KR20090112492A - The bidirectional promoter using Sweet potato leaf curl virus Korean isolate - Google Patents

The bidirectional promoter using Sweet potato leaf curl virus Korean isolate Download PDF

Info

Publication number
KR20090112492A
KR20090112492A KR1020080038415A KR20080038415A KR20090112492A KR 20090112492 A KR20090112492 A KR 20090112492A KR 1020080038415 A KR1020080038415 A KR 1020080038415A KR 20080038415 A KR20080038415 A KR 20080038415A KR 20090112492 A KR20090112492 A KR 20090112492A
Authority
KR
South Korea
Prior art keywords
promoter
sweet potato
sequence
dna
leaf curl
Prior art date
Application number
KR1020080038415A
Other languages
Korean (ko)
Other versions
KR101452405B1 (en
Inventor
이석찬
이건섭
최은석
이용
최홍수
곽해련
김미경
이수헌
김정수
박진우
정미남
고숙주
김국형
Original Assignee
성균관대학교산학협력단
대한민국(관리부서:농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, 대한민국(관리부서:농촌진흥청장) filed Critical 성균관대학교산학협력단
Priority to KR1020080038415A priority Critical patent/KR101452405B1/en
Publication of KR20090112492A publication Critical patent/KR20090112492A/en
Application granted granted Critical
Publication of KR101452405B1 publication Critical patent/KR101452405B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A bidirectional promoter of sweet potato leaf curl infection DNA virus is provided to produce vector product in molecular biology field and molecular breeding industry. CONSTITUTION: A bidirectional promoter of sweet potato leaf curl infection DNA virus is denoted by the sequence of the sequence number 1. A method for identifying the promoter activity comprises: a step of isolating a site with promoter activity and analyzing cis-acting regulation site; a step of recombining promoter site by using gateway cloning to a plant expression vector for promoter analysis; a step of transforming the recombined promoter site to Agrobacteria tumefaciens strain GV3101; and a step of screening transformant.

Description

국내 고구마 잎말림병 감염 DNA 바이러스의 양방향성 프로모터{The bidirectional promoter using Sweet potato leaf curl virus Korean isolate}Bidirectional promoter using sweet potato leaf curl virus Korean isolate}

본 발명은 국내에서 최초로 분리된 제미니바이러스인 고구마 잎말림 바이러스(Sweet potato leaf curl virus, SPLCV)의 유전자간 영역(intergenic region)으로부터 분리한 프로모터로서 서열번호 1의 염기서열로 구성되는 프로모터에 관한 것이다.The present invention relates to a promoter isolated from an intergenic region of sweet potato leaf curl virus (SPLCV), which is a gemini virus isolated for the first time in Korea. .

작물분자육종은 모든 종(種)의 유전자를 재료로 사용할 수 있으며 기존의 게놈 단위로만 가능하던 육종기술을 유전자 단위로 끌어내려 무한대의 육종 효과를 미세하게 조절할 수 있다는 측면에서 차세대 농업을 이끌어 갈 핵심적인 기술이다.Crop molecular breeding is the key to lead the next generation of agriculture in that it is possible to use all kinds of genes as a material and to fine-tune the effects of infinite breeding by pulling down the breeding technology that was possible only in the existing genome. Technology.

이러한 작물분자육종은 기술의 효과를 극대화시키려면 여러 가지 식물의 유전자를 대표할 수 있는 많은 유전자 데이터의 축적이 선행되어야 하며, 다양한 작물의 형질전환 시스템이 구축되어야 하고, 외부에서 삽입된 유전자의 발현을 조절할 수 있는 다양한 프로모터의 개발이 선행되어져야 한다.In order to maximize the effect of the technology, such crop molecular breeding must be preceded by accumulation of a large amount of genetic data that can represent genes of various plants, a transformation system of various crops must be established, and expression of genes inserted from outside The development of various promoters that can control this should be preceded.

고구마에 잎말림 증상을 유발시키는 제미니바이러스(geminivirus)는 제미니 바이러스과(Geminiviridae)에 속하며, 이는 네 개의 속(genus)으로 나뉘며, 이 중 하위그룹(subgroup) Ⅲ에 해당하는 베고모바이러스(begomovirus)는 가루이(whitefly)[Bemisia tabaci (Gennadius)]에 의해 매개되는 특성을 갖고 있다. 따라서, 제미니바이러스에 관련한 보고는 가루이가 서식하기 알맞은 열대나 아열대 기후 지역에서 이루어진 것이 많다. 아시아 지역에서는 1960년대에 중국의 토마토 재배 지역에서 제미니바이러스가 관찰된다는 보고가 있었으나 일부 지역에 국한되어 있고 피해 정도가 경미해 연구가 이루어지지 않았다. 그러나, 최근 10년 사이에는 아시아 지역 주요 국가의 대부분의 토마토 재배 지역에서 가루이가 관찰되고 이 후 제미니바이러스가 검정된다는 보고가 급증하였다. Geminiviruses, which cause leaf swelling in sweet potatoes, belong to the Geminiviridae, which is divided into four genus, of which begomovirus, subgroup III. Whitefly [ Bemisia tabaci (Gennadius)]. Thus, reports on Geminiviruses are often made in tropical or subtropical climates where Garui is suitable. In Asia, geminiviruses were reported in tomato growing regions in China in the 1960s, but they were limited in some regions and the damage was minimal. However, there has been a surge of reports in recent decades that floury is observed in most tomato growing regions of major Asian countries, followed by the testing of geminiviruses.

중국, 대만, 일본, 인도 등 아시아 지역에서 보고되는 베고모바이러스는 ToLCV(Tomato leaf curl virus), TYLCV(Tomato yellow leaf curl virus), TbLCV(Tobacco leaf curl virus), HYVMV(Honeysuckle yellow vein mosaic virus) 등이 주를 이루고 있다. 이들은 일반적으로 두 개의 개놈을 갖는 다른 베고모바이러스와 달리 단 한 개의 게놈을 갖기 때문에 매우 특수한 바이러스로 분류가 된다. 또한, 복제를 완성하기 위해 부수 DNA(satellite DNA)를 필요로 한다는 공통적인 특징을 지니고 있다. 현재까지의 문헌과 보고에 따르면 아프리카, 아시아를 포함하는 구대륙에는 한 개의 게놈을 갖는 것이, 신대륙에는 두 개의 게놈을 갖는 것이 분포하고 있는 것으로 되어 있다. 이러한 현상이 나타나는 이유로는 한 개의 게놈을 갖는 바이러스에서 두 개의 게놈을 갖는 바이러스로 진화하고 있기 때문으로 해석되고 있다. Begomoviruses reported in Asia, including China, Taiwan, Japan, and India, include Tomato leaf curl virus (ToLCV), Tomato yellow leaf curl virus (TYLCV), Tobacco leaf curl virus (TbLCV), and Honeysuckle yellow vein mosaic virus (HYVMV). The back is dominant. They are generally classified as very specific viruses because they have only one genome, unlike other begomoviruses with two dogs. In addition, it has a common feature of requiring satellite DNA to complete replication. According to the literature and reports to date, one genome has been distributed in the old continent including Africa and Asia, and two genomes have been distributed in the new continent. This phenomenon appears to be interpreted as evolving from a virus with one genome to a virus with two genomes.

우리나라에서 발견되는 제미니바이러스도 한 개의 게놈을 갖는 베고모바이러스일 가능성이 높을 것으로 사료된다. 그러나, 다른 바이러스일 가능성도 배제할 수 없으므로 다양한 종류의 베고모바이러스에 친화력이 있는 프라이머를 제작하여 PCR을 수행한 결과, 국내에서 분리한 제미니바이러스는 CP의 코어 부위(core region)는 비교적 높은 수준으로 유지되고 있었지만 이를 제외한 서열은 많은 변이가 일어나 있음을 알 수 있었다. 이러한 변이 때문에 전체 염기 서열을 획득하고 분석하는데 많은 어려움이 있다. Gemini virus found in Korea is also likely to be a begomovirus with one genome. However, since the possibility of other viruses cannot be excluded, PCR was carried out by preparing primers with affinity for various kinds of begomovirus. As a result, Gemini virus isolated from Korea has a relatively high core region of CP. Although it was maintained as, the sequence was found to be many variations occur. Because of this variation, there are many difficulties in obtaining and analyzing the entire nucleotide sequence.

이는 현재까지 제미니바이러스에 의한 피해나 보고사례가 없었던 국내의 작물재배환경에서 TLCV와 비슷한 제미니바이러스가 확인됨에 의해 여러 가지 변이를 통해 국내 재배환경에 심각한 피해를 줄 수 있는 제미니바이러스의 유입이 가능하거나 혹은 이미 유입된 환경으로 바뀐 것을 암시한다. 또한, 현재로서는 제미니바이러스의 분리 상황이 미약한 수준임을 볼 때 제미니바이러스의 국내 분포가 아직은 유입 초기이며, 이들의 재조합율(recombination rate)과 전염성(infectivity)의 변화에 따라 머지않은 시점에 국내에도 제미니바이러스에 의한 피해 상황이 속출할 것으로 고려되어, 빠른 동정과 연구를 통해 이들 바이러스에 대한 대응책을 마련함이 시급한 실정이다.Gemini virus similar to TLCV has been identified in domestic crop cultivation environment, which has not been reported by Gemini virus or reported cases so far, and it is possible to introduce Gemini virus that can seriously damage domestic cultivation environment through various mutations. Or implies a change to an already introduced environment. In addition, the current distribution of the Gemini virus is still in the early stage of the introduction of the Gemini Virus due to the low level of separation of the Gemini Virus, and it may not be established in Korea any time soon due to the change in their recombination rate and infectivity. Since the damage caused by the Gemini virus is considered to continue, it is urgent to prepare countermeasures against these viruses through rapid identification and research.

이에, 본 발명자들은 SPLCV를 검출하고, 바이러스의 지역별 균주가 가지는 고유한 특징을 이용하고, 이들의 전체 염기서열로부터 적용할 수 있는 분야로써 식물 형질전환용 벡터 시스템을 개발하기 위하여 연구 노력한 결과, 잎말림(leaf curl)병 증상을 나타내는 국내산 고구마 식물(Ipomoea batatas)로부터 PCR법으로 식물체내 단일 사슬 DNA 유전체를 가지는 바이러스의 부분 서열을 분리하였고, 또한 SPLCV의 유전자간 영역(intergenic region)을 분석하고, 이를 단편화하여 형질전환체를 만들고 리포터 단백질의 발현을 통해 발현차이를 확인하여, 기존에 사용되어 지고 있는 식물 형질전환 프로모터 보다 발현을 강화시키는 부위를 찾아냄으로써 본 발명을 완성하게 되었다. 이를 통해 SPLCV 감염이 가능한 식물체내에서 외래 유전자를 발현시킬 때, 기존의 프로모터에 의한 식물체 자체의 피해를 극복하고, 안정적으로 목적 단백질을 발현시킬 수 있는 프로모터로서의 적용 및 양 방향으로 단백질을 생성할 수 있는 양방향성 프로모터의 응용하고자 한다. Therefore, the present inventors have conducted research to develop a vector system for plant transformation as a field capable of detecting SPLCV, using unique characteristics of regional strains of viruses, and applying them from their entire base sequences. Partial sequence of virus having a single-chain DNA genome in the plant was isolated from domestic sweet potato plants (Ipomoea batatas) showing leaf curl disease symptoms, and also analyzed the intergenic region of SPLCV, This fragment was made by transforming and confirming the expression difference through the expression of the reporter protein, the present invention was completed by finding a site that enhances expression than the plant transformation promoter that is being used. Through this, when expressing a foreign gene in a plant capable of SPLCV infection, it can overcome the damage of the plant itself by the existing promoter, and can be applied as a promoter capable of stably expressing the target protein and can generate proteins in both directions. We would like to apply a bidirectional promoter.

본 발명은 국내에서 최초로 분리된 제미니바이러스인 고구마 잎말림병 감염 바이러스(Sweet potato leaf curl virus)의 유전자간 영역(intergenic region)으로부터 분리한 프로모터에 관한 것으로서, 서열번호 1의 염기서열로 표시되는 것을 특징으로 한다.The present invention relates to a promoter isolated from the intergenic region of sweet potato leaf curl virus (Sweet potato leaf curl virus) which is the first gemini virus isolated in Korea, which is represented by the nucleotide sequence of SEQ ID NO: It features.

식물 형질전환시 문제점으로 대두되고 있는 식물 자체의 발현 안정성 문제를 극복함으로써 가능한 다양한 식물 형질전환체 생산에 기여할 수 있다. 따라서, 식물 형질전환 벡터 시스템으로써 개발하여 식물형질전환 관련된 분자생물학 및 분자육종 관련 산업에서 벡터 상품으로써 시장을 형성할 것으로 기대되고 고효율 품종 육종의 기업화를 기대할 수 있다. It is possible to contribute to the production of various plant transformants as possible by overcoming the expression stability problem of the plant itself, which is emerging as a problem in plant transformation. Therefore, it is expected to be developed as a plant transformation vector system to form a market as a vector product in the plant biology-related molecular biology and molecular breeding-related industries, and can be expected to commercialize highly efficient variety breeding.

본 발명의 SPLCV로부터 분리해낸 양방향성 프로모터는 서열번호 1의 염기서열로 표시되는 것을 특징으로 한다. The bidirectional promoter separated from the SPLCV of the present invention is characterized by being represented by the nucleotide sequence of SEQ ID NO: 1.

국내에서 최초로 분리된 제미니바이러스인 고구마 잎말림 바이러스의 유전자간 영역(intergenic region)으로부터 프로모터 활성을 가지는 지점을 분리하여, 컴퓨터를 이용하여 시스-작용(cis-acting) 조절 부위를 분석하였다. 이를 기준으로 프로모터 영역을 deletion set을 만들어 프로모터 분석용 식물 발현 벡터에 게이트웨이 클로닝 방법을 이용하여 재조합하고, 아그로박테리아 튜메파시엔스 균주 GV3101에 형질전환시킨 뒤에 애기장대(Arabidopsis thaliana)에 형질전환하여, 제초제 바스타에 저항성을 보이는 형질전환체를 선별하였다. 선별된 형질전환체의 T2 세대에서 프로모터 활성을 GUS 단백질의 발현을 통해 관찰한 바, 특정 서열을 중심으로 프로모터 활성이 더 강한 것을 확인할 수 있었다. The site having promoter activity was isolated from the intergenic region of sweet potato leaf curling virus, which is the first gemini virus isolated in Korea, and the cis-acting control site was analyzed using a computer. Based on this, the deletion of the promoter region was made, the plant expression vector for promoter analysis was recombined using a gateway cloning method, and transformed into Agrobacterium tumefaciens strain GV3101, followed by Arabidopsis thaliana ), and transformants that are resistant to the herbicide batha were selected. Promoter activity was observed through the expression of GUS protein in the T2 generation of the selected transformants, and it was confirmed that the promoter activity was stronger around a specific sequence.

상기 프로모터 영역은 서열번호 2의 염기서열에서 2682번부터 131번염기까지 순방향으로의 278bp에 해당하고, 이는 양방향성을 가진다. The promoter region corresponds to 278 bp in the forward direction from base 2682 to base 131 in the nucleotide sequence of SEQ ID NO: 2, which has bidirectionality.

본 발명은 하기의 실시예에 의하여 보다 구체적으로 이해될 수 있다. 그러나 하기의 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 보호 범위를 제한하고자 하는 것은 아니다. The invention can be understood in more detail by the following examples. However, the following examples are intended to illustrate the invention and are not intended to limit the protection scope of the invention.

[[ 실시예Example ]]

1. 국내 1. Domestic SPLCVSPLCV 유전자 분리 및 서열분석  Gene Isolation and Sequencing

농촌진흥청 작물과학원 바이러스과로부터 의뢰받은 잎말림 증상이 심한 고구마로부터 Dellaporta 방법을 이용하여 게놈 DNA를 추출하고, 이를 고안된 프라이머 서열을 이용하여, 95 ℃ 3분, [94 ℃ 30초, 55 ℃ 30초, 72 ℃ 2분]-30회 반복, 72 ℃ 10분의 PCR 반응 조건으로 하여 고구마 게놈 DNA 2 마이크로리터, 5'-프라이머와 3'-프라이머 각각 0.25 pmol, 1X PCR buffer, 0.125 mM dNTPs가 되도록 하여 최종 20 마이크로리터 반응액을 조성하고 PCR을 통해 SPLCV의 SP1과 SP2의 서열을 증폭하고, 증폭된 서열을 전기영동하여 나타난 밴드(도 1)를 RBC 겔 추출 킷트(gel extraction kit)를 이용하여, 겔로부터 DNA를 회수하고, 이를 Promega의 pGEM-T easy vector ligation kit을 이용 T-벡터 내에 삽입하였다. 박테리아 E. coli DH5alpha 균주에 라이게이션(ligation) 반응액을 첨가하여 42 ℃에서 45초간 열 쇼크(heat shock)를 주어 형질전환을 유도한 후 이를 37 ℃에서 LB/amp 고체배지에 12시간 배양하여, 생성된 박테리아 콜로니를 LB/amp 액체배지에 접종하고 37 ℃에 서 12시간 진탕 배양하여 이들로부터 플라스미드를 분리하고, 기술된 시퀀싱 프라이머를 이용하여 시퀀싱 반응을 진행하였다. 세 번 반복된 시퀀싱 결과를 확인한 후, 최종 서열을 결정하고, 이를 NCBI BLAST 서치를 통해 최종 SPLCV 서열로 확인하였다.Genomic DNA was extracted from the sweet potato, which had been severely dried by the RDA Crop Science Institute, using the Dellaporta method, and then using the designed primer sequence, 95 3 minutes, [94 ℃ 30 seconds, 55 ℃ 30 seconds, 72 ° C. 2 min] -30 times, 72 ° C. 10 min PCR reaction conditions to yield 2 microliters of sweet potato genomic DNA, 0.25 pmol of 5′-primer and 3′-primer, 1X PCR buffer and 0.125 mM dNTPs, respectively. A final 20 microliter reaction solution was prepared, amplified the sequences of SP1 and SP2 of SPLCV by PCR, and the bands obtained by electrophoresis of the amplified sequences (Fig. 1) using an RBC gel extraction kit, DNA was recovered from the gel and inserted into the T-vector using Promega's pGEM-T easy vector ligation kit. The ligation reaction solution was added to the bacterial E. coli DH5alpha strain to induce transformation by heat shock at 42 ° C. for 45 seconds and incubated for 12 hours in LB / amp solid medium at 37 ° C. , The resulting bacterial colonies were inoculated in LB / amp liquid medium and shaken for 12 hours at 37 ° C to separate plasmids from them, and the sequencing reaction was performed using the sequencing primers described. After confirming the sequencing results repeated three times, the final sequence was determined and confirmed as the final SPLCV sequence via NCBI BLAST search.

도 1에 나타낸 바와 같이, 예상되어진 크기의 SP1 (1632 bp), SP2 (2138 bp) 단편이 DNA 중합효소 연쇄반응을 통해 증폭되어졌다. As shown in FIG. 1, SP1 (1632 bp) and SP2 (2138 bp) fragments of expected sizes were amplified through DNA polymerase chain reaction.

SPLCV 탐지에 사용된 프라이머 서열과 클론 정보Primer sequence and clone information used for SPLCV detection 클론Clone 프라이머primer 서열 (5’→ 3’)Sequence (5 '→ 3') SP1SP1 SPF1SPF1 ( ( forwardforward )) ctc gtg cag ttc tct tgc ta (서열번호 3) ctc gtg cag ttc tct tgc ta (SEQ ID NO: 3) SPR1SPR1 ( ( reversereverse )) gca act ggg att cca caa ga (서열번호 4) gca act ggg att cca caa ga (SEQ ID NO: 4) SP2SP2 SPF2SPF2 ( ( forwardforward )) gtg tat cag acc ctg cgt tg (서열번호 5) gtg tat cag acc ctg cgt tg (SEQ ID NO: 5) SPR2 (reverse)SPR2 (reverse) ata cgg tgc ccg cct ttt gg (서열번호 6)ata cgg tgc ccg cct ttt gg (SEQ ID NO: 6) SPR3 (reverse)SPR3 (reverse) cct tca aaa gtg ggc ccc aca (서열번호 7)cct tca aaa gtg ggc ccc aca (SEQ ID NO: 7) SPR4SPR4 ( ( reversereverse )) atg aca ggg cga atg cgc gtt (서열번호 8) atg aca ggg cga atg cgc gtt (SEQ ID NO: 8)

SPLCV의 경우 도 2와 표 1의 프라이머를 이용해 증폭된 유전자 서열은 각각 pGEM-T easy vector에 클로닝되었으며, SP1과 SP2 클론으로부터 EcoRV digestion에 의해 1.2 mer에 해당하는 바이러스의 전체 서열을 포함하는 클론을 제작하였다. SPLCV의 경우는 1 kb 이상의 크기를 단편 2개만이 클로닝 되어 전체서열을 결정하는 데 무리가 있었다. 따라서, SPLCV 전체서열을 확인하기 위한 프라이머를 다음 표 2와 도 3과 같이 고안하여 시퀀싱 반응을 시행하고 전체서열을 결정하였다. In the case of SPLCV, the gene sequences amplified using the primers of FIGS. 2 and 1 were cloned into pGEM-T easy vectors, respectively, and clones containing the entire sequence of the virus corresponding to 1.2 mer by EcoRV digestion from SP1 and SP2 clones. Produced. In the case of SPLCV, only two fragments larger than 1 kb were cloned, which made it difficult to determine the entire sequence. Therefore, the primers for confirming the SPLCV overall sequence was devised as shown in Table 2 and FIG. 3 to perform the sequencing reaction and determine the overall sequence.

SPLCV 전체 염기 서열 확인을 위한 시퀀싱 프라이머Sequencing primers for SPLCV full sequencing 프라이머primer 서열 (5'→3')Sequence (5 '→ 3') 55 SpLCV2ndSeqSpLCV2ndSeq GAT GTG TGG GTC CCT GTA AG (서열번호 9)GAT GTG TGG GTC CCT GTA AG (SEQ ID NO: 9) 55 SpLCV2SeqSpLCV2Seq __ RcRc CTT ACA GGG ACC CAC ACA TC (서열번호 10)CTT ACA GGG ACC CAC ACA TC (SEQ ID NO: 10) 55 SpLCV3rdSeqSpLCV3rdSeq AGT AAT CCT GTG TAT CAG AC (서열번호 11)AGT AAT CCT GTG TAT CAG AC (SEQ ID NO: 11) 55 SpLCV4thSeqSpLCV4thSeq CTG TGC GTG AAT CCA TGC TG (서열번호 12)CTG TGC GTG AAT CCA TGC TG (SEQ ID NO: 12) 55 SpLCV5thSeqSpLCV5thSeq CCT ATT CTG CTT GGG CCT TC (서열번호 13)CCT ATT CTG CTT GGG CCT TC (SEQ ID NO: 13) 55 SpLCVlastSeqSpLCVlastSeq AAA GGC GGG CAC CGT ATT AA (서열번호 14)AAA GGC GGG CAC CGT ATT AA (SEQ ID NO: 14)

10 ㎍의 분리된 게놈 DNA를 0.8% 아가로즈 겔에 전기영동 한 뒤, 나일론 멤브레인(Amersham사 Hybond-N+)으로 16 시간 동안 전이시킨 뒤, 감염 가능한 클론으로부터 만들어진 탐침 DNA 단편을 P32-labelled dCTP를 이용하여 방사능 표지한 뒤, 혼성화 반응을 수행하였다. 확인된 제미니바이러스의 게놈 서열을 바탕으로 바이러스의 ORF를 확인하고, 확인된 ORF는 GenBank에 기보고된 서열들의 상동성 검색 [BLAST]을 통해서 서열 정렬하였다. 10 μg of isolated genomic DNA was electrophoresed on a 0.8% agarose gel, then transferred to a nylon membrane (Amersham Hybond-N +) for 16 hours, after which a probe DNA fragment made from an infectious clone was P 32 -labelled dCTP. After radiolabeling, hybridization reaction was performed. The ORF of the virus was identified based on the genomic sequence of the identified geminivirus, and the identified ORF was sequenced through homology search [BLAST] of sequences previously reported in GenBank.

2. 2. SPLCVSPLCV 로부터 프로모터의 확보Promote the promoter from

프로모터 위치라고 생각되어지는 유전자 부위에 대한 연구는 In silico 분석을 통해 시스-요소(cis-element)를 확인하고, 이를 기반으로 하여 시스-작용 영역(cis-acting region)의 유무를 판별하여 진행된다. 따라서 In silico 분석을 통해 SPLCV의 유전자간 영역(intergenic region)내에 예상되는 시스-작용 요소(cis-acting element)를 확인하고, 유전자간 영역의 바깥쪽 부위를 임의로 첨가하여 deletion set를 만들고 프로모터의 활성에 어떤 영향을 주는지 확인하고자 하였다. The study of the gene region, which is thought to be the promoter position, proceeds by identifying the cis-element through the in silico analysis and determining the presence or absence of the cis-acting region based on this. . Therefore, In silico analysis confirms the expected cis-acting element in the intergenic region of SPLCV, and randomly adds the outer region of the intergenic region to create a deletion set and activate the promoter. We tried to find out how this affects.

제미니바이러스의 프로모터 영역에 해당하는 유전자간 영역(intergenic region, IR)을 단일가닥 DNA 바이러스의 양방향적 원점으로 분석하기 위하여, 다음과 같이 방향에 따라 최종 바이러스 당 8개의 deletion set을 디자인하였다 (도 6, 센스 방향 4개, 안티센스 방향 4개). 즉 유전자간 영역의 바깥쪽 유전자 프레임을 더 추가하여, IR을 포함한 부위를 전체적으로 네 개의 부분으로 단편을 만들고, 이를 방향성에 따라 전체 8개로 디자인 한다. In order to analyze the intergenic region (IR) corresponding to the promoter region of the Geminivirus as a bidirectional origin of a single-stranded DNA virus, eight deletion sets were designed per final virus according to the direction as follows (FIG. 6). , 4 sense directions, 4 antisense directions). In other words, by adding an additional gene frame outside the intergenic region, the fragment including the IR is made into four parts as a whole, and eight of them are designed according to the direction.

SPLCV 의 유전자간 영역으로부터 고안된 8개의 프로모터 deletion set의 위치와 방향성Location and orientation of eight promoter deletion sets designed from the intergenic region of SPLCV C-senseC-sense V-senseV-sense SIR131-2682SIR131-2682 SIR2682-131SIR2682-131 SIR262-2682SIR262-2682 SIR2682-262SIR2682-262 SIR131-2557SIR131-2557 SIR2557-131SIR2557-131 SIR262-2557SIR262-2557 SIR2557-262SIR2557-262

염기서열이 결정된 SPLCV 로부터 유전자간 영역의 8개의 디자인된 영역을 게이트웨이 클로닝을 위한 프라이머 사용을 통해 PCR 방법으로 일차적으로 증폭하여 분리해내었다. Eight designed regions of the intergenic region from the sequencing SPLCV were first amplified and isolated by PCR using primers for gateway cloning.

게이트웨이 클로닝을 위하여 1차 PCR 산물의 준비를 목적으로 사용되어진 프라이머 세트Primer set used for the preparation of primary PCR products for gateway cloning 이름name 시작지점Starting point 시퀸스Sequence 복제방향Replication direction 5SP2682Vs5SP2682Vs 26822682 5'-AAAAAGCAGGCT TTGGAGACACGCATAAGTTC-3' (서열번호 15)5'- AAAAAGCAGGCT TTGGAGACACGCATAAGTTC -3 '(SEQ ID NO: 15) VirionVirion 5SP2557Vs5SP2557Vs 25572557 5'-AAAAAGCAGGCT TTTTTGTTGGTGGGTGTTTG-3' (서열번호 16)5'- AAAAAGCAGGCT TTTTTGTTGGTGGGTGTTTG -3 '(SEQ ID NO: 16) VirionVirion 3SP262Vs3SP262Vs 262262 5'- AGAAAGCTGGGT AGCTCGAACCCTAAGGTTCC-3' (서열번호 17)5'- AGAAAGCTGGGT AGCTCGAACCCTAAGGTTCC -3 '(SEQ ID NO: 17) VirionVirion 3SP131Vs3SP131Vs 131131 5'- AGAAAGCTGGGT TCTTGGCGCCCAAGCACGGA-3' (서열번호 18)5'- AGAAAGCTGGGT TCTTGGCGCCCAAGCACGGA -3 '(SEQ ID NO: 18) VirionVirion 5SP262Cs5SP262Cs 262262 5'-AAAAAGCAGGCT AGCTCGAACCCTAAGGTTCC-3' (서열번호 19)5'- AAAAAGCAGGCT AGCTCGAACCCTAAGGTTCC -3 '(SEQ ID NO: 19) ComplementaryComplementary 55 SP131CsSP131Cs 131131 5'-AAAAAGCAGGCT TCTTGGCGCCCAAGCACGGA-3' (서열번호 20)5'- AAAAAGCAGGCT TCTTGGCGCCCAAGCACGGA -3 '(SEQ ID NO: 20) ComplementaryComplementary 33 SP2557CsSP2557Cs 25572557 5'- AGAAAGCTGGGT TTTTTGTTGGTGGGTGTTTG-3' (서열번호 21)5'- AGAAAGCTGGGT TTTTTGTTGGTGGGTGTTTG -3 '(SEQ ID NO: 21) ComplementaryComplementary 33 SP2682CsSP2682Cs 26822682 5'- AGAAAGCTGGGT TTGGAGACACGCATAAGTTC-3' (서열번호 22)5'- AGAAAGCTGGGT TTGGAGACACGCATAAGTTC -3 '(SEQ ID NO: 22) ComplementaryComplementary attB1adaptorattB1adaptor -- 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3' (서열번호 23)5'-GGGGACAAGTTTGTACA AAAAAGCAGGCT -3 '(SEQ ID NO: 23) -- attB2adaptorattB2adaptor -- 5'-GGGGACCACTTTGTACA AGAAAGCTGGGT -3' (서열번호 24)5'-GGGGACCACTTTGTACA AGAAAGCTGGGT -3 '(SEQ ID NO: 24) --

3. 형질전환용 플라스미드 제작3. Transformation plasmid preparation

위에서 분리한 프로모터를 애기장대에 형질전환 시키기 위해 게이트웨이 운반체 pBGWFS7을 이용하여 프로모터 기능 분석용 운반체를 제작하였다. 증폭된 PCR 산물들은 박테리아가 박테리오파지에 감염될 때 박테리아 측 특이 재조합 핵산서열 부위 전체를 포함하는 어댑터 프라이머 B1인 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3'(서열번호:25)과 B2인5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'(서열번호:26)를 사용하여 각각 재 PCR되었다.(도 7) 2차로 PCR된 산물들은 박테리아가 박테리오파지에 감염될 때 박테리오파지 측 특이 재조합 핵산서열 부위를 포함하는 pDONR221 벡터(도 8)와 BP 재조합반응을 거쳐 중간 클로닝 벡터가 제작되었다. 서브 클로닝된 이 운반체는 최종 식물형질전환 운반체를 제작하기 위해 Egfp 와 GUS 유전자가 연결된 형태의 리포터 시스템이 내재되어 있는 pBGWFS7 벡터(도 9)와 다시 LR 재조합 반응을 거쳐 최종적인 운반체가 완성되었다. 이 때, 기본 운반체(binary vector)로 사용된 pBGWFS7는 미생물 선발을 위한 스펙티노마이신 (spectinomycin) 저항성 유전자를 가지며, 식물체 선발인자로 제초제 저항성 Bar유전자를 포함하고 있다. In order to transform the promoter isolated from the Arabidopsis to prepare a carrier for the analysis of promoter function using the gateway carrier pBGWFS7. The amplified PCR products were 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3 '(SEQ ID NO: 25) and B2 in 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3', the adapter primer B1 containing the entire bacterial side specific recombinant nucleic acid sequence site when the bacteria were infected with bacteriophage. (SEQ ID NO: 26), respectively, re-PCR was used. The reaction produced an intermediate cloning vector. This subcloned carrier was subjected to an LR recombination reaction again with the pBGWFS7 vector (FIG. 9) in which a reporter system in which Egfp and GUS genes were linked to produce a final plant transformation carrier was completed. At this time, pBGWFS7 used as a binary vector has a spectinomycin resistance gene for microbial selection, and includes a herbicide resistant Bar gene as a plant selection factor.

도 8은 PCR 산물과 재조합되는 pDONR221 벡터의 유전자지도이고 도 9는 프로모터 분석에 사용되는 게이트웨이 운반체인 pBGWFS7 벡터의 유전자지도이다. FIG. 8 is a genetic map of the pDONR221 vector recombined with a PCR product, and FIG. 9 is a genetic map of the pBGWFS7 vector, which is a gateway vehicle used for promoter analysis.

4. 애기장대 형질 변환 4. Arabidopsis transformation

파종한 후 23℃ 배양기 (16시간 낮/8시간 밤)에서 약 4주간 생육된 애기장대 (Arabidopsis thaliana ecotype Columbia-0) 식물체의 일차 추대를 제거하여 최소한 3-4개의 이차 추대를 유도한 후, 식물 형질전환 운반체가 보유된 아그로박테리아 배양액을 5% 수크로즈(sucrose)와 0.05% silwet77이 함유된 용액에 OD 0.8 정도로 희석한 현탁액을 꽃봉우리에 분사하여 아그로박테리아를 감염시킨다. 충분한 습도와 암 조건을 유지한 상태로 하룻밤동안 배양한 후 23℃ 배양기 (16시간 낮/8시간 밤)에서 4~5일간 배양한 후 상기와 동일한 방법으로 배양·희석한 아그로박테리아를 재차 화기조직에 분사하고 충분한 습도와 암 조건을 유지한 상태로 하룻밤동안 배양한 후 23℃ 배양기 (16시간 낮/8시간 밤)에서 꼬투리 조직(silique)이 갈색으로 완전히 성숙할 때까지 약 3~5주간 생육시킨 후 채종하였다. 채종된 종자는 다시 파종하여 생육 2주째 일차, 3주째 이차로 0.3% 바스타를 살포함으로써T1세대의 형질전환체를 선발하였다. T1 형질전환 식물체는 23℃ 배양기 (16시간 낮/8시간 밤)에서 꼬투리 조직(silique)이 갈색으로 완전히 성숙할 때까지 약 2달간 생육시킨 후 T2 종자를 채종하였다.After seeding, primary seedlings of Arabidopsis thaliana ecotype Columbia-0 plants grown for about 4 weeks in a 23 ° C incubator (16 hours day, 8 hours nights) were removed to induce at least 3-4 secondary branches. Agrobacteria are infected by spraying a bud of Agrobacteria cultures containing plant transformation carriers with a OD 0.8 diluted in a solution containing 5% sucrose and 0.05% silwet77. After overnight incubation with sufficient humidity and dark conditions, incubate for 4-5 days at 23 ℃ incubator (16 hours day / 8 hours night), and then culture and dilute Agrobacteria in the same manner as above. Incubated overnight with sufficient humidity and dark conditions, and then grown for 3 to 5 weeks in a 23 ° C. incubator (16 hours day / 8 hours night) until the mature silique matures to brown. And harvested. The seeded seeds were sown again, and T1 generation transformants were selected by spraying 0.3% batha on the second and third weeks of growth. T1 transgenic plants were grown for about 2 months in a 23 ° C. incubator (16 hours day / 8 hours night) until the pod silicate matured to brown, and then T2 seeds were seeded.

5. 5. GUSGUS 청색발색Blue color 반응 분석 Reaction analysis

형질전환 T2 종자를 발아시켜 청색발현 유전자(GUS)의 발현을 관찰하였다. 대조구로는 비형질전환 애기장대와 35S 프로모터를 가진 pBI121 벡터로 형질전환된 애기장대를 발아시켜 사용하였다. 청색발색 유전자의 발현여부를 관찰하기위해 유묘나 각종 조직을 GUS-assay buffer [X-gluc(cyclohexyl ammonium salt) 20mM, NaH2PO4 H2O 100mM, NaEDTA 10mM, Triton X-100 0.1%, pH7.5]에 침지하고 37℃에서 하룻밤 처리 후, 버퍼용액을 버리고 물로 닦아준후 70중량% 에탄올에 침지하고 37℃에서 1시간에 한번씩 클로로필 (chlorophyll)이 완전 제거될 때까지 반복하여 갈아주었다. 식물체는 입체현미경으로 관찰하였으며 도 10은 청색발색 유전자의 발현을 관찰한 것이다. Transgenic T2 seeds were germinated to observe the expression of blue expression gene (GUS). As a control, a germ pole transformed with a pBI121 vector having a non-transformed Arabidopsis and 35S promoter was used. In order to observe the expression of blue color gene, seedlings and various tissues were treated with GUS-assay buffer [X-gluc (cyclohexyl ammonium salt) 20 mM, NaH 2 PO 4 H 2 O 100 mM, NaEDTA 10 mM, Triton X-100 0.1%, pH 7 .5], overnight treatment at 37 ° C, discarded the buffer solution and wiped with water, then immersed in 70% by weight ethanol and repeatedly changed until chlorophyll (chlorophyll) is removed once every hour at 37 ℃. Plants were observed under a stereomicroscope and Figure 10 shows the expression of blue chromogenic genes.

비형질전환 애기장대의 경우 청색발색은 관찰되지 않았으나, SIR131-2682 라인과 SIR2682-131 라인에 의해 형질전환된 애기장대의 경우에는 청색발색이 관찰되므로 SPLCV 프로모터에 의해 GUS 단백질이 발현됨을 볼 수 있다. (도 10) Blue color was not observed in non-transgenic Arabidopsis, but blue color was observed in Arabidopsis transformed by SIR131-2682 line and SIR2682-131 line, indicating that GUS protein was expressed by SPLCV promoter. . (Figure 10)

도 1은 SPLCV 중합효소 연쇄반응 검정 및 전체 서열 결정을 위한 부분 유전자 서열의 증폭 결과 전기영동 사진을 나타낸 것이다. 예상되어진 크기의 SP1 (1632 bp), SP2 (2138 bp) 단편이 DNA 중합효소 연쇄반응을 통해 증폭되어졌다. Figure 1 shows the electrophoresis picture of the result of amplification of the partial gene sequence for SPLCV polymerase chain reaction assay and overall sequence determination. SP1 (1632 bp) and SP2 (2138 bp) fragments of expected sizes were amplified by DNA polymerase chain reaction.

도 2는 전체 서열 결정을 위한 프라이머 디자인을 나타낸 것으로, 프라이머 서열이 SPLCV상에 어떤 위치에 존재하는지를 보여주는 프라이머 디자인 모식도로써 증폭된 지역 중 겹치는 부분을 이용하여 바이러스 전체 염기서열을 확보하였다.Figure 2 shows the primer design for determining the overall sequence, a primer design schematic showing the location of the primer sequence on the SPLCV using the overlapping portion of the amplified region to secure the entire virus sequence.

도 3은 SPLCV 서열 확인을 위한 시퀀싱 프라이머의 디자인을 나타낸 것이다3 shows the design of sequencing primers for SPLCV sequence identification

도 4는 SPLCV의 2828 bp 길이에 해당하는 전체 염기서열이다[물결무늬 표시: 각각의 해당 제한효소인식 서열].Figure 4 is the full nucleotide sequence corresponding to 2828 bp length of SPLCV [wavering marks: each corresponding restriction enzyme recognition sequence].

도 5는 국내산 고구마로부터 순수 분리된 SPLCV의 유전체 지도를 나타낸 것이다[화살표는 각각의 유전자(상보적인 유전자 가닥; C1, C2, C3, C4, 바이러스 유전자 가닥; V1, V2)를 의미한다]. Figure 5 shows a genomic map of SPLCV purely isolated from domestic sweet potatoes (arrow indicates each gene (complementary gene strand; C1, C2, C3, C4, viral gene strand; V1, V2)).

도 6은, SPLCV 의 유전자간 영역의 양방향성 프로모터 활성을 확인하기 위한 프로모터 영역의 deletion set과 리포터 유전자의 융합 방법에 대한 개념도이다.6 is a conceptual diagram of a method for fusion between a deletion set of a promoter region and a reporter gene for confirming bidirectional promoter activity of an intergenic region of SPLCV.

도 7은, 1,2차 PCR을 통해 상동 재조합 싸이트를 양 말단에 가진 프로모터 deletion set의 증폭을 보여주는 전기영동 사진이다. FIG. 7 is an electrophoresis photograph showing amplification of a promoter deletion set having homologous recombination sites at both ends by first and second PCR.

도 8은, PCR 산물과 재조합되는 pDONR221 벡터의 유전자지도이다.8 is a genetic map of the pDONR221 vector recombined with a PCR product.

도 9는, 프로모터 분석에 사용되는 게이트웨이 운반체인 pBGWFS7 벡터의 유전자지도이다. 9 is a genetic map of the pBGWFS7 vector, which is a gateway vehicle used for promoter analysis.

도 10은, 형질 전환된 애기장대에서 청색발색 유전자(GUS)의 발현을 관찰한 사진이다. (A: 형질전환 되지 않은 애기장대, B: SIR2682-262 line으로부터 확인된 GUS 발현 C: 35s promoter를 가진 pBI121 vector의 형질전환체, D: SIR131-2682 line으로부터 확인된 GUS 발현 , E: SIR2682-131 line으로부터 확인된 GUS 발현)10 is a photograph observing the expression of the blue color gene (GUS) in the transformed Arabidopsis. (A: untransformed Arabidopsis, B: GUS expression identified from SIR2682-262 line C: transformant of pBI121 vector with 35s promoter, D: GUS expression identified from SIR131-2682 line, E: SIR2682- GUS expression identified from 131 line)

<110> SUNGKYUNKWAN UNIVERSITY Foundation for Corporate Collaboration RURAL DEVELOPMENT ADMINISTRATION <120> The bidirectional promoter using Sweet potato leaf curl virus Korean isolate <160> 24 <170> KopatentIn 1.71 <210> 1 <211> 278 <212> DNA <213> Sweet Potato Leaf Curl Virus Korean isolate <400> 1 ttggagacac gcataagttc aaatgaattg gagactggag acaatatata gtatgtctcc 60 aaatggcatt ctggtaattt agaagatcct tttagcttta attcaaattc cgacaactct 120 gggtccacca aaaggcgggc accgtattaa tattaccggt gcccgccgcg ccctttaata 180 gtgggcccca caagggacca cgcgtctttt ccgtactgtc tttaatgatt actttgcttt 240 ataaggacca atcaggtttc cgtgcttggg cgccaaga 278 <210> 2 <211> 2828 <212> DNA <213> Sweet Potato Leaf Curl Virus Korean isolate <400> 2 taatattacc ggtgcccgcc gcgcccttta atagtgggcc ccacaaggga ccacgcgtct 60 tttccgtact gtctttaatg attactttgc tttataagga ccaatcaggt ttccgtgctt 120 gggcgccaag aatggagcag ttgtgggacc ctttgcagaa cccactcccg gatactttat 180 acggttttag gtgtatgcta tccgtaaaat acttgcagag tattttgaag aaatacgagc 240 caggaacctt agggttcgag ctctgttcgg agttaatccg tatattcagg gtcaggcagt 300 atgacagggc gaattcccgt ttcgcggaga tttcatccat atggggggag accggtaaga 360 cggaggctga acttcgagac agctatcgtg ccctacactg ggaatgctgt cccaattgct 420 gcccgaagct atgtcccggt ttcaagaggc gtccggatga agagaaagag gggtgaccgc 480 atcccgaagg gatgtgttgg tccctgtaag gtccaggact atgagttcaa gatggacgtt 540 ccccacacgg gaacgtttgt ctgtgtctcg gattttacta ggggaactgg gcttactcat 600 cgcctgggta agcgtgtttg tgtgaagtcc atgggtatag atgggaaggt ctggatggat 660 gacaatgtgg ccaagagaga tcacaccaat atcatcacgt attggttgat tcgtgacaga 720 aggcccaata aggatccgct gaactttggc caagtcttca ctatgtatga caatgagccc 780 actactgcta agatccgaat ggatctgagg gatagaatgc aggtattgaa gaagttctct 840 gttacagttt caggaggtcc atacagccac aaggagcagg ccttaattag gaagtttttt 900 aagggtttgt ataatcatgt tacttacaat cataaggaag aagctaagta tgagaatcag 960 ttagaaaatg ctttgatgtt gtatagtgct agcagtcatg cgagtaatcc tgtgtatcag 1020 accctgcgtt gcaggtctta tttctatgat tcgcacaata attaataaaa ttatatttta 1080 ttaatacagt aatatcttta catcatcatt acaatctaca gtatctactt catctatcca 1140 agaacatact cttggaagat atctaataac aaaaactaaa ttaactaaac taaaaaaccc 1200 taaatttgct aattcattac atatacgcca tttaaggcgt tccaaaatac cagtccaact 1260 gtgaatagca ccagttagac gggtcgtcaa gatccggaat tggaggaaga tcttgtggaa 1320 tcccagttgc ctcctttccc tgtagttgac ccacatctgg aatttgagga tggttctccc 1380 ctgtgtgctc tcgtgggcat acataattct gagatggaac ggtgcagtcc gacccacaga 1440 catggggttg gtgtcgaatt cgagtgctct cgtagtctga gcatgactta gtgattcccc 1500 tgtgcgtgaa tccatgctga tacttgcagt ttggggtgat gaaggctgaa cagccgcaac 1560 ccttccacac tatccttgtc ctctgttcag gaactttcct cttggccttc ttcgcctctg 1620 cgtgcagtgg ctcctgaatg ggacacttcc tcttgattcc agaagggaga ttggacatcg 1680 cagaatatag cgtttgctgt tgcccaattc ttgagtgctc cttgctctgg tttgtccaac 1740 cagagtttaa atgaggagcc ctctcctgga ttgcagagga agatagtggg aattccacct 1800 ttaatttgaa ctggctttcc gtatttacag ttggattgcc agtccttctg ggcccccatg 1860 aattccttaa agtgctttag gtattggggg ttgacgtcat caatgacgtt ataccaagca 1920 ctgttgctgt atacttttgg gcttagatct aaatgcccac acaaataatt gtgagggccc 1980 aaagacctgg cccatactgt tttgcctatt ctgcttgggc cttcaataac aatggatatg 2040 ggtctatccg gccgcgcagc ggcatccatg acattttcag cggcccagtc gctgataatg 2100 tcaggaactg cattgaaaga agaagatgaa aaaggagaag aatatacaga aggaggagga 2160 gaaaaaatcc tatctaaatt actaactaaa ttgtgaaatt gaaacaaata tttttcaggg 2220 agtttctccc taattatttg caacgcagct tctttagaac ctgcgtttag agcctctgcg 2280 gctgcgtcat tagcagtctg ctggcctcct ctagcagatc tgccgtcgac ctggaattca 2340 ccccaggtga tggtatcccc gtccttgtca acgtaggact tgacatcgga cgaggattta 2400 gctccctgaa tgttggggtg aaagtgattc gatctgttcg gtgagaccag atcgaagaat 2460 ctgctatttg tgcagacgaa tttgccttcg aactgcacca gcacatggag gtgaggttcc 2520 ccatcctcgt gcagttctct tgctacgtgt atgtattttt tgttggtggg tgtttggata 2580 tttaggagtt gggctaggca gtcctctttt gagagagaac agcgtggata agtaataaaa 2640 taatttttgg cctgaatttt aaaacgtttt ggaggagcca tttggagaca cgcataagtt 2700 caaatgaatt ggagactgga gacaatatat agtatgtctc caaatggcat tctggtaatt 2760 tagaagatcc ttttagcttt aattcaaatt ccgacaactc tgggtccacc aaaaggcggg 2820 caccgtat 2828 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF1 (forward) <400> 3 ctcgtgcagt tctcttgcta 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR1 (reverse) <400> 4 gcaactggga ttccacaaga 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF2 (forward) <400> 5 gtgtatcaga ccctgcgttg 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 6 atacggtgcc cgccttttgg 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR3 (reverse) <400> 7 ccttcaaaag tgggccccac a 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR4 (reverse) <400> 8 atgacagggc gaatgcgcgt t 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2ndSeq <400> 9 gatgtgtggg tccctgtaag 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2Seq_Rc <400> 10 cttacaggga cccacacatc 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV3rdSeq <400> 11 agtaatcctg tgtatcagac 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV4thSeq <400> 12 ctgtgcgtga atccatgctg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV5thSeq <400> 13 cctattctgc ttgggccttc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCVlastSeq <400> 14 aaaggcgggc accgtattaa 20 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP2682Vs <400> 15 aaaaagcagg ctttggagac acgcataagt tc 32 <210> 16 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP2557Vs <400> 16 aaaaagcagg cttttttgtt ggtgggtgtt tg 32 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP262Vs <400> 17 agaaagctgg gtagctcgaa ccctaaggtt cc 32 <210> 18 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP131Vs <400> 18 agaaagctgg gttcttggcg cccaagcacg ga 32 <210> 19 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP262Cs <400> 19 aaaaagcagg ctagctcgaa ccctaaggtt cc 32 <210> 20 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP131Cs <400> 20 aaaaagcagg cttcttggcg cccaagcacg ga 32 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP2557Cs <400> 21 agaaagctgg gttttttgtt ggtgggtgtt tg 32 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP2682Cs <400> 22 agaaagctgg gtttggagac acgcataagt tc 32 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1adaptor <400> 23 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 24 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2adaptor <400> 24 ggggaccact ttgtacaaga aagctgggt 29 <110> SUNGKYUNKWAN UNIVERSITY Foundation for Corporate Collaboration RURAL DEVELOPMENT ADMINISTRATION <120> The bidirectional promoter using Sweet potato leaf curl virus          Korean isolate <160> 24 <170> KopatentIn 1.71 <210> 1 <211> 278 <212> DNA <213> Sweet Potato Leaf Curl Virus Korean isolate <400> 1 ttggagacac gcataagttc aaatgaattg gagactggag acaatatata gtatgtctcc 60 aaatggcatt ctggtaattt agaagatcct tttagcttta attcaaattc cgacaactct 120 gggtccacca aaaggcgggc accgtattaa tattaccggt gcccgccgcg ccctttaata 180 gtgggcccca caagggacca cgcgtctttt ccgtactgtc tttaatgatt actttgcttt 240 ataaggacca atcaggtttc cgtgcttggg cgccaaga 278 <210> 2 <211> 2828 <212> DNA <213> Sweet Potato Leaf Curl Virus Korean isolate <400> 2 taatattacc ggtgcccgcc gcgcccttta atagtgggcc ccacaaggga ccacgcgtct 60 tttccgtact gtctttaatg attactttgc tttataagga ccaatcaggt ttccgtgctt 120 gggcgccaag aatggagcag ttgtgggacc ctttgcagaa cccactcccg gatactttat 180 acggttttag gtgtatgcta tccgtaaaat acttgcagag tattttgaag aaatacgagc 240 caggaacctt agggttcgag ctctgttcgg agttaatccg tatattcagg gtcaggcagt 300 atgacagggc gaattcccgt ttcgcggaga tttcatccat atggggggag accggtaaga 360 cggaggctga acttcgagac agctatcgtg ccctacactg ggaatgctgt cccaattgct 420 gcccgaagct atgtcccggt ttcaagaggc gtccggatga agagaaagag gggtgaccgc 480 atcccgaagg gatgtgttgg tccctgtaag gtccaggact atgagttcaa gatggacgtt 540 ccccacacgg gaacgtttgt ctgtgtctcg gattttacta ggggaactgg gcttactcat 600 cgcctgggta agcgtgtttg tgtgaagtcc atgggtatag atgggaaggt ctggatggat 660 gacaatgtgg ccaagagaga tcacaccaat atcatcacgt attggttgat tcgtgacaga 720 aggcccaata aggatccgct gaactttggc caagtcttca ctatgtatga caatgagccc 780 actactgcta agatccgaat ggatctgagg gatagaatgc aggtattgaa gaagttctct 840 gttacagttt caggaggtcc atacagccac aaggagcagg ccttaattag gaagtttttt 900 aagggtttgt ataatcatgt tacttacaat cataaggaag aagctaagta tgagaatcag 960 ttagaaaatg ctttgatgtt gtatagtgct agcagtcatg cgagtaatcc tgtgtatcag 1020 accctgcgtt gcaggtctta tttctatgat tcgcacaata attaataaaa ttatatttta 1080 ttaatacagt aatatcttta catcatcatt acaatctaca gtatctactt catctatcca 1140 agaacatact cttggaagat atctaataac aaaaactaaa ttaactaaac taaaaaaccc 1200 taaatttgct aattcattac atatacgcca tttaaggcgt tccaaaatac cagtccaact 1260 gtgaatagca ccagttagac gggtcgtcaa gatccggaat tggaggaaga tcttgtggaa 1320 tcccagttgc ctcctttccc tgtagttgac ccacatctgg aatttgagga tggttctccc 1380 ctgtgtgctc tcgtgggcat acataattct gagatggaac ggtgcagtcc gacccacaga 1440 catggggttg gtgtcgaatt cgagtgctct cgtagtctga gcatgactta gtgattcccc 1500 tgtgcgtgaa tccatgctga tacttgcagt ttggggtgat gaaggctgaa cagccgcaac 1560 ccttccacac tatccttgtc ctctgttcag gaactttcct cttggccttc ttcgcctctg 1620 cgtgcagtgg ctcctgaatg ggacacttcc tcttgattcc agaagggaga ttggacatcg 1680 cagaatatag cgtttgctgt tgcccaattc ttgagtgctc cttgctctgg tttgtccaac 1740 cagagtttaa atgaggagcc ctctcctgga ttgcagagga agatagtggg aattccacct 1800 ttaatttgaa ctggctttcc gtatttacag ttggattgcc agtccttctg ggcccccatg 1860 aattccttaa agtgctttag gtattggggg ttgacgtcat caatgacgtt ataccaagca 1920 ctgttgctgt atacttttgg gcttagatct aaatgcccac acaaataatt gtgagggccc 1980 aaagacctgg cccatactgt tttgcctatt ctgcttgggc cttcaataac aatggatatg 2040 ggtctatccg gccgcgcagc ggcatccatg acattttcag cggcccagtc gctgataatg 2100 tcaggaactg cattgaaaga agaagatgaa aaaggagaag aatatacaga aggaggagga 2160 gaaaaaatcc tatctaaatt actaactaaa ttgtgaaatt gaaacaaata tttttcaggg 2220 agtttctccc taattatttg caacgcagct tctttagaac ctgcgtttag agcctctgcg 2280 gctgcgtcat tagcagtctg ctggcctcct ctagcagatc tgccgtcgac ctggaattca 2340 ccccaggtga tggtatcccc gtccttgtca acgtaggact tgacatcgga cgaggattta 2400 gctccctgaa tgttggggtg aaagtgattc gatctgttcg gtgagaccag atcgaagaat 2460 ctgctatttg tgcagacgaa tttgccttcg aactgcacca gcacatggag gtgaggttcc 2520 ccatcctcgt gcagttctct tgctacgtgt atgtattttt tgttggtggg tgtttggata 2580 tttaggagtt gggctaggca gtcctctttt gagagagaac agcgtggata agtaataaaa 2640 taatttttgg cctgaatttt aaaacgtttt ggaggagcca tttggagaca cgcataagtt 2700 caaatgaatt ggagactgga gacaatatat agtatgtctc caaatggcat tctggtaatt 2760 tagaagatcc ttttagcttt aattcaaatt ccgacaactc tgggtccacc aaaaggcggg 2820 caccgtat 2828 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF1 (forward) <400> 3 ctcgtgcagt tctcttgcta 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR1 (reverse) <400> 4 gcaactggga ttccacaaga 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPF2 (forward) <400> 5 gtgtatcaga ccctgcgttg 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPR2 (reverse) <400> 6 atacggtgcc cgccttttgg 20 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR3 (reverse) <400> 7 ccttcaaaag tgggccccac a 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SPR4 (reverse) <400> 8 atgacagggc gaatgcgcgt t 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2ndSeq <400> 9 gatgtgtggg tccctgtaag 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV2Seq_Rc <400> 10 cttacaggga cccacacatc 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV3rdSeq <400> 11 agtaatcctg tgtatcagac 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV4thSeq <400> 12 ctgtgcgtga atccatgctg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCV5thSeq <400> 13 cctattctgc ttgggccttc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 5SpLCVlastSeq <400> 14 aaaggcgggc accgtattaa 20 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP2682Vs <400> 15 aaaaagcagg ctttggagac acgcataagt tc 32 <210> 16 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP2557Vs <400> 16 aaaaagcagg cttttttgtt ggtgggtgtt tg 32 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP262Vs <400> 17 agaaagctgg gtagctcgaa ccctaaggtt cc 32 <210> 18 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP131Vs <400> 18 agaaagctgg gttcttggcg cccaagcacg ga 32 <210> 19 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP262Cs <400> 19 aaaaagcagg ctagctcgaa ccctaaggtt cc 32 <210> 20 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 5SP131Cs <400> 20 aaaaagcagg cttcttggcg cccaagcacg ga 32 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP2557Cs <400> 21 agaaagctgg gttttttgtt ggtgggtgtt tg 32 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> 3SP2682Cs <400> 22 agaaagctgg gtttggagac acgcataagt tc 32 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1adaptor <400> 23 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 24 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2adaptor <400> 24 ggggaccact ttgtacaaga aagctgggt 29  

Claims (1)

서열번호 1의 염기서열로 표시되는 국내 고구마 잎말림병 감염 DNA 바이러스의 양방향성 프로모터.A bidirectional promoter of domestic sweet potato leaf disease infected DNA virus represented by the nucleotide sequence of SEQ ID NO: 1.
KR1020080038415A 2008-04-24 2008-04-24 The bidirectional promoter using Sweet potato leaf curl virus Korean isolate KR101452405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080038415A KR101452405B1 (en) 2008-04-24 2008-04-24 The bidirectional promoter using Sweet potato leaf curl virus Korean isolate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080038415A KR101452405B1 (en) 2008-04-24 2008-04-24 The bidirectional promoter using Sweet potato leaf curl virus Korean isolate

Publications (2)

Publication Number Publication Date
KR20090112492A true KR20090112492A (en) 2009-10-28
KR101452405B1 KR101452405B1 (en) 2014-10-23

Family

ID=41553657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080038415A KR101452405B1 (en) 2008-04-24 2008-04-24 The bidirectional promoter using Sweet potato leaf curl virus Korean isolate

Country Status (1)

Country Link
KR (1) KR101452405B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361350A (en) * 2013-07-02 2013-10-23 华中农业大学 Fusion promoter pCLdb with both low temperature induction activity and potato tuber specific expression activity and construction method thereof
CN116445540A (en) * 2023-04-27 2023-07-18 中国科学院华南植物园 Construction method of sweet potato leaf curl virus infectious clone and efficient and simple sweet potato infection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361350A (en) * 2013-07-02 2013-10-23 华中农业大学 Fusion promoter pCLdb with both low temperature induction activity and potato tuber specific expression activity and construction method thereof
CN116445540A (en) * 2023-04-27 2023-07-18 中国科学院华南植物园 Construction method of sweet potato leaf curl virus infectious clone and efficient and simple sweet potato infection method
CN116445540B (en) * 2023-04-27 2024-05-10 中国科学院华南植物园 Construction method of sweet potato leaf curl virus infectious clone and efficient and simple sweet potato infection method

Also Published As

Publication number Publication date
KR101452405B1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
KR0154872B1 (en) Agrobacterium mediated transformation of germinating plant seeds
US11254715B2 (en) Protein associated with disease resistance and encoding gene thereof, and use thereof in regulation of plant disease resistance
KR100685520B1 (en) A seed specific promoter primers for amplification thereof an expression vector comprising the same and a transformant cell
CN107012147B (en) Drought and/or high-salt induction promoter SlWRKY8P from tomato and application thereof
CN113307853B (en) MYB transcription inhibitor LrMYB3 related to synthesis of lycium ruthenicum anthocyanin and application thereof
CN108948169B (en) Protein and gene for promoting synthesis of cotton fiber green pigment, and coding sequence and application thereof
KR100790809B1 (en) A root specific expression promoter
CN116694652A (en) Verticillium dahliae VdNRPS4 gene antipathogenic target gene fragment, interference vector and application
KR101015972B1 (en) POLLEN-SPECIFIC PROMOTER BrRF1
KR101452405B1 (en) The bidirectional promoter using Sweet potato leaf curl virus Korean isolate
KR100804766B1 (en) Transgenic hot pepper tolerant to cmv pathotype
KR101080291B1 (en) Constitutive promoter Lip3
KR100803390B1 (en) Root specific promoter
KR101161276B1 (en) Vascular tissue-specific promoter and expression vector comprising the same
KR101236314B1 (en) Petal-specific promoter
KR100803391B1 (en) Ubiquitous promoter primers for amplification thereof the expression vector comprising the same and the transformation plant
CN106939038B (en) Corn development regulation protein, coding gene and application
KR101120603B1 (en) Constitutive Promoter PAtBch1 and expression vector comprising the same
CN100366743C (en) Plant-disease-resistance related protein and genes encoding same and use thereof
CN114606260B (en) Method for improving temperature-sensitive resistance of tomato root-knot nematode
CN112575006B (en) Elicitin gene for inducing HR and active oxygen accumulation in biocontrol pythium and expression vector and application thereof
CN112725353B (en) Recombinant vector, transformant, primer for amplifying AtNAC58 gene and preparation method and application thereof
KR100987009B1 (en) A root-specific promoter r
US20220042030A1 (en) A method to improve the agronomic characteristics of plants
KR101080288B1 (en) Constitutive promoter UK1

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171012

Year of fee payment: 4