KR101092577B1 - A manufacturing Method Of A Three Dimensional Scaffold - Google Patents

A manufacturing Method Of A Three Dimensional Scaffold Download PDF

Info

Publication number
KR101092577B1
KR101092577B1 KR1020100072354A KR20100072354A KR101092577B1 KR 101092577 B1 KR101092577 B1 KR 101092577B1 KR 1020100072354 A KR1020100072354 A KR 1020100072354A KR 20100072354 A KR20100072354 A KR 20100072354A KR 101092577 B1 KR101092577 B1 KR 101092577B1
Authority
KR
South Korea
Prior art keywords
solution
biopolymer
mold
sheet
biopolymerization
Prior art date
Application number
KR1020100072354A
Other languages
Korean (ko)
Other versions
KR20100099075A (en
Inventor
김근형
손준곤
윤현
박종하
박수아
김완두
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020100072354A priority Critical patent/KR101092577B1/en
Publication of KR20100099075A publication Critical patent/KR20100099075A/en
Application granted granted Critical
Publication of KR101092577B1 publication Critical patent/KR101092577B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/36Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/305Spray-up of reinforcing fibres with or without matrix to form a non-coherent mat in or on a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 나노섬유로 구현할 수 없는 탄성이나 기계적 강도를 갖도록 일정두께를 갖는 시트로 제작되되, 인체 내 손상된 기관이나 조직, 혈관, 신경관 등에 사용 시 세포가 빨리 증식될 수 있도록 소장점막하조직을 첨가한 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것으로, 이를 위해 생체중합용액을 생성하는 단계;와, 상기 생체중합용액을 형틀에 주입하는 단계;(S20)와, 상기 형틀에 주입된 생체중합용액을 블레이드를 통해 평편하게 성형하는 단계;(S30)와, 상기 형틀에 주입된 생체중합용액을 탈거하여 생체중합시트를 생성하는 단계;(S40)와, 상기 생체중합시트의 표면에 나노섬유를 방사하여 나노섬유층을 형성하는 단계;(S50)와, 상기 생체중합시트를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체를 완성하는 단계;(S60)를 포함하여 이루어지되, 상기 생체중합용액에는 소장점막하조직이 포함되어 있는 것을 특징으로 한다.The present invention is made of a sheet having a certain thickness to have elastic or mechanical strength that can not be realized with nanofibers, the small intestinal mucosa added so that the cells can multiply quickly when used in damaged organs or tissues, blood vessels, neural tubes, etc. A method of manufacturing a three-dimensional complex structure cell support in the form of a tube, comprising: generating a biopolymer solution; and injecting the biopolymer solution into a mold; (S20) and the biopolymerization injected into the mold. Forming a flat solution through the blade; (S30) and the step of removing the biopolymer solution injected into the mold to produce a biopolymer sheet; (S40), and the nanofiber on the surface of the biopolymer sheet Forming a nanofiber layer by spinning; (S50) and rolling the biopolymer sheet into a tube shape to complete a three-dimensional complex structure cell support; (S6 0), but the biopolymer solution is characterized in that it contains a small intestinal submucosa.

Description

튜브 형태의 3차원 복합구조 세포 지지체 제조방법{A manufacturing Method Of A Three Dimensional Scaffold}A manufacturing method of a three dimensional scaffold

본 발명은 나노섬유로 구현할 수 없는 탄성이나 기계적 강도를 갖도록 일정두께를 갖는 시트로 제작되는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것으로, 보다 상세하게는 시트의 일면 또는 양면에 나노섬유를 방사하되, 상기 시트 및 방사되는 나노섬유에는 인체 내 손상된 기관이나 조직, 혈관, 신경관 등에 사용 시 세포가 빨리 증식될 수 있도록 소장점막하조직을 첨가된 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것이다.
The present invention relates to a method for producing a three-dimensional multi-structure cell support in the form of a tube made of a sheet having a certain thickness so as to have elastic or mechanical strength that can not be realized by nanofibers, and more particularly, nanofibers on one or both sides of the sheet. In the method of manufacturing a three-dimensional composite structure scaffold in the form of a tube-like submucosal tissue added to the sheet and the nanofibers to be injured organs or tissues, blood vessels, neural tube used in the human body so that the cells can multiply quickly. It is about.

일반적으로 인체내 기관이나 조직, 혈관, 신경이 손상될 경우에 세포, 약물 지지체 등을 제공하여 효과적으로 조직을 재생하고 있는데, 조직 재생용 지지체는 임플란트 부위에서 물리적으로 안정하고 재생 효능을 조절할 수 있는 생리 활성을 가져야 하며, 또한 새로운 조직을 형성한 후에는 생체 내에서 분해되어야 하고 이때, 분해산물이 독성을 갖지 않아야 한다.In general, when organs, tissues, blood vessels, and nerves in the human body are damaged, cells and drug supports are provided to effectively regenerate tissues. Tissue regeneration supports are physically stable at the implant site and can regulate regenerative efficacy. It must be active and, after forming new tissue, must be degraded in vivo and the degradation product must not be toxic.

이러한 조직 재생용 지지체는 종래 일정한 강도와 형태를 갖는 고분자를 이용한 스폰지 타입, 매트릭스 형태의 나노 섬유 또는 젤 타입의 세포 배양 지지체로 제조되며, 이러한 세포 배양 지지체는 특정 깊이 또는 높이를 갖는 3차원 형상의 조직을 만들기 위해 중요한 역할을 한다.
The support for tissue regeneration is conventionally made of a cell culture support of sponge type, matrix type nanofiber or gel type using a polymer having a constant strength and shape, and the cell culture support has a three-dimensional shape having a specific depth or height. Plays an important role in creating an organization.

이러한 조직 재생의 뼈대로서 기능하는 지지체를 이식하고 자기치유능력을 이용하여 생체 내에서 조직을 재생하는 기술은 재생 의료 또는 조직 공학이라고 불린다. The technique of implanting a support functioning as a skeleton of such tissue regeneration and regenerating tissue in vivo using self-healing ability is called regenerative medicine or tissue engineering.

조직 공학의 일례로 초기세포 부착과 차후의 조직 형성을 위해 3차원적인 지지체로서 성장인자가 담긴 다공성 생분해성 담체로 구성하여, 인체조직에 삽입하여 인체조직이 재생되도록 하는 것이다.An example of tissue engineering is to construct a porous biodegradable carrier containing growth factors as a three-dimensional scaffold for initial cell attachment and subsequent tissue formation, so that human tissue is regenerated by insertion into human tissue.

일례로 상기 3차원 인공 담체를 튜브형태로 구성하여 신경이나 혈관 등에 이식함으로써, 손상된 신경이나 혈관이 재생할 수 있는 것이다.For example, by constructing the three-dimensional artificial carrier in the form of a tube and implanting it in a nerve or a blood vessel, damaged nerves or blood vessels can be regenerated.

이러한 3차원 튜브 형상의 지지체는 탄성이나 기계적 강도, 내구성 및 세포의 성장, 분화, 이동과 갖는 조건을 만족해야 한다.Such a three-dimensional tubular support must satisfy elasticity, mechanical strength, durability, and growth, differentiation, and movement of cells.

하지만 종래에는 3차원 튜브 형상의 지지체는 나노섬유로만 이루어지기 때문에 상기의 요구조건을 갖는 3차원 형상의 지지체가 요원한 실정이다.
However, in the related art, since the three-dimensional tubular support is made of only nanofibers, a three-dimensional support having the above requirements is far from being desired.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명은 생체중합용액을 생성하는 단계;와, 상기 생체중합용액을 형틀에 주입하는 단계;(S20)와, 상기 형틀에 주입된 생체중합용액을 블레이드를 통해 평편하게 성형하는 단계;(S30)와, 상기 형틀에 주입된 생체중합용액을 탈거하여 생체중합시트를 생성하는 단계;(S40)와, 상기 생체중합시트의 표면에 나노섬유를 방사하여 나노섬유층을 형성하는 단계;(S50)와, 상기 생체중합시트를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체를 완성하는 단계;(S60)를 포함하여 이루어지되, 상기 생체중합용액에는 소장점막하조직이 포함되어 있는 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법을 제공하는데 있다.
The present invention has been made in view of the above problems, the present invention comprises the steps of generating a biopolymer solution; and injecting the biopolymer solution into the mold; (S20) and the biopolymerization injected into the mold Forming a flat solution through the blade; (S30) and the step of removing the biopolymer solution injected into the mold to produce a biopolymer sheet; (S40), and the nanofiber on the surface of the biopolymer sheet Forming a nanofiber layer by spinning; (S50), and rolling the biopolymer sheet into a tube shape to form a tube support to form a three-dimensional complex structure cell support; (S60), wherein the biopolymerization solution is made. To provide a method for producing a three-dimensional complex structure cell support in the form of a tube, characterized in that it contains a small intestinal submucosa.

본 발명에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 따르면, 시트와 방사되는 나노섬유가 동일 재질로 이루어지기 때문에 제조가 편리한 장점이 있다.According to the method for producing a three-dimensional complex structure cell support in the form of a tube according to the present invention, since the sheet and the nanofibers are made of the same material, there is an advantage of convenient manufacturing.

또한 시트와 나노섬유에는 소장점막하조직(SIS)이 포함되어 있어 세포의 세포의 성장, 분화, 이동이 빠른 장점이 있다.In addition, the sheet and nanofibers include small intestinal submucosa (SIS) has the advantage of rapid growth, differentiation, and migration of cells in the cell.

또한 일정두께를 갖는 시트로 제작되어 나노섬유만으로 구현할 수 없는 탄성이나 기계적 강도를 갖는 특징이 있다.
In addition, the sheet has a certain thickness and is characterized by having elasticity or mechanical strength that cannot be realized by using only nanofibers.

도 1은 본 발명의 제 1실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도,
도 2a 및 도 2b는 도 1의 단계별 개념도,
도 3은 본 발명의 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도,
도 4a 및 도 4b는 도 3의 단계별 개념도이다.
1 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a first embodiment of the present invention;
2a and 2b is a step-by-step conceptual diagram of FIG.
Figure 3 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a second embodiment of the present invention,
4A and 4B are conceptual diagrams of the process of FIG. 3.

이하에서는 본 발명에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.Hereinafter will be described in detail with the accompanying drawings with respect to the method for producing a three-dimensional complex structure cell support in the form of a tube according to the present invention.

도 1은 본 발명의 제 1실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도이고, 도 2a 및 도 2b는 도 a의 단계별 개념도이다.1 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a first embodiment of the present invention, Figures 2a and 2b is a step-by-step conceptual diagram of FIG.

도 1 내지 도 2b에 도시된 바와 같이, 본 발명은 나노섬유로 구현할 수 없는 탄성이나 기계적 강도를 갖도록 일정두께를 갖는 시트로 제작되되, 인체 내 손상된 기관이나 조직, 혈관, 신경관 등에 사용 시 세포가 빨리 증식될 수 있도록 소장점막하조직을 첨가한 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에 관한 것이다.
As shown in Figure 1 to 2b, the present invention is made of a sheet having a certain thickness to have elastic or mechanical strength that can not be realized with nanofibers, the cells are used when used in organs, tissues, blood vessels, neural tubes, etc. The present invention relates to a method for producing a three-dimensional complex cell support in the form of a tube to which a small intestinal submucosa is added so as to rapidly proliferate.

이를 위해 먼저 생체중합용액(14)을 생성하게 되는데, 상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화시켜 생성한다.(S10)To this end, first, a biopolymer solution 14 is generated. The biopolymer solution 14 is composed of PCL (Poly ε-carprolatone) and small intestinal submucosa (SIS: Small Intestinal Submucosa) and is a solvent of MC (Methylene). Chloride) and DMF (dimethyl formamide) are added to form a solution (S10).

상기 생체중합용액(14)을 시트로 성형하기 위해 형틀(30)에 주입한다. 이 때 상기 형틀(30)은 생체중합용액(14)이 얇은 시트로 성형될 수 있도록 먼저 그 크기나 두께(높이)가 선행되어야 한다.(S20)The biopolymerization solution 14 is injected into the mold 30 to form a sheet. At this time, the mold 30 should be preceded by its size or thickness (height) so that the biopolymer solution 14 may be formed into a thin sheet.

그리고 상기 형틀(30)에 주입된 생체중합용액(14)은 블레이드(31)를 통해 평편하게 성형한다.(S30)And the biopolymerization solution 14 injected into the mold 30 is formed flat through the blade 31. (S30)

그 다음 성형된 생체중합용액(14)을 건조시킨 후 상기 형틀(30)에 주입된 생체중합용액을 탈거하여 생체중합시트(12)를 생성한다.(S40)Then, after drying the molded biopolymer solution 14, the biopolymer solution injected into the mold 30 is removed to generate the biopolymer sheet 12. (S40)

그리고 이렇게 생성된 생체중합시트(12)의 일면에 나노섬유층을 형성하기 위해 생체중합용액(14)을 별도의 나노방사기(20)에 투입하고, 나노방사기(20)를 통해 생체중합용액(14)을 섬유 형태로 상기 생체중합시트(12)의 표면에 전기 방사하여 나노섬유층을 형성한다.(S50)Then, in order to form a nanofiber layer on one surface of the biopolymer sheet 12 generated as described above, the biopolymerization solution 14 is added to a separate nanospinner 20, and the biopolymerization solution 14 through the nanospinner 20. To form a nanofiber layer by electrospinning the surface of the biopolymer sheet 12 in the form of fibers.

여기서 생체중합시트(12)를 형틀(30)에 탈거하지 않고, 나노방사기(20)를 통해 나노섬유를 방사하여 나노섬유층(11)을 형성하고, 이 후 탈거하는 방법도 가능하다.Here, without removing the biopolymer sheet 12 to the mold 30, the nanofiber layer 11 is formed by spinning the nanofibers through the nanospinner 20, and then the method may be removed.

마지막으로 생체중합시트(12)를 인체의 혈관이나 신경관 등에 쓰일 수 있도록 튜브 형태의 관체로 성형하여 3차원 복합구조 세포 지지체(10)를 완성한다.(S60) 이 때 나노섬유층(11)이 바깥쪽으로 노출되도록 성형하는 것이 선행되어야 한다.
Finally, the biopolymer sheet 12 is formed into a tube-shaped tube to be used for blood vessels or neural tubes of the human body to complete the three-dimensional complex structure cell support 10. (S60) At this time, the nanofiber layer 11 is outside Molding to be exposed to the side should be preceded.

다른 일예로, 본 발명에 따른 제 1실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에서 S50단계와, S60단계의 내용 순서를 반대로 하여 제조할 수 있다.As another example, in the method for producing a three-dimensional complex structure cell support in the form of a tube according to the first embodiment according to the present invention, the content sequence of step S50 and step S60 may be reversed.

상기의 제조방법은 먼저 S50단계에서 생체중합시트(12)를 둥글게 말아 튜브 형태의 관체로 성형하고, S60단계에서 생체중합시트(12)의 표면에 나노섬유를 전기 방사하여 나노섬유층(11)을 형성한 후 3차원 복합구조 세포 지지체(10)를 완성하는 제조방법이다.In the manufacturing method, first, the biopolymer sheet 12 is rounded to form a tubular tube in step S50, and in step S60, the nanofiber layer 11 is formed by electrospinning the nanofibers on the surface of the biopolymer sheet 12. It is a manufacturing method for completing the three-dimensional complex structure cell support 10 after formation.

도 3은 본 발명의 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법의 순서도이고, 도 4a 및 도 4b는 도 3의 단계별 개념도이다.Figure 3 is a flow chart of a method for producing a three-dimensional complex structure cell support in the form of a tube according to a second embodiment of the present invention, Figures 4a and 4b is a step-by-step conceptual diagram of FIG.

도 3 내지 도 4b에 도시된 바와 같이, 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법은 내주면 및 외주면에 나노섬유층(11)이 형성되고, 상기 각 나노섬유층(11)의 사이에는 생체중합시트(12)가 형성된 구조이다.As shown in Figures 3 to 4b, in the tube-shaped three-dimensional complex structure cell support manufacturing method according to the second embodiment the nanofiber layer 11 is formed on the inner and outer peripheral surfaces, each of the nanofiber layer 11 The biopolymer sheet 12 is formed therebetween.

이를 위해 먼저 생체중합용액(14)을 생성하게 되는데, 상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화시켜 생성한다.(S10)To this end, first, a biopolymer solution 14 is generated. The biopolymer solution 14 is composed of PCL (Poly ε-carprolatone) and small intestinal submucosa (SIS: Small Intestinal Submucosa) and is a solvent of MC (Methylene). Chloride) and DMF (dimethyl formamide) are added to form a solution (S10).

그리고 상기 생체중합용액(14)을 나노섬유 형태로 방사하기 위해 나노방사기(20)에 투입시킨다. 이 후 형틀(30)의 바닥면에 나노섬유를 방사하여 제 1나노섬유층(11)을 형성한다.(S20)Then, the biopolymerization solution 14 is added to the nanospinner 20 to spin in the form of nanofibers. Thereafter, the first nanofiber layer 11 is formed by spinning the nanofibers on the bottom surface of the mold 30.

이 후 제 1나노섬유층(11)을 충분히 완전건조시킨 후, 상기 생체중합용액(14)을 제 1나노섬유층(11)이 형성된 형틀(30)에 직접 주입한다.(S30)Thereafter, the first nanofiber layer 11 is completely dried, and then the biopolymerization solution 14 is directly injected into the mold 30 on which the first nanofiber layer 11 is formed.

그리고 제 1실시예와 같은 일련의 S40, S50단계를 거친다.And the same goes through a series of steps S40, S50 as in the first embodiment.

아울러 제 1나노섬유층(11)이 형성되지 않은 생체중합시트(12)의 바깥면에 나노섬유를 방사하여 2나노섬유층(13)을 형성한다.(S60) 이때 생체중합시트(12)를 형틀(30)에 탈거하지 않고 제 2나노섬유층(13)을 형성할 수 있다.In addition, the second nanofiber layer 11 is formed on the outer surface of the biopolymer sheet 12 is not formed to spin the nanofiber to form a 2 nanofiber layer 13 (S60) At this time the biopolymer sheet 12 The second nanofiber layer 13 can be formed without removing the 30.

마지막으로 생체중합시트(12)를 인체의 혈관이나 신경관 등에 쓰일 수 있도록 튜브 형태의 관체로 성형하여 3차원 복합구조 세포 지지체(10)를 완성한다.(S70)
Finally, the biopolymer sheet 12 is formed into a tube-shaped tube so as to be used for blood vessels or neural tubes of the human body, thereby completing the three-dimensional complex structure cell support 10. (S70)

다른 일예로, 본 발명에 따른 제 2실시예에 따른 튜브 형태의 3차원 복합구조 세포 지지체 제조방법에서 S60단계와, S70단계의 내용 순서를 반대로 하여 제조할 수 있음은 물론이다.
As another example, in the method of manufacturing a three-dimensional complex structure cell support in the form of a tube according to the second embodiment of the present invention, the contents of steps S60 and S70 may be reversed.

한편, 상기 서술한 예는, 본 발명을 설명하고자하는 예일 뿐이다. 따라서 본 발명이 속하는 기술분야의 통상적인 전문가가 본 상세한 설명을 참조하여 부분변경 사용한 것도 본 발명의 범위에 속하는 것은 당연한 것이다.
In addition, the above-mentioned example is only an example to demonstrate this invention. Therefore, it is obvious that the ordinary skilled in the art to which the present invention pertains uses the partial change with reference to the detailed description.

10: 3차원 복합구조 세포 지지체
11: 나노섬유층, 제 1나노섬유층 12: 생체중합시트
13: 제 2나노섬유층 14: 생체중합용액
20: 나노방사기
30 형틀 31: 블레이드
10: three-dimensional complex cell support
11: nanofiber layer, first nanofiber layer 12: biopolymer sheet
13: second nanofiber layer 14: biopolymer solution
20: nanospinner
30 mold 31: blade

Claims (2)

생체중합용액(14)을 생성하는 단계;(S10)
하면이 폐쇄되고 상면이 개방되며 상기 하면의 테두리 상부에 수용벽을 가진 형틀(30)에, 상기 생체중합용액(14)을 주입하는 단계;(S20)
블레이드(31)를 상기 형틀(30) 수용벽의 상단을 따라 슬라이드시켜, 주입된 상기 생체중합용액(14)을 평편하게 성형하는 단계;(S30)
성형된 상기 생체중합용액(14)을 건조시킨 후, 상기 형틀(30)로부터 탈거시켜 생체중합시트(12)를 생성하는 단계;(S40)
상기 생체중합용액(14)을 나노방사기(20)를 통해 상기 생체중합시트(12)의 표면에 나노섬유로서 방사하여 나노섬유층(11)을 형성하는 단계;(S50)
상기 생체중합시트(12)를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체(10)를 완성하는 단계;(S60)를 포함하여 이루어지되,
상기 생체중합용액(14)에는 소장점막하조직이 포함되며,
상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화된 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법.
Generating the biopolymerization solution 14; (S10)
Injecting the biopolymerization solution 14 into the mold 30 having a lower surface is closed and the upper surface is opened and the receiving wall on the upper edge of the lower surface; (S20)
Slide the blade 31 along the upper end of the mold 30, the receiving wall, to form the injected biopolymer solution (14) flat; (S30)
After drying the molded biopolymer solution 14, to remove from the mold 30 to generate a biopolymer sheet 12; (S40)
Radiating the biopolymer solution 14 as nanofibers on the surface of the biopolymer sheet 12 through the nanospinner 20 to form a nanofiber layer 11 (S50)
Rolling the biopolymer sheet 12 round to form a tube to form a three-dimensional complex structure cell support 10; (S60)
The biopolymerization solution 14 includes small intestinal submucosa,
The biopolymerization solution (14) is composed of PCL (Poly ε-carprolatone), small intestinal submucosa (SIS), liquefied by adding a solvent MC (Methylene Chloride) and DMF (dimethyl formamide) Method for producing a three-dimensional complex structure cell support in the form of a tube.
생체중합용액(14)을 생성하는 단계;(S10)
하면이 폐쇄되고 상면이 개방되며 상기 하면의 테두리 상부에 수용벽을 가진 형틀(30)의 표면에, 상기 생체중합용액(14)을 나노방사기(20)를 통해 나노섬유로서 방사하여 제 1나노섬유층(11)을 형성하는 단계;(S20)
상기 생체중합용액(14)을 상기 제 1나노섬유층(11)이 형성된 상기 형틀(30)에 주입하는 단계;(S30)
블레이드(31)를 상기 형틀(30) 수용벽의 상단을 따라 슬라이드시켜, 주입된 상기 생체중합용액(14)을 평편하게 성형하는 단계;(S40)
성형된 상기 생체중합용액(14)을 건조시킨 후, 상기 형틀(30)로부터 탈거시켜 생체중합시트(12)를 생성하는 단계;(S50)
상기 나노방사기(20)를 통해 제 1나노섬유층(11)의 반대면인 생체중합시트(12)의 표면에 나노섬유를 방사하여 제 2나노섬유층(13)을 형성하는 단계;(S60)
상기 생체중합시트(12)를 둥글게 말아 튜브 형태로 성형하여 3차원 복합구조 세포 지지체(10)를 완성하는 단계;(S70)를 포함하여 이루어지되,
상기 생체중합용액(14)에는 소장점막하조직이 포함되며,
상기 생체중합용액(14)은 PCL(Poly ε-carprolatone)과, 소장점막하조직(SIS: Small Intestinal Submucosa)으로 이루어지고, 용매인 MC(Methylene Chloride)와, DMF(Dimethyl Formamide)가 첨가되어 용액화된 것을 특징으로 하는 튜브 형태의 3차원 복합구조 세포 지지체 제조방법.
Generating the biopolymerization solution 14; (S10)
The first nanofibrous layer is formed by spinning the biopolymerization solution 14 as nanofibers through the nanospinner 20 on the surface of the mold 30 having the lower surface and the upper surface being opened and the receiving wall on the upper edge of the lower surface. (11) forming; (S20)
Injecting the biopolymerization solution 14 into the mold 30 in which the first nanofiber layer 11 is formed;
Slide the blade 31 along the upper end of the mold 30, the receiving wall, to form the injected biopolymer solution 14 flat; (S40)
After drying the molded biopolymer solution 14, to remove from the mold 30 to generate a biopolymer sheet 12; (S50)
Forming a second nanofiber layer 13 by spinning nanofibers on the surface of the biopolymer sheet 12 which is the opposite surface of the first nanofiber layer 11 through the nanospinner 20; (S60)
Rolling the biopolymer sheet 12 round to form a tube to form a three-dimensional complex structure cell support 10; (S70)
The biopolymerization solution 14 includes small intestinal submucosa,
The biopolymerization solution (14) is composed of PCL (Poly ε-carprolatone), small intestinal submucosa (SIS), liquefied by adding a solvent MC (Methylene Chloride) and DMF (dimethyl formamide) Method for producing a three-dimensional complex structure cell support in the form of a tube.
KR1020100072354A 2010-07-27 2010-07-27 A manufacturing Method Of A Three Dimensional Scaffold KR101092577B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100072354A KR101092577B1 (en) 2010-07-27 2010-07-27 A manufacturing Method Of A Three Dimensional Scaffold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100072354A KR101092577B1 (en) 2010-07-27 2010-07-27 A manufacturing Method Of A Three Dimensional Scaffold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020080043048A Division KR20090117138A (en) 2008-05-08 2008-05-08 A manufacturing method of a three dimensional scaffold

Publications (2)

Publication Number Publication Date
KR20100099075A KR20100099075A (en) 2010-09-10
KR101092577B1 true KR101092577B1 (en) 2011-12-13

Family

ID=43005633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100072354A KR101092577B1 (en) 2010-07-27 2010-07-27 A manufacturing Method Of A Three Dimensional Scaffold

Country Status (1)

Country Link
KR (1) KR101092577B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275659B1 (en) * 2011-12-26 2013-06-17 원광대학교산학협력단 Method for fabricating a three dimensional scaffold using a knitting machine and a scaffold thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442071B1 (en) 2013-12-10 2014-11-04 코리아에프티 주식회사 Adsorption means of gas for vehicles
KR102041223B1 (en) * 2017-09-28 2019-11-07 포항공과대학교 산학협력단 3 Dimensional Shape-Specific Cell Sheet and Method for Producing the Same
KR102185268B1 (en) * 2018-10-31 2020-12-03 계명대학교 산학협력단 Device and method for manufacturing multi-layer bio-scaffold using 3D printing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621569B1 (en) 2003-10-28 2006-09-13 이승진 Nano-microfibrous scaffold for enhanced tissue regeneration and method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621569B1 (en) 2003-10-28 2006-09-13 이승진 Nano-microfibrous scaffold for enhanced tissue regeneration and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275659B1 (en) * 2011-12-26 2013-06-17 원광대학교산학협력단 Method for fabricating a three dimensional scaffold using a knitting machine and a scaffold thereof

Also Published As

Publication number Publication date
KR20100099075A (en) 2010-09-10

Similar Documents

Publication Publication Date Title
Jana et al. Anisotropic materials for skeletal‐muscle‐tissue engineering
Cheng et al. Engineering aligned skeletal muscle tissue using decellularized plant-derived scaffolds
Kitsara et al. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering
Jiang et al. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique
Vaquette et al. A simple method for fabricating 3-D multilayered composite scaffolds
Joshi et al. Macroporosity enhances vascularization of electrospun scaffolds
Nam et al. Improved cellular infiltration in electrospun fiber via engineered porosity
Xing et al. Engineering complex anisotropic scaffolds beyond simply uniaxial alignment for tissue engineering
Park et al. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs
AU2007211018B2 (en) Biomimetic scaffolds
KR20090117140A (en) A three dimensional hybrid scaffold by bioplotting and electrospinning system
CN114606580B (en) Nanofiber structure and synthesis method and application thereof
KR101092577B1 (en) A manufacturing Method Of A Three Dimensional Scaffold
Schmitt et al. Current applications of polycaprolactone as a scaffold material for heart regeneration
Saiding et al. Abdominal wall hernia repair: From prosthetic meshes to smart materials
CN101703811B (en) Medical degradable polyester asymmetric membrane and preparation method thereof
Jin et al. Fabrication and characterization of three-dimensional (3D) core–shell structure nanofibers designed for 3D dynamic cell culture
KR20090117138A (en) A manufacturing method of a three dimensional scaffold
Trombino et al. Polymeric biomaterials for the treatment of cardiac post-infarction injuries
CA2874527C (en) Collagenous foam materials
Dawson et al. Reactive cell electrospinning of anisotropically aligned and bilayer hydrogel nanofiber networks
KR100739198B1 (en) Method for manufacture of regeneration matter
Kumar et al. Electrospun 3d scaffolds for tissue regeneration
Ibrahim et al. Cardiac tissue engineering: A comparative analysis on microscaffold patterning
Mandla et al. Cardiac tissue

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150909

Year of fee payment: 5