wound healing of skin and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170044250A (en) * 2015-10-14 2017-04-25 단국대학교 천안캠퍼스 산학협력단 An artificial vessel comprising cell layer on the inside and outside surfaces and a process for preparing the same
KR20180052163A (en) * 2016-11-09 2018-05-18 단국대학교 천안캠퍼스 산학협력단 Stem cell culture, differentiation and transplantable biodegradable microporous micropatterned nerve guidance conduit for nerve regeneration, and biodegradable microporous micropatterned nerve guidance conduit manufactured thereby
KR20190007267A (en) * 2017-07-12 2019-01-22 서울대학교병원 3D printing artificial trachea scaffold and manufacturing method thereof
KR20190048529A (en) * 2017-10-31 2019-05-09 경북대학교 산학협력단 Manufacturing method of fibrous/hydrogel complex scaffold and fibrous/hydrogel complex scaffold
KR20200000364A (en) * 2018-06-22 2020-01-02 아주대학교산학협력단 Double layered nanofiber sheet using small intestinal submucosa for skin regenration or wound healing of skin and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Wang et al. Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation
Jana et al. Anisotropic materials for skeletal‐muscle‐tissue engineering
Vaquette et al. A simple method for fabricating 3-D multilayered composite scaffolds
Dinis et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration
Sheikh et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin
Park et al. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs
Liao et al. Development and progress of engineering of skeletal muscle tissue
Orlova et al. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue
Nam et al. Improved cellular infiltration in electrospun fiber via engineered porosity
Bosworth et al. State of the art composites comprising electrospun fibres coupled with hydrogels: a review
Joshi et al. Macroporosity enhances vascularization of electrospun scaffolds
Xing et al. Engineering complex anisotropic scaffolds beyond simply uniaxial alignment for tissue engineering
Neal et al. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features
Sun et al. Development of channeled nanofibrous scaffolds for oriented tissue engineering
KR20090117140A (en) A three dimensional hybrid scaffold by bioplotting and electrospinning system
CN109876186B (en) Biomedical degradable double-layer stent for nerve repair and preparation method thereof
Theus et al. Biomaterial approaches for cardiovascular tissue engineering
JP2008513051A5 (en)
CN114606580B (en) Nanofiber structure and synthesis method and application thereof
KR20090117138A (en) A manufacturing method of a three dimensional scaffold
KR101092577B1 (en) A manufacturing Method Of A Three Dimensional Scaffold
KR20060071890A (en) Nanofiber mesh for cell culture
US20160051726A1 (en) Collagenous Foam Materials
KR100739198B1 (en) Method for manufacture of regeneration matter
JP4982887B2 (en) Nerve regeneration tube and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
A107 Divisional application of patent
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20100726

Effective date: 20110808

J121 Written withdrawal of request for trial
WITB Written withdrawal of application