KR20090113175A - Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same - Google Patents

Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same Download PDF

Info

Publication number
KR20090113175A
KR20090113175A KR1020090001640A KR20090001640A KR20090113175A KR 20090113175 A KR20090113175 A KR 20090113175A KR 1020090001640 A KR1020090001640 A KR 1020090001640A KR 20090001640 A KR20090001640 A KR 20090001640A KR 20090113175 A KR20090113175 A KR 20090113175A
Authority
KR
South Korea
Prior art keywords
acrylamide
sulfonic acid
polymer electrolyte
liquid monomer
containing aliphatic
Prior art date
Application number
KR1020090001640A
Other languages
Korean (ko)
Inventor
최영우
박진수
김창수
박구곤
박석희
임성대
양태현
윤영기
김민진
김경연
손영준
이원용
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090001640A priority Critical patent/KR20090113175A/en
Publication of KR20090113175A publication Critical patent/KR20090113175A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: A method for preparing composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide is provided to ensure excellent ion conductivity and high durability and to reduce manufacturing cost. CONSTITUTION: A method for preparing composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide comprises a step of forming a membrane by synthesizing polyelectrolyte on a porous polymer support. The polyelectrolyte is cross-linked with sulfonic acid-aliphatic liquid monomer and an acrylamide-based cross-linking agent.

Description

술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법 및 이를 이용한 고분자전해질 연료전지{Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same}Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same}

본 발명은 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법 및 이를 이용한 고분자 연료전지에 관한 것이다.The present invention relates to a method for producing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane and a polymer fuel cell using the same.

상세하게 본 발명은, 술폰산이 함유된 지방족 단량체, 아크릴아미드계 가교제 및 광 개시제를 포함하는 혼합 용액에, 미세 다공성 고분자 지지체 막을 함침시켜 광 가교하므로써, 우수한 수소 이온 전도성을 가지면서도 제조 공정이 간단하고 제조 비용을 절감할 수 있는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법 및 이를 이용한 고분자 연료전지에 관한 것이다.In detail, the present invention is made by simplifying a manufacturing process while having excellent hydrogen ion conductivity by impregnating a photopolymeric crosslinked film by impregnating a microporous polymer support membrane in a mixed solution containing an aliphatic monomer containing sulfonic acid, an acrylamide crosslinking agent and a photoinitiator. The present invention relates to a method for preparing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane capable of reducing manufacturing costs, and a polymer fuel cell using the same.

일반적으로, 연료전지는 사용되는 전해질(electrolyte)의 종류에 따라 크게 알칼리형(Akaline Fuel Cell: AFC), 인산형(Phosphoric Acid Fuel Cell: PAFC), 용융탄산염(Molten Carbonate Fuel Cell: MCFC), 고체산화물(Solid Oxide Fuel Cell: SOFC), 직접 메탄올 연료전지(Direct Methanol Fuel Cell: DMFC) 및 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)로 분류되고 있다.In general, fuel cells are generally alkaline fuel cells (AFC), phosphate (Phosphoric Acid Fuel Cell (PAFC)), molten carbonate (Molten Carbonate Fuel Cell (MCFC)), solids depending on the type of electrolyte used. Solid Oxide Fuel Cell (SOFC), Direct Methanol Fuel Cell (DMFC), and Polymer Electrolyte Membrane Fuel Cell (PEMFC) are classified.

상기 여러 종류의 연료전지 중에서 고분자 연료전지 및 직접 메탄올 연료전지는 고분자를 전해질로 사용하기 때문에 전해질에 의한 부식이나 증발의 위험이 없으며, 단위면적당 높은 전류밀도(current density)를 얻을 수 있어 타 연료전지에 비해 출력특성이 월등히 높고, 작동온도가 낮아 현재 자동차 등의 이동용(transportable) 전원, 주택이나 공공건물 등의 분산용 전원(on-site) 및 전자기기용 등의 소형 전원으로 이용하기 위하여 미국, 일본을 비롯한 유럽 등에서 이에 대한 개발이 활발히 추진되고 있다. 뿐만 아니라 이온 전도성 고분자 전해질막은 고분자 전해질 연료전지 또는 직접 메탄올 연료전지에서 성능과 가격을 결정하는 가장 중요한 핵심 구성요소 중 하나이다.Among the fuel cell types, the polymer fuel cell and the direct methanol fuel cell use polymers as electrolytes, and thus there is no risk of corrosion or evaporation due to electrolytes, and high current density per unit area can be obtained. Compared with the US and Japan, the output characteristics are much higher and the operating temperature is lower than that of the US, Japan, to use them as portable power sources such as automobiles, distributed power sources (on-site) and electronic devices for homes and public buildings. In Europe and other countries, development of this is being actively promoted. In addition, the ion conductive polymer electrolyte membrane is one of the most important key components in determining performance and price in a polymer electrolyte fuel cell or a direct methanol fuel cell.

현재 사용되는 고분자 전해질막은 주로 나피온(Nafion, DuPont사 제조의 상품명), 프레미온(Flemion, Asahi Glass사 제조의 상품명), 아시프렉스(Asiplex, Asahi Chemical사 제조의 상품명) 및 다우 XUS(Dow XUS, Dow Chemical사 제조의 상품명) 전해질막과 같은 퍼플루오로설포네이트 아이오노머막(perfluorosulfonate ionomer membrane)이 많이 사용되고 있으나, 그 가격이 상당히 고가이기 때문에 상기 고분자 연료전지를 발전용 전원으로 상용화하는데 상당한 부담으인으로 작용하 고 있다. Currently used polymer electrolyte membranes are mainly Nafion (trade name manufactured by DuPont), Premion (trade name manufactured by Flemion, Asahi Glass), Asiplex (trade name manufactured by Asahi Chemical), and Dow XUS (Dow XUS). , Dow Chemical Co., Ltd. namely, perfluorosulfonate ionomer membranes such as electrolyte membranes are widely used, but due to their high price, they are a considerable burden to commercialize the polymer fuel cell as a power source for power generation. It is acting as a.

한편, 이러한 부담요인을 해소하기 위한 방편으로, 가격이 상대적으로 저렴하며 다양하게 상업적 응용이 가능한 폴리에테르에테르케톤(polyether ether ketone), 폴리술폰(polysulfone), 폴리이미드(polyimide) 등의 탄화수소계 고분자에 대한 연구가 활발히 진행중이다. 위 고분자를 술폰화 반응으로 이온 전도성 고분자로 제조한 후 전해질 막으로 캐스팅하는 방법으로 연료전지 전해질 막으로 적용하고 있다.On the other hand, in order to solve such a burden, hydrocarbon-based polymers such as polyether ether ketone, polysulfone, polyimide, etc., which are relatively inexpensive and have various commercial applications. The research on is active. The above polymer is manufactured as an ion conductive polymer by sulfonation reaction and then applied as a fuel cell electrolyte membrane by casting into an electrolyte membrane.

또한, 위의 탄화수소계 고분자의 가장 큰 단점인 내산화환원성과 열적/기계적 안정성을 개선시키고 막 전극 접합체(MEA) 제조 시에 과도한 팽윤에 의한 전극과의 낮은 접합성을 개선하기 위한 방편으로 테플론과 같이 기계적, 열적, 내 산화성이 우수한 다공성 지지체에 과불소계 혹은 탄화수소계 고분자를 그 기공에 함침시켜 복합막을 제작하는 방법이 제시되고 있다. 상용화된 예로 W.L. Gore & Associates사의 Gore-select 는 20~40㎛의 얇은 두께와 뛰어난 기계적, 전기화학적 물성을 나타낸다.In addition, Teflon is a method for improving redox resistance and thermal / mechanical stability, which are the major disadvantages of the above hydrocarbon-based polymers, and for improving low bonding properties with electrodes due to excessive swelling during membrane electrode assembly (MEA) manufacturing. A method of fabricating a composite membrane by impregnating a perfluorinated or hydrocarbon-based polymer in its pores in a porous support having excellent mechanical, thermal and oxidation resistance has been proposed. Commercialized examples include W.L. Gore & Associates' Gore-select has a thin thickness of 20 to 40㎛ and excellent mechanical and electrochemical properties.

상술한 바와 같은 복합막의 우수한 성질을 살려 연료전지의 보다 좋은 성능을 나타낼 수 있는 막을 제조하기 위하여, 나피온 대신 탄화수소계 단량체인 스티렌을 디비닐벤젠 가교제과 함께 테플론, 폴리에틸렌(PE), 폴리비닐리덴디플루오라이드(PVDF) 등의 다양한 다공성 지지체에 함침시켜 가교한 후 술폰화시키는 방법과 아크릴술폰산 단량체와 수용성 가교제를 상기와 같이 다공성 지지체에 함침시켜 가 교하여 전해질 막을 제조하는 방법 등이 제시되고 있다.In order to produce a membrane that can exhibit better performance of a fuel cell utilizing the excellent properties of the composite membrane as described above, styrene, a hydrocarbon monomer instead of Nafion, is combined with a divinylbenzene crosslinking agent with Teflon, polyethylene (PE), and polyvinylidenedi A method of impregnating and crosslinking by impregnating a variety of porous supports such as fluoride (PVDF) and sulfonation, and a method of preparing an electrolyte membrane by crosslinking by impregnating an acrylic sulfonic acid monomer and a water-soluble crosslinking agent into a porous support as described above are proposed.

상기와 같은 스티렌-디비닐벤젠 가교 전해질막은 건조한 상태가 되면, 취성의 증가로 부서지게 되어 박막화나 복합막 등의 형태로 대량생산 및 전극으로 가공 시에 기계적 안정성이 뒤떨어진다는 결점을 갖고 있다. 또한, 아크릴술폰산 가교 전해질 세공충진막은 내구성이 취약하기 때문에 이러한 탄화수소계 고분자막의 결점으로 광범위한 상용화가 되지 못하는 단점이 있는 것으로 알려져 있다.When the styrene-divinylbenzene crosslinked electrolyte membrane as described above is dried, it is brittle due to an increase in brittleness, and has a drawback that mechanical stability is inferior in mass production and processing into electrodes in the form of thin films or composite membranes. In addition, acrylic sulfonic acid cross-linked electrolyte pore-filling membrane is known to have a disadvantage in that a wide range of commercialization is not possible due to the drawback of such a hydrocarbon-based polymer membrane because of poor durability.

따라서 본 발명의 목적은, 수소 이온 전도성이 높은 술폰산 함유 지방족 액상 단량체에 내구성이 강한 아크릴아미드계 가교제를 무수물 상태로 다공성 고분자 지지체에 함침 후 광가교하여 복합막의 물성 및 내구성을 향상시켜 종래의 고분자 전해질 복합막 보다 더욱 향상된 수소 이온 전도성을 가지는 연료전지용 고분자 전해질 복합막 제조방법 및 이를 이용한 연료전지를 제공하는 것이다.Accordingly, an object of the present invention is to impregnate a porous polymer support in the anhydrous state with a durable acrylamide-based crosslinking agent in a sulfonic acid-containing aliphatic liquid monomer having high hydrogen ion conductivity and then optically crosslinking to improve physical properties and durability of the composite membrane, thereby improving conventional polymer electrolytes. It is to provide a method for producing a polymer electrolyte composite membrane for a fuel cell having an improved hydrogen ion conductivity than a composite membrane and a fuel cell using the same.

상기 목적을 달성하기 위해 본 발명은 아래의 특징을 갖는다.In order to achieve the above object, the present invention has the following features.

다공성 고분자 지지체에 술폰산 함유 지방족 액상 단량체와 아크릴아미드계 가교제로 가교된 고분자 전해질을 합성하여 막을 형성하는 것을 특징으로 한다. 여기서, 상기 다공성 고분자 지지체는 공극 부피가 30 - 60 %, 기공 사이즈가 0.05 - 0.1 마이크로미터, 두께가 20 - 55 마이크로미터인 다공성 탄화수소계 막을 사용한 다.A polymer electrolyte crosslinked with a sulfonic acid-containing aliphatic liquid monomer and an acrylamide-based crosslinking agent is synthesized on a porous polymer support to form a membrane. Here, the porous polymer support uses a porous hydrocarbon membrane having a pore volume of 30-60%, a pore size of 0.05-0.1 micrometers, and a thickness of 20-55 micrometers.

특히, 상기 술폰산 함유 지방족 액상 단량체-아크릴아미드 가교 고분자 전해질은 물을 포함하지 않은 순도 95% 이상의 고농도 술폰산 함유 지방족 액상 단량체, 아크릴아미드계 가교제, 개시제가 혼합된 무수물 상태의 혼합 용액으로 합성되며, 상기 술폰산 단량체 및 가교제를 혼합한 용액을 100 중량부로 보았을 때, 혼합용액 100 중량부에 대해 술폰산 함유 지방족 액상 단량체 60~90 중량부, 아크릴아미드계 가교제 10~40 중량부와 혼합용액 100중량부에 추가로 개시제 0.1~0.5 중량부를 첨가하여 조성된다. 상기 개시제는 바람직하게 0.2 중량부를 첨가하여 조성된다.In particular, the sulfonic acid-containing aliphatic liquid monomer-acrylamide crosslinked polymer electrolyte is synthesized in a mixed solution of an anhydride state in which a high concentration of sulfonic acid-containing aliphatic liquid monomer, acrylamide-based crosslinking agent, and an initiator is not less than 95% pure without water. When the solution of the sulfonic acid monomer and the crosslinking agent was mixed at 100 parts by weight, 60 to 90 parts by weight of the sulfonic acid-containing aliphatic liquid monomer, 10 to 40 parts by weight of the acrylamide-based crosslinking agent and 100 parts by weight of the mixed solution were added to 100 parts by weight of the mixed solution. It is formed by adding 0.1 to 0.5 parts by weight of an initiator. The initiator is preferably formed by adding 0.2 parts by weight.

이 때, 상기 물을 함유하지 않은 고농도 술폰산 함유 지방족 액상 단량체는 이온교환능력을 향상시켜 높은 이온전도도를 가지게 된다. 또한, 술폰산 함유 지방족 액상 단량체의 함량이 60 중량부 미만이면 이온전도도를 향상 시킬 수 있는 이온교환용량이 부족하며 전해질 혼합용액의 제조가 어렵고 90 중량부 이상이면 막의 내구성을 감소시킨다. 이것은 가교제의 함량이 10 중량부 미만일 경우 가교도가 부족하여 막의 내구성을 감소시키고 40 중량부를 초과할 경우 전해질 혼합용액의 제조가 어렵고 가교도가 너무 높아 막의 전도도를 현저히 감소시키는 역할과 동일하다.At this time, the high-concentration sulfonic acid-containing aliphatic liquid monomer containing no water improves ion exchange capacity and thus has high ion conductivity. In addition, when the content of the sulfonic acid-containing aliphatic liquid monomer is less than 60 parts by weight, the ion exchange capacity may be insufficient to improve the ionic conductivity, and the preparation of the electrolyte mixture solution is difficult. This is equivalent to the role of reducing the durability of the membrane due to the lack of crosslinking degree when the content of the crosslinking agent is less than 10 parts by weight, and difficult to prepare the electrolyte mixture solution when the content of the crosslinking agent is greater than 40 parts by weight, and the crosslinking degree is too high.

상기 술폰산 함유 지방족 액상 단량체는 물을 함유하지 않은 비닐술폰산, 알릴술폰산, 2-메틸-2-프로펜-1-술폰산, 3-술포프로필 아크릴산과 같이 순도 95% 이상인 고농도의 액상 단량체 중에서 선택된 1종 이상으로 적용한다.The sulfonic acid-containing aliphatic liquid monomer is one selected from a high concentration of liquid monomer having a purity of 95% or more, such as vinyl sulfonic acid, allyl sulfonic acid, 2-methyl-2-propene-1-sulfonic acid, and 3-sulfopropyl acrylic acid, which do not contain water. Apply above.

또한, 상기 아크릴아미드 가교제는 N,N'-비스아크릴로일피퍼라진과 같은 탄소 이중결합을 두 개 이상 포함하는 아크릴아미드 중에서 선택된 1종 이상으로 적용한다.In addition, the acrylamide crosslinking agent is applied to at least one selected from acrylamide containing two or more carbon double bonds such as N, N'-bisacryloylpiperazine.

한편, 상기 개시제는 광 개시제로서 스위스의 시바 가이기(Ciba Geigy)사 제품의 Doracure 또는 Irgacure 시리즈 중 어느 하나로 선택된다.On the other hand, the initiator is selected from the Doracure or Irgacure series of Ciba Geigy of Switzerland as a photoinitiator.

상기 중합을 위한 가교제는 복합막의 가교도를 좌우하여 그 양에 따라 막의 팽윤도와 기계적 물성을 좌우하는 역할을 하는 것이다. 이러한 가교제의 종류로 아크릴아미드계 가교제를 제시하였으나, 그 종류를 한정하는 것은 아니며 중합을 위한 개시제는 특별한 한정 없이 사용될 수 있다.The crosslinking agent for the polymerization influences the degree of crosslinking of the composite membrane and plays a role of determining the swelling degree and mechanical properties of the membrane according to the amount thereof. Although an acrylamide-based crosslinking agent is provided as a kind of such a crosslinking agent, the type of crosslinking agent is not limited, and an initiator for polymerization may be used without particular limitation.

상기와 같은 본 발명은, (a) 술폰산 함유 지방족 액상 단량체, 아크릴아미드계 가교제 및 개시제로 구성된 혼합 용액을 다공성 고분자 지지체에 함침시키는 단계와; (b) 상기 (a) 단계에서 함침된 다공성 지지체를 PET필름 사이에 적층한 후, 광가교하는 단계를 수행하여 제조된다.As described above, the present invention comprises the steps of: (a) impregnating a porous polymer support with a mixed solution composed of a sulfonic acid-containing aliphatic liquid monomer, an acrylamide-based crosslinking agent and an initiator; (b) after stacking the porous support impregnated in step (a) between the PET film, it is prepared by performing a photocrosslinking step.

이 때, 상기 광가교하는 단계에서는, 광개시제를 함유한 혼합용액이 함침된 다공성 지지체를 상하로 PET 필름 사이에 적층하여 30 mJ/cm2 - 150 mJ/cm2 의 자외선 에너지를 조사하여 광가교한다. At this time, in the step of photo-crosslinking, the porous support impregnated with the mixed solution containing the photoinitiator is laminated between the PET film up and down to irradiate 30 mJ / cm 2-150 mJ / cm 2 of ultraviolet light to photocrosslink.

또한, 상기 다공성 고분자 지지체는 내화학성, 내산화성 및 기계적 안정성이 뛰어난 탄화수소계 소재가 사용되며, 예를 들면 폴리에틸렌, 폴리프로필렌, 폴리이미드, 폴리아미드이미드, 폴리프로필렌옥시드, 폴리에테르술폰, 폴리우레탄 등이 사용될 수 있다.In addition, the porous polymer support is used a hydrocarbon-based material excellent in chemical resistance, oxidation resistance and mechanical stability, for example polyethylene, polypropylene, polyimide, polyamideimide, polypropylene oxide, polyether sulfone, polyurethane And the like can be used.

이와 같은 방법으로 술폰산 함유 지방족 액상 단량체-아크릴아미드 가교 고분자 전해질을 함유하는 20~55 ㎛ 두께의 고분자 전해질 복합막을 제조할 수 있다.In this manner, a polymer electrolyte composite membrane having a thickness of 20 to 55 μm containing a sulfonic acid-containing aliphatic liquid monomer-acrylamide crosslinked polymer electrolyte may be prepared.

상기와 같은 제조방법에 의해 본 발명은, 상온에서 수소 이온 전도도가 0.07 - 0.12 S/cm 이며, 메탄올 투과도가 0.1 kg/m2?h 이하인 고분자 복합막을 갖는 연료전지가 제작된다.According to the above production method, a fuel cell having a polymer composite membrane having a hydrogen ion conductivity of 0.07-0.12 S / cm at room temperature and a methanol permeability of 0.1 kg / m < 2 >

이상에서와 같이 본 발명은, 고분자 전해질 복합막의 기계적 물성을 향상시키기 위해서 다공성 지지체인 PE를 사용하고, 술폰산 함유 지방족 액상 단량체와 아크릴아미드계 가교제를 함께 사용함으로써, 종래의 스티렌-디비닐벤젠 가교 전해질, 아크릴술폰산 가교 전해질에 의해 제조된 복합막과 비교하여 우수한 이온 전도도 및 높은 내구성을 갖는 효과를 얻게 된다.As described above, in the present invention, in order to improve the mechanical properties of the polymer electrolyte composite membrane, a conventional styrene-divinylbenzene crosslinked electrolyte is used by using a PE as a porous support and using a sulfonic acid-containing aliphatic liquid monomer and an acrylamide crosslinking agent together. Compared with the composite membrane prepared by the acrylic sulfonic acid crosslinked electrolyte, an effect having excellent ionic conductivity and high durability is obtained.

또한, 본 발명은 간단한 제조 공정과 박막화로 인한 제조 단가를 절감할 수 있고 연속 제조 공정 개발을 기대할 수 있는 효과가 있다.In addition, the present invention can reduce the manufacturing cost due to the simple manufacturing process and thinning and there is an effect that can be expected to develop a continuous manufacturing process.

실시예의 설명에 앞서, 후술될 여러 실시예에 의해 제조된 고분자 복합막의 각종 시험 및 성능평가의 방법을 제시한다.Prior to the description of the examples, various tests and performance evaluation methods of the polymer composite membranes prepared by various examples to be described below are presented.

1. 인장강도1. Tensile strength

- 전해질막의 인장력(kpsi)을 ASTM 882에 기재된 방법에 따라 측정하였다.The tensile force (kpsi) of the electrolyte membrane was measured according to the method described in ASTM 882.

2.수소 이온 전도도2.hydrogen ion conductivity

- 실시예에 의해 제조된 막을 25 ℃의 증류수에 1시간 침지한 다음, 막 표면의 물을 제거하지 않고 직사각형 백금 전극을 고정시킨 유리기판 2매 사이에 넣어 유리기판을 고정시킨 후, 100 Hz ~ 4 MHz 교류 임피던스 측정을 실시하여 막의 수소 이온 전도도를 측정하였다.After immersing the membrane prepared in Example in distilled water at 25 ° C. for 1 hour, the glass substrate was fixed between two glass substrates on which a rectangular platinum electrode was fixed without removing water on the membrane surface, and then fixed at 100 Hz. A 4 MHz alternating current impedance measurement was performed to measure the hydrogen ion conductivity of the membrane.

3. 메탄올 투과율3. Methanol transmittance

- 전해질막 시료를 도 1에 나타낸 메탄올 투과도 측정장치에 장착한 다음, 막 좌측 용기에 10 중량% 메탄올 용액을 담고, 막 우측에는 증류수를 담았다. 시간이 경과함에 따라 메탄올이 막 시료를 통과하여 증류수 방향으로 이동하므로, 상온 조건에서 2시간이 경과한 증류수 측 용액을 일부 채취하여 가스크로마토그래피 측정을 통해 막의 메탄올 투과도(kg/m2?h)를 계산하였다.An electrolyte membrane sample was mounted in the methanol permeability measuring apparatus shown in FIG. As time passes, methanol passes through the membrane sample and moves toward the distilled water. Thus, the methanol permeability (kg / m2? H) of the membrane is measured by gas chromatography by collecting a portion of the distilled water side solution after 2 hours at room temperature. Calculated.

4. 연료전지 성능4. Fuel Cell Performance

- 실시예에 의해 제조되는 연료전지용 고분자 전해질막을 이용하여 직접메탄올 연료전지(DMFC) 성능 측정을 위해서는, PtRu/C가 3mg/cm2 함유된 연료극과 Pt/C가 1mg/cm2 함유된 공기극을 고분자 전해질 막과 접합하여 5 cm2 유효면적 크기의 막전극 접합체(Membrane Electrode Assembly)를 제조한 후, 단위 전지 성능 평가 장치에 장착한 다음 60℃ 조건 하에서 1몰 메탄올 용액을 1 ml/min 속도로 연료극에 흘려주고, 공기극에는 50 ml/min 속도로 공기극에 흘려주어 연료전지의 성능을 측정하였다.-For direct methanol fuel cell (DMFC) performance measurement using the polymer electrolyte membrane for a fuel cell prepared according to the embodiment, a polymer electrolyte was prepared using a fuel electrode containing 3 mg / cm 2 of PtRu / C and an air electrode containing 1 mg / cm 2 of Pt / C. Membrane Electrode Assembly of 5 cm2 effective area was fabricated by attaching to the membrane, and then mounted on a unit cell performance evaluation apparatus, and then, 1 mol / min methanol solution was flowed into the anode at a rate of 1 ml / min under 60 ° C. The performance of the fuel cell was measured by flowing it to the cathode at a rate of 50 ml / min.

이 때, 수소 이온 교환막 연료전지(PEMFC) 성능 측정을 위해서는, Pt/C가 0.4mg/cm2 함유된 연료극과 산소극을 고분자 전해질 막과 접합하여 5 cm2 유효면적 크기의 막전극 접합체(Membrane Electrode Assembly)를 제조한 후, 단위 전지 성능 평가 장치에 장착한 다음 70℃ 조건 하에서 100% 가습 상태의 수소를 100 ml/min 속도로 연료극에 흘려주고, 공기극에는 100% 가습 상태의 산소를 100 ml/min 속도로 산소극에 흘려주어 연료전지의 성능을 측정하였다.At this time, in order to measure the performance of the hydrogen ion exchange membrane fuel cell (PEMFC), a membrane electrode assembly having a size of 5 cm2 effective area was bonded by bonding an anode and an oxygen electrode containing 0.4 mg / cm2 of Pt / C with a polymer electrolyte membrane. ), And mounted in a unit cell performance evaluation apparatus, and then flowing hydrogen in a 100% humidified state at a rate of 100 ml / min to a fuel electrode under a 70 ° C condition, and 100 ml / min oxygen in a 100% humidified state in the air electrode. The performance of the fuel cell was measured by flowing the oxygen electrode at a speed.

이하, 상기 본 발명이 적용된 여러 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, various embodiments to which the present invention is applied will be described in detail with reference to the accompanying drawings.

<실시예 1><Example 1>

실시예 1에서는, 물을 함유하지 않은 95% 이상의 고농도 비닐술폰산 : N,N'-비스아크릴로일피퍼라진을 80 : 20의 중량부로 혼합 교반하고, 상기 혼합 용액 100 중량부에 대해 메탄올에 10 중량부로 희석시킨 Doracure1173을 1 중량부로 혼합하였다.In Example 1, 95% or more of high concentration vinylsulphonic acid: N, N'-bisacryloylpiperazine containing no water was mixed and stirred at 80:20 parts by weight, and 10 parts by weight of methanol was added to 100 parts by weight of the mixed solution. Doracure1173 diluted to parts by weight was mixed to 1 part by weight.

이 후, 상기 용액에 막두께 30㎛, 기공크기 0.07㎛, 기공분포 40%의 폴리에틸렌 기재의 다공성 지지체를 함침시켜 지지체 내에 단량체 용액이 충분히 스며들 수 있게 한 후 지지체를 폴리에틸렌테레프탈레이트(PET) 필름 사이에 넣고 150 mJ/cm2가 되도록 자외선 에너지를 조사하였다.Thereafter, the solution is impregnated with a porous support based on polyethylene having a film thickness of 30 μm, pore size of 0.07 μm, and pore distribution of 40% so that the monomer solution is sufficiently infiltrated into the support, and then the support is polyethylene terephthalate (PET) film. Ultraviolet energy was irradiated to put in between 150 mJ / cm <2>.

상기 가교과정을 수행한 후, PET 필름을 제거하고 복합막 표면의 부산물을 제거하여 표면을 균일하게 한 다음, 초순수로 수차례 세척하여 고분자 복합막을 얻었다.After performing the crosslinking process, the PET film was removed, the by-products of the surface of the composite membrane were removed to make the surface uniform, and then washed several times with ultrapure water to obtain a polymer composite membrane.

상기와 같이 제조된 복합막에 대해 전술한 방법으로 인장강도, 수소 이온 전도도, 메탄올 투과도를 측정하여 표 1에서와 같은 결과를 얻었다.Tensile strength, hydrogen ion conductivity, and methanol permeability were measured by the method described above for the composite membrane prepared as described above, and the results as shown in Table 1 were obtained.

<실시예 2><Example 2>

실시예 2에서는, 가교제로 N,N'-비스아크릴로일피퍼라진 대신 N,N'-메틸렌비스메타크릴아미드를 사용하여 실시예 1과 동일한 조건으로 복합막을 제조하였다.In Example 2, a composite membrane was prepared under the same conditions as in Example 1 using N, N'-methylenebismethacrylamide instead of N, N'-bisacryloylpiperazine as a crosslinking agent.

상기와 같이 제조된 복합막에 대해 전술한 방법으로 인장강도, 수소 이온 전도도, 메탄올 투과도를 측정하여 표 1에서와 같은 결과를 얻었다.Tensile strength, hydrogen ion conductivity, and methanol permeability were measured by the method described above for the composite membrane prepared as described above, and the results as shown in Table 1 were obtained.

상기와 같이 제조된 복합막에 대해 전술한 방법으로 인장강도, 수소 이온 전도도, 메탄올 투과도를 측정하여 표 1에서와 같은 결과를 얻었다.Tensile strength, hydrogen ion conductivity, and methanol permeability were measured by the method described above for the composite membrane prepared as described above, and the results as shown in Table 1 were obtained.

<비교 실시예>Comparative Example

비교 실시예에서는, 시판 중인 이온교환막인 나피온117 또는 112막(듀퐁, 미국)의 인장강도, 프로톤 전도도, 메탄올 투과도를 전술한 방법으로 측정하여 표 1에서와 같은 결과를 얻었다.In the comparative example, the tensile strength, proton conductivity, and methanol permeability of a commercially available ion exchange membrane, Nafion 117 or 112 membrane (Dupont, USA) were measured by the method described above to obtain the results as shown in Table 1.

<각 실시예에 따른 측정결과><Measurement Result According to Each Example> 실시예 1Example 1 실시예 2Example 2 비교 실시예 나피온117, 112Comparative Example Nafion 117, 112 인장강도(kpsi)Tensile strength (kpsi) 23.0(MD) 20.0(TD)23.0 (MD) 20.0 (TD) 23.0(MD) 20.0(TD)23.0 (MD) 20.0 (TD) 6.3(MD) 4.7(TD)6.3 (MD) 4.7 (TD) 수소 이온 전도도(S/cm)Hydrogen ion conductivity (S / cm) 0.120.12 0.070.07 0.080.08 메탄올 투과도(Kg/m2?h)Methanol Permeability (Kg / m2? H) 0.10.1 0.080.08 0.280.28 MD : 기계 진행방향 (machine direction) TD : 횡방향 (transverse direction)MD: machine direction TD: transverse direction

상기 표 1을 참조하면, 본 발명에 의해 제조된 고분자 전해질 복합막은 상용화되고 있는 비교예의 막에 비해 수소 이온 전도도가 유사하거나 높은 것을 알 수 있었다.Referring to Table 1, the polymer electrolyte composite membrane prepared according to the present invention was found to have a similar or higher hydrogen ion conductivity than the membrane of the comparative example.

또한, 본 발명에 의해 제조된 고분자 전해질 복합막은, 인장강도가 매우 우수하였고, 메탄올 투과도가 비교예의 막에 비해 1/3 - 1/4 수준으로 안정하여 연속 제조 공정에 의해 양산 체제를 구축한다면 저가의 환경친화적 탄화수소계 연료전지용 막으로서 비교예의 상용막을 대체할 수 있을 것이다.In addition, the polymer electrolyte composite membrane prepared according to the present invention had excellent tensile strength, and methanol permeability was stable at 1/3-1/4 level compared to the membrane of the comparative example, so that if the mass production system was established by a continuous manufacturing process, As an environmentally friendly hydrocarbon fuel cell membrane, the commercial membrane of the comparative example may be replaced.

특히, 본 발명에 의해 제조된 고분자 전해질 복합막은 도 2a의 상태에서 도 2b 내지 도 2d에서와 같이 각각의 가교제에 의해 완전한 가교가 이루어지면 제조 후 투명한 막을 형성하며 대부분의 유기 용매에도 용해되지 않음을 확인하였다.In particular, the polymer electrolyte composite membrane prepared according to the present invention forms a transparent membrane after preparation and is insoluble in most organic solvents when complete crosslinking is performed by each crosslinking agent as shown in FIGS. 2B to 2D in the state of FIG. 2A. Confirmed.

도 2a는 가교과정이 수행되기 이전의 고분자 전해질 복합막을 나타낸다. 도 2b는 N,N'-비스아크릴로일피퍼라진을 가교제로 적용한 상태의 고분자 전해질 복합막을 나타낸다. 도 2c는 N,N'-메틸렌비스메타크릴아미드를 가교제로 적용한 상태의 고분자 전해질 복합막을 나타낸다. Figure 2a shows a polymer electrolyte composite membrane before the crosslinking process is performed. 2B shows a polymer electrolyte composite membrane in which N, N′-bisacryloylpiperazine is applied as a crosslinking agent. 2C shows a polymer electrolyte composite membrane in which N, N'-methylenebismethacrylamide is applied as a crosslinking agent.

도 3은 본 발명에 의해 제조된 고분자 전해질 복합막을 이용한 직접메탄올 연료전지(DMFC)의 성능을 나타낸 결과 그래프이다.3 is a result graph showing the performance of the direct methanol fuel cell (DMFC) using the polymer electrolyte composite membrane prepared according to the present invention.

도면을 참조하면, 본 발명의 실시예1의 과정에 의해 제조된 고분자 전해질 복합막을 이용한 연료전지는 전술한 나피온 117 막에 의해 제조된 연료전지와 비교하여, 전위, 전류밀도, 전력밀도의 특성이 우수하여 보다 향상된 성능의 연료전지를 제조할 수 있음을 알 수 있다.Referring to the drawings, the fuel cell using the polymer electrolyte composite membrane prepared by the process of Example 1 of the present invention, compared with the fuel cell prepared by the aforementioned Nafion 117 membrane, the characteristics of the potential, current density, power density It can be seen that this excellent fuel cell can be produced with improved performance.

도 4는 본 발명에 의해 제조된 고분자 고분자 전해질 복합막을 이용한 수소 이온 교환막 연료전지(PEMFC) 성능을 나타낸 결과 그래프이다.4 is a graph showing the results of hydrogen ion exchange membrane fuel cell (PEMFC) performance using the polymer electrolyte membrane prepared by the present invention.

도면을 참조하면, 본 발명의 실시예1의 과정에 의해 제조된 고분자 전해질 복합막을 이용한 연료전지는 전술한 나피온 112 막에 의해 제조된 연료전지와 비교하여, 전위, 전류밀도, 전력밀도의 특성이 우수하여 보다 향상된 성능의 연료전지를 제조할 수 있음을 알 수 있다.Referring to the drawings, the fuel cell using the polymer electrolyte composite membrane prepared by the process of Example 1 of the present invention, compared with the fuel cell prepared by the Nafion 112 membrane described above, the characteristics of the potential, current density, power density It can be seen that this excellent fuel cell can be produced with improved performance.

도 1은 본 발명에 의해 제조된 고분자 전해질막의 메탄올 투과도를 측정하기 위한 장치의 개략도.1 is a schematic diagram of an apparatus for measuring the methanol permeability of a polymer electrolyte membrane prepared by the present invention.

도 2a 내지 도 2c는 본 발명에 의해 제조된 고분자 전해질 복합막이 가교과정을 통해 변화된 상태의 예시도.Figures 2a to 2c is an illustration of a state in which the polymer electrolyte composite membrane prepared by the present invention is changed through a crosslinking process.

도 3은 본 발명에 의해 제조된 고분자 전해질 복합막을 이용한 직접메탄올 연료전지(DMFC)의 성능을 나타낸 결과 그래프.Figure 3 is a result graph showing the performance of the direct methanol fuel cell (DMFC) using the polymer electrolyte composite membrane prepared by the present invention.

도 4는 본 발명에 의해 제조된 고분자 고분자 전해질 복합막을 이용한 수소 이온 교환막 연료전지(PEMFC) 성능을 나타낸 결과 그래프.Figure 4 is a graph showing the results of hydrogen ion exchange membrane fuel cell (PEMFC) using the polymer electrolyte membrane prepared by the present invention.

Claims (8)

다공성 고분자 지지체에 술폰산 함유 지방족 액상 단량체와 아크릴아미드계 가교제로 무수 가교된 고분자 전해질을 합성하여 막을 형성하는 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.A method for producing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous cross-linked polymer electrolyte composite membrane, comprising: synthesizing a polymer electrolyte cross-linked with a sulfonic acid-containing aliphatic liquid monomer and an acrylamide-based crosslinking agent on a porous polymer support. 제 1 항에 있어서,The method of claim 1, 상기 다공성 고분자 지지체는 공극 부피가 30 - 60 %, 기공 사이즈가 0.05 - 0.1 마이크로미터, 두께가 20 - 55 마이크로미터인 다공성 탄화수소계 막을 사용하는 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.The porous polymer support is a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinking comprising a porous hydrocarbon membrane having a pore volume of 30 to 60%, a pore size of 0.05 to 0.1 micrometers, and a thickness of 20 to 55 micrometers. Method for producing a polymer electrolyte composite membrane. 제 1 항에 있어서,The method of claim 1, 상기 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질은 물을 포함하지 않은 95% 이상의 고농도 술폰산 함유 지방족 액상 단량체, 아크릴아미드계 가교제, 개시제가 혼합된 혼합 용액으로 합성되며, 상기 술폰산 단량체 및 가교제를 함유한 혼합용액을 100 중량부로 보았을 때, 혼합용액 100 중량부 에 대해 술폰산 함유 지방족 액상 단량체 60~90 중량부, 아크릴아미드계 가교제 10~40 중량부와 혼합용액 100 중량부에 대해 개시제 0.1~0.5 중량부를 첨가하는 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.The sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte is synthesized into a mixed solution containing not less than 95% of a high concentration of sulfonic acid-containing aliphatic liquid monomer, acrylamide-based crosslinking agent, and initiator, and the sulfonic acid monomer and crosslinking agent When 100 parts by weight of the mixed solution was contained, 60 to 90 parts by weight of the sulfonic acid-containing aliphatic liquid monomer, 10 to 40 parts by weight of the acrylamide-based crosslinking agent and 100 parts by weight of the initiator were 0.1 to 0.5 based on 100 parts by weight of the mixed solution. A method for producing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane, comprising adding parts by weight. 제 1 항에 있어서,The method of claim 1, 상기 아크릴아미드 가교제는 N,N'-비스아크릴로일피퍼라진과 같이 탄소 이중 결합을 두 개 이상 포함하는 아크릴아미트 가교제 중에서 선택된 1종 이상인 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.The acrylamide crosslinking agent is a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinking agent, characterized in that at least one member selected from acrylamide crosslinking agents including two or more carbon double bonds such as N, N'-bisacryloylpiperazine. Method for producing a polymer electrolyte composite membrane. 제 3 항에 있어서,The method of claim 3, wherein 상기 개시제는, 광 개시제로서 Ciba Geigy사 제품의 Doracure 또는 Irgacure 시리즈 중 어느 하나인 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.The initiator is any one of the Doracure or Irgacure series manufactured by Ciba Geigy as a photoinitiator, the method for producing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane. (a) 술폰산 함유 지방족 액상 단량체, 아크릴아미드계 가교제 및 개시제로 구성된 혼합 용액을 다공성 고분자 지지체에 함침시키는 단계와;(a) impregnating the porous polymer support with a mixed solution consisting of a sulfonic acid-containing aliphatic liquid monomer, an acrylamide-based crosslinking agent and an initiator; (b) 상기 (a) 단계에서 함침된 다공성 지지체를 PET필름 사이에 적층한 후, 광가교하는 단계를 포함하는 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.(b) a method of manufacturing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane, comprising laminating the porous support impregnated in step (a) between PET films and then photocrosslinking. 제 6 항에서 있어서,The method of claim 6, 상기 광가교하는 단계에서는, 광개시제를 함유한 혼합용액이 함침된 다공성 지지체를 상하로 PET 필름 사이에 적층하여 30 mJ/cm2 - 150 mJ/cm2 의 자외선 에너지를 조사하여 광가교하는 것을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법.In the step of photocrosslinking, sulfonic acid characterized in that the porous support impregnated with the mixed solution containing the photoinitiator is laminated between the PET film up and down to irradiate UV energy of 30 mJ / cm2-150 mJ / cm2 to photocrosslink A method for producing a containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane. 상기 제 1항 내지 7항 중 어느 한 항에 따른 방법으로 제조되어,Prepared by the method according to any one of claims 1 to 7, 상온에서 수소 이온 전도도가 0.07 - 0.12 S/cm 이며, 메탄올 투과도가 0.1 kg/m2?h 이하인 고분자 복합막을 특징으로 하는 술폰산 함유 지방족 액상 단량체-아크릴아미드 무수 가교 고분자 전해질 복합막의 제조방법을 이용하여 제작된 연료전지.Produced using a method for preparing a sulfonic acid-containing aliphatic liquid monomer-acrylamide anhydrous crosslinked polymer electrolyte composite membrane characterized by a polymer composite membrane having a hydrogen ion conductivity of 0.07-0.12 S / cm at room temperature and a methanol permeability of 0.1 kg / m2? H or less. Fuel cell.
KR1020090001640A 2008-04-25 2009-01-08 Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same KR20090113175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090001640A KR20090113175A (en) 2008-04-25 2009-01-08 Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080038880 2008-04-25
KR1020090001640A KR20090113175A (en) 2008-04-25 2009-01-08 Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same

Publications (1)

Publication Number Publication Date
KR20090113175A true KR20090113175A (en) 2009-10-29

Family

ID=41554283

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090001640A KR20090113175A (en) 2008-04-25 2009-01-08 Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same

Country Status (1)

Country Link
KR (1) KR20090113175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109143B1 (en) * 2009-09-29 2012-02-15 한국에너지기술연구원 Preparation method of composite membranes crosslinked with anhydrous electrolyte and polymer electrolyte fuel cell systems using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109143B1 (en) * 2009-09-29 2012-02-15 한국에너지기술연구원 Preparation method of composite membranes crosslinked with anhydrous electrolyte and polymer electrolyte fuel cell systems using the same

Similar Documents

Publication Publication Date Title
Hou et al. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell
KR100914340B1 (en) Highly proton conductive crosslinked vinylsulfonic acid polymer electrolyte composite membranes and its preparation method for polymer electrolyte fuel cells
Fu et al. Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
CN100409475C (en) Polymer electrolyte membrane and fuel cell employing the same
KR101818547B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membraneelectrode assembly comprising the same
KR101233384B1 (en) Polymer membrane composition for fuel cell, polymer membranes prepared from same, and membrane-electrode assembly and fuel cell including same
KR100833056B1 (en) Reinforced composite electrolyte membrane for fuel cell
JP2010538416A (en) Proton conducting polymer electrolyte membranes used in polymer fuel cells
KR101135477B1 (en) A porous membrane and method for preparing thereof, polymer electrode membrane for fuel cell using the same, and fuel cell system comprising the same
Li et al. High performance direct methanol fuel cells based on acid–base blend membranes containing benzotriazole
Higa et al. Cell performance of direct methanol alkaline fuel cell (DMAFC) using anion exchange membranes prepared from PVA-Based block copolymer
Higa et al. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly (vinyl alcohol-b-styrene sulfonic acid)
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
KR101109143B1 (en) Preparation method of composite membranes crosslinked with anhydrous electrolyte and polymer electrolyte fuel cell systems using the same
EP2276095A1 (en) Electrolyte film for a solid polymer type fuel cell and method for producing same
US20070218334A1 (en) Methods for making sulfonated non-aromatic polymer electrolyte membranes
KR102098640B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
KR100658739B1 (en) Polymer membrane for fuel cell and method for preparating the same
JP2004247182A (en) Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
JP2005149727A (en) Membrane-electrode junction, manufacturing method of the same, and direct type fuel cell using the same
El-Toony et al. Casting of poly (vinyl alcohol)/glycidyl methacrylate reinforced with titanium dioxide nanoparticles for proton exchange fuel cells
JP2003346839A (en) Composite membrane
KR20090113175A (en) Preparation method of composite membranes crosslinked with anhydrous aliphatic monomer containing sulfonic acid-acrylamide and polymer electrolyte fuel cells using the same
KR101019581B1 (en) Polymer electrolyte composite membrane crosslinked by water soluble monomers for polymer electrolyte fuel cells and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application