KR20090110126A - Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof - Google Patents

Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof Download PDF

Info

Publication number
KR20090110126A
KR20090110126A KR1020080035746A KR20080035746A KR20090110126A KR 20090110126 A KR20090110126 A KR 20090110126A KR 1020080035746 A KR1020080035746 A KR 1020080035746A KR 20080035746 A KR20080035746 A KR 20080035746A KR 20090110126 A KR20090110126 A KR 20090110126A
Authority
KR
South Korea
Prior art keywords
fiber
vapor deposition
chemical vapor
silicon carbide
dimensional
Prior art date
Application number
KR1020080035746A
Other languages
Korean (ko)
Other versions
KR101038475B1 (en
Inventor
김원주
박지연
강석민
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020080035746A priority Critical patent/KR101038475B1/en
Publication of KR20090110126A publication Critical patent/KR20090110126A/en
Application granted granted Critical
Publication of KR101038475B1 publication Critical patent/KR101038475B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: A preparation method of fiber-reinforced composites with uniform density by the growth of one-dimensional SiC nanostructure is provided for use in various industry fields which requires the stability of raw materials. CONSTITUTION: A preparation method of fiber-reinforced composites with uniform density by the growth of one-dimensional SiC nanostructure comprises the following steps of: preparing a two-dimensional fabric weaved with carbon or silicon carbide fiber or three-dimensional prefoam; growing one-dimensional SiC nanostructures with concentration gradient on the prefoam; and depositing the prefoam on a matrix.

Description

농도구배를 갖는 탄화규소 일차원 나노구조의 성장에 의한 균일한 밀도의 섬유강화 복합체의 제조방법 및 이를 이용하여 제조된 섬유강화 복합체{Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof}Preparation Method of Fiber Reinforced Composites of Uniform Density by Growth of Silicon Carbide One-Dimensional Nanostructures and Preparation Method of Fiber-Reinforced Composites of Uniform Density by the Growth of Concentration Gradient One -dimensional SiC nanostructure and fiber-reinforced composites using yan}

본 발명은 농도구배를 갖는 탄화규소 일차원 나노구조의 성장에 의한 균일한 밀도의 섬유강화 복합체의 제조방법 및 이를 이용하여 제조된 섬유강화 복합체에 관한 것이다. The present invention relates to a method for producing a fiber-reinforced composite of uniform density by growth of silicon carbide one-dimensional nanostructure having a concentration gradient, and to a fiber-reinforced composite prepared using the same.

섬유강화 복합체는 종래 일반적인 섬유에 후처리를 통하여, 열적, 기계적 성질을 개선시키는 것으로 원하는 하중 조건에 따른 설계가 가능하고 비강도가 매우 높은 재료로서 구조물이나 항공기 및 풍력 발전기의 블레이드 등에서 많이 사용되고 있다.Fiber-reinforced composites can be designed according to the desired load conditions by improving the thermal and mechanical properties through post-treatment on conventional fibers, and are used in structures, aircrafts, and wind generator blades as very high specific strength materials.

탄소 섬유 또는 탄화규소 섬유강화 탄화규소 복합재료 (Cf/SiC 또는 SiCf/SiC)는 일반적으로 탄소 섬유 또는 탄화규소 섬유로 직조된 다공성의 프리폼(preform)에서 섬유의 표면 위에 적절한 계면상을 형성시킨 후 탄화규소 기지상을 채워 넣는 방법으로 이루어진다. Carbon fiber or silicon carbide fiber-reinforced silicon carbide composites (C f / SiC or SiC f / SiC) generally form a suitable interfacial phase on the surface of the fibers in porous preforms woven from carbon or silicon carbide fibers. It is made by filling the silicon carbide matrix phase.

이때, 탄화규소 기지상을 형성시키는 방법으로 화학기상침착법 (CVI, Chemical Vapor Infiltration), 용융 실리콘 침투법 (LSI, Liquid Silicon Infiltration), 고분자 침투·열분해법(PIP, Polymer Infiltration and Pyrolysis), 고온·가압 소결법(HP, Hot Pressing)등을 주로 사용된다.At this time, as a method of forming a silicon carbide matrix phase, Chemical Vapor Infiltration (CVI), Liquid Silicon Infiltration (LSI), Polymer Infiltration and Pyrolysis (PIP), Pressure sintering (HP, Hot Pressing) is mainly used.

상기 화학기상침착법은 대형의 복잡한 형상의 기물을 용이하게 제조할 수 있고 가장 저온에서 공정이 이루어지기 때문에 섬유의 손상을 최소화할 수 있어 가장 널리 이용되고 있으며 상용화도 일부 이루어지고 있는 방법이다. The chemical vapor deposition method is the most widely used and commercially available because it can easily produce a large and complex shape of the material and can minimize the damage to the fiber because the process is performed at the lowest temperature.

상기 화학기상침착법 중에서 반응로 내의 압력 및 온도를 일정하게 유지하는등온·등압 화학기상침착법은 복잡한 형상의 기물을 쉽게 제조할 수 있으나 공정시간이 수일에서 수개월로 매우 길게 소요되며 복합재료 내의 잔류기공이 10 - 30% 정도 존재하게 되고, 표면에서 기지상의 증착이 먼저 일어나 시편의 표면부는 밀도가 높고 내부는 밀도가 낮은 불균일한 밀도의 복합재료가 제조되는 문제가 있다 [Besmann 등, Science, 253, 1104-1109, 1991]. In the chemical vapor deposition method, isothermal and isostatic chemical vapor deposition, which maintains a constant pressure and temperature in the reactor, can easily produce a complicated shape, but the process takes a very long time from several days to several months and remains in the composite material. Porosity is present about 10-30% and matrix deposition occurs on the surface first, resulting in a non-uniform density composite material having a high density at the surface of the specimen and a low density at the interior [Besmann et al., Science, 253]. , 1104-1109, 1991].

이러한 단점을 극복하기 위해 시편의 양단에 압력 또는 온도의 구배를 두는 압력구배 화학기상침착법, 온도구배 화학기상침착법, 온도·압력 구배 화학기상침착법등이 발표되었다[미국 특허번호 4,580,524호 및 4,895,108호]. To overcome this drawback, pressure gradient chemical vapor deposition, temperature gradient chemical vapor deposition, and temperature and pressure gradient chemical vapor deposition, which have a pressure or temperature gradient across the specimen, have been published [US Pat. Nos. 4,580,524 and 4,895,108]. number].

압력구배 화학기상침착법은 기지상의 증착속도를 증가시켜 복합재료의 밀도를 높이고 공정시간을 단축할 수 있으나 반응가스의 입구 쪽은 밀도가 높고 반응가스의 출구 쪽은 밀도가 낮은, 두께 방향으로의 밀도가 불균일한 문제가 있다. The pressure gradient chemical vapor deposition method increases the deposition rate on a matrix to increase the density of the composite material and shorten the process time.However, the inlet side of the reaction gas has a high density and the outlet side of the reaction gas has a low density. There is a problem of uneven density.

온도구배 화학기상침착법 및 온도·압력 화학기상침착법은 반응가스의 출구 쪽의 온도를 높게 유지하고 반응가스의 입구 쪽의 온도를 낮게 유지하여 반응가스 출구 쪽에서부터 기지상의 증착이 더 빨리 이루어지게 함으로써 밀도의 구배를 최소화할 수 있다. 그러나 시편에 온도차를 부여하기 위해 냉각이 가능한 특별한 형태의 치구가 필요하며 복합재료의 형상도 판형 또는 디스크형과 같이 단순한 형상으로 제한되는 문제가 있다.Temperature gradient chemical vapor deposition and temperature and pressure chemical vapor deposition maintain the temperature at the outlet side of the reaction gas high and the temperature at the inlet side of the reaction gas low to allow deposition on the substrate from the reaction gas outlet faster. This can minimize the gradient of density. However, in order to impart a temperature difference to the specimen, a special jig capable of cooling is required, and the shape of the composite material is also limited to a simple shape such as a plate shape or a disc shape.

본 발명자들은 섬유 프리폼에 탄화규소 나노구조물의 농도 구배를 시편의 중심에서 가장 높고, 중심에서 멀어질수록 감소하거나 또는 시편을 통과하는 반응가스의 출구에서 가장 높고, 출구에서 멀어질수록 감소되도록 형성시킨 후, 기지상을 형성시켜 균일한 밀도를 갖는 섬유강화 복합체의 제조방법을 알아내고 본 발명을 완성하였다. The inventors have established that the gradient of the concentration of silicon carbide nanostructures in the fiber preform is highest at the center of the specimen and decreases away from the center, or highest at the outlet of the reaction gas passing through the specimen, and decreases away from the exit. Then, by forming a matrix to find a method for producing a fiber-reinforced composite having a uniform density to complete the present invention.

본 발명의 목적은 균일한 밀도를 갖는 섬유강화 복합체의 제조방법을 제공하는데 있다.An object of the present invention is to provide a method for producing a fiber reinforced composite having a uniform density.

본 발명의 다른 목적은 상기 제조방법으로 제조된 섬유강화 복합체를 제공하는데 있다. Another object of the present invention to provide a fiber-reinforced composite prepared by the above production method.

상기의 목적을 해결하기 위해, 본 발명은 섬유 프리폼에 탄화규소 나노구조물의 농도 구배를 시편의 중심에서 가장 높고, 중심에서 멀어질수록 감소하거나 또는 시편을 통과하는 반응가스의 출구에서 가장 높고, 출구에서 멀어질수록 감소되도록 형성시킨 후, 기지상을 형성시켜 균일한 밀도를 갖는 섬유강화 복합체의 제조방법을 제공한다.In order to solve the above object, the present invention, the concentration gradient of the silicon carbide nanostructures in the fiber preform is the highest at the center of the specimen, the farther away from the center or the highest at the outlet of the reaction gas passing through the specimen, the outlet After forming to decrease as the distance away from, to form a matrix to provide a method for producing a fiber-reinforced composite having a uniform density.

나아가, 본 발명은 상기 제조방법으로 제조된 섬유강화 복합체를 제공한다. Furthermore, the present invention provides a fiber-reinforced composite prepared by the above method.

본 발명에 의하면, 탄소 또는 탄화규소 섬유의 프리폼에 일차원 탄화규소 나노구조물을 시편의 중심에서 가장 높고, 중심에서 멀어질수록 감소하거나 또는 시편을 통과하는 반응가스의 출구에서 가장 높고, 출구에서 멀어질수록 감소되도록 형성시켜 균일한 밀도를 갖는 섬유강화 복합재료를 제조할 수 있다. 이를 이용하 여 밀도의 균일성을 위해 냉각이 요구되는 특별한 형태의 치구가 없어도 균일한 기지상의 증착이 가능하여 복잡한 형상을 갖는 대형 섬유강화 복합재료도 내부의 밀도가 균일하게 제작할 수 있어 재료의 안정성이 요구되는 산업분야에 유용하게 사용될 수 있다.According to the present invention, the one-dimensional silicon carbide nanostructures in the preform of carbon or silicon carbide fibers are highest in the center of the specimen, decrease as they are far from the center, or highest in the outlet of the reaction gas passing through the specimen, and far from the outlet. The fiber reinforced composite material having a uniform density may be prepared by forming a reduction as it increases. By using this, even if there is no special type of jig that requires cooling for density uniformity, it is possible to deposit uniformly on the base, and even large fiber-reinforced composite material with complex shape can be manufactured with uniform density inside, so that the stability of material It can be usefully used in the industrial field required.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 탄소 또는 탄화규소 섬유에 의해 2차원으로 직조된 천을 적층하거나 3차원 형태로 직조된 프리폼을 제조하는 단계(단계 1); 상기 단계 1의 프리폼에 농도의 구배를 갖는 일차원 탄화규소 나노구조물을 형성시키는 단계(단계 2); 및 상기 단계 2의 일차원 탄화규소 나노구조물를 형성시킨 프리폼에 기지상을 증착시키는 단계(단계 3)를 포함하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법을 제공한다.The present invention comprises the steps of laminating a two-dimensional fabric woven by carbon or silicon carbide fibers or preparing a preform woven in a three-dimensional form (step 1); Forming a one-dimensional silicon carbide nanostructure having a gradient of concentration in the preform of step 1 (step 2); And it provides a method for producing a fiber-reinforced composite having a uniform density comprising the step (step 3) of depositing a matrix on the preform on which the one-dimensional silicon carbide nanostructures of step 2 are formed.

이하, 본 발명을 단계별로 상세히 설명한다. Hereinafter, the present invention will be described in detail step by step.

본 발명에 따른 섬유강화 복합체 제조방법에 있어서, 단계 1은 탄소 또는 탄화규소 섬유에 의해 2차원으로 직조된 천을 적층하거나 3차원 형태로 직조된 프리 폼을 제조하는 단계이다. In the method of manufacturing a fiber-reinforced composite according to the present invention, step 1 is a step of laminating a cloth woven in two dimensions by carbon or silicon carbide fibers or preparing a preform woven in a three-dimensional form.

상기 프리폼은 복합체의 지지체로, 탄소 또는 탄화규소로 이루어진 섬유를 직접직조하거나, 상용화된 섬유를 적층하여 3차원 형태로 직조하여 제조할 수 있다. 상기와 같이 제조된 프리폼은 다공성으로 반응가스가 통과할 수 있으며, 이를 이용하여 농도 구배가 있는 일차원 탄화규소 나노구조물을 프리폼내에 형성할 수 있다.The preform may be prepared by directly weaving a fiber made of carbon or silicon carbide as a support of a composite, or by weaving a commercially available fiber in a three-dimensional form. The preform prepared as described above may pass through the reaction gas with porosity, and may use this to form a one-dimensional silicon carbide nanostructure having a concentration gradient in the preform.

본 발명에 따른 섬유강화 복합체 제조방법에 있어서, 단계 2는 상기 단계 1의 프리폼에 농도의 구배를 갖는 일차원 탄화규소 나노구조물을 형성시키는 단계이다.In the method of manufacturing a fiber-reinforced composite according to the present invention, step 2 is a step of forming a one-dimensional silicon carbide nanostructure having a concentration gradient in the preform of step 1.

상기 단계 2의 탄화규소 나노구조물의 농도 구배는 시편의 중심에서 가장 높고, 중심에서 멀어질수록 감소하거나 또는 시편을 통과하는 반응가스의 출구에서 가장 높고, 출구에서 멀어질수록 감소되도록 형성시킬 수 있다. The concentration gradient of the silicon carbide nanostructures of step 2 may be formed to be the highest at the center of the specimen, to decrease away from the center or to be the highest at the outlet of the reaction gas passing through the specimen, and to decrease from the exit. .

이때, 상기 단계 2의 일차원 탄화규소 나노구조물은 휘스커(whisker), 나노휘스커, 나노와이어(nanowire), 나노파이버(nanofiber) 나노로드(nanorod) 또는 나노튜브(nanotube)일 수 있고, 바람직하게는 나노와이어 또는 나노휘스커이다. In this case, the one-dimensional silicon carbide nanostructure of step 2 may be whisker, nanowhisker, nanowire, nanofiber nanorod or nanotube, preferably nano Wire or nanowhisker.

본 발명에 따른 섬유강화 복합체 제조방법에 있어서, 상기 단계 2의 탄화규소 나노구조물을 형성시키는 단계는 등온· 등압 화학기상침착법(CVI), 압력구배 화학기상침착법으로 수행될 수 있다. In the method of manufacturing a fiber-reinforced composite according to the present invention, the step of forming the silicon carbide nanostructures of step 2 may be performed by isothermal and isostatic chemical vapor deposition (CVI), pressure gradient chemical vapor deposition.

상기 등온·등압 화학기상침착법을 이용하여 수행할 경우, 탄소섬유 또는 탄화규소 섬유 프리폼의 내부에 많은 양의 탄화규소 일차원 나노구조물을 형성시키고 프리폼의 표면 쪽으로 갈수록 적은 양의 탄화규소 일차원 나노구조물을 형성시킬 수 있다. 상기와 같이 제조된 프리폼의 내부는 다량의 탄화규소 일차원 나노구조가 존재하여 기지상의 증착이 일어날 수 있는 비표면적이 증가하여, 증착속도가 상대적으로 느린 프리폼의 중앙부에 증착속도를 증가시킬 수 있어, 기지상의 증착이 종래 등온·등압 화학기상침착법(도 1참조)에 비해 빠른 속도로 일어날 수 있어 복합체 내부와 표면의 밀도가 균일한 복합재료를 제조할 수 있다(도 2참조) When performed using the isothermal and isostatic chemical vapor deposition method, a large amount of silicon carbide one-dimensional nanostructures are formed inside a carbon fiber or silicon carbide fiber preform, and a smaller amount of silicon carbide one-dimensional nanostructures are formed toward the surface of the preform. Can be formed. Since the inside of the preform manufactured as described above has a large amount of silicon carbide one-dimensional nanostructure, the specific surface area where known vapor deposition can occur increases, and the deposition rate can be increased in the center of the preform, where the deposition rate is relatively slow. Deposition on the substrate can occur faster than conventional isothermal and isostatic chemical vapor deposition (see Fig. 1), and thus a composite material having a uniform density of the inside and the surface of the composite can be produced (see Fig. 2).

상기 압력구배 화학기상침착법을 이용하여 수행할 경우, 프리폼에서 반응가스 입구 쪽은 적은 양의 탄화규소 일차원 나노구조를 형성시키고 반응가스 출구 쪽은 많은 양의 탄화규소 일차원 나노구조를 형성시킨다. 상기와 같이 제조된 프리폼에서는 반응가스 출구 쪽의 기지상의 증착이 기존의 압력구배 화학기상침착법(도 1 참조)에 비해 빠르게 일어날 수 있어 시편의 두께 방향으로 밀도가 균일한 복합재료를 제조할 수 있다(도 2 참조).When performed using the pressure gradient chemical vapor deposition method, the reaction gas inlet side forms a small amount of silicon carbide one-dimensional nanostructure in the preform, and the reaction gas outlet side forms a large amount of silicon carbide one-dimensional nanostructure. In the preform manufactured as described above, the deposition of the matrix on the outlet side of the reaction gas may occur faster than that of the conventional pressure gradient chemical vapor deposition (see FIG. 1), thereby producing a composite material having a uniform density in the thickness direction of the specimen. (See FIG. 2).

이때, 상기 등온·등압 화학기상침착법 또는 압력구배 화학기상침착법은 희석가스에 대하여 원료가 부피비로 5 - 60% 포함되는 반응가스로 수행될 수 있다. At this time, the isothermal isothermal chemical vapor deposition method or pressure gradient chemical vapor deposition method may be performed with a reaction gas containing 5 to 60% by volume of the raw material relative to the dilution gas.

상기 일차원 탄화규소 나노구조물의 원료로는 메틸트리클로로실란(Methyltrichlorosilane), 디메틸클로로실란(dimethyltrichlorosilane) 또는 에틸트리클로로실란(ethltrichlorosilane)을, 상기 희석가스로는 수소, 아르곤 또는 질소 가스를 사용하는 것이 바람직하다. As a raw material of the one-dimensional silicon carbide nanostructures, methyltrichlorosilane, dimethyltrichlorosilane, or ethyltrichlorosilane may be used, and the diluent gas may use hydrogen, argon, or nitrogen gas. .

상기 등온·등압 화학기상침착법 또는 압력구배 화학기상침착법의 반응온도는 1050 - 1250 ℃으로, 반응 기압은 0.5 - 2 기압으로 수행되는 것이 바람직하다.The reaction temperature of the isothermal isothermal chemical vapor deposition method or pressure gradient chemical vapor deposition method is preferably carried out at 1050-1250 ℃, the reaction pressure is 0.5-2 atm.

본 발명에 따른 섬유강화 복합체 제조방법에 있어서, 단계 3은 상기 단계 2의 일차원 탄화규소 나노구조물을 형성시킨 프리폼에 기지상을 증착시키는 단계이다. In the method of manufacturing a fiber-reinforced composite according to the present invention, step 3 is a step of depositing a matrix on a preform in which the one-dimensional silicon carbide nanostructure of step 2 is formed.

상기 단계 3은 상기 단계 2에서 농도 구배가 있는 일차원 탄화규소 나노구조물이 형성된 프리폼에 반응가스를 주입하여 기지상을 복합체 전체에 균일하게 증착시켜 밀도가 균일한 복합체를 제조하는 단계이다(도 2참조) . In step 3, a reaction gas is injected into a preform in which a one-dimensional silicon carbide nanostructure having a concentration gradient is formed in step 2 to uniformly deposit a matrix on the entire composite to produce a uniform density composite (see FIG. 2). .

상기 단계 3의 기지상의 형성은 등온· 등압 화학기상침착법, 압력구배 화학기상침착법, 온도구배 화학기상침착법, 용융 실리콘 침투법, 고분자 침투·열분해법 또는 고온·가압 소결법으로 수행할 수 있다. Formation of the known phase of step 3 may be carried out by isothermal and isostatic chemical vapor deposition, pressure gradient chemical vapor deposition, temperature gradient chemical vapor deposition, molten silicon infiltration, polymer infiltration, pyrolysis or high temperature and pressure sintering. .

나아가, 본 발명에 따른 섬유강화 복합체 제조방법에 있어서, 상기 단계 1에서 제조된 프리폼의 표면에 열분해탄소 (PyC) 또는 질화보론 (BN)을 증착하는 단 계를 추가하여 수행될 수 있다.  Furthermore, in the method of manufacturing a fiber-reinforced composite according to the present invention, the step of depositing pyrolytic carbon (PyC) or boron nitride (BN) on the surface of the preform prepared in step 1 may be performed.

상기 열분해탄소 (PyC) 또는 질화보론 (BN)은 섬유 프리폼에 증착되어, 상기단계 2에서 형성시킬 일차원 탄화규소 나노구조물 형성의 효율을 증가시키고 최종적으로 제조되는 섬유강화 복합체의 강도 및 인성을 증진시킬 수 있다.The pyrolytic carbon (PyC) or boron nitride (BN) is deposited on the fiber preform to increase the efficiency of the formation of one-dimensional silicon carbide nanostructures to be formed in step 2 and to enhance the strength and toughness of the finally produced fiber reinforced composites. Can be.

또한, 본 발명은 상기 제조방법으로 제조된 섬유강화 복합체를 제공한다. In addition, the present invention provides a fiber-reinforced composite prepared by the above method.

본 발명에 따라 제조된 섬유강화복합체는 복합체 전체에 균일한 밀도를 갖고 있어 복합체의 물리적, 화학적 특성이 강화될 수 있다. Fiber-reinforced composite prepared according to the present invention has a uniform density throughout the composite can be enhanced the physical and chemical properties of the composite.

이하, 본 발명을 하기 실시예를 통하여 더욱 상세하게 설명한다. 단, 하기 실시예들은 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

<실시예 1> 압력구배 화학기상침착법을 이용한 섬유강화 복합체<Example 1> Fiber-reinforced composite using pressure gradient chemical vapor deposition

단계 1. 탄화규소 섬유 프리폼의 제조 Step 1. Preparation of Silicon Carbide Fiber Preforms

탄화규소섬유(Tyranno SA)로부터 직조된 천으로부터 직경이 50 mm인 디스크 형태의 천을 잘라내고 적층하였다. A disk-shaped cloth having a diameter of 50 mm was cut out and laminated from a cloth woven from silicon carbide fibers (Tyranno SA).

단계 2. 탄화규소 나노와이어의 제조Step 2. Preparation of Silicon Carbide Nanowires

탄화규소 섬유의 천을 적층하여 섬유 프리폼을 제조한 후, 압력구배 화학기 상침착법을 이용하여, 메틸트리클로로실란을 원료로 하고, 수소 또는 아르곤을 희석가스로 하여 희석가스와 원료의 부피비는 20, 반응온도는 1100 ℃, 반응압력은 1기압에서 3시간 동안 반응시켜 탄화규소 나노와이어를 형성하였다. After fabricating a fiber preform by laminating cloth of silicon carbide fibers, using a pressure gradient chemical vapor deposition method, methyltrichlorosilane is used as a raw material, and hydrogen or argon is used as a diluent gas. , The reaction temperature is 1100 ℃, the reaction pressure was reacted for 3 hours at 1 atmosphere to form silicon carbide nanowires.

상기 단계 2에서 제조된 탄화규소 나노와이어가 형성된 섬유 프리폼의 반응가스 입구층, 중간층, 출구층 각각의 미세구조를 전자주사현미경으로 관찰하여 도 3에 나타내었다. The microstructures of the reaction gas inlet layer, the middle layer, and the outlet layer of the fiber carbide preform in which the silicon carbide nanowires prepared in step 2 were observed are shown in FIG. 3.

도 3에 나타낸 바와 같이, 섬유 프리폼의 반응가스 입구로부터 거리가 멀어질수록, 즉, 입구층, 중간층, 출구층의 순서로 탄화규소 나노와이어의 농도가 증가하는 것을 확인하였다. As shown in FIG. 3, it was confirmed that as the distance from the reaction gas inlet of the fiber preform increases, that is, the concentration of the silicon carbide nanowires increases in the order of the inlet layer, the intermediate layer, and the outlet layer.

단계 3. 탄화규소 기지상의 증착Step 3. Deposition on Silicon Carbide Bases

상기 단계 2에서 탄화규소 나노와이어가 형성된 프리폼에 반응온도 1000 ℃, 반응압력 100 torr에서 35시간 동안 탄화규소 기지상을 증착하여 섬유강화 복합체를 제조하였다. A fiber-reinforced composite was prepared by depositing a silicon carbide matrix on a preform in which silicon carbide nanowires were formed in step 2 for 35 hours at a reaction temperature of 1000 ° C. and a reaction pressure of 100 torr.

상기 섬유강화 복합체의 미세구조를 전자주사현미경으로 측정하여 도 4에 나타내었다.The microstructure of the fiber-reinforced composite was measured in an electron scanning microscope and shown in FIG. 4.

도 4에 나타낸 바와 같이, 본 발명에 따른 섬유강화 복합체가 두께방향으로 균일하게 기지상이 형성되어 있는 것을 확인하였다. As shown in FIG. 4, it was confirmed that the fiber-reinforced composite according to the present invention had a matrix formed uniformly in the thickness direction.

<실시예 2> 등온·등압 화학기상증착법을 이용한 섬유강화 복합체<Example 2> Fiber-reinforced composite using isothermal and isostatic chemical vapor deposition

상기 단계 2에서, 압력 구배를 가하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였다. In Step 2, it was carried out in the same manner as in Example 1 except that no pressure gradient was added.

상기 등온·등압 화학기상증착법을 이용하여 탄화규소 나노와이어가 형성된 섬유 프리폼의 표면부와 중앙부를 전자주사현미경으로 관찰하여 도 5에 나타내었다. Using the isothermal and isostatic chemical vapor deposition method, the surface portion and the center portion of the fiber preform on which the silicon carbide nanowires are formed are observed by electron scanning microscope, and are shown in FIG. 5.

도 5에 나타낸 바와 같이, 섬유 프리폼의 중앙부에 형성된 탄화규소 나노와이어의 농도가 표면부에 비해서 매우 높은 것을 확인하였다. As shown in FIG. 5, it was confirmed that the concentration of the silicon carbide nanowires formed in the center portion of the fiber preform was very high compared to the surface portion.

도 1은 종래 섬유강화 복합체의 제조방법 및 복합체의 모식도이고;1 is a schematic diagram of a method of preparing a fiber-reinforced composite and a conventional composite;

도 2는 본 발명에 따른 섬유강화 복합체의 제조방법 및 복합체의 모식도이고;2 is a schematic diagram of a method of manufacturing a fiber-reinforced composite and a composite according to the present invention;

도 3은 본 발명에 따른 일실시형태를 전자주사현미경으로 관찰한 사진이고;3 is a photograph of an embodiment of the present invention observed with an electron scanning microscope;

도 4는 본 발명에 따른 일실시형태를 전자주사현미경으로 관찰한 사진이고; 및4 is a photograph of an embodiment of the present invention observed with an electron scanning microscope; And

도 5는 본 발명에 따른 일실시형태를 전자주사현미경으로 관찰한 사진이다.5 is a photograph of an embodiment of the present invention observed with an electron scanning microscope.

Claims (10)

탄소 또는 탄화규소 섬유에 의해 2차원으로 직조된 천을 적층하거나 3차원 형태로 직조된 프리폼을 제조하는 단계(단계 1); 상기 단계 1의 프리폼에 농도의 구배를 갖는 일차원 탄화규소 나노구조물을 형성시키는 단계(단계 2); 및 상기 단계 2의 일차원 탄화규소 나노구조물을 형성시킨 프리폼에 기지상을 증착시키는 단계(단계 3)를 포함하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.Stacking a two-dimensional woven fabric with carbon or silicon carbide fibers or preparing a preform woven in three-dimensional form (step 1); Forming a one-dimensional silicon carbide nanostructure having a gradient of concentration in the preform of step 1 (step 2); And depositing a matrix on a preform in which the one-dimensional silicon carbide nanostructure of step 2 is formed (step 3). 제1항에 있어서, 상기 단계 2의 탄화규소 나노구조물의 농도 구배는 시편의 중심에서 가장 높고, 중심에서 멀어질수록 감소하거나 또는 시편을 통과하는 반응가스의 출구에서 가장 높고, 출구에서 멀어질수록 감소되도록 형성시키는 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method of claim 1, wherein the concentration gradient of the silicon carbide nanostructures of step 2 is highest at the center of the specimen, and decreases away from the center, or highest at the outlet of the reaction gas passing through the specimen, and farther from the outlet. Method for producing a fiber-reinforced composite having a uniform density, characterized in that to form to reduce. 제1항에 있어서, 상기 단계 2의 일차원 탄화규소 나노구조물은 휘스커(whisker), 나노휘스커, 나노와이어(nanowire), 나노파이버(nanofiber) 및 나노로드(nanorod), 나노튜브(nanotube)로 이루어지는 군으로부터 선택되는 어느 하나 또는 이의 혼합물인 것을 특징으로 하는 섬유강화 복합체의 제조방법.According to claim 1, wherein the one-dimensional silicon carbide nanostructures of step 2 is a group consisting of whiskers, nanowhiskers, nanowires, nanofibers and nanorods, nanotubes (nanotube) Method for producing a fiber-reinforced composite, characterized in that any one or a mixture thereof. 제1항에 있어서, 상기 단계 2의 탄화규소 나노구조물을 형성시키는 단계 또는 상기 단계 3의 기지상을 증착시키는 단계는 등온· 등압 화학기상침착법, 압력구배 화학기상침착법, 온도구배 화학기상침착법, 용융 실리콘 침투법, 고분자 침투·열분해법 및 고온·가압 소결법으로 이루어진 군으로부터 선택되는 어느 하나의 방법으로 수행되는 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method of claim 1, wherein the forming of the silicon carbide nanostructures of step 2 or the depositing of the matrix phase of step 3 comprises isothermal and isostatic chemical vapor deposition, pressure gradient chemical vapor deposition, and temperature gradient chemical vapor deposition. A method for producing a fiber-reinforced composite having a uniform density, characterized in that it is carried out by any one method selected from the group consisting of molten silicon infiltration, polymer infiltration, pyrolysis and high temperature and pressure sintering. 제4항에 있어서, 상기 등온·등압 화학기상침착법 또는 압력구배 화학기상침착법은 희석가스에 대하여 원료가 부피비로 5 - 60인 반응가스로 수행되는 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method of claim 4, wherein the isothermal, isostatic chemical vapor deposition method or pressure gradient chemical vapor deposition method is a fiber-reinforced uniform density, characterized in that the raw material is carried out by the reaction gas 5 to 60 by volume ratio with respect to the dilution gas Method for preparing a composite. 제4항에 있어서, 상기 원료는 메틸트리클로로실란 ( Methyltrichlorosilane ), 디메틸트리클로로실란( Dimethyltrichlorosilane ) 또는 에틸트리클로로실 란( ethyltrichlorosilane ) 인 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method of claim 4, wherein the raw material is process for producing a fiber-reinforced composite material having uniform density, characterized in that methyl trichlorosilane (Methyltrichlorosilane), in dimethyl trichlorosilane (Dimethyltrichlorosilane) or is ethyl trichloro chamber (ethyltrichlorosilane). 제4항에 있어서, 상기 등온·등압 화학기상침착법 또는 압력구배 화학기상침착법의 반응온도는 1050 - 1250 ℃인 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method for producing a fiber-reinforced composite having a uniform density according to claim 4, wherein the reaction temperature of the isothermal isothermal chemical vapor deposition method or the pressure gradient chemical vapor deposition method is 1050-1250 ° C. 제4항에 있어서, 상기 등온·등압 화학기상침착법 또는 압력구배 화학기상침착법은 0.5 ~ 2 기압에서 수행되는 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method of claim 4, wherein the isothermal and isostatic chemical vapor deposition or pressure gradient chemical vapor deposition is performed at 0.5 to 2 atmospheres. 제1항에 있어서, 상기 단계 1에서 제조된 프리폼의 표면에 열분해탄소 (PyC) 또는 질화보론 (BN)을 증착하는 단계를 더 포함하는 것을 특징으로 하는 균일한 밀도를 갖는 섬유강화 복합체의 제조방법.The method of claim 1, further comprising depositing pyrolytic carbon (PyC) or boron nitride (BN) on the surface of the preform prepared in step 1. . 제1항 내지 제9항의 제조방법으로 제조되는 섬유강화 복합체.A fiber-reinforced composite prepared by the method of claim 1.
KR1020080035746A 2008-04-17 2008-04-17 Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof KR101038475B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080035746A KR101038475B1 (en) 2008-04-17 2008-04-17 Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080035746A KR101038475B1 (en) 2008-04-17 2008-04-17 Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof

Publications (2)

Publication Number Publication Date
KR20090110126A true KR20090110126A (en) 2009-10-21
KR101038475B1 KR101038475B1 (en) 2011-06-01

Family

ID=41537992

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080035746A KR101038475B1 (en) 2008-04-17 2008-04-17 Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof

Country Status (1)

Country Link
KR (1) KR101038475B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947554A (en) * 2018-08-13 2018-12-07 南京航空航天大学 A kind of SiC nanowire enhancing SiC porous ceramic composite and preparation method thereof
CN110304931A (en) * 2019-07-01 2019-10-08 中国科学院上海硅酸盐研究所 A kind of high-volume fractional silicon-carbide nano wire enhancing ceramic matric composite and preparation method thereof
KR20200048314A (en) * 2018-10-29 2020-05-08 한국원자력연구원 Method for preparing high density silicon carbide composite by uniform growth of sic nanowire using chemical vapor deposition and silicon carbide composite prepared by the same
CN117263527A (en) * 2023-11-21 2023-12-22 西南石油大学 Method for modifying basalt fiber and improving interface performance of epoxy resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760695B2 (en) 2020-08-21 2023-09-19 Hamilton Sundstrand Corporation Removing colorization on silicon carbide ceramic matrix composites

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327822B1 (en) * 2000-03-09 2002-03-09 장인순 Method of fabricating high density fiber reinforced SiC matrix composite by Chemical vapor infiltration process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947554A (en) * 2018-08-13 2018-12-07 南京航空航天大学 A kind of SiC nanowire enhancing SiC porous ceramic composite and preparation method thereof
KR20200048314A (en) * 2018-10-29 2020-05-08 한국원자력연구원 Method for preparing high density silicon carbide composite by uniform growth of sic nanowire using chemical vapor deposition and silicon carbide composite prepared by the same
CN110304931A (en) * 2019-07-01 2019-10-08 中国科学院上海硅酸盐研究所 A kind of high-volume fractional silicon-carbide nano wire enhancing ceramic matric composite and preparation method thereof
CN117263527A (en) * 2023-11-21 2023-12-22 西南石油大学 Method for modifying basalt fiber and improving interface performance of epoxy resin
CN117263527B (en) * 2023-11-21 2024-01-23 西南石油大学 Method for modifying basalt fiber and improving interface performance of epoxy resin

Also Published As

Publication number Publication date
KR101038475B1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
Yang et al. Single‐crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites
CN100572327C (en) The manufacture method and the resulting part that have the composite part of ceramic matrix
Li et al. Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800° C
JP6170160B2 (en) CMC parts manufacturing method
Zhao et al. Rapid densification of C/SiC composite by incorporating SiC nanowires
CN103964883B (en) Preparation method for thin wall or tapered member made from one-dimensional nanofiber reinforced and toughened carbon-ceramic composite
KR101038475B1 (en) Preparation method of fiber-reinforced composites of uniform density by the growth of concentration gradient one-dimensional SiC nanostructure and fiber-reinforced composites using thereof
Lu et al. Preparation of in situ grown silicon carbide nanofibers radially onto carbon fibers and their effects on the microstructure and flexural properties of carbon/carbon composites
US9604886B2 (en) Ceramic matrix composite material part
US20170369998A1 (en) Nanofiber-coated fiber and methods of making
Liang et al. Microstructure and properties of 2D-Cf/SiC composite fabricated by combination of CVI and PIP process with SiC particle as inert fillers
CN101857460A (en) Preparation method of carbon nano tube array for spinning
CN109251049A (en) A method of limitation matrices of composite material propagation of internal cracks
Tao et al. Improved thermal conductivity of silicon carbide fibers-reinforced silicon carbide matrix composites by chemical vapor infiltration method
CN105693263B (en) A kind of preparation method of CNT multidimensional braiding precast body ceramic matric composite
CN114276157A (en) High-purity carbon-based composite material
CN115745643A (en) Carbon nanotube modified composite material and preparation method thereof
JP4538607B2 (en) High thermal conductivity of SiC / SiC composites using carbon nanotubes or nanofibers
JP2010070421A (en) METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
Kim et al. Effect of a SiC whisker formation on the densification of Tyranno SA/SiC composites fabricated by the CVI process
KR102153918B1 (en) Method for preparing high density silicon carbide composite by uniform growth of sic nanowire using chemical vapor deposition and silicon carbide composite prepared by the same
Wang et al. Fabrication, microstructures and properties of SiCf/SiC composites prepared with two kinds of SiC fibers as reinforcements
Jagani et al. Fabrication and Characterization of Horizontally-aligned Carbon Nanotube/Silicon Carbide Nanocomposite Laminates with Ultra-high Nanofiber Volume Fraction
KR102203084B1 (en) Composite preform and carbon composite material containing the same
Zeng et al. Fabrication of SiCf/SiC Composite with In Situ Grown SiC Nanowire by Polymer and Infiltration Pyrolysis Process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180524

Year of fee payment: 8