KR20090110958A - The Catalyst and The Making Method of Biodiesel - Google Patents

The Catalyst and The Making Method of Biodiesel Download PDF

Info

Publication number
KR20090110958A
KR20090110958A KR1020080036444A KR20080036444A KR20090110958A KR 20090110958 A KR20090110958 A KR 20090110958A KR 1020080036444 A KR1020080036444 A KR 1020080036444A KR 20080036444 A KR20080036444 A KR 20080036444A KR 20090110958 A KR20090110958 A KR 20090110958A
Authority
KR
South Korea
Prior art keywords
oil
metal
catalyst
biodiesel
nitrate
Prior art date
Application number
KR1020080036444A
Other languages
Korean (ko)
Other versions
KR100931521B1 (en
Inventor
김문찬
Original Assignee
이엔에프씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이엔에프씨 주식회사 filed Critical 이엔에프씨 주식회사
Priority to KR1020080036444A priority Critical patent/KR100931521B1/en
Publication of KR20090110958A publication Critical patent/KR20090110958A/en
Application granted granted Critical
Publication of KR100931521B1 publication Critical patent/KR100931521B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE: A biodiesel catalyst and a manufacturing method of biodiesel are provided to offer the biodiesel of high quality, and to increase yield efficiently using canola oil, waste cooking oil palm oil, corn oil and sunflower oil etc. CONSTITUTION: A biodiesel catalyst is a Ti-M-N complex catalyst. The M is a platinum based metal and one or more among Pt, Pd, Ir, and Ru. The n is a 2 group metal, and one or more among Be, Mg, Sr, and Ba. The weight ratio of Ti and M is 100 : 1 ~ 1 : 1. The ratio of the N in the sum total of the Ti and M is 10 : 1 ~ 1 : 10.

Description

바이오디젤 촉매 및 바이오디젤 제조방법{The Catalyst and The Making Method of Biodiesel}Biodiesel catalyst and biodiesel manufacturing method {The Catalyst and The Making Method of Biodiesel}

본 발명은 복합촉매상에서 대두유, 유채유, 팜유, 폐식용유, 자트로파유, 카사바유, 카놀라유, 옥수수유, 해바라기유를 이용하여 크래킹시켜 경유에 가까운 조성으로 만들어 디젤 내연기관의 연료로 사용하는 바이오디젤에 관한 것으로 관한 것이다.The present invention cracks using soybean oil, rapeseed oil, palm oil, waste edible oil, jatropha oil, cassava oil, canola oil, corn oil and sunflower oil in a composite catalyst to make biodiesel used as a fuel for diesel internal combustion engines. It is about.

종래의 기술은 산촉매나 알칼리 촉매를 사용하여 에스테르화반응을 시킴으로써 메틸에스테르를 만들어 디젤 내연기관에 사용하고 있으나, 에스테르화반응시 생성된 산촉매와 알칼리 촉매가 최종 생산물에 함유되어 있어 이것을 제거하지 않으면 엔진 내부에 금속이 침전되는등 문제가 생기고 있다.In the prior art, an esterification reaction using an acid catalyst or an alkali catalyst is used to make a methyl ester and used in a diesel internal combustion engine. However, if the acid catalyst and the alkali catalyst generated during the esterification reaction are contained in the final product, the engine is not removed. There is a problem such as a metal precipitates inside.

본 발명에서는 종래의 기술에 나타난 단점들을 제거하여, 고체 촉매상에서 크래킹을 시켜 최종생성물인 바이오디젤에 글리세롤등의 부산물과 산촉매나 알칼리촉매의 불순물이 없는 상태를 유지하는 대두유, 유채유, 팜유, 폐식용유, 생선유, 소기름, 닭기름, 돼지기름, 자트로파유, 카사바유, 카놀라유, 옥수수유, 해바라기유를 이용한 바이오디젤의 제조방법을 제공하는데 있다.In the present invention, by removing the disadvantages shown in the prior art, by cracking on a solid catalyst, soybean oil, rapeseed oil, palm oil, waste edible oil to maintain the state of the product by-products such as glycerol and impurities of the acid catalyst or alkali catalyst in the final product biodiesel To provide a method for producing biodiesel using fish oil, bovine oil, chicken oil, pork oil, jatropha oil, cassava oil, canola oil, corn oil, sunflower oil.

본 발명에서는 상기와 같은 문제를 해결하기 위하여, 크래킹 촉매를 사용하며 Ti-M-N 복합금속 촉매를 사용하여 250℃에서 380℃사이의 온도에서 동식물 유지의 원료오일을 크래킹시켜 우수한 성능의 바이오디젤을 제조한다. 여기서, M은 귀금속으로 Pt, Pd, Ir, Ru중 하나 이상의 금속이며, N은 2족 화합물로 Be, Mg, Sr, Ba중 하나 이상의 금속이다.In the present invention, in order to solve the above problems, using a cracking catalyst and using a Ti-MN composite metal catalyst to crack the raw material oil of animal and vegetable oil at a temperature between 250 ℃ to 380 ℃ to produce a biodiesel of excellent performance do. Here, M is a precious metal of at least one metal of Pt, Pd, Ir, Ru, N is a group 2 compound of at least one of Be, Mg, Sr, Ba.

이와같이 된 본 발명은 동식물 유지를 원료로 하여, 본 발명에 사용된 바이오디젤 제조를 위한 촉매를 사용하여 본 발명의 제조방법에 의해 수율이 높고 양질의 바이오디젤을 얻는 효과를 제공한다.The present invention thus obtained provides the effect of obtaining high quality and high quality biodiesel by the production method of the present invention using the catalyst for biodiesel production used in the present invention, using animal and vegetable fats and oils as raw materials.

본 발명에 사용되는 크래킹 촉매는 Ti 금속으로써 TiCl4 또는 티타늄테트라이소프로폭사이드와 M 금속인 백금족 금속인 백금 금속으로써 염화백금산이나 질산백금 또는 팔라듐 금속으로써 염화팔라듐이나 질산팔라듐 또는 이리듐 금속으로써 염화이리듐 또는 루테늄 금속으로써 염화루테늄 또는 질산루테늄중 하나 이상의 금속화합물을 혼합하고, 여기에 N 금속으로써 2족 금속인 베릴륨 금속으로써 염화베릴륨이나 질산베릴륨 또는 마그네슘 금속으로써 염화마그네슘이나 질산마그네슘 또 는 바륨 금속으로써 질산바륨이나 염화바륨 또는 스트론튬 금속으로써 질산스트론튬이나, 염화스트론튬 중에서 1개 이상의 금속 화합물을 혼합하여 질산이나 황산 또는 염산 수용액상에서 60℃ ∼ 150℃에서 60rpm 이상으로 3시간 이상 교반하면서 졸겔법으로 제조하여 Ti-M-N 복합촉매를 만든다. 여기서 M은 백금족 금속을 나타내며 Pt, Pd, Ir, Ru중 하나 이상의 금속이며, N은 2족 금속을 나타내며 Be, Ma, Ba, Sr중 하나 이상의 금속이다. Ti-M-N 복합촉매에 사용된 물질의 비율은 Ti : M = 100 : 1에서 1 : 1 의 무게비로 혼합하여 사용하며, Ti와 M 금속의 합에 대한 N 금속의 비는 10 : 1에서 1 : 10의 무게비로 혼합하여 사용한다. 상기의 금속들간의 무게비를 벗어나게 되면 촉매에서 크래킹반응의 전환율이 현저하게 떨어져 바이오디젤의 수율이 현저히 떨어지게 된다.The cracking catalyst used in the present invention is TiCl 4 or titanium tetraisopropoxide as a Ti metal and platinum metal as a platinum group metal as M metal, chloroplatinic acid, platinum nitrate, or palladium metal as palladium chloride or palladium nitrate or iridium metal as iridium metal. Or a ruthenium metal with at least one metal compound of ruthenium chloride or ruthenium nitrate, and beryllium metal, a Group 2 metal as N metal, beryllium chloride or beryllium nitrate, or magnesium metal as magnesium chloride or magnesium nitrate or barium metal as nitrate. A barium, barium chloride or strontium metal is prepared by the sol-gel method by mixing at least one metal compound in strontium nitrate or strontium chloride and stirring at 60 rpm or more at 60 ° C. to 150 ° C. for at least 3 hours in an aqueous solution of nitric acid, sulfuric acid or hydrochloric acid. Woman makes Ti-MN complex catalyst. Wherein M represents a platinum group metal and is at least one metal of Pt, Pd, Ir, Ru, and N is a group 2 metal and is at least one of Be, Ma, Ba, Sr. The ratio of the materials used in the Ti-MN composite catalyst is mixed in a weight ratio of Ti: M = 100: 1 to 1: 1, and the ratio of N metal to the sum of Ti and M metal is 10: 1 to 1: Use by mixing in weight ratio of 10. When the weight ratio between the metals is exceeded, the conversion rate of the cracking reaction in the catalyst is remarkably decreased, and the yield of biodiesel is remarkably decreased.

상기에서 만들어진 촉매를 직경이 0.1mm∼15mm 사이의 세라믹 재질 또는 플라스틱 또는 유리 또는 금속재질의 펠렛이나 비드의 표면에 코팅하여 반응기 내에 넣고, 여기에 원료로 사용되는 동식물유로써 정제되고 탈인된 대두유나, 유채유, 팜유, 폐식용유, 생선유, 소기름, 닭기름, 돼지기름, 자트로파유, 카사바유, 카놀라유, 옥수수유, 해바라기유등의 동식물유중 하나 또는 2종류 이상을 넣고, 상압에서 250℃에서 380℃사이의 온도에서 60 rpm 이상에서 5분 이상 동식물 유지의 원료오일을 크래킹시켜 우수한 성능의 바이오디젤을 제조한다. 촉매가 코팅된 비드나 펠렛을 분리하여 회수하고, 더 순수한 바이오디젤을 얻기 위하여 190℃에서 증류하여 양질의 바이오디젤을 얻는다. 반응 온도가 상기 범위 보다 낮으면 크래킹 전환율이 현저하게 떨어져 바이오디젤의 수율이 현저히 떨어지게 되며, 반응온도가 상 기 범위보다 높으면 과도한 크래킹이 일어나 바이오디젤로의 수율이 현저하게 떨어지게 되거나 탄화가 일어나게 된다. 한편 반응시간이 5분 이내가 되면 크래킹 전환율이 떨어져 바이오디젤의 수율이 현격하게 떨어지게 된다. Ti-M-N 복합촉매가 코팅된 비드나 펠렛의 양과 반응기내에 원료로 들어가는 동식물유양과의 무게비는 1:100 ∼ 10:1의 무게비로 사용하며 상기의 무게비를 벗어나게 되면 크래킹반응이 현저히 떨어지거나 균일한 조성의 바이오디젤을 얻기 어렵다. 그리고 촉매가 코팅된 펠렛이나 비드의 직경이 상기의 직경범위를 벗어나 직경이 작게되면 회수하기 어렵고, 직경이 크면 비표면적이 줄어들어 크래킹반응의 전환율이 현저히 줄어든다.The catalyst prepared above is coated on the surface of pellets or beads of ceramic material, plastic, glass, or metal, having a diameter of 0.1 mm to 15 mm, and placed in a reactor. Add one or two or more of animal and vegetable oils such as rapeseed oil, palm oil, waste cooking oil, fish oil, beef oil, chicken oil, pork oil, jatropha oil, cassava oil, canola oil, corn oil and sunflower oil. Cracking the raw material oil of animal and vegetable fats and oils for more than 5 minutes at 60 rpm or more at a temperature between ℃ produces biodiesel of excellent performance. The catalyst-coated beads or pellets are separated and recovered, and distilled at 190 ° C. to obtain more pure biodiesel to obtain high quality biodiesel. If the reaction temperature is lower than the above range, the cracking conversion rate is significantly lowered, and the yield of biodiesel is significantly lowered. If the reaction temperature is higher than the above range, excessive cracking occurs and the yield to biodiesel is significantly decreased or carbonization occurs. On the other hand, if the reaction time is less than 5 minutes, the cracking conversion rate is lowered, the biodiesel yield is significantly reduced. The weight ratio of beads or pellets coated with Ti-MN composite catalyst and animal and plant oil into the raw material in the reactor is used at a weight ratio of 1: 100 to 10: 1, and when the weight ratio is out of the above, the cracking reaction is significantly reduced or uniform. It is difficult to obtain biodiesel of composition. If the diameter of the pellet or beads coated with the catalyst is smaller than the diameter range, the diameter of the catalyst is difficult to recover. If the diameter is large, the specific surface area decreases, and the conversion rate of the cracking reaction is significantly reduced.

또한 상기의 Ti-M-N 촉매가 코팅된 비드나 펠렛을 고정층 반응기에 충전 시킨후 공간속도가 시간당 1,000내지 100,000까지의 범위내에서 상기의 동식물 유지의 원료 오일을 촉매층을 통과시켜 상압에서 250℃에서 380℃사이의 온도에서 크래킹반응을 시킨후, 190℃에서 증류시켜 양질의 바이오디젤을 얻는다. 공간속도가 시간당 100,000을 넘으면 크래킹반응이 현저히 떨어지게 되며, 공간속도가 시간당 1,000보다 작으면 과도한 크래킹이 일어나 불균일한 조성이 되어 바이오디젤의 수율이 현저하게 떨어지게 된다.In addition, after filling the Ti-MN catalyst coated beads or pellets into a fixed bed reactor, the raw material oil of the above-mentioned animal and vegetable fat and oil passes through the catalyst layer in a space velocity of 1,000 to 100,000 per hour and passes at 250 ° C. at 380 ° C. at atmospheric pressure. After the cracking reaction at a temperature between ℃ and distillation at 190 ℃ to obtain a high quality biodiesel. If the space velocity exceeds 100,000 per hour, the cracking reaction is remarkably degraded. If the space velocity is less than 1,000 per hour, excessive cracking occurs, resulting in a nonuniform composition, resulting in a significant drop in yield of biodiesel.

다음의 실시예에 의하여 본 발명을 더 상세히 설명하는데 본 발명은 이들 실시예에만 한정되는 것은 아니다.The present invention is explained in more detail by the following examples, which are not intended to limit the present invention.

실시예 1)Example 1

Ti-M-N 복합 촉매 성분이 Ti 금속으로써 티타늄테트라이소프로폭사이드 10g 에 M 금속으로써 염화백금산 3g과 N 금속으로써 염화마그네슘 1g을 질산 수용액상에서 90℃에서 60rpm으로 3시간 동안 교반하여 졸겔법으로 제조하여 Ti-Pt-Mg 복합 촉매를 만들고, 이것을 직경 2mm의 TiO2 비드 표면에 코팅한후, 반응기에 대두유와 자트로파유를 1:1 무게비로 혼합한 것과 같은 무게로 넣고, 330℃ 온도에서 60rpm 으로 10분 동안 교반하여 크래킹반응을 시킨후, 촉매가 코팅된 비드를 메쉬를 사용하여 분리하여 회수한후 더 순수한 바이오디젤을 얻기 위하여 190℃에서 증류하여 양질의 바이오디젤을 얻었다.Ti-MN composite catalyst component was prepared by the sol-gel method by stirring for 3 hours at 10 g of titanium tetraisopropoxide as Ti metal, 3 g of chloroplatinic acid as M metal and 1 g of magnesium chloride as N metal at 90 ° C. at 60 rpm in an aqueous nitric acid solution. A Ti-Pt-Mg composite catalyst was made, coated on a surface of TiO 2 beads having a diameter of 2 mm, and then put into a reactor at the same weight as the mixture of soybean oil and jatropha oil in a 1: 1 weight ratio, and then heated at 60 rpm at 330 ° C. After stirring for a cracking reaction, the catalyst-coated beads were separated and recovered using a mesh, and then distilled at 190 ° C. to obtain a more pure biodiesel to obtain high quality biodiesel.

실시예 2)Example 2

Ti-M-N 복합 촉매 성분이 Ti 금속으로써 티타늄테트라이소프로폭사이드 10g과 M 금속으로써 루테늄나이트레이트 3g, N 금속으로써 사용된 Sr 금속으로 질산스트론튬 1g을 혼합하고, 질산 수용액상에서 90℃에서 60rpm 으로 3시간 동안 교반하여 졸겔법으로 제조하여 Ti-Ru-Sr 복합 촉매를 만들고, 이것을 직경 2mm의 글라스비드 표면에 코팅한후, 반응기에 팜유와 폐식용유를 1:1 무게비로 혼합한 것과 같은 무게비로 넣고 330℃ 온도에서 60rpm 으로 10분 교반하여 크래킹반응을 시킨후, 촉매가 코팅된 비드를 메쉬를 사용하여 분리하여 회수한후, 더 순수한 바이오디젤을 얻기 위하여 190℃에서 증류하여 양질의 바이오디젤을 얻었다.The Ti-MN composite catalyst component was mixed with 10 g of titanium tetraisopropoxide as a Ti metal, 3 g of ruthenium nitrate as M metal, and 1 g of strontium nitrate with Sr metal used as N metal, and 3 at 90 rpm in a nitric acid solution at 60 rpm. After stirring for a time to prepare a Ti-Ru-Sr composite catalyst by sol-gel method, which was coated on a glass bead surface of 2mm in diameter, and put the palm oil and waste cooking oil in a weight ratio such as 1 to 1 weight ratio in the reactor After cracking by stirring at 60 rpm at 330 ° C. for 10 minutes, the catalyst-coated beads were separated and recovered using a mesh, and then distilled at 190 ° C. to obtain a pure biodiesel, thereby obtaining high quality biodiesel. .

다음의 표1에서는 본 발명의 실시예1과 실시예2에 의하여 만들어진 바이오디젤의 성능과 바이오디젤 100%를 기준으로한 품질기준을 비교하여 나타내었다. 본 발명에 의해 생성된 바이오디젤은 품질기준내의 양호한 성능을 나타내었다.Table 1 below shows a comparison of the performance of the biodiesel produced by Examples 1 and 2 of the present invention and the quality standards based on 100% of the biodiesel. The biodiesel produced by the present invention showed good performance within the quality criteria.

표 1. 바이오디젤 성능 및 품질기준Table 1. Biodiesel Performance and Quality Standards

Figure 112008502058035-PAT00001
Figure 112008502058035-PAT00001

Claims (6)

Ti-M-N 복합 촉매로, 여기서 M은 백금족 금속을 나타내며 Pt, Pd, Ir, Ru중 하나 이상의 금속이며, N은 2족 금속을 나타내며 Be, Mg, Sr, Ba중 하나 이상의 금속인 것을 특징으로 하는 바이오디젤 제조용 촉매Ti-MN composite catalyst, wherein M represents a platinum group metal and is at least one metal of Pt, Pd, Ir, Ru, and N is a group 2 metal, characterized in that at least one metal of Be, Mg, Sr, Ba Catalyst for Biodiesel Production 제 1항에 있어서 Ti-M-N 복합촉매에 사용된 물질의 비율은 Ti와 M의 무게비가 100 : 1 내지 1 : 1 의 무게비로 혼합하여 사용하며, Ti와 M 금속의 합에 대한 N 금속의 비는 10 : 1에서 1 : 10의 무게비로 혼합하여 사용하는 것을 특징으로 하는 바이오디젤 제조용 촉매The ratio of the material used in the Ti-MN composite catalyst is a mixture of Ti and M in a weight ratio of 100: 1 to 1: 1, the ratio of the N metal to the sum of Ti and M metal. Is a catalyst for producing biodiesel, characterized in that the mixture is used in a weight ratio of 10: 1 to 1: 10 제 1항에 있어서, Ti-M-N 복합 촉매로 Ti 금속으로써 TiCl4 또는 티타늄테트라이소프로폭사이드와 M 금속인 백금족 금속인 백금 금속으로써 염화백금산이나 질산백금 또는 팔라듐 금속으로써 염화팔라듐이나 질산팔라듐 또는 이리듐 금속으로써 염화이리듐 또는 루테늄 금속으로써 염화루테늄 또는 질산루테늄중 하나 이상의 금속화합물을 혼합하고, 여기에 N 금속으로써 2족 금속인 베릴륨 금속으로써 염화베릴륨이나 질산베릴륨 또는 마그네슘 금속으로써 염화마그네슘이나 질산마그네슘 또는 바륨 금속으로써 질산바륨이나 염화바륨 또는 스트론튬 금속으로써 질산스트론튬이나, 염화스트론튬 중에서 1개 이상의 금속 화합물을 혼합하여 질산이나 황산 또는 염산 수용액상에서 60℃ ∼ 150℃에서 60rpm 이상으로 3시간 이상 교반하면서 졸겔법으로 제조하여 Ti-M-N 복합촉매를 얻는것을 특징으로 하는 바이오디젤 제조용 촉매 제조방법.The Ti-MN composite catalyst according to claim 1, wherein the Ti-MN composite catalyst is a platinum metal of TiCl 4 or titanium tetraisopropoxide and a platinum group metal of M metal; platinum chloride, platinum nitrate, or palladium metal; palladium chloride, palladium nitrate, or iridium. Mix one or more metal compounds of iridium chloride or ruthenium metal as a metal and ruthenium chloride or ruthenium nitrate, and beryllium metal as group 2 metal as N metal, beryllium chloride or beryllium nitrate, or magnesium metal as magnesium chloride or magnesium nitrate or barium. Barium nitrate, barium chloride or strontium as a metal is mixed with strontium nitrate or strontium chloride as a metal and at least one metal compound is mixed in a nitrate, sulfuric acid or hydrochloric acid solution at 60 ° C. to 150 ° C. at 60 rpm or more for 3 hours. Manufacturing The method for producing biodiesel catalysts, characterized in that to obtain a Ti-MN complex catalyst. 제 3항에 있어서 Ti-M-N 복합촉매를 직경이 0.1mm∼15mm 사이의 세라믹 재질 또는 플라스틱 또는 유리 또는 금속재질의 펠렛이나 비드의 표면에 코팅하여 사용하며, Ti-M-N 복합촉매가 코팅된 비드나 펠렛의 양과 반응기내에 원료로 들어가는 대두유나, 유채유, 팜유, 폐식용유, 생선유, 소기름, 닭기름, 돼지기름, 자트로파유, 카사바유, 카놀라유, 옥수수유, 해바라기유 중 하나 또는 2종류 이상의 동식물유양과의 무게비는 1:100 ∼ 10:1의 무게비로 사용하는 것을 특징으로 하는 바이오디젤 제조용 촉매The Ti-MN composite catalyst is coated on the surface of a pellet or bead of ceramic material, plastic, glass or metal material having a diameter of 0.1mm to 15mm, and the Ti-MN composite catalyst is coated with The amount of pellets, soybean oil, rapeseed oil, palm oil, edible oil, fish oil, bovine oil, chicken oil, pork oil, jatropha oil, cassava oil, canola oil, corn oil, sunflower oil or two or more animal or vegetable oils And a weight ratio of the biodiesel production catalyst, characterized in that used in a weight ratio of 1: 100 to 10: 1. M은 백금족 금속을 나타내며 Pt, Pd, Ir, Ru중 하나 이상의 금속이며, N은 2족 금속으로 Be, Mg, Sr, Ba중 하나 이상의 금속인 것을 특징으로 하는 Ti-M-N 복합촉매를 만들어서, 이것을 직경이 0.1mm∼15mm 사이의 세라믹 재질 또는 플라스틱 또는 유리 또는 금속재질의 펠렛이나 비드의 표면에 코팅하여 반응기 내에 넣으며, Ti-M-N 복합촉매가 코팅된 비드나 펠렛의 양과 반응기내에 원료로 들어가는 동식물유양과의 무게비는 1:100 ∼ 10:1의 무게비로 사용하고, 여기에 원료로 사용되는 동식물유로써 정제되고 탈인된 대두유나, 유채유, 팜유, 폐식용유, 생선유, 소기름, 닭기름, 돼지기름, 자트로파유, 카사바유, 카놀라유, 옥수수유, 해바라기유중 하나 또는 2종류 이상을 넣고, 상압에서 250℃에서 380℃ 사이의 온도에서 60rpm 이상으로 5분 이상 교반하여 크래킹반응을 시킨후, 촉매가 코팅된 펠렛이나 비드를 분리하여 회수하고, 190℃에서 증류하여 얻는것을 특징으로 하는 바이오디젤의 제조방법.M represents a platinum group metal and is a metal of at least one of Pt, Pd, Ir and Ru, and N is a Group 2 metal to form a Ti-MN composite catalyst, characterized in that at least one of Be, Mg, Sr, and Ba. It is coated on the surface of pellets or beads made of ceramic, plastic, glass, or metal with a diameter of 0.1mm to 15mm and placed in the reactor.The amount of beads or pellets coated with the Ti-MN composite catalyst and the amount of animals and plants to be used as raw materials in the reactor The weight ratio of the fruit is 1: 100 to 10: 1, and it is used as a raw material for the animal and vegetable oil. Refined and dephosphorized soybean oil, rapeseed oil, palm oil, waste cooking oil, fish oil, beef oil, chicken oil, pork oil. Add one or two or more of jatropha oil, cassava oil, canola oil, corn oil and sunflower oil, and stir for at least 5 minutes at a temperature between 250 ° C and 380 ° C at atmospheric pressure for at least 5 minutes. Then, the method for producing a biodiesel, characterized in that number of times to remove the pellet or bead is coated, and the catalyst, obtained by distillation at 190 ℃. M은 백금족 금속을 나타내며 Pt, Pd, Ir, Ru중 하나 이상의 금속이며, N은 2족 금속으로 Be, Mg, Sr, Ba중 하나 이상의 금속인 것을 특징으로 하는 Ti-M-N 복합촉매를 만들어서, 이것을 직경이 0.1mm∼15mm 사이의 세라믹 재질 또는 플라스틱 또는 유리 또는 금속재질의 펠렛이나 비드의 표면에 코팅하여 고정층 반응기 내에 충전시킨후, 공간속도가 시간당 1,000내지 100,000까지의 범위내에서 탈인된 대두유나, 유채유, 팜유, 폐식용유, 생선유, 소기름, 닭기름, 돼지기름, 자트로파유, 카사바유, 카놀라유, 옥수수유, 해바라기유중 하나 또는 2종류 이상의 원료 오일을 촉매층을 통과시켜 상압에서 250℃에서 380℃사이의 온도에서 크래킹반응을 시킨후, 190℃에서 증류시켜 얻는것을 특징으로 하는 바이오디젤의 제조방법.M represents a platinum group metal and is a metal of at least one of Pt, Pd, Ir and Ru, and N is a Group 2 metal to form a Ti-MN composite catalyst, characterized in that at least one of Be, Mg, Sr, and Ba. Soybean oil dephosphorized within the range of 1,000 to 100,000 per hour after filling the fixed bed reactor by coating the surface of pellets or beads of ceramic material, plastic, glass or metal material of 0.1mm to 15mm in diameter, Rapeseed oil, palm oil, waste cooking oil, fish oil, bovine oil, chicken oil, pork oil, jatropha oil, cassava oil, canola oil, corn oil, sunflower oil or two or more kinds of raw oils are passed through a catalyst layer at 380 ° C at atmospheric pressure. Method for producing biodiesel, characterized in that after the cracking reaction at a temperature between ℃ and distillation at 190 ℃.
KR1020080036444A 2008-04-21 2008-04-21 The Catalyst and The Making Method of Biodiesel KR100931521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080036444A KR100931521B1 (en) 2008-04-21 2008-04-21 The Catalyst and The Making Method of Biodiesel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080036444A KR100931521B1 (en) 2008-04-21 2008-04-21 The Catalyst and The Making Method of Biodiesel

Publications (2)

Publication Number Publication Date
KR20090110958A true KR20090110958A (en) 2009-10-26
KR100931521B1 KR100931521B1 (en) 2010-01-12

Family

ID=41538771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080036444A KR100931521B1 (en) 2008-04-21 2008-04-21 The Catalyst and The Making Method of Biodiesel

Country Status (1)

Country Link
KR (1) KR100931521B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301859A (en) * 2013-07-02 2013-09-18 中国科学院上海硅酸盐研究所 Superpara magnetism mesoporous solid alkali solid alkali catalyst as well as preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362023B2 (en) * 2002-01-15 2009-11-11 株式会社日本触媒 Exhaust gas treatment catalyst and exhaust gas treatment method
KR100885682B1 (en) 2007-07-10 2009-02-26 주식회사 이엔드디 Preparation Method of Carbon Monoxide, Hydrocarbon and Particualte Matter Reduction Catalyst for High-Sulfur Fuel Engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301859A (en) * 2013-07-02 2013-09-18 中国科学院上海硅酸盐研究所 Superpara magnetism mesoporous solid alkali solid alkali catalyst as well as preparation method and application thereof
CN103301859B (en) * 2013-07-02 2015-07-15 中国科学院上海硅酸盐研究所 Superpara magnetism mesoporous solid alkali solid alkali catalyst as well as preparation method and application thereof

Also Published As

Publication number Publication date
KR100931521B1 (en) 2010-01-12

Similar Documents

Publication Publication Date Title
Kirubakaran et al. A comprehensive review of low cost biodiesel production from waste chicken fat
Roschat et al. Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand
Odetoye et al. Biodiesel production from poultry wastes: Waste chicken fat and eggshell
Yusuff et al. Yusuff, AS, Adeniyi, OD, Olutoye, MA, and Akpan, UG (2017). A review on application of heterogeneous catalyst in the production of biodiesel from vegetable oil, Journal of Applied Science and Process Engineering, 4 (2), 142-157 ISSN 2289 7771 http://www. jaspe. unimas. my/index. php/volume? layout= edit&id= 42
Zhang et al. Preparation of KOH/CaO/C supported biodiesel catalyst and application process
WO2005052103A1 (en) An improved process for the preparation of bio-diesel
Das et al. Terminalia arjuna bark–A highly efficient renewable heterogeneous base catalyst for biodiesel production
Meka et al. Biodiesel production from waste frying oil using catalysts derived from waste materials
KR100931521B1 (en) The Catalyst and The Making Method of Biodiesel
Ali et al. Eggshell waste as a catalyst for biodiesel production: A preliminary study
CN1552824A (en) Liquid fuel and producing method thereof
Kumar et al. Utilization of renewable and waste materials for biodiesel production as catalyst
CN113893861B (en) Sodium salt-blast furnace dust catalyst and method for preparing biodiesel by using same
KR101107719B1 (en) Solid-phase basic catalyst for bio-diesel and method for manufacturing the same, and method for manufacturing bio-diesel
Khelafi et al. Transesterification of sunflower oil using heterogeneous catalyst derived from date seeds of South Algeria
Krishnakumar Kinetic study of preparation of biodiesel from crude rubber seed oil over a modified heterogeneous catalyst
Omotoso et al. A Review of Biodiesel Generation from Non-Edible Seed Oils Crop Using Non-Conventional Heterogeneous Catalysts
TWI590868B (en) Solid metal oxide catalyst application on the transesterification and interesterification reactions
EP2202287A1 (en) Process for preparing alcohol esters from triglycerides and alcohol using heterogeneous catalysts associating at least one solid solution of ZnxAI2O3+x and ZnO
Lee et al. Heterogeneous Catalysts Using Strontium Oxide Agglomerates Depositing upon Titanium Plate for Enhancing Biodiesel Production. Catalysts 2021, 11, 30
Odetoye et al. Cocoa pod ash as bio-based catalyst for biodiesel production from waste chicken fat
Ifeanyi-Nze et al. Biodiesel Synthesis from Waste Vegetable Oil Utilizing Eggshell Ash as an Innovative Heterogenous Catalyst
Gorji A review on the biodiesel production, key parameters in transesterification reaction, its effects on the environment and human health
CN108659963B (en) Method for producing biodiesel by using inferior grease as raw material
Buchori et al. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131002

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170602

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee