KR20090109072A - Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same - Google Patents

Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same Download PDF

Info

Publication number
KR20090109072A
KR20090109072A KR1020090032406A KR20090032406A KR20090109072A KR 20090109072 A KR20090109072 A KR 20090109072A KR 1020090032406 A KR1020090032406 A KR 1020090032406A KR 20090032406 A KR20090032406 A KR 20090032406A KR 20090109072 A KR20090109072 A KR 20090109072A
Authority
KR
South Korea
Prior art keywords
synthase
phosphate
dehydrogenase
metabolic
kinase
Prior art date
Application number
KR1020090032406A
Other languages
Korean (ko)
Other versions
KR101100866B1 (en
Inventor
이상엽
이종민
윤홍석
정광섭
Original Assignee
한국과학기술원
지에스칼텍스 주식회사
바이오퓨얼켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 지에스칼텍스 주식회사, 바이오퓨얼켐 주식회사 filed Critical 한국과학기술원
Priority to KR1020090032406A priority Critical patent/KR101100866B1/en
Publication of KR20090109072A publication Critical patent/KR20090109072A/en
Application granted granted Critical
Publication of KR101100866B1 publication Critical patent/KR101100866B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A network model of microorganism metabolism, metabolic property of butanol-producing microorganism or a method for screening deletion target is provided to predict genetic deletion target in a short time. CONSTITUTION: An analysis of metabolism of microorganism which produces buthanol using metabolism network model or a method for screening deletion target comprises a step of collecting genome information or information relating to each gene and a step of arranging enzyme reaction formulation in C. acetobutylicum and GPR relation. The enzyme relating to enzyme reaction is alcohol dehydrogenase, butanol dehydratase, butyryl coenzyme A dehydratase, acetylcoenzyme-A transacetylase, 3-hydroxybutyril coenzyme A dehydratase, and hydrogenase.

Description

게놈 수준에서의 부탄올 생산 미생물의 대사 네트워크 모델 및 이를 이용한 부탄올 생성 미생물의 대사특성분석 및 결실 표적 스크리닝 방법{Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same}Genomescale Metabolic Network Model in Butanolproducing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knockout Targets in Butanolproducing Microorganism Using the Same}

본 발명은 부탄올 생성 미생물의 대사 특성 분석용 대사 네트워크 모델 및 이를 이용한 부탄올 생성 미생물의 대사특성분석 및 결실 표적 스크리닝 방법에 관한 것이다. The present invention relates to a metabolic network model for metabolic characterization of butanol producing microorganisms and a method for screening metabolic characterization and deletion of butanol producing microorganisms using the same.

최근 유가의 상승으로 인하여 바이오연료와 같은 대체 에너지에 대한 관심이 증가하며, 에탄올보다 가솔린 대체재로서의 물성이 더 뛰어난 부탄올에 대한 관심이 증가하고 있으며, 이에 따라 부탄올 등 용매를 대사산물로서 생성하는 클로스트리듐(Clostridium ) 속 균주에 대한 관심도 증가하고 있다.Due to the recent rise in oil prices, interest in alternative energy such as biofuel is increasing, and interest in butanol, which has better physical properties as a substitute for gasoline than ethanol, is increasing. As a result, the clot which generates a solvent such as butanol as a metabolite Interest in the strain of genus Clostridium is also increasing.

클로스트리듐 속의 미생물은 그람 양성(Gram-positive), 완전 혐기성이며 내생포자를 형성하는 간균으로서, 대부분이 발효 산물로 초산(acetic acid)과 낙 산(butyric acid)을 생산하는 것으로 잘 알려져 있다. 이 중의 일부 균주는 위의 유기산 외에도 아세톤, 부탄올, 에탄올을 생산하는 아세톤-부탄올-에탄올 발효(Acetone-Butanol-Ethanol fermentation, 이하 ABE 발효)를 일으킨다. Microorganisms in the genus Clostridium are Gram-positive, fully anaerobic and endogenous spores, most of which are known to produce acetic and butyric acid as fermentation products. Some of these strains cause acetone-butanol-ethanol fermentation (hereinafter, ABE fermentation) to produce acetone, butanol, and ethanol in addition to the above organic acids.

실제로 20세기 초에 이러한 균주 중 하나인 Clostridium acetobutylicum을 이용하여 아세톤 및 부탄올을 대량으로 생산하였으며, 이러한 대량 생산은 1960~70년대까지 지속되었으나, 화학 공정의 발달로 원유를 원료로 한 아세톤과 부탄올의 화학적 합성 원가가 저렴해지고, 기질 수급의 어려움 등으로 인하여 일부 국가를 제외하고는 사장되었다.In fact, in the early 20th century, one of these strains, Clostridium acetobutylicum, was used to produce acetone and butanol in large quantities. The mass production lasted until the 1960s and 1970s, but with the development of chemical processes, Due to the low cost of chemical synthesis and the difficulty of supplying and receiving substrates, the company has died except in some countries.

현재까지 클로스트리듐 속 균주를 이용한 바이오 부탄올의 생산은 다음과 같은 문제점들을 내포하고 있다. 첫째로, 효모를 기반으로 하는 바이오에탄올에 비하여 수율 및 생산성이 모두 현저하게 떨어진다는 문제점이 있다. 둘째로, 클로스트리듐 속 균주는 바이오연료로서의 가치가 높은 부탄올 외에도 아세톤, 초산, 낙산 등의 부산물을 생산하게 되고, 이는 분리 비용을 증가시키는 단점이 있다. To date, the production of bio butanol using Clostridium spp. Includes the following problems. First, there is a problem that both yield and productivity are significantly reduced compared to yeast-based bioethanol. Second, Clostridium The genus strain produces by-products such as acetone, acetic acid, butyric acid, in addition to high butanol as a biofuel, which has the disadvantage of increasing the separation cost.

용매를 생성하는 클로스트리듐 속 균주의 경우, 지수 성장기(exponential growth phase)에서는 일반적인 미생물의 발효와 같이 유기산의 생성이 일어난다. 이를 산 생성기(acidogenic phase)라 한다. 안정기에 접어들면서 세포의 대사는 유기산의 재흡수가 일어나고 아세톤(또는 이소프로판올), 부탄올, 에탄올의 용매를 생성하는 용매 생성기(solventogenic phase)로 전환된다. 이는 다음과 같이 해석이 가능하다. 안정기에 접어들면서 pH가 낮아지고 이에 따라 해리되지 않은 유기산의 농도가 증가한다. 그 중에서 특히 해리되지 않은 낙산은 세포에 큰 독성을 나타내 며, 이러한 유기산의 재흡수 및 용매로의 전환을 통하여 세포는 가혹한 환경에서 오랫동안 생존할 수 있는 내생포자(endospore)를 형성할 시간을 벌게 되는 것이다.In the case of Clostridium spp., Which produces a solvent, in the exponential growth phase, organic acids are produced in the exponential growth phase as in the fermentation of ordinary microorganisms. This is called the acidogenic phase. As it enters the plateau phase, the metabolism of the cells is converted into a solventogenic phase that resorbs organic acids and produces solvents of acetone (or isopropanol), butanol and ethanol. This can be interpreted as follows. As it enters the ballast phase, the pH is lowered, thereby increasing the concentration of undissociated organic acids. Among these, undissociated butyric acid is highly toxic to cells, and by reabsorption of these organic acids and conversion to solvents, cells are given time to form endospores that can survive long-term in harsh environments. will be.

최근에는 유전 공학적인 지식과 도구를 바탕으로 대사 경로를 인간이 원하는 대로 조작하는 대사 공학적 접근 방법을 이용하여 개량된 균주를 만들고자 하는 노력이 지속되고 있다. Recently, efforts have been made to create improved strains using metabolic engineering approaches that manipulate metabolic pathways as desired by humans based on genetic engineering knowledge and tools.

그러나 클로스트리듐 속의 균주들은 전통적으로 상동재조합(homologous recombination)에 의한 유전자 결실이 쉽게 일어나지 않는 것으로 알려져 있다. 단일교차(single crossover)에 의하여 유전자 사이에 DNA 가닥이 삽입되어 유전자의 기능을 불활성화시킨 사례가 몇 보고되어 있으나, 이러한 단일교차에 의한 유전자 결실은 삽입 부위 근처에 상동적인 서열이 두 개가 존재하게 되고 따라서 다시 상동재조합이 일어나 삽입된 DNA 부분이 빠져나가는 불안정성을 야기시키게 된다. 이중교차(double crossover)에 의한 유전자 결실 사례는 병원균인 C. perfringens에 대해서만 보고되어 있다(Awad et al., Mol. Microbiol., 16:535-51, 1995). 이러한 유전자 결실의 문제는 최근에 Lactococcus lactis에 존재하는 group II intron을 이용하여 부위특이적(site-specific) 삽입을 일으키는 방법론이 개발됨으로써 어느 정도 해결되었다고 볼 수 있다(Heap et al., J. Microbiol. Methods., 70:452-64, 2007).However, it is known that strains of the genus Clostridium are not easily genetically deleted by homologous recombination. Several cases have been reported in which DNA strands are inserted between genes by single crossover to inactivate the function of genes.However, such single cross gene deletion causes two homologous sequences near the insertion site. This in turn causes homologous recombination, leading to instability of escape of the inserted DNA portion. Cases of gene deletion due to double crossover have only been reported for the pathogen C. perfringens (Awad et al., Mol. Microbiol ., 16: 535-51, 1995). This problem of gene deletion was solved to some extent by the recent development of a methodology for site-specific insertion using group II introns in Lactococcus lactis (Heap et al., J. Microbiol). Methods., 70: 452-64, 2007).

또한, 용매 생성에 관련된 유전자들의 발현은 내생 포자의 형성과 맞물려 있다. 일례로, C. acetobutylicum이나 C. beijerinckii에서 내생 포자의 형성 신호 전달과 관련된 spo0A 유전자를 결실시킨 경우, 용매의 생성이 현저하게 감소되었다 는 결과가 보고된 바 있다(Harris et al., J. bacteriol., 184:3586-97, 2002; Ravagnani et al., Mol. Microbiol., 37:1172-85, 2000). 클로스트리듐의 경우 내생 포자를 형성하는 또 다른 속인 Bacillus 속에 비하여 상대적으로 유전학적 연구 결과가 부족하며, 이는 균주 개량에 있어서 단점으로 작용하고 있다.In addition, expression of genes involved in solvent production is associated with the formation of endogenous spores. For example, in the case of deletion of the spo0A gene associated with signaling of endogenous spore formation in C. acetobutylicum or C. beijerinckii , the production of solvents has been reported to be significantly reduced (Harris et al., J. bacteriol). ., 184: 3586-97, 2002; Ravagnani et al, Mol Microbiol, 37:... 1172-85, 2000). Clostridium is relatively lacking in genetic studies compared to Bacillus , another genus that forms endogenous spores, which is a disadvantage in strain improvement.

따라서, 클로스트리듐을 이용하지 않고, 부탄올 생성 관련 유전자들을 Escherichia coli와 같은 유전학적 도구가 잘 발달되어 있는 균주에 클로닝, 발현하여 부탄올을 생산하려는 시도가 있었으나, 이 역시 수율 및 최종 농도가 야생형 클로스트리듐보다 현저히 낮다는 문제가 있었다 (Atsumi et al., Metab. Eng., in press, 2007; Inui et al., Appl. Microbiol. Biotechnol., 77:1305-16, 2008).Thus, attempts were made to produce butanol by cloning and expressing butanol production-related genes in strains with a well-developed genetic tool such as Escherichia coli , without using Clostridium. There was a problem that it was significantly lower than tridium (Atsumi et al., Metab. Eng. , In press, 2007; Inui et al., Appl. Microbiol. Biotechnol. , 77: 1305-16, 2008).

위의 문제점이 해결된다 하더라도 용매 생성 관련 경로만 놓고 유전자 결실 표적을 찾아내는 것은 한계가 있으며, 인간의 직관으로 대사 경로 전체를 통찰하여 유전자 결실 표적을 찾아내는 것은 어려운 일이다. 적게는 수백에서 많게는 수천 개의 유전자를 일일이 실험적으로 결실시켜 형질을 확인하는 것도 금전적, 시간적으로 불가능에 가깝다고 할 수 있다. 또한, 이러한 대사의 흐름은 단일 유전자가 아닌 복잡한 세포 구성 요소간의 상호작용에 의해서 나타나는 것이므로 단일 유전자 결실만으로는 만족할 만한 개량 균주를 얻기가 어렵다. 가령, 우리가 개량하고자 하는 균주의 유전자가 4,000개인 경우, 단일 유전자 결실 균주들의 형질을 모두 파악하기 위해서는 4,000번의 실험을 하여야 하며, 이중 유전자 결실들의 형질까지 파악하고자 한다면 4,000×3,999≒(4,000)2=16,000,000번의 실험을 진행하여야 한 다.Even if the above problems are solved, it is difficult to find a gene deletion target only through solvent production-related pathways, and it is difficult to find a gene deletion target by insight into the entire metabolic pathway through human intuition. It is also financially and temporally impossible to identify traits by experimentally deleting hundreds to thousands of genes. In addition, since this metabolic flow is not caused by a single gene but by interactions between complex cellular components, it is difficult to obtain an improved strain that is satisfactory only by a single gene deletion. For example, if there are 4,000 genes of the strain we want to improve, we need to perform 4,000 experiments to identify all the traits of a single gene deletion strain, and if we want to identify the traits of double gene deletions, it is 4,000 × 3,999 ≒ (4,000) 2 = 16,000,000 experiments should be performed.

따라서, 부탄올 등 생산 증대를 원하는 특정 대사산물을 효율적으로 생산하는 균주를 개발하기 위해서는 미생물 세포 구성 요소들 간의 세포 기작과 상호작용을 이해하는 것이 매우 중요하다. 이에 게놈 정보와 기능 유전체학의 발전을 통한 대사 산물과 대사 네트워크의 구축은 세포 구성 요소를 구성하기 위한 유전자와 단백질들의 상호 작용을 이해하고 대사 네트워크를 구성하여 대사산물의 생산 증대를 위한 효과적인 결실표적을 스크리닝하는 데 있어 그 중요성을 더하고 있다. Therefore, it is very important to understand cell mechanisms and interactions between microbial cell components in order to develop strains that efficiently produce specific metabolites such as butanol. Therefore, the construction of metabolites and metabolic networks through the development of genomic information and functional genomics provides an effective fruitful target for understanding the interactions between genes and proteins to compose cellular components and forming metabolic networks to increase metabolite production. It adds importance to screening.

실제로 게놈 정보를 이용하여 대사 네트워크 정보를 구축한 뒤, 이를 이용하여 야생형 균주 및 유전자 결실 균주들의 대사 흐름을 모사하여 볼 수 있으며, 이 중에서 좋은 결과를 보인 유전자들만을 추려 실제로 실험을 진행하여 결과를 확인한다면 모든 경우에 대하여 일일이 실험을 통하여 확인하는 방법에 비하여 시간과 비용을 획기적으로 절약할 수 있게 된다. In fact, after constructing the metabolic network information using genomic information, the metabolic flow of wild-type strains and gene deletion strains can be simulated, and only the genes showing good results can be used to actually perform the experiment. If you confirm, you can save a lot of time and money compared to the method that you check through every case.

대사 네트워크를 통한 분석 및 예측기술은 최근에야 급속하게 증가하는 게놈정보와 함께 그 가능성을 보이고 있다. 특히 각 미생물의 대사 네트워크 모델들이 수학적 모델 및 최적화 기술 등과 결합되어 유전자의 제거 또는 추가 후에 일어나는 대사 네트워크의 반응을 예측하는 것이 가능해지고 있다 (Lee et al., Trends Biotechnol., 23:349, 2005). 또한 대사 네트워크를 이용한 대사흐름분석 기법은 동적 정보를 필요로 하지 않음에도 세포의 이상적인 대사 흐름을 보여주며 실제적으로 세포의 행동을 정확히 모사하고 예측할 수 있는 것으로 알려져 있다 (Papin, J. et al., Nat. Rev. Mol. Cell Biol., 6:99, 2005). Analytical and predictive techniques through metabolic networks have shown promise with rapidly growing genomic information. In particular, the metabolic network models of each microorganism are combined with mathematical models and optimization techniques, making it possible to predict the response of the metabolic network after removal or addition of genes (Lee et al., Trends Biotechnol ., 23: 349 , 2005). . In addition, metabolic flow analysis techniques using metabolic networks show the ideal metabolic flow of cells even when dynamic information is not required, and it is known that they can accurately simulate and predict cell behavior (Papin, J. et al., Nat. Rev. Mol. Cell Biol. , 6:99, 2005).

대사흐름분석은 생화학 반응식의 질량수지와 세포 조성 정보만을 이용하여 세포가 도달 가능한 이상적인 대사 흐름 공간을 구하며 특정한 목적함수를 최적화 방법을 통하여 최대화 하거나 최소화 하는 것을 목적으로 한다(세포성장속도 최대화 또는 특정 섭동에 의한 대사 조절의 최소화 등). 그 밖에, 대사흐름분석은 일반적으로 균주 개량을 통하여 원하는 대사 산물의 특정 유전자의 치사성을 확인하기 위하여 사용될 수 있으며, 이를 이용하여 균주내부의 대사 네트워크 특성을 파악할 수 있다. 또한, 유전자의 제거 또는 추가에 의해 일어나는 대사 네트워크의 흐름변화 등을 예측하기 위해 대사흐름분석 방법을 응용한 다양한 연구가 보고되고 있다. 실제로 고수율 아미노산 균주의 개발에 있어서 이러한 대사흐름분석이 유전자 결실 표적을 찾는데 이용된바 있다(Park et al., Proc. Natl. Acad. Sci., 104:7797-802., 2007; Lee et al., Mol. Syst. Biol., 3:149, 2007).Metabolic flow analysis uses the mass balance and cell composition information of biochemical reaction equations to obtain the ideal metabolic flow space that cells can reach, and aims to maximize or minimize specific objective functions through optimization methods (maximization of cell growth rate or specific perturbation). Minimization of metabolic regulation by In addition, metabolic flow analysis can generally be used to confirm the lethality of specific genes of a desired metabolite through strain improvement, and use this to grasp the metabolic network characteristics within the strain. In addition, various studies have been reported applying metabolic flow analysis methods to predict the flow changes in metabolic networks caused by the removal or addition of genes. Indeed, in the development of high yield amino acid strains, this metabolic flow analysis has been used to find gene deletion targets (Park et al., Proc. Natl. Acad. Sci. , 104: 7797-802., 2007; Lee et al. , Mol. Syst. Biol., 3: 149, 2007).

이에 본 발명자들은 특정 대사산물을 효율적으로 생산하는 균주를 개발하기 위한 부탄올 생성 미생물의 대사특성분석용 대사네트워크를 개발하고자 예의노력한 결과, 부탄올 생성 미생물의 대사 네트워크 모델을 새로이 개발한 다음, 개발된 대사 네트워크 모델이 부탄올 생성 미생물의 대사특성 분석에 유용함을 확인하고, 대사흐름분석을 통하여 결실 표적유전자들을 스크리닝하여 부탄올 생성 미생물의 부탄올 생성능을 향상시킬 수 있는 이상적인 결실 조합을 만들 수 있음을 이론적으로 발견하고, 본 발명을 완성하였다.Therefore, the present inventors have intensively tried to develop a metabolic network for analyzing metabolic characteristics of butanol-producing microorganisms for developing strains that efficiently produce specific metabolites. We confirmed that the network model is useful for analyzing metabolic properties of butanol-producing microorganisms, and theoretically found that metabolic flow analysis can be used to screen deletion target genes to create ideal deletion combinations that can improve butanol-producing ability of butanol-producing microorganisms. The present invention has been completed.

본 발명의 목적은 부탄올 생성 미생물의 대사 특성을 분석하기 위한 대사 네트워크 모델을 제공하는 데 있다.It is an object of the present invention to provide a metabolic network model for analyzing metabolic properties of butanol producing microorganisms.

본 발명의 다른 목적은 구축된 부탄올 생성 미생물의 대사 네트워크 모델을 기반으로, 부탄올 생성 미생물에서 대사 특성을 분석하는 방법 및 특정 대사산물의 생산을 증가시키기 위한 결실 표적 효소 또는 그 유전자의 스크리닝 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for analyzing metabolic properties in butanol producing microorganisms and screening for deletion target enzymes or genes thereof to increase the production of specific metabolites based on the established metabolic network model of butanol producing microorganisms. There is.

상기 목적을 달성하기 위하여, 본 발명은 다음 효소들이 관여하는 효소반응식을 포함하는, 부탄올 생성 미생물의 대사 특성 분석용 대사 네트워크 모델을 제공한다:In order to achieve the above object, the present invention provides a metabolic network model for metabolic characterization of butanol-producing microorganisms, comprising an enzyme reaction involving the following enzymes:

알코올 탈수소화 효소(alcohol dehydrogenase), 부탄올 탈수소화 효소(butanol dehydrogenase), 부티릴 조효소 A 탈수소화 효소(butyryl-CoA dehydrogenase), 크로토네이즈(crotonase), 아세틸 조효소 A 아세틸전달효소(acetyl-CoA acetyltransferase), 3-하이드록시부티릴 조효소 A 탈수소화 효소(3-hydroxybutyryl-CoA dehydrogenase) 및 수소화 효소(hydrogenase).Alcohol dehydrogenase, butanol dehydrogenase, butyryl coenzyme A dehydrogenase, butyryl-CoA dehydrogenase, crotonase, acetyl coenzyme A acetyltransferase ), 3-hydroxybutyryl coenzyme A dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase) and hydrogenase.

본 발명은 또한, 상기 대사 네트워크 모델을 이용하는 것을 특징으로 하는 부탄올 생성 미생물의 대사특성분석방법을 제공한다.The present invention also provides a method for analyzing metabolic properties of butanol-producing microorganisms, characterized by using the metabolic network model.

본 발명은 또한, 상기 대사 네트워크 모델의 토폴로지를 분석하는 방법을 제공한다.The present invention also provides a method for analyzing the topology of the metabolic network model.

본 발명은 또한, 상기 대사 네트워크 모델에서 효소반응식들을 하나 또는 둘 이상씩 차단하며 선형계획법을 적용하되, 특정 대사산물의 생성능이 증가하는 경우 차단된 효소 반응식의 효소를 결실 표적효소로 선정하거나, 이를 코딩하는 유전자를 결실 표적유전자로 선정하는 것을 특징으로 하는 부탄올 생성 미생물의 특정 대사산물의 생산을 증가시키기 위한 결실 표적 효소 또는 그 유전자의 스크리닝 방법을 제공한다.The present invention also applies a linear programming method by blocking one or more enzyme reactions in the metabolic network model, but when the ability to produce a specific metabolite increases, the enzyme of the blocked enzyme reaction is selected as a deletion target enzyme, or Provided are a deletion target enzyme or a method for screening the gene for increasing the production of a specific metabolite of a butanol producing microorganism characterized by selecting a gene to be encoded as a deletion target gene.

본 발명은 또한, 부탄올 생성 미생물에서 상기 방법에 의하여 스크리닝된 결실 표적유전자를 결실시키는 것을 특징으로 하는 특정 대사산물의 생성능이 증가된 변이 미생물의 제조방법을 제공한다.The present invention also provides a method for producing a mutant microorganism having an increased ability to produce a specific metabolite, wherein the butanol producing microorganism deletes the deletion target gene screened by the above method.

본 발명은 또한, 상기 변이 미생물의 제조방법으로 제조된 특정 대사산물의 생성능이 증가된 변이 미생물을 제공한다. The present invention also provides a mutant microorganism having an increased ability to produce a specific metabolite prepared by the method for preparing the mutant microorganism.

본 발명은 또한, 상기 제조된 변이 미생물을 배양하는 단계; 및 상기 배양액으로부터 특정 대사산물을 회수하는 단계를 포함하는 특정 대사산물의 제조방법을 제공한다.The present invention also comprises the steps of culturing the prepared microorganisms; And it provides a method for producing a specific metabolite comprising recovering a specific metabolite from the culture.

본 발명은 또한, 상기 대사 네트워크 모델을 이용한 부탄올 생성 미생물의 대사흐름 예측방법을 제공한다.The present invention also provides a method for predicting metabolic flow of butanol-producing microorganisms using the metabolic network model.

본 발명은 부탄올 생성 미생물의 대사 특성을 분석하기 위한 대사 네트워크 모델을 제공하는 효과가 있다. 본 발명에 따른 대사 네트워크 모델은 부탄올 생성 미생물의 대사 흐름 등 대사특성 분석 및 특정 대사산물의 생산을 증가시키기 위한 결실 표적 효소 또는 그 유전자의 스크리닝에 유용하며, 본 발명에 따른 부탄올 생성 미생물의 대사 네트워크 모델에 기반한 결실 표적의 스크리닝 방법은 인간의 직관과 추론에 의한 결실 유전자 탐색과는 달리, 빠른 시간 내에 시스템 수준에서 유전자 결실 표적들을 예측할 수 있게 한다. 또한, 상기 방법에 따라 스크리닝된 결실 표적 유전자를 부탄올 생성 균주에서 결실시킴으로써 시간 및 비용을 절약하고 부탄올 등 특정 대사산물을 고효율로 생산할 수 있는 변이 미생물을 얻을 수 있게 하므로 유용하다. The present invention has the effect of providing a metabolic network model for analyzing the metabolic properties of butanol producing microorganisms. The metabolic network model according to the present invention is useful for analyzing metabolic properties such as butanol producing microorganisms and screening for deletion target enzymes or genes thereof to increase the production of specific metabolites, and the metabolic network of butanol producing microorganisms according to the present invention. Model-based screening of deletion targets, unlike human intuition and inference searching for deletion genes, allows for rapid prediction of gene deletion targets at the system level. In addition, by deleting the deletion target gene screened according to the above method in the butanol producing strain, it is useful because it saves time and cost and obtains a mutant microorganism capable of producing a specific metabolite such as butanol with high efficiency.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명은 일 관점에서, 효소반응식을 포함하는 부탄올 생성 미생물의 대사특성 분석용 대사 네트워크 모델에 관한 것이다.In one aspect, the present invention relates to a metabolic network model for analyzing metabolic properties of a butanol-producing microorganism comprising an enzyme reaction scheme.

먼저 부탄올 생성 미생물의 대사특성 분석용 대사 네트워크 모델은 다음과 같이 구축한다. 본 발명의 일 실시예에서는 부탄올 생성 미생물 중 클로스트리 듐(Clostridium) 속 미생물을 이용하였는데, 게놈 서열 분석이 완료된 Clostridium acetobutylicum ATCC 824의 게놈 정보를 이용하였다. 이하, C. acetobutylicum의 대사 네트워크 모델을 구축한 경우로 설명한다. First, a metabolic network model for analyzing metabolic characteristics of butanol-producing microorganisms is constructed as follows. In an embodiment of the present invention were using a Claus tree Clostridium (Clostridium) in microorganisms of butanol-producing microorganisms, Clostridium genome sequencing is completed Genomic information of acetobutylicum ATCC 824 was used. The following describes the case where a metabolic network model of C. acetobutylicum was constructed.

(1) 우선 게놈 정보 및 각 유전자 주석(annotation)에 대한 정보를 수집하고, 다음으로, 게놈 서열 정보를 바탕으로 하여 C. acetobutylicum에 존재하는 효소 반응식들을 정리하고 이 효소 반응식을 촉매하는 효소 및 이를 코딩하는 유전자의 관계, 즉 GPR 관계를 정리한다. 이때, 수집한 유전자 주석 정보를 직접 분석하는 것보다는, 대사 경로 관련 정보를 분석 및 정리해 놓은 대사 관련 데이터베이스의 정보를 이용한 뒤, 수집된 정보는 보정 과정에서 사용되는 기준으로 삼는 것이 바람직하다.(1) First, genomic information and information about each gene annotation are collected, and then, based on genomic sequence information, the enzyme reactions present in C. acetobutylicum are summarized, and an enzyme catalyzing the enzyme reaction, and Clean up the relationship between the genes you code, or GPR. In this case, rather than directly analyzing the collected gene annotation information, it is preferable to use the information of the metabolic related database that analyzes and organizes the metabolic pathway-related information, and then use the collected information as a reference used in the calibration process.

본원에서 "GPR 관계"란, 유전자-단백질-반응식 관계(Gene-Protein-Reaction Relationship)이며, 유전자와 그 산물, 그리고 그 산물이 촉매하는 효소 반응식과의 관계를 말한다. As used herein, the term "GPR relationship" refers to a Gene-Protein-Reaction Relationship, and refers to a relationship between a gene and its product and the enzyme reaction catalyzed by the product.

상기에서 정리한 GPR 관계를 바탕으로 초벌 모델(draft model)을 구축한다. 일반적으로 대사 관련 데이터베이스에는 DNA 복제, 전사(transcription), 번역(translation) 및 세포를 구성하는 각종 요소(이를테면 세포막을 구성하는 인지질, 세포벽, 세포 내 모든 단백질의 아미노산 함량 및 세포 전체적인 고분자 조성)의 합성식, 그리고 세포 전체의 생장식은 정리되어 있지 않다. 그러나 이 식들은 세포의 생장을 모사하기 위한 모델 구축에 필수적이라 할 수 있으며, 이러한 식들을 만들기 위해서는 세포를 구성하는 각 성분들의 조성 비율을 알아야 한다. 이는 참고 문헌을 통하여 얻거나 실제 발효를 통하여 얻은 시료를 분석함으로써 알아낼 수 있다.Construct a draft model based on the GPR relationships summarized above. In general, metabolic databases include the synthesis of DNA replication, transcription, translation, and other elements that make up cells (such as the phospholipids that make up the cell membrane, the cell wall, the amino acid content of all proteins in the cell, and the cell-wide polymer composition). Expression and growth of the whole cell are not organized. However, these expressions are essential for building models to simulate cell growth, and in order to make these expressions, the composition ratio of each component of the cell must be known. This can be found by obtaining a reference or analyzing a sample obtained through actual fermentation.

이때, 발효 조건은 실제 보정 과정에서 사용되는 발효의 조건과 동일하게 하는 것이 바람직하다.At this time, the fermentation conditions are preferably the same as the conditions of the fermentation used in the actual calibration process.

상기에서 구축한 초벌 모델을 검토하여 보정 작업을 수행한다. 대사 관련 데이터베이스는 생물정보학적 기법을 통하여 유전자 주석 정보를 컴퓨터 프로그램으로 분석하여 데이터베이스화한 것이다. 따라서, 이러한 데이터베이스는 불완전하거나 잘못된 대사 정보를 내포할 가능성이 매우 높은데, 이는 다음과 같은 원인에 기인한다.Review the initial model constructed above and perform the correction. Metabolism-related database is a database of gene annotation information analyzed by computer program through bioinformatics techniques. Therefore, such a database is very likely to contain incomplete or incorrect metabolic information due to the following causes.

첫째로, 유전자 주석 정보 자체가 불완전할 가능성이 있다. 이는 대부분의 유전자 주석 작업이 기존에 기능이 규명된 유전자 서열 및 효소의 아미노산 서열과 분석하고자 하는 서열을 통계적인 기법으로 비교함으로써 상동성을 바탕으로 수행되기 때문이다. 어떤 균주에 규명이 되지 않은 유전자가 존재한다면 이러한 유전자의 기능을 생물정보학 기법만을 이용하여서는 명확히 기능을 밝히기 어렵게 된다.First, there is a possibility that the gene annotation information itself is incomplete. This is because most gene annotations are performed on the basis of homology by comparing the sequence of genes and the amino acid sequences of enzymes to be analyzed with statistical techniques. If there are genes that have not been identified in a strain, the function of these genes will be difficult to clarify using only bioinformatics techniques.

둘째로, 이러한 유전자 주석 정보를 자동으로 해석하여 대사 경로로 데이터베이스화하는 과정에서 오류가 일어날 가능성이 있다. 가령, 어떤 균주의 유전자 중 하나의 아미노산 서열을 BLAST 분석을 통하여 상동성을 분석하였을 때, 다른 균주의 단백질과 높은 상동성을 보이지만 실제로 그 데이터베이스에서는 이 유전자의 기능이 없는 것으로 지정되는 경우가 존재한다.Second, there is a possibility that errors may occur in the process of automatically interpreting this gene annotation information and making a database by metabolic pathway. For example, when an amino acid sequence of one of the genes of a strain is analyzed for homology through BLAST analysis, there is a case where the homology with the protein of the other strain is high but the database is designated as having no function. .

따라서 이 단계에서는 생물정보학적 기법을 통하여 얻어낸 정보보다는 실제 로 발표된 균주 관련 논문, 생화학 관련 교재 및 문헌, 실제 발효를 통하여 파악된 형질을 바탕으로 보정 작업을 수행한다.Therefore, in this step, corrections are performed based on strain-related literature, biochemistry textbooks and literature, and traits identified through actual fermentation, rather than information obtained through bioinformatics techniques.

이 과정에서는 주로 다음과 같은 부분을 중점으로 보정한다.This process mainly focuses on the following areas.

1) 효소 반응식에서 대사 산물 계수의 오류1) errors in metabolite counting in enzymatic reactions

2) 상기에서 분석한 세포의 구성 요소를 만드는 대사 경로가 끊어진 경우2) The metabolic pathways that make up the cell components analyzed above are broken

3) 세포의 생명 유지 활동 및 생장에 사용되는 유지 에너지3) Maintenance energy used for life sustaining activity and growth of cells

4) 그 외의 각종 오타4) Other various typos

여기서 3)의 유지 에너지는 연속 항성분 배양(continuous chemostat culture) 을 통하여 얻게 된다. 연속 항성분 배양에서는 세포의 농도를 일정하게 유지할 수 있으며, 희석률(dilution rate)을 조절함으로써 세포의 생장도 인위적으로 통제할 수 있다는 것이 특징이다. 이 경우에 비(比)생장률(specific growth rate)은 희석률과 일치하게 되며, 희석률을 조절함으로써 희석률과 그 때의 세포의 건조 중량당 기질 흡수 속도를 구할 수 있다. 이를 바탕으로 세포가 생장에 사용하는 생장 관련 유지 에너지(growth-associated maintenance energy)와 생장에 관계 없는 생명 유지 현상에 사용되는 비생장-관련 유지 에너지(non-growth-associated maintenance energy)를 구할 수 있다.The retention energy of 3) is obtained through continuous chemostat culture. In continuous anti-component culture, the concentration of the cells can be kept constant, and the growth of the cells can be artificially controlled by controlling the dilution rate. In this case, the specific growth rate coincides with the dilution rate, and by adjusting the dilution rate, the dilution rate and the substrate absorption rate per dry weight of the cell at that time can be obtained. Based on this, growth-associated maintenance energy used by cells for growth and non-growth-associated maintenance energy used for life-sustaining phenomena regardless of growth can be obtained. .

위와 같은 연속 배양이 부득이한 경우에는 다른 균주의 정보를 사용할 수도 있다. 그러나 균주에 따라 유지 에너지의 크기가 차이를 보일 수 있으므로, 가급적이면 유연 관계가 가까운 균주의 것을 사용하는 것이 바람직하다. 그렇지 않으면 실제 결과와 대사흐름분석 결과가 부정확하게 될 가능성이 높기 때문이다.If such continuous culture is inevitable, information of other strains may be used. However, since the magnitude of the maintenance energy may vary depending on the strain, it is preferable to use a strain having a close flexible relationship. Otherwise, actual results and metabolic flow analysis are likely to be inaccurate.

본 발명에서 상기 구축된 부탄올 생성 미생물의 대사특성 분석용 대사 네트워크 모델은 다음 효소들이 관여하는 효소반응식을 포함함을 특징으로 한다:In the present invention, the constructed metabolic network model for analyzing the metabolism of butanol-producing microorganisms is characterized by including an enzyme reaction involving the following enzymes:

알코올 탈수소화 효소(alcohol dehydrogenase), 부탄올 탈수소화 효소(butanol dehydrogenase), 부티릴 조효소 A 탈수소화 효소(butyryl-CoA dehydrogenase), 크로토네이즈(crotonase), 아세틸 조효소 A 아세틸전달효소(acetyl-CoA acetyltransferase), 3-하이드록시부티릴 조효소 A 탈수소화 효소(3-hydroxybutyryl-CoA dehydrogenase) 및 수소화 효소(hydrogenase).Alcohol dehydrogenase, butanol dehydrogenase, butyryl coenzyme A dehydrogenase, butyryl-CoA dehydrogenase, crotonase, acetyl coenzyme A acetyltransferase ), 3-hydroxybutyryl coenzyme A dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase) and hydrogenase.

본 발명에 있어서, 상기 부탄올 생성 미생물의 대사특성 분석용 대사 네트워크 모델은 다음 효소들이 관여하는 효소반응식을 포함함을 특징으로 할 수 있으나, 대사특성 분석을 위하여 수 개 내지 수십 개의 효소반응식이 가감될 수 있음은 당업계에서 통상의 지식을 지니는 자에게 있어 자명한 사항일 것이다:In the present invention, the metabolic network model for analyzing the metabolic properties of the butanol-producing microorganism may be characterized by including an enzyme reaction involving the following enzymes, but several to tens of enzyme reactions may be added or subtracted for metabolic analysis. Can be obvious to one of ordinary skill in the art:

D-3-phosphoglycerate dehydrogenase, aspartate-semialdehyde dehydrogenase, deoxycytidine triphosphate deaminase, orotate phosphoribosyltransferase, phosphatidylserine decarboxylase, D-3-phosphoglycerate dehydrogenase, ketol-acid reductoisomerase, ferredoxin-nitrite reductase, O-acetylhomoserine (thiol)-lyase, adenylylsulfate kinase, sulfate adenylyltransferase subunit 2, adenylylsulfate kinase / sulfate adenylyltransferase subunit 1, PTS system, mannitol-specific IIBC component (gene MtlA), PTS system, mannitol-specific IIA domain (Ntr-type) (gene MltF), mannitol-1-phosphate 5-dehydrogenase, glucosamine--fructose-6-phosphate aminotransferase (isomerizing), glucosamine-6-phosphate isomerase (glucosamine-6-phosphate), N-acetylglucosamine-6-phosphate deacetylase (gene nagA), prephenate dehydrotase (pheA), 1-phosphofructokinase (fructoso 1-phosphate kinase), nitrogenase iron protein (nitrogenase component II) gene nifH, nitrogenase molybdenum-iron protein, alpha chain (nitrogenase component I) gene nifD, nitrogenase molibdenum-iron protein, beta chain, gene nifK, phosphoserine phosphatase related protein, L-lactate dehydrogenase, 2-isopropylmalate synthase, aspartate ammonia-lyase (aspartase) gene ansB(aspA), aspartate kinase, cytosine/guanine deaminase related protein, ornithine carbomoyltransferase, PTS cellobiose-specific component IIA, PTS system, cellobiose-specific component BII, beta-glucosidase, PTS cellobiose-specific component IIC, cystathionine gamma-synthase, cystathionine beta-lyase, deoxyphosphogluconate aldolase (gene kdgA), 2-keto-3-deoxygluconate kinase (gene kdgK), fusion: PTS system, beta-glucosides specific IIABC component, Fructokinase, sucrase-6-phosphate hydrolase (gene sacA), oxygen-sensitive ribonucleoside-triphosphate reductase nrdD, Phosphomannomutase, alanine racemase, UDP-N-acetylenolpyruvoylglucosamine reductase (murB), 6-phosphofructokinase, pyruvate kinase (pykA), Dihydroorotase, PTS system, maltose-specific enzyme IIBC component, maltose-6'-phosphate glucosidase (glvA), phosphoenolpyruvate synthase (gene pps), malate dehydrogenase, aspartate semialdehyde dehydrogenase (gene asd), PTS system, glucose-specific IIABC component, cobalamine-dependent methionine synthase I (methyltransferase andcobalamine-binding domain), diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-amino-6-(5-phosphoribosylamino)uracil reductase, riboflavin synthase alpha chain, riboflavin biosynthes protein RIBA (GTPcyclohydrolase/3,4-dihydroxy-2-butanone 4-phosphate synthase), riboflavin synthase beta chain, diaminopimelate decarboxilase (lisA), L-serine dehydratase, beta chain, L-serine dehydratase, alpha chain, phosphatidylserine synthase, ammonium transporter (membrane protein nrgA), serine acetyltransferase, glyceraldehyde 3-phosphate dehydrogenase, gene gapC, phosphoglycerate kinase, triosephosphate isomerase (TIM), 2,3-bisphosphoglycerate-independent phosphoglycerate mutase gene, Enolase, ribose 5-phosphate isomerase RpiB, NADP-specific glutamate dehydrogenase, NADPH-dependent glutamate synthase beta chain, glycerol uptake facilitator protein (permease), phosphatidylserine synthase, nucleoside-diphosphate-sugar epimerase (UDP-glucose 4-epimerase), phosphatidylserine decarboxylase, 3-oxoacyl-[acyl-carrier-protein] synthase III, phosphoribosylpyrophosphate synthetase, fructose-bisphosphate aldolase, glucan phosphorylase, thioredoxine reductase, adenine deaminase, phospho-2-dehydro-3-deoxyheptonate aldolase, prephenate dehydrogenase, 3-dehydroquinate synthetase, 5-enolpyruvylshikimate-3-phosphate synthase, chorismate synthase, fusion: chorismate mutase and shikimate 5-dehydrogenase, shikimate kinase, 3-dehydroquinate dehydratase II, cystathionine gamma-synthase, cysteine synthase, ATP phosphoribosyltransferase, histidinol dehydrogenase, imidazoleglycerol-phosphate dehydratase, glutamine amidotransferase, phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide(ProFAR) isomerase, imidazoleglycerol-phosphate synthase cyclase, phosphoribosyl-AMP cyclohydrolase, phosphoribosyl-ATP pyrophosphohydrolase, Transketolase, aconitase A, isocitrate dehydrogenase, argininosuccinate synthase, argininosuccinate lyase, pyruvate-formate lyase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, homoserine dehydrogenase, threonine synthase, aspartate aminotransferase, nicotinic acid phosphoribosyltransferase, superfamily I DNA helicase (rep-like helicase), P-loop kinase (uridine kinase family), nicotinate-nucleotide pyrophosphorylase, aspartate oxidase, quinolinate synthase, pyruvate kinase, ribonucleotide reductase, vitamin B12-dependent, NH(3)-dependent NAD(+) synthetase, Arginase, beta-glucosidase family protein, beta-glucosidase family protein, GlpX-like protein (Fructose-1,6-bisphosphatase related protein), 5-formyltetrahydrofolate cyclo-ligase, anaerobic ribonucleotide reductase, deoxyuridine 5'triphosphate nucleotidohydrolase (DUPTase), chorismate mutase PheB of B.subtilis ortholog, homoserine kinase (thrB), predicted nucleotidyltransferases of NarD/TagD family (N-term. domain) (yqeJ ortholog), diacylglycerol kinase (dgkA) fused to phosphatase B domain (pgpB), glycerol uptake facilitator protein(GLPF), glycerol kinase (GLPK), ribulose-5-phosphate 4-epimerase family protein, L-arabinose isomerase, sugar kinase, possible xylulose kinase, L-arabinose isomerase, Transaldolase, Transketolase (TKT), aldose-1-epimerase, phosphotransferase system IIC component (possibly N-acetylglucosamine-specific), PTS system (N-acetylglucosamine-specific IIA component, putative), histidinol-phosphate aminotransferase, cobalamin biosynthesis enzyme CobT, phosphoribosylcarboxyaminoimidazole (NCAIR) mutase , phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase, glutamine phosphoribosylpyrophosphate amidotransferase, phosphoribosylaminoimidazol (AIR) synthetase, folate-dependent phosphoribosylglycinamide formyltransferase, AICAR transformylase/IMP cyclohydrolase, phosphoribosylamine-glycine ligase, beta-glucosidase, UDP-glucose 4-epimerase , ribose 5-phosphate isomerase, PTS system, fructose(mannose)-specific IIA component, PTS system, fructose(mannose)-specific IIB, PTS system, fructose(mannose)-specific IIC, PTS system, fructose(mannose)-specific IID, branched-chain-amino-acid transaminase (ilvE), Fructokinase, fructose-1,6-bisphosphatase, malic enzyme, malate dehydrogenase (oxaloacetate-decarboxylating), phosphoserine phosphatase family enzyme, bifunctional enzyme phosphoribosylformylglycinamidine (FGAM) synthase (synthetase domain/glutamine amidotransferase domain), aspartate ammonia-lyase, glycogen phosphorylase, large subunit of NADH-dependent glutamate synthase, small subunit of NADPH-dependent glutamate synthase, periplasmic phosphate-binding protein, phosphate permease, permease component of ATP-dependent phosphate uptake system, ATPase component of ABC-type phosphate transport system, glycerol 3-phosphate dehydrogenase, L-asparaginase, guanylate kinase, YLOD B.subtilis ortholog, flavoprotein involved in panthothenate metabolism, YLOI B.subtilis ortholog, pentose-5-phosphate-3-epimerase, phosphopantetheine adenylyltransferase, phosphate acetyltransferase, acetate kinase, nicotinic acid phosphoribosyltransferase, NH(3)-dependent NAD(+) synthase (nadE) fused to amidohydrolasedomain, uridylate kinase, CDP-diglyceride synthetase, riboflavin kinase/FAD synthase, Aspartokinase, phosphatidylglycerophosphate synthase , aspartate aminotransferase , phosphocarrier protein (Hpr), adenylosuccinate lyase, homoserine trans-succinylase, cytidylate kinase, 3-oxoacyl-(acyl-carrier-protein) synthase, purine nucleoside phosphorylase, Phosphopentomutase, predicted kinase, tetrahydrofolate dehydrogenase/cyclohydrolase (FolD), nucleoside phosphorylase, cation transport P-type ATPase, phosphoserine phosphatase family enzyme, pyruvate:ferredoxin oxidoreductase, cysteine synthase/cystathionine beta-synthase (CysK), ADP-glucose pyrophosphorylase, ADP-glucose pyrophosphorylase, glycogen synthase (glgA), N-terminal domain of asparagine synthase, UDP-glucose pyrophosphorylase, glycine hydroxymethyltransferase, adenine phosphoribosyltransferase (Apt), UDP-glucose 4-epimerase, UTP-glucose-1-phosphate uridylyltransferase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, PLP-dependent aminotransferase, tetrahydrodipicolinate N-succinyltransferase, N-acetylornithine aminotransferase, acetylglutamate kinase, N-acetyl-gamma-glutamyl-phosphate reductase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, folylpolyglutamate synthase, 2-oxoacid ferredoxin oxidoreductase beta subunit, 2-oxoacid ferredoxin oxidoreductase alpha subunit, xylulose kinase, transcriptional regulators of NagC/XylR family, beta-phosphoglucomutase, diaminopimelate epimerase, possible 3-ketoacyl-acyl carrier protein reductase, carbamoylphosphate synthase large subunit, carbamoylphosphate synthase small subunit, dihydroorotate dehydrogenase, orotidine-5'-phosphate decarboxylase, aspartate carbamoyltransferase regulatory subunit, aspartate carbamoyltransferase catalytic subunit, glutamine synthetase type III, pyruvate carboxylase (PYKA ), glucose-6- phosphate isomerase, sugar kinase, ribokinase family, trehalose/maltose hydrolase (phosphorylase), GMP synthase, IMP dehydrogenase, 3-hydroxybutyryl-CoA dehydrogenase, electron transfer flavoprotein alpha-subunit, electron transfer flavoprotein beta-subunit, butyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, deacethylase/dipeptidase/desuccinylase family of Zn-dependenthydrolases, putative histidinol-phosphatase, O-acetylhomoserine (thiol)-lyase , Acylphosphatases (ACYP), PLP-dependent aminotransferase, glycerate kinase, galactose-1-phosphate uridylyltransferase, S-adenosylmethionine synthetase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, acetyl-CoA acetyltransferase, deoxycytidylate deaminase, ribose 5-phosphate isomerase (RpiB), fusion of alpha-glucosidase (family 31 glycosyl hydrolase), CTP synthase (UTP-ammonia lyase), D-alanine-D-alanine ligase, ketopantoate hydroxymethyltransferase, pantoate--beta-alanine ligase, aspartate 1-decarboxylase, mannose-6 phospate isomerase, dihydropteroate synthase, dihydroneopterin aldolase fused to 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase, ketopantoate reductase PanE/ApbA, uncharacterized conserved protein fron YGAG family, predictedmetal-dependent enzyme, 3-phosphoserine aminotransferase (Possible phosphoglycerate dehydrogenase), tagatose-6-phosphate kinase, galactose-6-phosphate isomerase, galactose-6-phosphate isomerase, PTS system galactitol-specific IIC component, PTS system galactitol-specific IIB component, PTS system galactitol-specific IIA component putative, Galactokinase, UDP-galactose 4-epimerase, 6-phospho-beta-D-galactosidase, PTS system lactose-specific enzyme IIBC, PTS system lactose-specific enzyme IIA, alpha-acetolactate decarboxylase, 2-keto-3-deoxy-6-phosphogluconate aldolase (eda/kdgA), PTS system (Glucose-specific) component IIA, thymidylate synthase, dihydrofolate reductase, adenosine deaminase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, histidinol-phosphate aminotransferase, butyrate kinase (BUK), phosphate butyryltransferase, phosphoenolpyruvate-protein kinase (PTS system enzyme I), fumarate hydratase, subunit B (C-terminal domain of FumA E.coli), fumarate hydratase, subunit A (N-terminal domain of FumA E.coli), adenylate kinase , tryptophan synthase alpha chain, tryptophan synthase beta chain, phosphoribosylanthranilate isomerase, indole-3-glycerol phosphate synthase, anthranilate phosphoribosyltransferase, putative anthranilate synthase component II, para-aminobenzoate synthase component I, acetolactate synthase large subunit, dihydroxyacid dehydratase, isopropylmalate dehydrogenase , 3-isopropylmalate dehydratase, small subunit, 3-isopropylmalate dehydratase, large subunit, 2-isopropylmalate synthase , acetolactate synthase small subunit, predicted transcriptional regulator, homolog of Bvg accessory factor, formate--tetrahydrofolate ligase, hypoxanthine-guanine phosphoribosyltransferase, phosphoribosylpyrophosphate synthetase, glucosamine-1-phosphate N-acetyltransferase , possible glutamate racemase , pyrroline-5-carboxylate reductase, glutamate 5-kinase , gamma-glutamyl phosphate reductase , ribonucleotide reductase beta subunit , ribonucleotide reductase alpha subunit, NADH-dependent butanol dehydrogenase B (BDH II), NADH-dependent butanol dehydrogenase A (BDH I), possible cardiolipin synthase (phospholipase D family), alanine racemase , possible homocysteine S-methyltransferase , alcohol dehydrogenase, low specificity L-threonine aldolase, PTS system, (possibly glucose-specific) IIBC component , 6-phospho-alpha-glucosidase, PTS system, (possibly glucose-specific) IIA component, 3-oxoacyl-acyl carrier protein reductase, GMP reductase , UDP-N-acetylglucosamine enolpyruvyl transferase, lactate dehydrogenase, acetyl-CoA carboxylase alpha subunit, acetyl-CoA carboxylase beta subunit, biotin carboxylase, hydroxymyristoyl-(acyl carrier protein) dehydratase, biotin carboxyl carrier protein of acetyl-CoA carboxylase, 3-oxoacyl-(acyl-carrier-protein) synthase I , 3-ketoacyl-acyl carrier protein reductase, malonyl CoA-acyl carrier protein transacylase, trans-2-enoyl-ACP reductase II, 3-oxoacyl-[acyl-carrier-protein] synthase III, adenylosuccinate synthase, phosphatidylglycerophosphate synthase, dihydrodipicolinate synthase , dihydroxy-acid dehydratase , GTP cyclohydrolase I, acetolactate synthase large subunit, beta-glucosidase, pyruvate decarboxylase, alcohol dehydrogenase / acetaldehyde dehydrogenase, fructose-bisphosphate aldolase class I , mannose-specific phosphotransferase system component IIAB, mannose/fructose-specific phosphotransferase system component IIC, mannose-specific phosphotransferase system component IID, acetyl coenzyme A acetyltransferase (thiolase), 3-oxoacyl-acyl-carrier protein synthase, alcohol dehydrogenase / acetaldehyde dehydrogenase, butyrate-acetoacetate CoA-transferase subunit A, butyrate-acetoacetate CoA-transferase subunit B 및 acetoacetate decarboxylase.D-3-phosphoglycerate dehydrogenase, aspartate-semialdehyde dehydrogenase, deoxycytidine triphosphate deaminase, orotate phosphoribosyltransferase, phosphatidylserine decarboxylase, D-3-phosphoglycerate dehydrogenase, ketol-acid reductoisomerase, ferredoxin-nitrite reductase, O-thidenkinylrinesasease , sulfate adenylyltransferase subunit 2, adenylylsulfate kinase / sulfate adenylyltransferase subunit 1, PTS system, mannitol-specific IIBC component (gene MtlA), PTS system, mannitol-specific IIA domain (Ntr-type) (gene MltF), mannitol-1-phosphate 5-dehydrogenase, glucosamine--fructose-6-phosphate aminotransferase (isomerizing), glucosamine-6-phosphate isomerase (glucosamine-6-phosphate), N-acetylglucosamine-6-phosphate deacetylase (gene nagA), prephenate dehydrotase (pheA), 1-phosphofructokinase (fructoso 1-phosphate kinase), nitrogenase iron protein (nitrogenase component II) gene nifH, nitrogenase molybdenum-iron protein, alpha chain (nitrogenase componen t I) gene nifD, nitrogenase molibdenum-iron protein, beta chain, gene nifK, phosphoserine phosphatase related protein, L-lactate dehydrogenase, 2-isopropylmalate synthase, aspartate ammonia-lyase (aspartase) gene ansB (aspA), aspartate kinase, cytosine / guanine deaminase related protein, ornithine carbomoyltransferase, PTS cellobiose-specific component IIA, PTS system, cellobiose-specific component BII, beta-glucosidase, PTS cellobiose-specific component IIC, cystathionine gamma-synthase, cystathionine beta-lyase, dedol phosphogluconate al kdgA), 2-keto-3-deoxygluconate kinase (gene kdgK), fusion: PTS system, beta-glucosides specific IIABC component, Fructokinase, sucrase-6-phosphate hydrolase (gene sacA), oxygen-sensitive ribonucleoside-triphosphate reductase nrdD, Phosphomannomutase, alanine racemase, UDP-N-acetylenolpyruvoylglucosamine reductase (murB), 6-phosphofructokinase, pyruvate kinase (pykA), Dihydroorotase, PTS system, maltose-specific enzyme IIBC component, malt ose-6'-phosphate glucosidase (glvA), phosphoenolpyruvate synthase (gene pps), malate dehydrogenase, aspartate semialdehyde dehydrogenase (gene asd), PTS system, glucose-specific IIABC component, cobalamine-dependent methionine synthase I (methyltransferase and cobalamine-binding domain ), diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-amino-6- (5-phosphoribosylamino) uracil reductase, riboflavin synthase alpha chain, riboflavin biosynthes protein RIBA (GTPcyclohydrolase / 3,4-dihydroxy-2-butanone 4-phosphate synthase), riboflavin synthase beta chain , diaminopimelate decarboxilase (lisA), L-serine dehydratase, beta chain, L-serine dehydratase, alpha chain, phosphatidylserine synthase, ammonium transporter (membrane protein nrgA), serine acetyltransferase, glyceraldehyde 3-phosphate dehydrogenase, gene gapC, phosphoglycerate phosphate isomerase (TIM), 2,3-bisphosphoglycerate-independent phosphoglycerate mutase gene, Enolase, ribose 5-phosphate isomerase RpiB, NADP-spe cific glutamate dehydrogenase, NADPH-dependent glutamate synthase beta chain, glycerol uptake facilitator protein (permease), phosphatidylserine synthase, nucleoside-diphosphate-sugar epimerase (UDP-glucose 4-epimerase), phosphatidylserine decarboxylase, 3-oxoacylyl-ac protein] synthase III, phosphoribosylpyrophosphate synthetase, fructose-bisphosphate aldolase, glucan phosphorylase, thioredoxine reductase, adenine deaminase, phospho-2-dehydro-3-deoxyheptonate aldolase, prephenate dehydrogenase, 3-dehydroquinate synthetase, 5-enolpyruatelshikimate chorismate synthase, fusion: chorismate mutase and shikimate 5-dehydrogenase, shikimate kinase, 3-dehydroquinate dehydratase II, cystathionine gamma-synthase, cysteine synthase, ATP phosphoribosyltransferase, histidinol dehydrogenase, imidazoleglycerol-phosphate dehydratylformamide, hydrochloride ribonucleotide (ProFAR) isomerase, imidazoleglycerol-phos phate synthase cyclase, phosphoribosyl-AMP cyclohydrolase, phosphoribosyl-ATP pyrophosphohydrolase, Transketolase, aconitase A, isocitrate dehydrogenase, argininosuccinate synthase, argininosuccinate lyase, pyruvate-formate lyase, 1-acyl-sylserinefergenase synthase, aspartate aminotransferase, nicotinic acid phosphoribosyltransferase, superfamily I DNA helicase (rep-like helicase), P-loop kinase (uridine kinase family), nicotinate-nucleotide pyrophosphorylase, aspartate oxidase, quinolinate synthase, pyruvate kinase, ribonucleotide reductase dependent, NH (3) -dependent NAD (+) synthetase, Arginase, beta-glucosidase family protein, beta-glucosidase family protein, GlpX-like protein (Fructose-1,6-bisphosphatase related protein), 5-formyltetrahydrofolate cyclo-ligase , anaerobic ribonucleotide reductase, deoxyuridine 5'triphosphate nucleotidohydrolase (DUPTase), chorismate mutase PheB of B.subtilis ortholog, homoserine kinase (thrB), predicted nucleotidyltransferases of NarD / TagD family (N-term. domain) (yqeJ ortholog), diacylglycerol kinase (dgkA) fused to phosphatase B domain (pgpB), glycerol uptake facilitator protein (GLPF), glycerol kinase (GLPK), ribulose-5-phosphate 4-epimerase family protein, L-arabinose isomerase , sugar kinase, possible xylulose kinase, L-arabinose isomerase, Transaldolase, Transketolase (TKT), aldose-1-epimerase, phosphotransferase system IIC component (possibly N-acetylglucosamine-specific), PTS system (N-acetylglucosamine-specific IIA component, putative), histidinol-phosphate aminotransferase, cobalamin biosynthesis enzyme CobT, phosphoribosylcarboxyaminoimidazole (NCAIR) mutase, phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase, glutamine phosphoribosylpyrophosphate amidotransferase, phosphoribosylaminolythe- diasease phosphorase ligase, beta-glucosidase, UDP-glucose 4-epimerase, ribose 5-phosphate iso merase, PTS system, fructose (mannose) -specific IIA component, PTS system, fructose (mannose) -specific IIB, PTS system, fructose (mannose) -specific IIC, PTS system, fructose (mannose) -specific IID, branched-chain -amino-acid transaminase (ilvE), Fructokinase, fructose-1,6-bisphosphatase, malic enzyme, malate dehydrogenase (oxaloacetate-decarboxylating), phosphoserine phosphatase family enzyme, bifunctional enzyme phosphoribosylformylglycinamidine (FGAM) synthase (synthetase amidotransase domain / glutamine domain / glutamine domain , aspartate ammonia-lyase, glycogen phosphorylase, large subunit of NADH-dependent glutamate synthase, small subunit of NADPH-dependent glutamate synthase, periplasmic phosphate-binding protein, phosphate permease, permease component of ATP-dependent phosphate uptake system, ATPase component of ABC -type phosphate transport system, glycerol 3-phosphate dehydrogenase, L-asparaginase, guanylate kinase, YLOD B.subtilis ortholog, flavoprotein involved in panthothenate metabolism, YLO I B.subtilis ortholog, pentose-5-phosphate-3-epimerase, phosphopantetheine adenylyltransferase, phosphate acetyltransferase, acetate kinase, nicotinic acid phosphoribosyltransferase, NH (3) -dependent NAD (+) synthase (nadE) fused to amidohydrolasedomain, uridylate kinase CDP-diglyceride synthetase, riboflavin kinase / FAD synthase, Aspartokinase, phosphatidylglycerophosphate synthase, aspartate aminotransferase, phosphocarrier protein (Hpr), adenylosuccinate lyase, homoserine trans-succinylase, cytidylate kinase, 3-acoxyylase- nucleoside phosphorylase, Phosphopentomutase, predicted kinase, tetrahydrofolate dehydrogenase / cyclohydrolase (FolD), nucleoside phosphorylase, cation transport P-type ATPase, phosphoserine phosphatase family enzyme, pyruvate: ferredoxin oxidoreductase, cysteine synthase / cystacosease A pyrophosphorylase, ADP-glucose pyrophosphorylase, glycogen synthase (glgA), N-terminal domain of asparagine synt hase, UDP-glucose pyrophosphorylase, glycine hydroxymethyltransferase, adenine phosphoribosyltransferase (Apt), UDP-glucose 4-epimerase, UTP-glucose-1-phosphate uridylyltransferase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, PLP-dependent aminotransferolinate acetylornithine aminotransferase, acetylglutamate kinase, N-acetyl-gamma-glutamyl-phosphate reductase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, folylpolyglutamate synthase, 2-oxoacid ferredoxin oxidoreductase beta subunit, 2-oxoacid ferredoxin subunitase xunitase , transcriptional regulators of NagC / XylR family, beta-phosphoglucomutase, diaminopimelate epimerase, possible 3-ketoacyl-acyl carrier protein reductase, carbamoylphosphate synthase large subunit, carbamoylphosphate synthase small subunit, dihydroorotate dehydrogenase, orotidine-5'-phosphate decarboxybase, subunit, asp artate carbamoyltransferase catalytic subunit, glutamine synthetase type III, pyruvate carboxylase (PYKA), glucose-6-phosphate isomerase, sugar kinase, ribokinase family, trehalose / maltose hydrolase (phosphorylase), GMP synthase, IMP dehydrogenase, 3-hydroxybutyryl-CoA dehydro electron transfer flavoprotein alpha-subunit, electron transfer flavoprotein beta-subunit, butyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, deacethylase / dipeptidase / desuccinylase family of Zn-dependenthydrolases, putative histidinol-phosphatase, O-acetylhomoserine (thiol) -lyase , Acylphosphatases (ACYP), PLP-dependent aminotransferase, glycerate kinase, galactose-1-phosphate uridylyltransferase, S-adenosylmethionine synthetase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, acetyl-CoA acetyltransferase, deoxycytidylate deaminate isomerase 5-Ripase ), fusion of alpha-glucosidase (family 31 glycosyl hydrolase), CTP synthase (UTP-ammonia lyase), D-alanine-D-alanine ligase, ke topantoate hydroxymethyltransferase, pantoate--beta-alanine ligase, aspartate 1-decarboxylase, mannose-6 phospate isomerase, dihydropteroate synthase, dihydroneopterin aldolase fused to 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase, ketopantoate reductase, PanE / Apb conprotein fron YGAG family, predictedmetal-dependent enzyme, 3-phosphoserine aminotransferase (Possible phosphoglycerate dehydrogenase), tagatose-6-phosphate kinase, galactose-6-phosphate isomerase, galactose-6-phosphate isomerase, PTS system galactitol-specific IIC component, PTS system galactitol-specific IIB component, PTS system galactitol-specific IIA component putative, Galactokinase, UDP-galactose 4-epimerase, 6-phospho-beta-D-galactosidase, PTS system lactose-specific enzyme IIBC, PTS system lactose-specific enzyme IIA, alpha-acetolactate decarboxylase, 2-keto-3-deoxy-6-phosphogluconate aldolase (eda / kdgA), PTS system (Glucose-specific) component IIA, thymidylate synthase, dihydrofolat e reductase, adenosine deaminase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, histidinol-phosphate aminotransferase, butyrate kinase (BUK), phosphate butyryltransferase, phosphoenolpyruvate-protein kinase (PTS system enzyme I), fumarate hydratase -terminal domain of FumA E.coli), fumarate hydratase, subunit A (N-terminal domain of FumA E.coli), adenylate kinase, tryptophan synthase alpha chain, tryptophan synthase beta chain, phosphoribosylanthranilate isomerase, indole-3-glycerol phosphate synthase , anthranilate phosphoribosyltransferase, putative anthranilate synthase component II, para-aminobenzoate synthase component I, acetolactate synthase large subunit, dihydroxyacid dehydratase, isopropylmalate dehydrogenase, 3-isopropylmalate dehydratase, small subunit, 3-isopropylmalate dehydratase, large subtolacate, 2-isopropylmalate synthase small subunit, predicted transcriptional regulator, homolog of Bvg accessory factor, formate--t etrahydrofolate ligase, hypoxanthine-guanine phosphoribosyltransferase, phosphoribosylpyrophosphate synthetase, glucosamine-1-phosphate N-acetyltransferase, possible glutamate racemase, pyrroline-5-carboxylate reductase, glutamate 5-kinase, gamma-glutamyl phosphate reductase, tanucleotide subductase alphaduct subunit, NADH-dependent butanol dehydrogenase B (BDH II), NADH-dependent butanol dehydrogenase A (BDH I), possible cardiolipin synthase (phospholipase D family), alanine racemase, possible homocysteine S-methyltransferase, alcohol dehydrogenase, low specificity L-threonine aldolase, PTS system, (possibly glucose-specific) IIBC component, 6-phospho-alpha-glucosidase, PTS system, (possibly glucose-specific) IIA component, 3-oxoacyl-acyl carrier protein reductase, GMP reductase, UDP-N- acetylglucosamine enolpyruvyl transferase, lactate dehydrogenase, acetyl-CoA carboxylase alpha subunit, acetyl-CoA carboxylase beta subunit, biotin carboxyl ase, hydroxymyristoyl- (acyl carrier protein) dehydratase, biotin carboxyl carrier protein of acetyl-CoA carboxylase, 3-oxoacyl- (acyl-carrier-protein) synthase I, 3-ketoacyl-acyl carrier protein reductase, malonyl CoA-acyl carrier protein transacylase, trans-2-enoyl-ACP reductase II, 3-oxoacyl- [acyl-carrier-protein] synthase III, adenylosuccinate synthase, phosphatidylglycerophosphate synthase, dihydrodipicolinate synthase, dihydroxy-acid dehydratase, GTP cyclohydrolase I, acetolactate bethta subunit -glucosidase, pyruvate decarboxylase, alcohol dehydrogenase / acetaldehyde dehydrogenase, fructose-bisphosphate aldolase class I, mannose-specific phosphotransferase system component IIAB, mannose / fructose-specific phosphotransferase system component IIC, mannose-specific phosphotransferase coacetylase acetyl thiolase), 3-oxoacyl-acyl-carrier protein synthase, alcohol dehydrogenase / acetaldehyde dehydrogenase, butyrate-acetoacetat e CoA-transferase subunit A, butyrate-acetoacetate CoA-transferase subunit B and acetoacetate decarboxylase.

본 발명에 있어서 또한, 상기 부탄올 생성 미생물의 대사특성 분석용 대사 네트워크 모델은 하기 표 1의 유전자-단백질-반응식 (Gene-Protein-Reaction: GPR)관계를 포함하는 것을 특징으로 할 수 있다:In the present invention, the metabolic network model for metabolism analysis of the butanol-producing microorganism may be characterized by including the Gene-Protein-Reaction (GPR) relationship of Table 1 below:

<표 1> 구축된 대사 네트워크에 사용된 GPR 관계Table 1 GPR Relationships Used in Constructed Metabolic Networks

Figure 112009022497119-PAT00001
Figure 112009022497119-PAT00001

Figure 112009022497119-PAT00002
Figure 112009022497119-PAT00002

Figure 112009022497119-PAT00003
Figure 112009022497119-PAT00003

Figure 112009022497119-PAT00004
Figure 112009022497119-PAT00004

Figure 112009022497119-PAT00005
Figure 112009022497119-PAT00005

Figure 112009022497119-PAT00006
Figure 112009022497119-PAT00006

Figure 112009022497119-PAT00007
Figure 112009022497119-PAT00007

Figure 112009022497119-PAT00008
Figure 112009022497119-PAT00008

Figure 112009022497119-PAT00009
Figure 112009022497119-PAT00009

Figure 112009022497119-PAT00010
Figure 112009022497119-PAT00010

Figure 112009022497119-PAT00011
Figure 112009022497119-PAT00011

Figure 112009022497119-PAT00012
Figure 112009022497119-PAT00012

Figure 112009022497119-PAT00013
Figure 112009022497119-PAT00013

Figure 112009022497119-PAT00014
Figure 112009022497119-PAT00014

Figure 112009022497119-PAT00015
Figure 112009022497119-PAT00015

Figure 112009022497119-PAT00016
Figure 112009022497119-PAT00016

Figure 112009022497119-PAT00017
Figure 112009022497119-PAT00017

Figure 112009022497119-PAT00018
Figure 112009022497119-PAT00018

Figure 112009022497119-PAT00019
Figure 112009022497119-PAT00019

Figure 112009022497119-PAT00020
Figure 112009022497119-PAT00020

Figure 112009022497119-PAT00021
Figure 112009022497119-PAT00021

Figure 112009022497119-PAT00022
Figure 112009022497119-PAT00022

Figure 112009022497119-PAT00023
Figure 112009022497119-PAT00023

Figure 112009022497119-PAT00024
Figure 112009022497119-PAT00024

Figure 112009022497119-PAT00025
Figure 112009022497119-PAT00025

Figure 112009022497119-PAT00026
Figure 112009022497119-PAT00026

Figure 112009022497119-PAT00027
Figure 112009022497119-PAT00027

Figure 112009022497119-PAT00028
Figure 112009022497119-PAT00028

Figure 112009022497119-PAT00029
Figure 112009022497119-PAT00029

Figure 112009022497119-PAT00030
Figure 112009022497119-PAT00030

Figure 112009022497119-PAT00031
Figure 112009022497119-PAT00031

본 발명은 다른 관점에서, 상기 대사 네트워크 모델을 이용하는 것을 특징으로 하는 부탄올 생성 미생물의 대사특성분석방법에 관한 것이다. 상기 부탄올 생성 미생물은 클로스트리듐 속임을 특징으로 할 수 있다. 상기 대사특성은 대사흐름인 것을 특징으로 할 수 있으며, 이때 다음 단계를 포함하는 것을 특징으로 할 수 있다:In another aspect, the present invention relates to a method for analyzing metabolic characteristics of a butanol-producing microorganism, characterized in that the metabolic network model is used. The butanol producing microorganism may be characterized as belonging to the genus Clostridium. The metabolic properties may be characterized as metabolic flow, wherein the metabolic flow may include the following steps:

(a) 상기 대사 네트워크 모델 중 사용가능한 탄소원 및 질소원에 대한 수송 반응식을 보정하는 단계; 및(a) calibrating the transport scheme for available carbon and nitrogen sources in the metabolic network model; And

(b) 상기 탄소원 및 질소원을 이용하여 대사흐름분석하는 단계.(b) metabolic flow analysis using the carbon and nitrogen sources.

본 발명은 다른 관점에서, 상기 대사 네트워크 모델의 토폴로지(topology)를 분석하는 방법에 관한 것이다. In another aspect, the present invention relates to a method for analyzing the topology of the metabolic network model.

본원에서, 대사 네트워크의 토폴로지 분석이란, 대사 네트워크를 대사산물은 노드(node)로, 두 대사 산물을 매개하는 효소반응식을 에지(edge)로 표현하고, 그 래프 이론에서 사용되는 토폴로지(topology) 분석방법을 이용하여 대사 네트워크의 특징을 알아내는 방법이다. 에지와 노드는 그래프 이론(graph theory)에서 사용되는 용어로, 노드(node)는 네트워크를 구성하는 일련의 점을 나타내며, 에지(edge)는 두 개의 node를 연결하는 선을 나타낸다.As used herein, topology analysis of a metabolic network refers to a metabolic network represented by a node, a metabolite as a node, and an enzyme reaction that mediates two metabolites as an edge, and used in topology theory. This method is used to find out the characteristics of the metabolic network. Edges and nodes are terms used in graph theory, where nodes represent a series of points that make up a network, and edges represent lines connecting two nodes.

본 발명에 따른 대사 네트워크의 토폴로지 분석을 통하여 다음과 같은 정보를 얻을 수 있다. The following information can be obtained through topology analysis of the metabolic network according to the present invention.

커넥티비티(Connectivity): 노드(node)가 다른 노드(node)와 에지(edge)로 연결된 개수를 의미하며, 이값이 클수록 이 대사 산물이 대사 네트워크에서 많이 이용된다는 것을 의미하므로 추후 실제 미생물에서 대사 경로를 조작할 때 유용한 정보로 사용될 수 있다.Connectivity: The number of nodes connected by edges with other nodes. The larger this value means that this metabolite is used more frequently in the metabolic network. Can be used as useful information when operating.

네트워크 지름(Network diameter): 임의의 두 노드(node)를 잇는데 사용된 에지(edge)의 개수 중 최대값을 나타내는 것으로, 대사 네트워크의 크기를 나타내는 정보이다.Network diameter: Represents the maximum value of the number of edges used to connect two arbitrary nodes and is information indicating the size of the metabolic network.

평균 경로 길이(Average path length): 한 노드(node)에서 다른 노드(node)로 가는 데 사용되는 에지(edge)의 개수는 다양할 수가 있으므로, 대사 네트워크의 노드(node) 중에서 2개를 뽑아 가장 에지(edge)가 적게 들어가는 경로를 찾을 수가 있다. 이때, 평균 경로 길이(average path length)란 임의의 두 개의 노드(node)에서 이러한 값들을 모두 계산하여 평균을 낸 것을 의미하며, 이값이 크면 클수록 한 대사 산물을 다른 대사 산물로 전환하는데 있어서 많은 단계를 거쳐야 한다는 것을 의미한다.Average path length: The number of edges used to get from one node to another can vary, so pick two out of the nodes in the metabolic network. You can find a path with fewer edges. In this case, the average path length means that these values are calculated and averaged at any two nodes. The larger this value is, the more steps in converting one metabolite to another metabolite. That means you have to go through.

본 발명에 있어서, 상기 토폴로지의 분석은 다음의 클로스터 계수 Cn을 이용하는 것을 특징으로 할 수 있다: In the present invention, the analysis of the topology may be characterized by using the following clotor coefficient Cn :

Cn = N/M Cn = N / M

N : n번째 노드와 이웃한 노드간의 연결된 선의 개수 N : Number of connected lines between nth node and neighboring nodes

M : n번째 노드와 이웃한 노드간의 최대한으로 연결 가능한 선의 개수 M : the maximum number of possible lines between nth node and neighboring nodes

또는, 다음의 클로스터 계수 Cn을 이용할 수 있다. Alternatively, the following Cluster coefficient Cn can be used.

Cn = 2en/(kn(kn-1)) (단일방향으로 구성된 네트워크의 경우) Cn = 2en / (kn (kn-1)) (for unidirectional networks)

Cn = en/(kn(kn-1)) (양방향으로 구성된 네트워크의 경우) Cn = en / (kn (kn-1)) (for bidirectional networks)

kn : n번째 노드의 인접한 연결된 노드의 개수 kn : number of contiguous connected nodes in nth node

en : n번째 노드의 모든 이웃 중 연결된 쌍의 수. en : The number of connected pairs among all neighbors of the nth node.

본 발명은 다른 관점에서, 상기 대사네트워크 모델을 이용하는 것을 특징으로 하는 부탄올 생성 미생물의 특정 대사산물의 생산을 증가시키기 위한 결실 표적 효소 또는 그 유전자의 스크리닝 방법에 관한 것이다. 본 발명의 일 구체예에서는 부탄올 생성 미생물 중 클로스트리듐(Clostridium) 속 미생물인 C. acetobutylicum의 대사 네트워크 모델을 이용하였다. 개략적인 과정은 도 1에 도시하고 있으며, 각 단계에 대한 구체적인 설명은 이하와 같다. In another aspect, the present invention relates to a method for screening a deletion target enzyme or a gene thereof for increasing the production of a specific metabolite of a butanol producing microorganism characterized by using the metabolic network model. In one embodiment of the present invention, a metabolic network model of C. acetobutylicum , a microorganism of the genus Clostridium , was used as a butanol-producing microorganism. A schematic process is shown in FIG. 1 and the detailed description of each step is as follows.

구축된 C. acetobutylicum의 대사 네트워크 모델에서 효소반응식들을 하나 또는 둘 이상씩 차단하며 선형계획법을 적용하되, 특정 대사산물의 생성능이 증가하는 경우 차단된 효소 반응식의 효소를 결실 표적효소로 선정하거나, 이를 코딩하는 유전자를 결실 표적유전자로 선정한다. 이때, 상기 특정 대사산물은 부탄올, 아 세트산, 부틸레이트(butyrate), 에탄올 및 아세트산으로 구성된 군에서 선택되는 것일 수 있으나, 다음에서는 부탄올 생산능을 증가시키기 위한 경우로 설명한다. 본 발명은 상세하게는 다음의 단계를 포함할 수 있다.In the established metabolic network model of C. acetobutylicum , one or more enzyme reactions are blocked and a linear scheme is applied. When the ability to produce a specific metabolite increases, the enzyme of the blocked enzyme reaction is selected as a deletion target enzyme, or The coding gene is selected as the deletion target gene. At this time, the specific metabolite may be selected from the group consisting of butanol, acetic acid, butyrate (butyrate), ethanol and acetic acid, but the following will be described as a case for increasing the butanol production capacity. The present invention may include the following steps in detail.

(1) 상기의 보정된 대사 네트워크를 구성하고 있는 효소 반응식들에 대하여 세포 성장 반응식의 반응속도 또는 대사흐름값은 양이 되도록 초기 조건을 설정하고 상기 효소 반응식들을 한 개씩 또는 둘 이상의 조합을 구성하여 차단시키면서 선형계획법을 적용하였을 때, 차단하지 않았을 때에 비하여 부탄올 생성능을 증가시키는 경우의 차단된 효소 반응식들을 결실 표적 효소 후보(I)로 선정한다.(1) Set the initial conditions such that the reaction rate or metabolic flow rate of the cell growth reaction equation is positive with respect to the enzyme reaction equations constituting the corrected metabolic network, and configure one or more combinations of the enzyme reaction equations one by one. Blocked enzymatic reactions with increased butanol production when blocking and linear programming were applied were selected as deletion target enzyme candidates (I).

이때, 상기 구축된 대사 네트워크를 수학적으로 표현하기 위하여, 구축된 대사 네트워크 모델을 구성하고 있는 모든 대사산물, 상기 대사산물의 대사경로 및 상기 대사경로에서의 화학양론 매트릭스 S (stoichiometric matrix)(Sij, j 번째 반응에서 i 번째 대사산물의 시간에 따른 화학양론 계수)를 이용하여, 대사흐름 벡터(νj, j 번째 대사반응의 대사흐름)를 계산할 수 있다.In this case, in order to mathematically express the constructed metabolic network, all metabolites constituting the constructed metabolic network model, metabolic pathways of the metabolites and stoichiometric matrix S (stoichiometric matrix) in the metabolic pathways ( Sij, Using the stoichiometric coefficient of the i- th metabolite over time in the j- th reaction, the metabolic flow vector ( νj , the metabolic flow of the j- th metabolic reaction) can be calculated.

여기서, 시간에 따른 대사산물 농도 X의 변화는 모든 대사 반응의 흐름의 합으로 나타낼 수 있다. 시간에 따른 X의 농도 변화량이 없다고 가정하면, 즉 준정상 상태의 가정 하에서, 시간에 따른 대사산물 농도의 변화량은 아래의 수학식 1로 정의될 수 있다.Here, the change in the metabolite concentration X over time can be expressed as the sum of the flows of all metabolic reactions. Assuming that there is no change in concentration of X over time, that is, under the assumption of quasi-steady state, the change in metabolite concentration over time can be defined by Equation 1 below.

Figure 112009022497119-PAT00032
Figure 112009022497119-PAT00032

(여기서, : 시간에 따른 X의 변화량, X: 대사산물의 농도, t: 시간)Where : Change in X over time, X : concentration of metabolite, t: time)

상기 구성된 화학량론 행렬에서 최적화, 즉 최대화 또는 최소화 하고자 하는 반응식을 목적함수로 설정하고 선형계획법(Linear programming)을 이용하여 세포 내의 대사흐름을 예측한다(Kim et al., Mol Biosyst. 4(2):113, 2008). 본 발명의 일 구현예에서는 행렬 S에서 세포의 구성성분을 나타내는 효소 반응식을 목적함수로서 설정함으로써, 세포 생장 속도를 최적화 하였다. In the constructed stoichiometric matrix, the reaction equation to be optimized, ie maximized or minimized, is set as the objective function and the metabolic flow in the cell is predicted using linear programming (Kim et al., Mol Biosyst. 4 (2)). : 113, 2008). In one embodiment of the present invention, the cell growth rate was optimized by setting the enzyme reaction equation representing the cell constituents in the matrix S as the objective function.

그리고, 상기 대사흐름분석을 위한 선형계획법을 적용함에 있어서는, 실제 이 균주의 발효에서 사용된 영양분만이 공급된다는 가정 하에 실행해야 한다. 일반적으로 사용하는 복합 배지(complex medium)은 그 각각의 구성 성분을 정량적으로 파악하는 것이 매우 어려우므로, 본 발명에서는 기존에 최적화된 합성 배지(synthetic medium)를 이용하여 발효하였고, 이 결과를 모델의 검증에 사용하였다. In addition, in applying the linear programming method for metabolic flow analysis, it should be carried out on the assumption that only nutrients actually used in fermentation of this strain are supplied. In general, the complex medium used is very difficult to quantitatively identify each component thereof, and in the present invention, the present invention was fermented using a synthetic medium optimized for the present invention. Used for verification.

본 발명에서, 상기 구축된 대사 네트워크 모델에서 효소 반응식 차단 시뮬레이션은 상기 대사흐름 벡터(ν)에서 차단시키고자 하는 효소 반응식의 해당 대사흐름을 0(= νj)으로 고정시킨 상태에서 세포 생장 속도를 목적함수로 설정하고 이를 최대화하도록 선형계획법을 실행한다. In the present invention, the enzyme reaction blocking simulation in the constructed metabolic network model aims at the cell growth rate in a state in which the metabolic flow of the enzyme reaction to be blocked in the metabolic flow vector ν is fixed at 0 (= ν j ). Set up as a function and run linear programming to maximize it.

(2) 상기 C. acetobutylicum 대사 네트워크를 구성하고 있는 효소 반응식들에 대하여 세포 성장 반응식의 대사속도 또는 대사흐름값을 0으로 고정하고 상기 효소 반응식들을 한 개씩 또는 여러 개의 조합을 구성하여 차단시키면서 용매 생성식의 흐름값을 최대화하는 선형계획법을 적용하였을 때, 차단하지 않았을 때에 비 해 부탄올 생성능을 증가시키는 경우의 차단된 효소 반응식들을 2차 결실 표적효소 후보(II)로 선정한다. 이는 용매 생성이 안정기에서 활발히 일어난다는 기존의 실험 결과들을 모델에 반영하기 위함이다.(2) Solvent generation by fixing the metabolic rate or metabolic flow rate of the cell growth reaction formula to 0 with respect to the enzyme reactions constituting the C. acetobutylicum metabolism network and blocking the enzyme reactions by constructing one or several combinations When applying the linear programming method to maximize the flow value of the equation, the blocked enzyme reactions for increasing butanol production capacity are selected as secondary deletion target enzyme candidates (II) when not blocked. This is to reflect the existing experimental results that the generation of solvent is active in the ballast to the model.

(3) 상기 (1) 및 (2) 단계에서 얻은 결과들인 결실 표적 후보(I) 및 2차 결실 표적효소(II)을 비교하여 중복되는 결실 표적 효소 후보들을 최종 결실 표적 효소군으로 선정하거나, 이를 코딩하는 유전자를 결실 표적유전자로 선정한다. 이 단계는 대사흐름분석을 통하여 전체적인 산 생성기와 용매 생성기의 대사 흐름을 살펴봄으로써 부탄올 생산에 가장 적합한 결실 표적 후보군을 통합하는 단계이다. 다만, 상기에서 (1) 단계만을 수행하여 결실 표적을 수득하는 것도 가능하다. (3) comparing the deletion target candidates (I) and secondary deletion target enzymes (II), which are the results obtained in the above steps (1) and (2), to select overlapping deletion target enzyme candidates as final deletion target enzyme groups, or The gene encoding this is selected as the deletion target gene. In this step, metabolic flow analysis examines the overall metabolic flow of acid and solvent generators to incorporate the best candidate deletion targets for butanol production. However, it is also possible to obtain a deletion target by performing only step (1) above.

본 발명은 다른 관점에서, 부탄올 생성 미생물에서 상기 방법에 의하여 스크리닝된 결실 표적유전자를 결실시키는 것을 특징으로 하는 특정 대사산물의 생성능이 증가된 변이 미생물의 제조방법 및 이에 의하여 제조된 변이 미생물에 관한 것이다.In another aspect, the present invention relates to a method for producing a mutant microorganism having an increased ability to produce a specific metabolite, wherein the deletion target gene screened by the method is deleted in a butanol producing microorganism and a mutant microorganism produced thereby. .

상기 결실 표적유전자의 결실은 상동성 재조합(homologous recombination)에 의해 수행되는 것을 특징으로 할 수 있고, 상기 상동성 재조합은 결실된 표적유전자를 포함하는 유전자 교환벡터를 사용하여 수행되는 것을 특징으로 할 수 있다. The deletion of the deleted target gene may be characterized by being performed by homologous recombination, and the homologous recombination may be performed using a gene exchange vector comprising the deleted target gene. have.

본 발명은 또 다른 관점에서, 상기 변이 미생물을 이용한 특정 대사산물의 제조방법에 관한 것이다. 이는 상기 변이 미생물을 배양하는 단계; 및 상기 배양액으로부터 특정 대사산물을 회수하는 단계를 포함하는 것을 특징으로 할 수 있다.In another aspect, the present invention relates to a method for producing a specific metabolite using the mutant microorganism. This comprises culturing the mutant microorganism; And recovering a specific metabolite from the culture solution.

한편, 본 발명의 일 실시예에서는, 상기 구축된 대사 네트워크 모델을 이용 하여 유전자 결실 균주의 대사흐름을 예측한 결과, 실제 실험치에 거의 근접하게 나타났으며, 이에 본 발명에 따른 대사 네트워크 모델은 부탄올 생성 미생물의 대사 흐름예측에 유용한 것을 확인하였다.On the other hand, in one embodiment of the present invention, the metabolic flow of the gene deletion strain using the constructed metabolic network model, as a result, appeared almost close to the actual experimental value, the metabolic network model according to the present invention is butanol It was found to be useful for predicting metabolic flow of the produced microorganisms.

이에 본 발명은 다른 관점에서, 상기 대사 네트워크 모델을 이용한 부탄올 생성 미생물의 대사흐름 예측방법에 관한 것이다. 이때, 바람직하게는 기질의 흡수속도를 선행 입력값으로 한 선행계획법 또는 이차계획법을 이용하는 것을 특징으로 할 수 있다. Accordingly, the present invention relates to a method for predicting metabolic flow of butanol-producing microorganisms using the metabolic network model. In this case, it is preferable to use the prior planning method or the secondary planning method with the absorption rate of the substrate as a prior input value.

아울러, 상기 대사 네트워크 모델을 이용하여 부탄올 생성 미생물의 용매생성기의 대사흐름을 예측하는 경우, 다음의 반응식 Ⅱ을 이용할 수 있다: In addition, when predicting the metabolic flow of the solvent generator of the butanol producing microorganism using the metabolic network model, the following scheme II can be used:

[반응식 Ⅱ]Scheme II

Figure 112009022497119-PAT00033
Figure 112009022497119-PAT00033

제한 조건:Restrictions:

S·ν=0, ν minνν max S ν = 0, ν minνν max

여기서, ν acid는 산 생성기에서의 대사흐름 벡터이고; ν sol는 용매 생성기에서의 대사흐름 벡터이고;

Figure 112009022497119-PAT00034
는 용매 생성기에서 조효소 A 전달 효소에 의한 부티르산의 흡수 속도이고;
Figure 112009022497119-PAT00035
는 용매 생성기에서 조효소 A 전달 효소에 의한 아세트산의 흡수 속도이고;
Figure 112009022497119-PAT00036
는 산 생성기에서 부티르산의 생성 속도이고;
Figure 112009022497119-PAT00037
는 산 생성기에서 아세트산의 생성 속도임.Where ν acid is the metabolic flow vector at the acid generator; ν sol is a metabolic flow vector in the solvent generator;
Figure 112009022497119-PAT00034
Is the rate of uptake of butyric acid by the coenzyme A transfer enzyme in the solvent generator;
Figure 112009022497119-PAT00035
Is the rate of absorption of acetic acid by the coenzyme A transfer enzyme in the solvent generator;
Figure 112009022497119-PAT00036
Is the rate of production of butyric acid in the acid generator;
Figure 112009022497119-PAT00037
Is the rate of acetic acid production in the acid generator.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

특히, 하기 실시예에서는 C. acetobutylicum를 모델 시스템으로 이용한 방법에 대하여만 예시되어 있으나, C. acetobutylicum 이외의 다른 부탄올 생성 미생물의 경우에도 적용된다는 것은 본 명세서에 개시된 내용으로부터 당업자에게 자명하다. In particular, the following examples are only illustrated for the method using C. acetobutylicum as a model system, it will be apparent to those skilled in the art from the disclosure herein that it is also applied to butanol producing microorganisms other than C. acetobutylicum .

실시예 1: Example 1: C. acetobutylicumC. acetobutylicum 의 세포 조성 분석Cell composition analysis

각종 문헌의 정보와, 문헌 정보가 없는 부분들은 실제 발효로 얻은 시료를 직접 분석하거나 유연 관계가 가까운 균주로부터 참조하여 얻은 정보를 이용하여 대사 네트워크에 필수적인 세포의 생장식을 구성하였다.The information of various documents and parts without the literature information constituted cell growth essential for metabolic networks by directly analyzing samples obtained by actual fermentation or using information obtained from references with close strains.

첫째로, 세포를 구성하는 거대 분자의 조성(macromolecular composition)은 클로스트리듐 속과 유연 관계가 가깝고 외양도 유사한 바실러스(Bacillus) 속 미생물 중 B. subtilis의 조성을 차용하였다(Oh et al., J. Biol. Chem., 282:28791-9, 2007). 여기에서는 세포는 단백질, RNA, DNA, 인지질(phospholipids), 리포테이코산(lipoteichoic acid), 세포벽(peptidoglycan 및 다당류), 기타 미량 성분으로 나뉜다고 가정하였다.First, the macromolecular composition of the cells borrowed the composition of B. subtilis from Bacillus sp . Microorganisms that are similar in appearance and similar to Clostridium genus (Oh et al., J. Biol. Chem. , 282: 28791-9, 2007). It is assumed here that the cells are divided into proteins, RNA, DNA, phospholipids, lipoteichoic acid, cell walls (peptidoglycan and polysaccharides), and other trace components.

단백질의 아미노산 조성 분석은 실제로 C. acetobutylicum을 발효하여 얻은 시료를 기초과학지원연구원 프로테오믹스팀에 분석을 의뢰하여 얻었다.The amino acid composition analysis of protein was actually obtained by fermenting C. acetobutylicum to proteomics team.

DNA를 구성하는 뉴클레오티드(nucleotide)의 조성 분석은 이미 염기 서열이 완료되었기 때문에 상대적으로 쉽다. 그러나 C. acetobutylicum의 경우 염색체 DNA 외에도 거대 플라스미드(megaplasmid)를 가지고 있으며, 개수(copy number)는 일정하지 않다. 그러나 실제로 계산해 보면 거대 플라스미드 수가 DNA 조성에 미치는 영향은 미미하다고 볼 수 있다. 따라서, DNA의 조성은 염색체 DNA+거대 플라스미드 1개를 기준으로 계산하였다.Analyzing the composition of the nucleotides that make up DNA is relatively easy because the base sequence has already been completed. However, in addition to chromosomal DNA, C. acetobutylicum has a large plasmid (megaplasmid), and the copy number is not constant. In practice, however, the effects of large plasmid numbers on DNA composition are negligible. Therefore, the composition of the DNA was calculated based on one chromosomal DNA + giant plasmid.

RNA는 mRNA, tRNA, rRNA의 비율을 문헌상에 표기된 비율이라 가정하였다. mRNA의 뉴클레오티드 조성은 DNA의 그것과 같다고 가정하고, tRNA와 rRNA는 해당 유전자의 염기 서열을 분석하여 평균값을 취하였다.RNA assumes that the ratio of mRNA, tRNA, rRNA is the ratio indicated in the literature. It is assumed that the nucleotide composition of mRNA is the same as that of DNA, and tRNA and rRNA were averaged by analyzing the nucleotide sequence of the gene.

인지질의 지방산 조성 및 극성기의 조성은 문헌을 참조하였다(Durre, Taylor & Francis, 2005). C. acetobutylicum은 다른 미생물과 달리 plasmalogen이라는 지방 알데히드와 alk-1-enyl 결합을 이룬 지질이 존재한다. 고등 생물에서는 이의 생합성 과정이 잘 알려져 있으나, 세균류에서는 이것이 알려져 있지 않으므로 여기에서는 탄소의 개수와 이중 결합의 개수만 고려하고, 나머지는 일반적인 인지질과 같다고 가정하였다.The fatty acid composition of phospholipids and the composition of polar groups are referred to in the literature (Durre, Taylor & Francis , 2005). Unlike other microorganisms, C. acetobutylicum contains lipids that have alk-1-enyl bonds with fatty aldehydes called plasmalogen. Its biosynthesis is well known in higher organisms, but it is not known in bacteria, so we only consider the number of carbons and the number of double bonds, and assume that the rest is the same as normal phospholipids.

세포벽의 조성은 직접 발효하여 얻은 시료를 독일 DSMZ에 분석을 의뢰하여 구하였으며, 기타 성분들은 대사 네트워크에 큰 영향을 미치는 부분이 아니므로 다른 균주에서 차용하였다.The composition of the cell wall was obtained by direct fermentation of samples obtained by DSMZ, and other components were borrowed from other strains because they did not have a significant effect on the metabolic network.

상기의 방법을 통하여 얻은 정보로부터 하기의 세포 조성을 구하였다.The following cell composition was obtained from the information obtained through the above method.

<표 2>TABLE 2

거대분자 조성Macromolecule Composition 구성요소Component 비율 (% g/g)Rate (% g / g) 단백질protein 52.8452.84 RNARNA 6.556.55 DNADNA 2.62.6 인지질Phospholipids 7.67.6 테이코산Teikosan 3.043.04 세포벽Cell wall 22.4222.42 미량 성분Trace ingredients 4.044.04

<표 3>TABLE 3

DNA (chromosomal + pSOL)DNA (chromosomal + pSOL) 뉴클레오티드Nucleotide 조성 (mol/mol DNA)Composition (mol / mol DNA) 분자량 (g/mol)Molecular Weight (g / mol) mmol/gDNAmmol / gDNA AA 0.3450.345 313.2313.2 1.1181.118 GG 0.1550.155 329.2329.2 0.5010.501 TT 0.3450.345 304.2304.2 1.1181.118 CC 0.1550.155 289.2289.2 0.5010.501

<표 4> TABLE 4

RNA 조성RNA composition 뉴클레오티드Nucleotide rRNArRNA tRNAtRNA mRNAmRNA 가중평균Weighted average 분자량(g/mol)Molecular Weight (g / mol) mmol/gRNAmmol / gRNA 75%75% 20%20% 5%5% AA 0.2840.284 0.2050.205 0.3450.345 0.2710.271 329.2329.2 1.0501.050 GG 0.2950.295 0.3020.302 0.1550.155 0.2900.290 345.2345.2 1.1241.124 TT 0.2120.212 0.2440.244 0.3450.345 0.2250.225 305.2305.2 0.8730.873 CC 0.2090.209 0.2490.249 0.1550.155 0.2140.214 306.2306.2 0.8320.832

<표 5>TABLE 5

인지질 내 전체 지방산 조성 (mol/total fatty acid or aldehyde) in phospholipids Total fatty acid composition in phospholipids (mol / total fatty acid or aldehyde) in phospholipids C14C14 0.0730.073 C16C16 0.5210.521 C16:1C16: 1 0.0650.065 C18C18 0.0360.036 C18:1C18: 1 0.1020.102 C17:cycC17: cyc 0.0220.022 C19:cycC19: cyc 0.1820.182

<표 6>TABLE 6

아미노산 조성Amino acid composition 아미노산amino acid mmol/g 단백질mmol / g protein glygly 1.0781.078 alaala 0.7750.775 valval 1.1721.172 leuleu 0.4290.429 ileile 0.4360.436 metmet 0.7830.783 propro 0.4570.457 phephe 0.1850.185 tyrtyr 0.8010.801 trptrp 0.0430.043 serser 0.4270.427 thrthr 0.4100.410 asnasn 0.1560.156 aspasp 0.1560.156 glngln 0.1270.127 gluglu 0.1270.127 cyscys 1.2161.216 lyslys 0.3360.336 argarg 0.1330.133 hishis 0.1460.146

<표 7>TABLE 7

세포벽 구성Cell wall composition 구성 성분Composition mmol/g 펩티도글리칸mmol / g peptidoglycan N-acetylmuramateN-acetylmuramate 1.1521.152 N-acetylglucosamineN-acetylglucosamine 1.1521.152 alaninealanine 1.7271.727 diaminopimelic aciddiaminopimelic acid 1.1521.152 glutamateglutamate 1.1521.152

<표 8>TABLE 8

테이코산 성분Teicoic acid component 구성 성분Composition mmol/g teichoic acidmmol / g teichoic acid Polyglycerophosphate chainPolyglycerophosphate chain 0.5180.518 LysineLysine 0.1290.129 N-acetylglucosamineN-acetylglucosamine 0.1290.129

<표 9>TABLE 9

세포벽 내 탄수화물 조성Carbohydrate Composition in Cell Walls 구성 성분Composition mmol/g carbohydratemmol / g carbohydrate GlucoseGlucose 2.0582.058 GalactoseGalactose 4.1154.115

상기 조성을 바탕으로 다음과 같은 생장 관련식을 만들었다.Based on the composition, the following growth-related equations were made.

DNA: 1.118 dATP + 0.501 dCTP + 1.118 dTTP + 0.501 dGTP + 4.403 ATP -> 4.403 ADP + 4.403 Pi + 3.236 PPi + DNADNA: 1.118 dATP + 0.501 dCTP + 1.118 dTTP + 0.501 dGTP + 4.403 ATP-> 4.403 ADP + 4.403 Pi + 3.236 PPi + DNA

RNA: 1.05 ATP + 1.124 CTP + 0.873 UTP + 0.832 GTP -> 1.554 ADP + 1.554 Pi + 3.879 PPi + RNARNA: 1.05 ATP + 1.124 CTP + 0.873 UTP + 0.832 GTP-> 1.554 ADP + 1.554 Pi + 3.879 PPi + RNA

단백질(PROTEIN): 0.775 LALA + 0.133 LARG + 0.156 LASN + 0.156 LASP + 1.216 LCYS + 0.127 LGLN + 0.127 LGLU + 1.078 GLY + 0.146 LHIS + 0.436 LILE + 0.429 LLEU + 0.336 LLYS + 0.783 LMET + 0.185 LPHE + 0.457 LPRO + 0.427 LSER + 0.41 LTHR + 0.043 LTRP + 0.801 LTYR + 1.172 LVAL + 37.195 ATP -> 37.195 ADP + 37.195 Pi + PROTEINPROTEIN: 0.775 LALA + 0.133 LARG + 0.156 LASN + 0.156 LASP + 1.216 LCYS + 0.127 LGLN + 0.127 LGLU + 1.078 GLY + 0.146 LHIS + 0.436 LILE + 0.429 LLEU + 0.336 LLYS + 0.783 LMET + 0.185 LPHE + 0.457 LPRO + 0.427 LSER + 0.41 LTHR + 0.043 LTRP + 0.801 LTYR + 1.172 LVAL + 37.195 ATP-> 37.195 ADP + 37.195 Pi + PROTEIN

인지질(PHOSPHOLIPID): 0.8 PE + 0.397 PG + 0.109 CDL -> PHOSPHOLIPIDPhospholipids (PHOSPHOLIPID): 0.8 PE + 0.397 PG + 0.109 CDL-> PHOSPHOLIPID

테이코산(TEICHOIC ACID): 0.518 POLYGP + 0.129 LLYS + 0.129 UACGAM + 0.129 ATP -> TEICH + 0.129 UDP + 0.129 ADP + 0.129 PiTeicoic Acid (TEICHOIC ACID): 0.518 POLYGP + 0.129 LLYS + 0.129 UACGAM + 0.129 ATP-> TEICH + 0.129 UDP + 0.129 ADP + 0.129 Pi

TRACE: 0.215 NAD + 0.192 NADP + 0.199 COA + 0.321 THF + 0.313 FMN + 0.182 FAD -> TRACETRACE: 0.215 NAD + 0.192 NADP + 0.199 COA + 0.321 THF + 0.313 FMN + 0.182 FAD-> TRACE

펩티도글리칸(PEPTIDOGLYCAN): 1.064 UAMR + 1.064 UACGAM + 1.106 LALA + 1.106 LGLU + 1.106 DALADALA + 1.106 26DAP-M + 4.425 ATP -> PEPTIDOGLYCAN + 1.106 DALA + 1.106 UDP + 1.106 UMP + 4.425 ADP + 4.425 PiPEPTIDOGLYCAN: 1.064 UAMR + 1.064 UACGAM + 1.106 LALA + 1.106 LGLU + 1.106 DALADALA + 1.106 26DAP-M + 4.425 ATP-> PEPTIDOGLYCAN + 1.106 DALA + 1.106 UDP + 1.106 UMP + 4.425 ADP + 4.425 Pi

탄수화물(CARBOHYDRATE): 2.058 UDPGLC + 4.115 UDPGAL -> 6.173 UDP + CARBOHYDRATECARBOHYDRATE: 2.058 UDPGLC + 4.115 UDPGAL-> 6.173 UDP + CARBOHYDRATE

또한, 상기 조성으로부터 얻은 세포 성장 반응식은 다음과 같으며, 이를 본 발명에 따른 스크리닝 방법에 적용하였다.In addition, the cell growth scheme obtained from the composition is as follows, which was applied to the screening method according to the present invention.

생장량(BIOMASS): 0.5284 단백질(PROTEIN) + 0.0655 RNA + 0.026 DNA + 0.076 인지질(PHOSPHOLIPID) + 0.1009 펩티도글리칸(PEPTIDOGLYCAN) + 0.08 테이코산(TEICH) + 0.0432 탄수화물(CARBOHYDRATE) + 0.0494 미량성분(TRACE) + 85 ATP -> 생물량(BIOMASS) + 85 ADP + 85 PiBIOMASS: 0.5284 protein (PROTEIN) + 0.0655 RNA + 0.026 DNA + 0.076 phospholipid (PHOSPHOLIPID) + 0.1009 peptidoglycan (PEPTIDOGLYCAN) + 0.08 teicosane (0.0ICH) + 0.0432 CARBOHYDRATE + 0.0494 traces (TRACE) ) + 85 ATP-> BIOMASS + 85 ADP + 85 Pi

실시예 2: Example 2: C. acetobutylicumC. acetobutylicum 의 대사 네트워크 구축 및 대사흐름분석Metabolic network and metabolic flow analysis

컴퓨터를 이용하여 대사산물의 생성능 증대를 위한 C. acetobutylicum의 결실 표적을 예측하기 위하여 다양한 데이터베이스 및 실험결과를 이용하여 게놈 수준의 대사 네트워크를 구축하였다.In order to predict the deletion target of C. acetobutylicum for enhancing metabolite production using a computer, a genome-level metabolic network was constructed using various databases and experimental results.

KEGG(Kanehisa et al.. Nucleic Acids Res, 34:D354, 2006), TransportDB(Ren et al., PLoS Comput. Biol., 1:e27, 2005), MetaCyc(Caspi et al. Nucleic Acids Res., 36:D623, 2008)을 토대로 초기 버전의 대사 네트워크를 구축하였으며 게놈 정보를 토대로 효소 반응식의 방향성, 유전자·단백질의 상관관계를 명확히 하였다. KEGG (Kanehisa et al .. Nucleic Acids Res , 34: D354, 2006), TransportDB (Ren et al., PLoS Comput. Biol. , 1: e27, 2005), MetaCyc (Caspi et al. Nucleic Acids Res. , 36 (D623, 2008), an early version of the metabolic network was established, and genomic information was used to clarify the orientation of the enzyme reaction and the correlation of genes and proteins.

상기 내용에서 이러한 데이터베이스의 내용이 불완전할 수 있음을 밝혔다. 이는 C. acetobutylicum의 경우에도 나타나는데, 몇 가지 예를 들어 설명하고자 한다.It has been found in the above that the contents of this database may be incomplete. This also occurs in the case of C. acetobutylicum , some examples of which will be explained.

첫째로, 대사 데이터베이스상에서는 특정 물질을 대사할 수 없다고 판단되지만 문헌상으로는 이 물질을 기질로 정상적으로 대사하는 경우인데 대표적으로 자일로오스(xylose)의 경우를 들 수 있다. 도 2에 나타난 바와 같이 KEGG에서 C. acetobutylicum의 자당 대사 경로를 살펴보면 자일로오스 섭취하지 못하는 것으로 되어 있다. 그러나 C. acetobutylicum는 자일로오스를 탄소원으로 사용할 수 있음이 실험적으로 밝혀져 있다(Ounine et al., Biotechnol. Lett., 5:605-610, 1983). 따라서 이러한 경우에는 GPR 관계가 명확하지 않더라도 자일로오스의 대사를 위해 필요할 것이라고 생각되는 반응식을 대사 네트워크에 추가하였다.First, the metabolism database is not able to metabolize a specific substance, but in the literature it is a normal metabolism of this substance as a substrate, such as the case of xylose. As shown in FIG. 2, when examining the sucrose metabolism pathway of C. acetobutylicum in KEGG, xylose intake is not considered. However, it has been experimentally shown that C. acetobutylicum can use xylose as a carbon source (Ounine et al., Biotechnol. Lett. , 5: 605-610, 1983). Therefore, in this case, we added a reaction to the metabolic network that we thought would be necessary for the metabolism of xylose, even if the GPR relationship was not clear.

둘째로, GPR 관계는 존재하지 않으나 자체 실험 결과상으로 미루어 볼 때, 그 반응식 또는 유사 반응식이 존재하는 것이 너무나 명확한 경우이다. 아미노산 생합성 경로에서 그러한 경우가 많이 발견된다. 발효에 사용된 배지는 기존에 발표된 최적화된 합성 배지로서(Monot et al., Appl. Environ. Microbiol., 44:1318-1324, 1982), 이는 질소원으로 오로지 암모늄 이온만 사용하는데, 이 때에도 균주의 생장이 정상적으로 일어난다. 따라서 암모늄으로부터 모든 아미노산의 생성이 가능함을 알 수 있으며, 아미노산 생합성 경로의 부족한 반응식들을 추가하였다.Secondly, the GPR relationship does not exist, but from the results of our own experiments, it is too clear that the reaction or similar scheme exists. Many such cases are found in the amino acid biosynthetic pathway. The medium used for fermentation is a previously published optimized synthetic medium (Monot et al., Appl. Environ. Microbiol. , 44: 1318-1324, 1982), which uses only ammonium ions as the nitrogen source, Growth occurs normally. Therefore, it can be seen that the production of all amino acids from ammonium, and added the reaction schemes lacking the amino acid biosynthesis pathway.

C. acetobutylicum의 대사 네트워크는 502개의 생화학 반응식과 479개의 대사 산물로 구성되어 있다. 상기 대사 네트워크의 정보에는 하기 432개의 유전자 정 보가 담겨 있다. 구축된 대사 네트워크의 GPR 관계는 상기 표 1과 같다. 하기 예측되는 결실 표적은 이들 유전자로부터 선별하였다. The metabolic network of C. acetobutylicum consists of 502 biochemical equations and 479 metabolites. Information on the metabolic network contains the following 432 gene information. GPR relationships of the established metabolic network are shown in Table 1 above. The following predicted deletion targets were selected from these genes.

아울러, 목적함수로 사용되는 반응식은 다음과 같다. In addition, the reaction formula used as the objective function is as follows.

성장 반응식: 0.5284 PROTEIN + 0.0655 RNA + 0.026 DNA + 0.076 PHOSPHOLIPID + 0.1009 PEPTIDOGLYCAN + 0.08 TEICH + 0.0432 CARBOHYDRATE + 0.0494 TRACE + 85 ATP -> BIOMASS + 85 ADP + 85 PiGrowth Scheme: 0.5284 PROTEIN + 0.0655 RNA + 0.026 DNA + 0.076 PHOSPHOLIPID + 0.1009 PEPTIDOGLYCAN + 0.08 TEICH + 0.0432 CARBOHYDRATE + 0.0494 TRACE + 85 ATP-> BIOMASS + 85 ADP + 85 Pi

용매 생성식: 2.379568182 ACTAC + 3.729151017 BUAL + ACAL + 4.729151016 NADH -> 2.379568182 ACETONE + 2.379568182 CO2 + 3.729151017 BUOH + ETOH + 4.729151016 NAD (단, 개별적인 아세톤, 부탄올, 에탄올 생성식은 제외함)Solvent Formula: 2.379568182 ACTAC + 3.729151017 BUAL + ACAL + 4.729151016 NADH-> 2.379568182 ACETONE + 2.379568182 CO2 + 3.729151017 BUOH + ETOH + 4.729151016 NAD (except for individual acetone, butanol and ethanol formulas)

한편, 본 발명의 대사 네트워크에서 사용된 대사산물의 약어 및 이의 정식명칭을 정리하면 하기 표 10과 같다.On the other hand, the abbreviation of the metabolite used in the metabolic network of the present invention and its formal name are summarized in Table 10 below.

<표 10> 대사 네트워크에 사용된 대사산물의 약어 정리Table 10 Summary of Abbreviations of Metabolites Used in Metabolic Networks

약어Abbreviation 정식 명칭Official name 10FTHF10FTHF 10-Formyltetrahydrofolate10-Formyltetrahydrofolate 12DAG12DAG 1,2-diacylglycerol1,2-diacylglycerol 13DPG13DPG 1,3-Bisphospho-D-glycerate1,3-Bisphospho-D-glycerate 1APROH1APROH (R)-1-Aminopropan-2-ol(R) -1-Aminopropan-2-ol 1MAG3P1MAG3P 1-acylglycerol-3-phosphate1-acylglycerol-3-phosphate 1PYR5C1PYR5C 1-Pyrroline-5-carboxylate1-Pyrroline-5-carboxylate 23DHDP23DHDP L-2,3-DihydrodipicolinateL-2,3-Dihydrodipicolinate 23DHMB23DHMB (R)-2,3-Dihydroxy-3-methylbutanoate(R) -2,3-Dihydroxy-3-methylbutanoate 23DHMP23DHMP (R)-2,3-Dihydroxy-3-methylpentanoate(R) -2,3-Dihydroxy-3-methylpentanoate 25DRAPP25DRAPP 2,5-Diamino-6-(5'-phosphoribosylamino)-4-pyrimidineone 2,5-Diamino-6- (5'-phosphoribosylamino) -4-pyrimidineone 26DAP-LL26DAP-LL LL-2,6-DiaminoheptanedioateLL-2,6-Diaminoheptanedioate 26DAP-M26DAP-M meso-2,6-Diaminoheptanedioatemeso-2,6-Diaminoheptanedioate 2AHBUT2AHBUT (S)-2-Aceto-2-hydroxybutanoate(S) -2-Aceto-2-hydroxybutanoate 2CPR5P2CPR5P 1-(2-Carboxyphenylamino)-1'-deoxy-D-ribulose 5'-phosphate1- (2-Carboxyphenylamino) -1'-deoxy-D-ribulose 5'-phosphate 2DDA7P2DDA7P 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate 2DDG6P2DDG6P 2-Dehydro-3-deoxy-6-phospho-D-gluconate2-Dehydro-3-deoxy-6-phospho-D-gluconate 2DDGLCN2DDGLCN 2-Dehydro-3-deoxy-D-gluconate2-Dehydro-3-deoxy-D-gluconate 2DHP2DHP 2-Dehydropantoate2-Dehydropantoate 2DR1P2DR1P 2-Deoxy-D-ribose 1-phosphate2-Deoxy-D-ribose 1-phosphate 2HBUT2HBUT 2-Hydroxybutyrate2-Hydroxybutyrate 2IPPM2IPPM 2-Isopropylmaleate2-Isopropylmaleate 2IPPMAL2IPPMAL (2S)-2-Isopropylmalate(2S) -2-Isopropylmalate 2IPSUCC2IPSUCC (2S)-2-Isopropyl-3-oxosuccinate(2S) -2-Isopropyl-3-oxosuccinate 2OBUT2OBUT 2-Oxobutanoate2-Oxobutanoate 2PG2PG 2-Phospho-D-glycerate2-Phospho-D-glycerate 34HPP34HPP 3-(4-Hydroxyphenyl)pyruvate3- (4-Hydroxyphenyl) pyruvate 3DHQ3DHQ 3-Dehydroquinate3-Dehydroquinate 3DHSK3DHSK 3-Dehydroshikimate3-Dehydroshikimate 3H3MOB3H3MOB 3-Hydroxy-3-methyl-2-oxobutanoate3-Hydroxy-3-methyl-2-oxobutanoate 3H3MOP3H3MOP (R)-3-Hydroxy-3-methyl-2-oxopentanoate(R) -3-Hydroxy-3-methyl-2-oxopentanoate 3HBCOA3HBCOA 3-Hydroxybutanoyl-CoA3-Hydroxybutanoyl-CoA 3IG3P3IG3P Indoleglycerol phosphateIndoleglycerol phosphate 3IPPMAL3IPPMAL (2R,3S)-3-Isopropylmalate(2R, 3S) -3-Isopropylmalate 3MOB3MOB 3-Methyl-2-oxobutanoate3-Methyl-2-oxobutanoate 3MOP3MOP 3-Methyl-2-oxopentanoate3-Methyl-2-oxopentanoate 3PG3PG 3-Phospho-D-glycerate3-Phospho-D-glycerate 3PHP3PHP 3-Phosphonooxypyruvate3-Phosphonooxypyruvate 3PSME3PSME 5-O-(1-Carboxyvinyl)-3-phosphoshikimate5-O- (1-Carboxyvinyl) -3-phosphoshikimate 4ABUT4ABUT 4-Aminobutyrate4-Aminobutyrate 4H2KPM4H2KPM 4-Hydroxy-2-ketopimelate4-Hydroxy-2-ketopimelate 4MOP4MOP 4-Methyl-2-oxopentanoate4-Methyl-2-oxopentanoate 4PASP4PASP 4-Phospho-L-aspartate4-Phospho-L-aspartate 4PCYS4PCYS N-((R)-Pantothenoyl)-L-cysteineN-((R) -Pantothenoyl) -L-cysteine 4PPAN4PPAN D-4'-PhosphopantothenateD-4'-Phosphopantothenate 4PPCYS4PPCYS (R)-4'-Phosphopantothenoyl-L-cysteine(R) -4'-Phosphopantothenoyl-L-cysteine 4R5AU4R5AU 4-(1-D-Ribitylamino)-5-aminouracil4- (1-D-Ribitylamino) -5-aminouracil 5AOP5AOP 5-Aminolevulinate5-Aminolevulinate 5APRBU5APRBU 5-Amino-6-(5'-phosphoribosylamino)uracil5-Amino-6- (5'-phosphoribosylamino) uracil 5APRU5 APRU 5-Amino-6-(5'-phosphoribitylamino)uracil5-Amino-6- (5'-phosphoribitylamino) uracil 5FTHF5FTHF 5-Formyltetrahydrofolate 5-Formyltetrahydrofolate 5METRIB5METRIB 5-Methylthio-D-ribose5-Methylthio-D-ribose 5MTHF5MTHF 5-methyltetrahydrofolate5-methyltetrahydrofolate 5PRDMBZ5PRDMBZ N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazoleN1- (5-Phospho-alpha-D-ribosyl) -5,6-dimethylbenzimidazole ACAC AcetateAcetate AC(Ext) AC (Ext) Acetate(Extracellular)Acetate (Extracellular) ACACPACACP Acetyl-[acyl-carrier protein]Acetyl- [acyl-carrier protein] ACALACAL AcetaldehydeAcetaldehyde ACBAACBA Adenosyl cobinamideAdenosyl cobinamide ACBAPACBAP Adenosyl cobinamide phosphateAdenosyl cobinamide phosphate ACBRNDAACBRNDA Adenosyl cobyrinate a,c diamideAdenosyl cobyrinate a, c diamide ACBRNHAACBRNHA Adenosyl cobyrinate hexaamideAdenosyl cobyrinate hexaamide ACCOAACCOA Acetyl-CoAAcetyl-CoA ACETOINACETOIN AcetoinAcetoin ACETOIN(Ext)ACETOIN (Ext) Acetoin(Extracellular)Acetoin (Extracellular) ACETONEACETONE AcetoneAcetone ACETONE(Ext)ACETONE (Ext) Acetone(Extracellular)Acetone (Extracellular) ACGAM(Ext)ACGAM (Ext) N-Acetyl-D-glucosamine(Extracellular)N-Acetyl-D-glucosamine (Extracellular) ACGAM1PACGAM1P N-Acetyl-D-glucosamine 1-phosphateN-Acetyl-D-glucosamine 1-phosphate ACGAM6PACGAM6P N-Acetyl-D-glucosamine 6-phosphateN-Acetyl-D-glucosamine 6-phosphate ACGLUACGLU N-Acetyl-L-glutamateN-Acetyl-L-glutamate ACGLU5PACGLU5P N-Acetyl-L-glutamate 5-phosphateN-Acetyl-L-glutamate 5-phosphate ACGLU5SAACGLU5SA N-Acetyl-L-glutamate 5-semialdehydeN-Acetyl-L-glutamate 5-semialdehyde ACHMSACHMS O-Acetyl-L-homoserineO-Acetyl-L-homoserine ACLACACLAC 2-Acetolactate2-Acetolactate ACORNACORN N-AcetylornithineN-Acetylornithine ACPACP Acyl-carrier proteinAcyl-carrier protein ACSERACSER O-Acetyl-L-serineO-Acetyl-L-serine ACTACACTAC AcetoacetateAcetoacetate ACTACCOAACTACCOA Acetoacetyl-CoAAcetoacetyl-CoA ACTPACTP Acetyl phosphateAcetyl phosphate ADEADE AdenineAdenine ADHHPADHHP Amino-7,8-dihydro-4-hydroxy-6-(diphosphooxymethyl)pteridineAmino-7,8-dihydro-4-hydroxy-6- (diphosphooxymethyl) pteridine ADNADN AdenosineAdenosine ADPADP Adenosine 5'-diphosphateAdenosine 5'-diphosphate ADPGLCADPGLC ADP-glucoseADP-glucose AGDPCBAAGDPCBA Adenosine-GDP-cobinamideAdenosine-GDP-cobinamide AHCYSAHCYS S-Adenosyl-L-homocysteineS-Adenosyl-L-homocysteine AHHMDHPAHHMDHP 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine AHTHDHAHTHDH 2-Amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)dihydropteridine triphosphate2-Amino-4-hydroxy-6- (erythro-1,2,3-trihydroxypropyl) dihydropteridine triphosphate AICARAICAR 1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide1- (5'-Phosphoribosyl) -5-amino-4-imidazolecarboxamide AIRAIR Aminoimidazole ribotideAminoimidazole ribotide AKGAKG 2-Oxoglutarate2-Oxoglutarate AMETAMET S-adenosyl-L-methionineS-adenosyl-L-methionine AMETAAMETA S-AdenosylmethioninamineS-Adenosylmethioninamine AMPAMP Adenosine 5'-monophosphateAdenosine 5'-monophosphate ANTHANTH AnthranilateAnthranilate APROHPAPROHP D-1-Aminopropan-2-ol O-phosphateD-1-Aminopropan-2-ol O-phosphate APSAPS Adenylyl sulfateAdenylyl sulfate ARBZLARBZL N1-(alpha-D-ribosyl)-5,6-dimethylbenzimidazoleN1- (alpha-D-ribosyl) -5,6-dimethylbenzimidazole ARBZL5PARBZL5P N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazoleN1- (5-Phospho-alpha-D-ribosyl) -5,6-dimethylbenzimidazole ARGSUCARGSUC N-(L-Arginino)succinateN- (L-Arginino) succinate ASPSAASPSA L-Aspartate 4-semialdehydeL-Aspartate 4-semialdehyde ATPATP Adenosine 5'-triphosphateAdenosine 5'-triphosphate bALAbALA beta-Alaninebeta-Alanine bDG1PbDG1P beta-D-Glucose 1-phosphatebeta-D-Glucose 1-phosphate bDG6PbDG6P beta-D-Glucose 6-phosphatebeta-D-Glucose 6-phosphate bDGLCbDGLC beta-D-Glucosebeta-D-Glucose bDGLC(Ext)bDGLC (Ext) beta-D-Glucose(Extracellular)beta-D-Glucose (Extracellular) BIOMASS BIOMASS BiomassBiomass BUBU ButyrateButyrate BU(Ext)BU (Ext) Butyrate(Extracellular)Butyrate (Extracellular) BUALBUAL ButyraldehydeButyraldehyde BUCOABUCOA Butyryl-CoAButyryl-coa BUOHBUOH 1-Butanol1-Butanol BUOH(Ext)BUOH (Ext) 1-Butanol(Extracellular)1-Butanol (Extracellular) BUPBUP Butyryl phosphateButyryl phosphate C140-ACPC140-ACP C14:0-[acyl-carrier protein]C14: 0- [acyl-carrier protein] C160-ACPC160-ACP C16:0-[acyl-carrier protein]C16: 0- [acyl-carrier protein] C161-ACPC161-ACP C16:1-[acyl-carrier protein]C16: 1- [acyl-carrier protein] C17CYC-ACPC17CYC-ACP C17:cyclic-[acyl-carrier protein]C17: cyclic- [acyl-carrier protein] C180-ACPC180-ACP C18:0-[acyl-carrier protein]C18: 0- [acyl-carrier protein] C181-ACPC181-ACP C18:1-[acyl-carrier protein]C18: 1- [acyl-carrier protein] C19CYC-ACPC19CYC-ACP C19:cyclic-[acyl-carrier protein]C19: cyclic- [acyl-carrier protein] CACOCACO Cobamide coenzymeCobamide coenzyme CARBOCARBO CarbohydrateCarbohydrate CBASPCBASP N-Carbamoyl-L-aspartateN-Carbamoyl-L-aspartate CBPCBP Carbamoyl phosphateCarbamoyl phosphate CBRNCBRN CobyrinateCobyrinate CBRNDACBRNDA Cob(II)yrinate a,c diamideCob (II) yrinate a, c diamide CDHPRCR6CDHPRCR6 Cobalt-precorrin 6BCobalt-precorrin 6B CDLCDL CardiolipinCardiolipin CDPCDP Cytidine 5'-diphosphateCytidine 5'-diphosphate CDP-DAGCDP-DAG CDP-DiacylglycerolCDP-Diacylglycerol CDPMERY2PCDPMERY2P 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol2-Phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol CDPMERYTHCDPMERYTH 4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol4- (Cytidine 5'-diphospho) -2-C-methyl-D-erythritol CDVCDV CadverineCadverine CHORCHOR ChorismateChorismate CITCIT CitrateCitrate CLB(Ext)CLB (Ext) Cellobiose(Extracellular)Cellobiose (Extracellular) CMPCMP Cytidine-5'-monophosphateCytidine-5'-monophosphate CO2CO2 Carbon dioxideCarbon dioxide CO2(Ext)CO2 (Ext) Carbon dioxide(Extracellular)Carbon dioxide (extracellular) COACOA Coenzyme ACoenzyme a COBALTCOBALT Cobalt ionCobalt ion CORRCORR CorrinoidCorrinoid CPPPG3CPPPG3 Coproporphyrinogen IIICoproporphyrinogen III CPRCR2CPRCR2 Cobalt-precorrin 2Cobalt-precorrin 2 CPRCR3CPRCR3 Cobalt-precorrin 3Cobalt-precorrin 3 CPRCR4CPRCR4 Cobalt-precorrin 4Cobalt-precorrin 4 CPRCR5ACPRCR5A Cobalt-precorrin 5ACobalt-precorrin 5A CPRCR5BCPRCR5B Cobalt-precorrin 5BCobalt-precorrin 5B CPRCR6CPRCR6 Cobalt-precorrin 6Cobalt-precorrin 6 CPRCR7CPRCR7 Cobalt-precorrin 7Cobalt-precorrin 7 CPRCR8CPRCR8 Cobalt-precorrin 8Cobalt-precorrin 8 CRTCOACRTCOA Crotonoyl-CoACrotonoyl-coa CTPCTP Cytidine 5'-triphosphateCytidine 5'-triphosphate CYSTCYST CystathionineCystathionine dADNdADN DeoxyadenosineDeoxyadenosine dADPdADP 2'-Deoxyadenosine 5'-diphosphate2'-Deoxyadenosine 5'-diphosphate DALADALA D-AlanineD-Alanine DALADALADALADALA D-Alanyl-D-AlanineD-Alanyl-D-Alanine dAMPdAMP 2'-Deoxyadenosine 5'-phosphate2'-Deoxyadenosine 5'-phosphate DAPTPDAPTP 2,5-Diaminopyrimidine nucleoside triphosphate2,5-Diaminopyrimidine nucleoside triphosphate DATHAO DATHAO 2,5-Diamino-6-(5'-triphosphoryl-3',4'-trihydroxy-2'-oxopentyl)-amino-4-oxopyrimidine2,5-Diamino-6- (5'-triphosphoryl-3 ', 4'-trihydroxy-2'-oxopentyl) -amino-4-oxopyrimidine dATPdATP 2'-Deoxyadenosine 5'-triphosphate2'-Deoxyadenosine 5'-triphosphate DB4PDB4P 3,4-Dihydroxy-2-butanone 4-phosphate3,4-Dihydroxy-2-butanone 4-phosphate DCAMPDCAMP N6-(1,2-Dicarboxyethyl)-AMPN6- (1,2-Dicarboxyethyl) -AMP dCDPdCDP 2'-Deoxycytidine 5'-diphosphate2'-Deoxycytidine 5'-diphosphate dCMPdCMP 2'-Deoxycytidine 5'-monophosphate2'-Deoxycytidine 5'-monophosphate dCTPdCTP 2'-Deoxycytidine 5'-triphosphate2'-Deoxycytidine 5'-triphosphate dGDPdGDP 2'-Deoxyguanosine 5'-diphosphate2'-Deoxyguanosine 5'-diphosphate DGLUDGLU D-GlutamateD-Glutamate dGTPdGTP 2'-Deoxyguanosine 5'-triphosphate2'-Deoxyguanosine 5'-triphosphate DHAPDHAP Dihydroxyacetone phosphateDihydroxyacetone phosphate DHFDHF DihydrofolateDihydrofolate DHNPDHNP 2-Amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine2-Amino-4-hydroxy-6- (D-erythro-1,2,3-trihydroxypropyl) -7,8-dihydropteridine DHNPPDHNPP Dihydroneopterin phosphateDihydroneopterin phosphate DHOR-SDHOR-S (S)-Dihydroorotate(S) -Dihydroorotate DHPTDHPT DihydropteroateDihydropteroate dINSdINS DeoxyinosineDeoxyinosine DMBZIDDMBZID DimethylbenzimidazoleDimethylbenzimidazole DMLZDMLZ 6,7-Dimethyl-8-(1-D-ribityl)lumazine6,7-Dimethyl-8- (1-D-ribityl) lumazine DMMOHCOADMMOHCOA 2,6-Dimethyl-5-methylene-3-oxo-heptanoyl-CoA2,6-Dimethyl-5-methylene-3-oxo-heptanoyl-CoA DMPPDMPP Dimethylallyl diphosphateDimethylallyl diphosphate DNADNA DNADNA DNADDNAD Deamino-NAD+Deamino-NAD + DPCOADPCOA Dephospho-CoADephospho-CoA DPHEDPHE D-PhenylalanineD-Phenylalanine DRIBDRIB D-RiboseD-Ribose DRU5PDRU5P D-Ribulose 5-phosphateD-Ribulose 5-phosphate dTDPdTDP Deoxythymidine 5'-diphosphateDeoxythymidine 5'-diphosphate dTMPdTMP Deoxythymidine 5'-phosphateDeoxythymidine 5'-phosphate dTTPdTTP Deoxythymidine 5'-triphosphateDeoxythymidine 5'-triphosphate dUDPdUDP 2'-Deoxyuridine 5'-diphosphate2'-Deoxyuridine 5'-diphosphate dUMPdUMP 2'-Deoxyuridine 5'-phosphate2'-Deoxyuridine 5'-phosphate dUTPdUTP 2'-Deoxycytidine 5'-triphosphate2'-Deoxycytidine 5'-triphosphate DXU5PDXU5P D-Xylulose 5-phosphateD-Xylulose 5-phosphate DXYLDXYL D-XyloseD-Xylose DXYL(Ext)DXYL (Ext) D-Xylose(Extracellular)D-Xylose (Extracellular) DXYLUDXYLU D-XyluloseD-Xylulose dXYLU5PdXYLU5P 1-Deoxy-D-xylulose 5-phosphate1-Deoxy-D-xylulose 5-phosphate E4PE4P D-Erythrose 4-phosphateD-Erythrose 4-phosphate EIG3PEIG3P D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphateD-erythro-1- (Imidazol-4-yl) glycerol 3-phosphate ETOHETOH EthanolEthanol ETOH(Ext)ETOH (Ext) Ethanol(Extracellular)Ethanol (Extracellular) F1PF1P D-Fructose 1-phosphateD-Fructose 1-phosphate F6PF6P beta-D-Fructose 6-phosphatebeta-D-Fructose 6-phosphate FADFAD Flavin adenine dinucleotideFlavin adenine dinucleotide FAPTPFAPTP Formamidopyrimidine nucleoside triphosphateFormamidopyrimidine nucleoside triphosphate Fd(Ox)Fd (Ox) Oxidized ferredoxinOxidized ferredoxin Fd(Red)Fd (Red) Reduced ferredoxinReduced ferredoxin FDPFDP beta-D-Fructose 1,6-bisphosphatebeta-D-Fructose 1,6-bisphosphate Fe2Fe2 Ferrous ionFerrous ion FGAMFGAM 2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine2- (Formamido) -N1- (5'-phosphoribosyl) acetamidine FGARFGAR 5'-Phosphoribosyl-N-formylglycinamide5'-Phosphoribosyl-N-formylglycinamide FMNFMN Flavin mononucleotideFlavin mononucleotide FOL FOL FolateFolate FORMFORM FormateFormate FORM(Ext)FORM (Ext) Formate(Extracellular)Formate (Extracellular) FPRICAFPRICA 1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide1- (5'-Phosphoribosyl) -5-formamido-4-imidazolecarboxamide FRDPFRDP trans,trans-Farnesyl diphosphatetrans, trans-Farnesyl diphosphate FRUFRU D-FructoseD-Fructose FRU(Ext)FRU (Ext) D-Fructose(Extracellular)D-Fructose (Extracellular) FUMFUM FumarateFumarate G1PG1P alpha-D-Glucose 1-phosphatealpha-D-Glucose 1-phosphate G6PG6P alpha-D-Glucose 6-phosphatealpha-D-Glucose 6-phosphate GA3PGA3P D-Glyceraldehyde 3-phosphateD-Glyceraldehyde 3-phosphate GALGAL D-GalactoseD-Galactose GAL(Ext)GAL (Ext) D-Galactose(Extracellular)D-Galactose (Extracellular) GAL1PGAL1P alpha-D-Galactose 1-phosphatealpha-D-Galactose 1-phosphate GAL6PGAL6P D-Galactose6-phosphate D-Galactose6-phosphate GAM1PGAM1P D-Glucosamine 1-phosphateD-Glucosamine 1-phosphate GAM6PGAM6P D-Glucosamine 6-phosphateD-Glucosamine 6-phosphate GARGAR 5'-Phosphoribosylglycinamide5'-Phosphoribosylglycinamide GDPGDP Guanosine 5'-diphosphateGuanosine 5'-diphosphate GDPoRHAMGDPoRHAM GDP-4-dehydro-6-deoxy-L-mannoseGDP-4-dehydro-6-deoxy-L-mannose GDPRHAMGDPRHAM GDP-6-deoxy-L-mannoseGDP-6-deoxy-L-mannose GGRDPGGRDP Geranylgeranyl diphosphateGeranylgeranyl diphosphate GLCGLC Alpha-D-glucoseAlpha-D-glucose GLC(Ext)GLC (Ext) Alpha-D-glucose(Extracellular)Alpha-D-glucose (Extracellular) GLU1SAGLU1SA L-Glutamate 1-semialdehydeL-Glutamate 1-semialdehyde GLU5PGLU5P L-Glutamyl 5-phosphateL-Glutamyl 5-phosphate GLU5SAGLU5SA L-Glutamate 5-semialdehydeL-Glutamate 5-semialdehyde GLYGLY GlycineGlycine GLY(Ext)GLY (Ext) Glycine(Extracellular)Glycine (Extracellular) GLYALDGLYALD D-GlyceraldehydeD-Glyceraldehyde GLYCGLYC GlycerolGlycerol GLYC(Ext)GLYC (Ext) Glycerol(Extracellular)Glycerol (Extracellular) GLYC3PGLYC3P sn-Glycerol 3-phosphatesn-Glycerol 3-phosphate GLYCACGLYCAC D-GlycerateD-Glycerate GLYCALDGLYCALD GlycolaldehydeGlycolaldehyde GLYCALD(Ext)GLYCALD (Ext) Glycolaldehyde(Extracellular)Glycolaldehyde (Extracellular) GlycogenGlycogen GlycogenGlycogen GMPGMP Guanosine 5'-phosphateGuanosine 5'-phosphate GRDPGRDP Geranyl diphosphateGeranyl diphosphate GTH(Ox)GTH (Ox) Glutathione disulfideGlutathione disulfide GTH(Red)GTH (Red) GlutathioneGlutathione GTPGTP Guanosine 5'-triphosphateGuanosine 5'-triphosphate GUAGUA GuanineGuanine H2H2 HydrogenHydrogen H2(Ext)H2 (Ext) Hydrogen(Extracellular)Hydrogen (Extracellular) H2O2H2O2 Hydrogen PeroxideHydrogen Peroxide H2O2(Ext)H2O2 (Ext) Hydrogen Peroxide(Extracellular)Hydrogen Peroxide (Extracellular) HCO3HCO3 BicarbonateBicarbonate HDMHCOAHDMHCOA 3-Hydroxy-2,6-dimethyl-5-methylene-heptanoyl-CoA3-Hydroxy-2,6-dimethyl-5-methylene-heptanoyl-CoA HETHMPPHETHMPP 2-(alpha-Hydroxyethyl)thiamine diphosphate2- (alpha-Hydroxyethyl) thiamine diphosphate HGBRNHGBRN HydrogenobyrinateHydrogenobyrinate HIPCOAHIPCOA 2-Hydroxy-4-isopropenylcyclohexane-1-carboxyl-CoA2-Hydroxy-4-isopropenylcyclohexane-1-carboxyl-CoA HISPHISP L-Histidinol phosphateL-Histidinol phosphate HISTDHISTD L-HistidinolL-Histidinol HISTDALHISTDAL L-HistidinalL-Histidinal HMB4DP HMB4DP 1-Hydroxy-2-methyl-2-butenyl 4-diphosphate1-Hydroxy-2-methyl-2-butenyl 4-diphosphate HMBILHMBIL HydroxymethylbilaneHydroxymethylbilane HORHOR HordenineHordenine HPYRHPYR HydroxypyruvateHydroxypyruvate HXANHXAN HypoxanthineHypoxanthine ICITICIT IsocitrateIsocitrate IMACPIMACP 3-(Imidazol-4-yl)-2-oxopropyl phosphate3- (Imidazol-4-yl) -2-oxopropyl phosphate IMPIMP Inosine 5'-monophosphateInosine 5'-monophosphate INDOLEINDOLE IndoleIndole INSINS InosineInosine IPCHCCOAIPCHCCOA 4-Isopropenyl-2-oxy-cyclohexanecarboxyl-CoA4-Isopropenyl-2-oxy-cyclohexanecarboxyl-CoA IPDPIPDP Isopentenyl diphosphateIsopentenyl diphosphate LACLAC (S)-Lactate(S) -Lactate LAC(Ext)LAC (Ext) (S)-Lactate(Extracellular)(S) -Lactate (Extracellular) LALALALA L-AlanineL-Alanine LALA(Ext)LALA (Ext) L-AlanineL-Alanine LARABLARAB L-ArabinoseL-Arabinose LARAB(Ext)LARAB (Ext) L-Arabinose(Extracellular)L-Arabinose (Extracellular) LARGLARG L-ArginineL-Arginine LARG(Ext)LARG (Ext) L-Arginine(Extracellular)L-Arginine (Extracellular) LASNLASN L-AsparagineL-Asparagine LASN(Ext)LASN (Ext) L-Asparagine(Extracellular)L-Asparagine (Extracellular) LASPLASP L-AspartateL-Aspartate LASP(Ext)LASP (Ext) L-Aspartate(Extracellular)L-Aspartate (Extracellular) LCITRLCITR L-CitrullineL-Citrulline LCTS(Ext)LCTS (Ext) Lactose(Extracellular)Lactose (Extracellular) LCTS6PLCTS6P Lactose 6-phosphateLactose 6-phosphate LCYSLCYS L-CysteineL-Cysteine LCYS(Ext)LCYS (Ext) L-Cysteine(Extracellular)L-Cysteine (Extracellular) LGLNLGLN L-GlutamineL-Glutamine LGLN(Ext)LGLN (Ext) L-Glutamine(Extracellular)L-Glutamine (Extracellular) LGLULGLU L-GlutamateL-Glutamate LGLU(Ext)LGLU (Ext) L-Glutamate(Extracellular)L-Glutamate (Extracellular) LHCYSLHCYS L-HomocysteineL-Homocysteine LHISLHIS L-HistidineL-Histidine LHIS(Ext)LHIS (Ext) L-Histidine(Extracellular)L-Histidine (Extracellular) LHMSLHMS L-HomoserineL-Homoserine LILELILE L-IsoleucineL-Isoleucine LILE(Ext)LILE (Ext) L-Isoleucine(Extracellular)L-Isoleucine (Extracellular) LLEULLEU L-LeucineL-Leucine LLEU(Ext)LLEU (Ext) L-Leucine(Extracellular)L-Leucine (Extracellular) LLYSLLYS L-LysineL-Lysine LLYS(Ext)LLYS (Ext) L-Lysine(Extracellular)L-Lysine (Extracellular) LMETLMET L-MethionineL-Methionine LMET(Ext)LMET (Ext) L-Methionine(Extracellular)L-Methionine (Extracellular) LORNLORN L-OrnithineL-Ornithine LPHELPHE L-PhenylalanineL-Phenylalanine LPHE(Ext)LPHE (Ext) L-Phenylalanine(Extracellular)L-Phenylalanine (Extracellular) LPROLPRO L-ProlineL-Proline LPRO(Ext)LPRO (Ext) L-Proline(Extracellular)L-Proline (Extracellular) LPSERLPSER O-Phospho-L-serineO-Phospho-L-serine LRBLLRBL L-RibuloseL-Ribulose LRU5PLRU5P L-Ribulose 5-phosphateL-Ribulose 5-phosphate LSERLSER L-SerineL-Serine LSER(Ext)LSER (Ext) L-Serine(Extracellular)L-Serine (Extracellular) LTHR LTHR L-ThreonineL-Threonine LTHR(Ext)LTHR (Ext) L-Threonin(Extracellular)L-Threonin (Extracellular) LTRPLTRP L-TryptophanL-Tryptophan LTRP(Ext)LTRP (Ext) L-Tryptophan(Extracellular)L-Tryptophan (Extracellular) LTYRLTYR L-TyrosineL-Tyrosine LTYR(Ext)LTYR (Ext) L-Tyrosine(Extracellular)L-Tyrosine (Extracellular) LVALLVAL L-ValineL-Valine LVAL(Ext)LVAL (Ext) L-Valine(Extracellular)L-Valine (Extracellular) MALMAL (S)-Malate(S) -Malate MAL(Ext)MAL (Ext) (S)-Malate(Extracelllular)(S) -Malate (Extracelllular) MALACPMALACP Malonyl-[acyl-carrier protein]Malonyl- [acyl-carrier protein] MALCOAMALCOA Malonyl-CoAMalonyl-CoA MALTMALT MaltoseMaltose MALT(Ext)MALT (Ext) Maltose(Extracellular)Maltose (Extracellular) MALT6PMALT6P Maltose 6'-phosphateMaltose 6'-phosphate MAN(Ext)MAN (Ext) D-Mannose(Extracellular)D-Mannose (Extracellular) MAN6PMAN6P D-Mannose 6-phosphateD-Mannose 6-phosphate MECORRMECORR MethylcorrinoidMethylcorrinoid MERYcDPMERYcDP 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate2-C-Methyl-D-erythritol 2,4-cyclodiphosphate MERYTH4PMERYTH4P 2-C-Methyl-D-erythritol 4-phosphate2-C-Methyl-D-erythritol 4-phosphate METADNMETADN 5'-Methylthioadenosine5'-Methylthioadenosine METHFMETHF 5,10-Methenyltetrahydrofolate5,10-Methenyltetrahydrofolate MLHISMLHIS N(pi)-Methyl-L-histidineN (pi) -Methyl-L-histidine MLTHFMLTHF 5,10-Methylenetetrahydrofolate5,10-Methylenetetrahydrofolate MNL(Ext)MNL (Ext) MannitolMannitol MNL1PMNL1P D-Mannitol 1-phosphateD-Mannitol 1-phosphate MTNALMTNAL MyrtenalMyrtenal MTNOLMTNOL MyrtenolMyrtenol MTYRAMMTYRAM N-MethyltyramineN-Methyltyramine N2N2 NitrogenNitrogen N2(Ext)N2 (Ext) Nitrogen(Extracellular)Nitrogen (Extracellular) NANA Nicotinic acidNicotinic acid NA(Ext)NA (Ext) Nicotinic acid(Extracellular)Nicotinic acid (Extracellular) NADNAD NAD+NAD + NADHNADH NADHNADH NADPNADP NADP+NADP + NADPHNADPH NADPHNADPH NAMNNAMN Nicotinate D-ribonucleotideNicotinate D-ribonucleotide NAMNsNAMNs Nicotinate D-ribonucleosideNicotinate D-ribonucleoside NH3NH3 Ammonium ionAmmonium ion NH3(Ext)NH3 (Ext) Ammonium ion(Extracellular)Ammonium ion (Extracellular) NMNNMN Nicotinamide D-ribonucleotideNicotinamide D-ribonucleotide NO2NO2 NitriteNitrite NO2(Ext)NO2 (Ext) Nitrite(Extracellular)Nitrite (Extracellular) O2O2 OxygenOxygen OAAOAA OxaloacetateOxaloacetate OROTOROT OrotateOrrotate OROT5POROT5P Orotidine 5'-phosphateOrotidine 5'-phosphate PAPA PhosphatidatePhosphatidate PABAPABA 4-Aminobenzoate4-Aminobenzoate PABA(Ext)PABA (Ext) 4-Aminobenzoate(Extracellular)4-Aminobenzoate (Extracellular) PANPAN PantetheinePantetheine PAN4PPAN4P Pantetheine 4'-phosphatePantetheine 4'-phosphate PANTPANT (R)-Pantoate(R) -Pantoate PAPPAP Adenosine 3',5'-bisphosphateAdenosine 3 ', 5'-bisphosphate PAPS PAPS 3'-Phosphoadenylyl sulfate3'-Phosphoadenylyl sulfate PEPE PhosphatidylethanolaminePhosphatidylethanolamine PEPPEP PhosphoenolpyruvatePhosphoenolpyruvate PEPTIDOPEPTIDO PeptidoglycanPeptidoglycan PGPG PhosphatidylglycerolPhosphatidylglycerol PGPPGP PhosphatidylglycerophosphatePhosphatidylglycerophosphate PHOMPHOM O-Phospho-L-homoserineO-Phospho-L-homoserine PHPYRPHPYR PhenylpyruvatePhenylpyruvate PiPi Inorganic phosphateInorganic phosphate Pi(Ext)Pi (Ext) Inorganic phosphate(Extracellular)Inorganic phosphate (Extracellular) PLIPIDPLIPID PhospholipidPhospholipid PNTOPNTO PantothenatePantothenate POLYGPPOLYGP Polyglycerol phosphatePolyglycerol phosphate PPBNGPPBNG PorphobilinogenPorphobilinogen PPHNPPHN PrephenatePrephenate PPiPPi PyrophosphatePyrophosphate PPPG9PPPG9 Protoporphyrinogen IXProtoporphyrinogen IX PRAICPRAIC 1-(5-Phospho-D-ribosyl)-5-amino-4-imidazolecarboxylate1- (5-Phospho-D-ribosyl) -5-amino-4-imidazolecarboxylate PRAMPRAM 5-Phosphoribosylamine5-Phosphoribosylamine PRANPRAN N-(5-Phospho-D-ribosyl)anthranilateN- (5-Phospho-D-ribosyl) anthranilate PRBAMPPRBAMP Phosphoribosyl-AMPPhosphoribosyl-AMP PRBATPPRBATP Phosphoribosyl-ATPPhosphoribosyl-ATP PRCR2PRCR2 Precorrin 2Precorrin 2 PRCR3BPRCR3B Precorrin 3BPrecorrin 3B PRCR4PRCR4 Precorrin 4Precorrin 4 PRCR5PRCR5 Precorrin 5Precorrin 5 PRCR6APRCR6A Precorrin 6APrecorrin 6A PRCR6BPRCR6B Precorrin 6BPrecorrin 6B PRCR8PRCR8 Precorrin 8Precorrin 8 PRFPPRFP 5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide5- (5-Phospho-D-ribosylaminoformimino) -1- (5-phosphoribosyl) -imidazole-4-carboxamide PRLPPRLP N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5''-phospho-D-ribosyl)-4-imidazolecarboxamideN- (5'-Phospho-D-1'-ribulosylformimino) -5-amino-1- (5 ''-phospho-D-ribosyl) -4-imidazolecarboxamide PROCOAPROCOA Propionyl-CoAPropionyl-coa ProDSProDS Protein disulfideProtein disulfide ProDTHProDTH Protein dithiolProtein dithiol PROPPROP PropionatePropionate PROP(Ext)PROP (Ext) Propionate(Extracellular)Propionate (Extracellular) PROPPPROPP Propionyl phosphatePropionyl phosphate PROTEINPROTEIN ProteinProtein PRPPPRPP 5-Phospho-alpha-D-ribose 1-diphosphate5-Phospho-alpha-D-ribose 1-diphosphate PSPS PhosphatidylserinePhosphatidylserine PTRCPTRC PutrecinePutrecine PYRPYR PyruvatePyruvate PYR(Ext)PYR (Ext) Pyruvate(Extracellular)Pyruvate (Extracellular) QULNQULN Pyridine-2,3-dicarboxylatePyridine-2,3-dicarboxylate R1PR1P D-Ribose 1-phosphateD-Ribose 1-phosphate R5PR5P D-Ribose 5-phosphateD-Ribose 5-phosphate RHCYSRHCYS S-(5-deoxy-D-ribos-5-yl)-L-homocysteineS- (5-deoxy-D-ribos-5-yl) -L-homocysteine RIBFLARIBFLA RiboflavinRiboflavin RNARNA RNARNA SS SulfideSulfide S7PS7P D-Sedoheptulose 7-phosphateD-Sedoheptulose 7-phosphate SAICARSAICAR 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole1- (5'-Phosphoribosyl) -5-amino-4- (N-succinocarboxamide) -imidazole SHCL SHCL SirohydrochlorinSirohydrochlorin SHEMESHEME SirohemeSiroheme SKMSKM ShikimateShikimate SKM3PSKM3P Shikimate 3-phosphateShikimate 3-phosphate SL26DASL26DA N-Succinyl-LL-2,6-diaminoheptanedioateN-Succinyl-LL-2,6-diaminoheptanedioate SL2A6OSL2A6O N-Succinyl-2-L-amino-6-oxoheptanedioateN-Succinyl-2-L-amino-6-oxoheptanedioate SO3SO3 SulfiteSulfite SO4SO4 SulfateSulfate SO4(Ext)SO4 (Ext) Sulfate(Extracellular)Sulfate (Extracellular) SPERMDSPERMD SpermidineSpermidine SUC6PSUC6P Sucrose 6-phosphateSucrose 6-phosphate SUCCSUCC SuccinateSuccinate SUCCOASUCCOA Succinyl-CoASuccinyl-CoA SUCCSASUCCSA Succinate semialdehydeSuccinate semialdehyde SUCHMSSUCHMS O-Succinyl-L-homoserineO-Succinyl-L-homoserine SUCR(Ext)SUCR (Ext) Sucrose(Extracellular)Sucrose (Extracellular) TAG6PTAG6P D-Tagatose 6-phosphateD-Tagatose 6-phosphate TAGDPTAGDP D-Tagatose 1,6-bisphosphateD-Tagatose 1,6-bisphosphate TDPDHdGLCTDPDHdGLC dTDP-4-dehydro-6-deoxy-alpha-D-glucosedTDP-4-dehydro-6-deoxy-alpha-D-glucose TDPGALTDPGAL dTDP-galactosedTDP-galactose TDPGLCTDPGLC dTDP-glucosedTDP-glucose TDPoRHAMTDPoRHAM dTDP-4-dehydro-6-deoxy-L-mannosedTDP-4-dehydro-6-deoxy-L-mannose TDPRHAMTDPRHAM dTDP-6-deoxy-L-mannosedTDP-6-deoxy-L-mannose TEICHTEICH Teichoic acidTeichoic acid THDPTHDP 2,3,4,5-Tetrahydrodipicolinate2,3,4,5-Tetrahydrodipicolinate THFTHF TetrahydrofolateTetrahydrofolate THMPPTHMPP Thiamin pyrophosphateThiamin pyrophosphate TRACETRACE Trace componentsTrace components TRD(Ox)TRD (Ox) Oxidized thioredoxinOxidized thioredoxin TRD(Red)TRD (Red) Reduced thioredoxinReduced thioredoxin UACCGUACCG UDP-N-acetyl-3-(1-carboxyvinyl)-D-glucosamineUDP-N-acetyl-3- (1-carboxyvinyl) -D-glucosamine UACGAMUACGAM UDP-N-acetyl-D-glucosamineUDP-N-acetyl-D-glucosamine UAMRUAMR UDP-N-acetylmuramateUDP-N-acetylmuramate UDCPDPUDCPDP Undecaprenyl diphosphateUndecaprenyl diphosphate UDPUDP Uridine 5'-diphosphateUridine 5'-diphosphate UDPGALUDPGAL UDP-D-galactoseUDP-D-galactose UDPGLCUDPGLC UDP-D-glucoseUDP-D-glucose UMPUMP Uridine 5'-monophosphateUridine 5'-monophosphate UPPG3UPPG3 Uroporphyrinogen IIIUroporphyrinogen III UREAUREA UreaUrea UREA(Ext)UREA (Ext) Urea(Ext)Urea (Ext) UTPUTP Uridine 5'-triphosphateUridine 5'-triphosphate XANXAN XanthineXanthine XANTXANT XanthosineXanthosine XMPXMP Xanthosine 5'-phosphateXanthosine 5'-phosphate XOLXOL XylitolXylitol

상기에서 구축한 대사 네트워크에서, C. acetobutylicum의 479개의 대사산물을 대상으로 MetaFluxNet(Lee et al., Bioinformatics, 19:2144, 2003) 및 GAMS를 이용하여 대사흐름분석을 수행하였다.In the metabolic network constructed above, metabolic flow analysis was performed on 479 metabolites of C. acetobutylicum using MetaFluxNet (Lee et al., Bioinformatics , 19: 2144, 2003) and GAMS.

C. acetobutylicum의 주요 대사 경로에 대한 대사흐름분석 결과는 도 3에 나타난 바와 같다. Metabolic flow analysis of the major metabolic pathways of C. acetobutylicum is shown in FIG.

실시예 3: 구축된 대사 네트워크의 전반적인 특성 분석Example 3 Overall Characterization of the Constructed Metabolic Network

상기 구축된 대사 네트워크를 네트워크의 특성 분석 도구인 NetworkAnalyzer를 이용하여 분석하였다. 이러한 대사 특성을 분석함으로써 대사흐름분석으로 찾은 결실 표적 후보군 외에도 다른 부분이 있는가를 파악할 수 있다. 이 도구를 이용함으로써 다양한 분석이 가능한데, 본 실시예는 그 중 단일 파라미터(single parameter) 분석 결과에 대해서 설명하고자 한다. 결과는 도 4에 나타나 있으며, 이 중 클러스터 계수(clustering coefficient)에 대한 설명은 다음과 같다.The constructed metabolic network was analyzed using NetworkAnalyzer, a network characterization tool. By analyzing these metabolic characteristics, it is possible to determine whether there are other parts in addition to the deletion target candidate group found by metabolic flow analysis. Various analyzes are possible by using this tool. In this embodiment, a single parameter analysis result will be described. The results are shown in FIG. 4, and a description of clustering coefficients is as follows.

클러스터 계수 : 단일 방향으로 구성된 네트워크의 경우, n번째의 노드(node)에 대한 클러스터 계수 Cn은 다음과 같이 정의된다.Cluster Coefficient: For a network configured in a single direction, the cluster coefficient Cn for the nth node is defined as follows.

CnCn = 2 = 2 enen /(/ ( knkn (( knkn -1))-One))

kn : n번째 노드의 인접한 연결된 노드의 개수 kn : number of contiguous connected nodes in nth node

en : n번째 노드의 모든 이웃 중 연결된 쌍의 수 en : the number of connected pairs among all neighbors of the nth node

여기서 노드는 대사 네트워크에 포함된 대사 산물로서, 도 4에서는 모사에 필요한 탄소원과 질소원으로만 구성된 대사 네트워크를 분석한 것으로 상기 실시예 2의 대사 네트워크에 비해 그 수가 적다. Here, the node is a metabolite included in the metabolic network. In FIG. 4, a metabolic network composed of only a carbon source and a nitrogen source necessary for simulation is analyzed, and the number is smaller than that of the metabolic network of the second embodiment.

양방향으로 구성된 네트워크의 경우, 다음과 같은 정의를 사용한다.For a bidirectional network, use the following definition:

Cn = en /( kn ( kn -1)) Cn = en / ( kn ( kn -1))

두 경우 모두에 대하여, 클러스터 계수는 다음과 같이 나타낼 수 있다.For both cases, the cluster coefficient can be expressed as

N/MN / M

N : n번째 노드와 이웃한 노드간의 연결된 선의 개수 N : Number of connected lines between nth node and neighboring nodes

M : n번째 노드와 이웃한 노드간의 최대한으로 연결 가능한 선의 개수 M : the maximum number of possible lines between nth node and neighboring nodes

따라서 클러스터 계수는 항상 0보다 크거나 같고 1보다 작거나 같은 값을 갖는다.Therefore, the cluster coefficient always has a value greater than or equal to 0 and less than or equal to 1.

실시예Example 4: 게놈 수준 대사 네트워크를 이용한 유전자 결실 균주의  4: Gene deletion strain using genome-level metabolic network 대사흐름Metabolic flow 예측 prediction

상기 구축된 대사 네트워크를 이용하여 야생형 균주의 대사 흐름과 부티르산 인산화 효소(butyrate kinase)를 결실시킨 균주인 PJC4BK 균주의 대사 흐름을 모사하고, 실제 실험치와 비교하여 보았다. Using the constructed metabolic network, the metabolic flow of the wild-type strain and the metabolic flow of the PJC4BK strain, which is a strain that deletes butyrate kinase, were simulated and compared with actual experimental values.

용매 생성 균주의 특성인 산 생성기와 용매 생성기가 구분된다는 점을 더욱 정밀하게 모사하기 위해 기존에 발표되었던 MOMA(minimazation of metabolic adjustment)를 변형하여 도입하였다. 일단 산 생성기의 대사 흐름은 기존의 선형계획법을 이용하여 세포 생장을 최대화하여 구하였으며, 용매 생성기의 대사 흐름은 용매 생성기의 세포가 산 생성기 세포의 유전자 결실 균주와 같다는 가정을 하고, MOMA를 변형한 이차계획법을 도입함으로써 구하였다 (Segre et al. Proc. Nat.l Acad. Sci. 99: 15112-15117. 2002) 이 때, 용매 생성기에서는 세포의 생장이 거의 일어나지 않으므로 세포의 생장 속도는 0으로 가정한다.In order to more accurately simulate the distinction between the acid generator and the solvent generator, the characteristics of the solvent-generating strains, a modification of the previously announced minimaation of metabolic adjustment (MOMA) was introduced. The metabolic flow of the acid generator was calculated by maximizing cell growth using the conventional linear programming method. The metabolic flow of the solvent generator was assumed to be the same as the gene deletion strain of the acid generator cell and modified MOMA. (Segre et al. Proc. Nat.l Acad. Sci . 99: 15112-15117. 2002) Since the growth of the cells occurs little in the solvent generator, the growth rate of the cells is assumed to be zero. do.

또한 용매 생성기에서는 산 생성기에서 생성된 유기산들이 조효소 A 전달 효 소(coenzyme A transferase, Ctf)에 의해 재흡수되어 용매 생성에 이용되는데, 아세트산과 부티르산의 흡수 속도를 더욱 정확하게 모사하기 위한 항을 도입하였다 (Desai et al. Metab . Eng . 1:206-213. 1999). 전체적인 과정을 식으로 표현하면 다음과 같다.In addition, in the solvent generator, organic acids generated in the acid generator are reabsorbed by coenzyme A transferase (Ctf) to be used for solvent production. A term was introduced to more accurately simulate the absorption rate of acetic acid and butyric acid. (Desai et al. Metab . Eng . 1: 206-213. 1999). The overall process is expressed as follows.

최소화:minimization:

Figure 112009022497119-PAT00038
Figure 112009022497119-PAT00038

제한 조건:Restrictions:

S·ν=0, ν minνν max S ν = 0, ν minνν max

각 항의 정의는 다음과 같다.The definition of each term is as follows.

ν acid: 산 생성기에서의 대사흐름 벡터 ν acid : metabolic flow vector in acid generator

ν sol : 용매 생성기에서의 대사흐름 벡터 ν sol : metabolic flow vector in the solvent generator

Figure 112009022497119-PAT00039
: 용매 생성기에서 조효소 A 전달 효소에 의한 부티르산의 흡수 속도
Figure 112009022497119-PAT00039
: Absorption Rate of Butyric Acid by Coenzyme A Transfer Enzyme in Solvent Generator

Figure 112009022497119-PAT00040
: 용매 생성기에서 조효소 A 전달 효소에 의한 아세트산의 흡수 속도
Figure 112009022497119-PAT00040
: Absorption Rate of Acetic Acid by Coenzyme A Transfer Enzyme in Solvent Generator

Figure 112009022497119-PAT00041
: 산 생성기에서 부티르산의 생성 속도
Figure 112009022497119-PAT00041
: Rate of butyric acid production in acid generator

Figure 112009022497119-PAT00042
: 산 생성기에서 아세트산의 생성 속도
Figure 112009022497119-PAT00042
: Rate of Formation of Acetic Acid in Acid Generator

본 발명의 대사 네트워크 모델을 이용하여 야생형 균주의 대사 흐름과 부티르산 인산화 효소(butyrate kinase)를 결실시킨 균주인 PJC4BK 균주의 대사 흐름을 모사하여, 실제 실험치와 비교한 결과, 도 5에 나타난 바와 같이, 본 발명에 따른 대사 네트워크 모델을 이용하여 예측한 결과는 실제 실험치에 거의 근접한 것으로 나타났다. 즉, 본 발명에 따른 대사 네트워크 모델은 부탄올 생성 미생물의 대사 흐름예측에 유용한 것을 확인할 수 있었다. Using the metabolic network model of the present invention to simulate the metabolic flow of wild-type strains and the metabolic flow of PJC4BK strain, which is a strain that deletes butyrate kinase, and compared with the actual experimental value, as shown in Figure 5, The results predicted using the metabolic network model according to the present invention were found to be close to the actual experimental values. That is, the metabolic network model according to the present invention was found to be useful for predicting metabolic flow of butanol-producing microorganisms.

이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those skilled in the art, such a specific description is only a preferred embodiment, which is not limited by the scope of the present invention Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 게놈 정보에 기반한 대사흐름분석을 수행하기 위해 균주의 게놈 정보로부터 대사 네트워크를 구축하고, 이를 이용하여 유전자 결실 모사를 통해 결실 표적 유전자 또는 결실 표적 효소를 탐색하는 과정을 나타낸 개략도이다.FIG. 1 is a schematic diagram illustrating a process of constructing a metabolic network from a genomic information of a strain to perform metabolic flow analysis based on genomic information and searching for a deletion target gene or a deletion target enzyme through gene deletion simulation.

도 2는 자일로오스 대사를 하기 위해 필요한 자일로오스 이성질화 효소(xylose isomerase)가 KEGG 상에서 C. acetobutylicum에 존재하지 않음을 보여주는 도식이다.2 is a schematic showing that xylose isomerase is not present in C. acetobutylicum on KEGG for xylose metabolism.

도 3은 구축된 대사 네트워크를 이용하여 대사흐름분석을 한 결과로 포도당의 섭취 속도(uptake rate)가 주어졌을 때, 주요 대사 경로의 반응 속도를 나타낸 도식이다.3 is a diagram showing the reaction rate of the major metabolic pathways given the uptake rate of glucose as a result of metabolic flow analysis using the established metabolic network.

도 4는 구축된 대사 네트워크를 분석하여 얻은 단일 파라미터 값을 나타낸다.4 shows single parameter values obtained by analyzing the constructed metabolic network.

도 5는 구축된 대사 네트워크를 이용하여 용매 생성기 및 산생성기의 대사흐름을 예측한 결과이다. 5 is a result of predicting the metabolic flow of the solvent generator and the acid generator using the constructed metabolic network.

Claims (21)

다음 효소들이 관여하는 효소반응식을 포함하는, 부탄올 생성 미생물의 대사 특성 분석용 대사 네트워크 모델:Metabolic network model for metabolic characterization of butanol producing microorganisms, including enzymatic reaction involving the following enzymes: 알코올 탈수소화 효소(alcohol dehydrogenase), 부탄올 탈수소화 효소(butanol dehydrogenase), 부티릴 조효소 A 탈수소화 효소(butyryl-CoA dehydrogenase), 크로토네이즈(crotonase), 아세틸 조효소 A 아세틸전달효소(acetyl-CoA acetyltransferase), 3-하이드록시부티릴 조효소 A 탈수소화 효소(3-hydroxybutyryl-CoA dehydrogenase) 및 수소화 효소(hydrogenase).Alcohol dehydrogenase, butanol dehydrogenase, butyryl coenzyme A dehydrogenase, butyryl-CoA dehydrogenase, crotonase, acetyl coenzyme A acetyltransferase ), 3-hydroxybutyryl coenzyme A dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase) and hydrogenase. 제1항에 있어서, 다음 효소들이 관여하는 효소반응식을 포함하는, 부탄올 생성 미생물의 대사 특성 분석용 대사 네트워크 모델:The metabolic network model for metabolic characterization of butanol-producing microorganisms according to claim 1, comprising an enzyme reaction involving the following enzymes: D-3-phosphoglycerate dehydrogenase, aspartate-semialdehyde dehydrogenase, deoxycytidine triphosphate deaminase, orotate phosphoribosyltransferase, phosphatidylserine decarboxylase, D-3-phosphoglycerate dehydrogenase, ketol-acid reductoisomerase, ferredoxin-nitrite reductase, O-acetylhomoserine (thiol)-lyase, adenylylsulfate kinase, sulfate adenylyltransferase subunit 2, adenylylsulfate kinase / sulfate adenylyltransferase subunit 1, PTS system, mannitol-specific IIBC component (gene MtlA), PTS system, mannitol-specific IIA domain (Ntr-type) (gene MltF), mannitol-1-phosphate 5-dehydrogenase, glucosamine--fructose-6-phosphate aminotransferase (isomerizing), glucosamine-6-phosphate isomerase (glucosamine-6-phosphate), N-acetylglucosamine-6-phosphate deacetylase (gene nagA), prephenate dehydrotase (pheA), 1-phosphofructokinase (fructoso 1-phosphate kinase), nitrogenase iron protein (nitrogenase component II) gene nifH, nitrogenase molybdenum-iron protein, alpha chain (nitrogenase component I) gene nifD, nitrogenase molibdenum-iron protein, beta chain, gene nifK, phosphoserine phosphatase related protein, L-lactate dehydrogenase, 2-isopropylmalate synthase, aspartate ammonia-lyase (aspartase) gene ansB(aspA), aspartate kinase, cytosine/guanine deaminase related protein, ornithine carbomoyltransferase, PTS cellobiose-specific component IIA, PTS system, cellobiose-specific component BII, beta-glucosidase, PTS cellobiose-specific component IIC, cystathionine gamma-synthase, cystathionine beta-lyase, deoxyphosphogluconate aldolase (gene kdgA), 2-keto-3-deoxygluconate kinase (gene kdgK), fusion: PTS system, beta-glucosides specific IIABC component, Fructokinase, sucrase-6-phosphate hydrolase (gene sacA), oxygen-sensitive ribonucleoside-triphosphate reductase nrdD, Phosphomannomutase, alanine racemase, UDP-N-acetylenolpyruvoylglucosamine reductase (murB), 6-phosphofructokinase, pyruvate kinase (pykA), Dihydroorotase, PTS system, maltose-specific enzyme IIBC component, maltose-6'-phosphate glucosidase (glvA), phosphoenolpyruvate synthase (gene pps), malate dehydrogenase, aspartate semialdehyde dehydrogenase (gene asd), PTS system, glucose-specific IIABC component, cobalamine-dependent methionine synthase I (methyltransferase andcobalamine-binding domain), diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-amino-6-(5-phosphoribosylamino)uracil reductase, riboflavin synthase alpha chain, riboflavin biosynthes protein RIBA (GTPcyclohydrolase/3,4-dihydroxy-2-butanone 4-phosphate synthase), riboflavin synthase beta chain, diaminopimelate decarboxilase (lisA), L-serine dehydratase, beta chain, L-serine dehydratase, alpha chain, phosphatidylserine synthase, ammonium transporter (membrane protein nrgA), serine acetyltransferase, glyceraldehyde 3-phosphate dehydrogenase, gene gapC, phosphoglycerate kinase, triosephosphate isomerase (TIM), 2,3-bisphosphoglycerate-independent phosphoglycerate mutase gene, Enolase, ribose 5-phosphate isomerase RpiB, NADP-specific glutamate dehydrogenase, NADPH-dependent glutamate synthase beta chain, glycerol uptake facilitator protein (permease), phosphatidylserine synthase, nucleoside-diphosphate-sugar epimerase (UDP-glucose 4-epimerase), phosphatidylserine decarboxylase, 3-oxoacyl-[acyl-carrier-protein] synthase III, phosphoribosylpyrophosphate synthetase, fructose-bisphosphate aldolase, glucan phosphorylase, thioredoxine reductase, adenine deaminase, phospho-2-dehydro-3-deoxyheptonate aldolase, prephenate dehydrogenase, 3-dehydroquinate synthetase, 5-enolpyruvylshikimate-3-phosphate synthase, chorismate synthase, fusion: chorismate mutase and shikimate 5-dehydrogenase, shikimate kinase, 3-dehydroquinate dehydratase II, cystathionine gamma-synthase, cysteine synthase, ATP phosphoribosyltransferase, histidinol dehydrogenase, imidazoleglycerol-phosphate dehydratase, glutamine amidotransferase, phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide(ProFAR) isomerase, imidazoleglycerol-phosphate synthase cyclase, phosphoribosyl-AMP cyclohydrolase, phosphoribosyl-ATP pyrophosphohydrolase, Transketolase, aconitase A, isocitrate dehydrogenase, argininosuccinate synthase, argininosuccinate lyase, pyruvate-formate lyase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, homoserine dehydrogenase, threonine synthase, aspartate aminotransferase, nicotinic acid phosphoribosyltransferase, superfamily I DNA helicase (rep-like helicase), P-loop kinase (uridine kinase family), nicotinate-nucleotide pyrophosphorylase, aspartate oxidase, quinolinate synthase, pyruvate kinase, ribonucleotide reductase, vitamin B12-dependent, NH(3)-dependent NAD(+) synthetase, Arginase, beta-glucosidase family protein, beta-glucosidase family protein, GlpX-like protein (Fructose-1,6-bisphosphatase related protein), 5-formyltetrahydrofolate cyclo-ligase, anaerobic ribonucleotide reductase, deoxyuridine 5'triphosphate nucleotidohydrolase (DUPTase), chorismate mutase PheB of B.subtilis ortholog, homoserine kinase (thrB), predicted nucleotidyltransferases of NarD/TagD family (N-term. domain) (yqeJ ortholog), diacylglycerol kinase (dgkA) fused to phosphatase B domain (pgpB), glycerol uptake facilitator protein(GLPF), glycerol kinase (GLPK), ribulose-5-phosphate 4-epimerase family protein, L-arabinose isomerase, sugar kinase, possible xylulose kinase, L-arabinose isomerase, Transaldolase, Transketolase (TKT), aldose-1-epimerase, phosphotransferase system IIC component (possibly N-acetylglucosamine-specific), PTS system (N-acetylglucosamine-specific IIA component, putative), histidinol-phosphate aminotransferase, cobalamin biosynthesis enzyme CobT, phosphoribosylcarboxyaminoimidazole (NCAIR) mutase , phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase, glutamine phosphoribosylpyrophosphate amidotransferase, phosphoribosylaminoimidazol (AIR) synthetase, folate-dependent phosphoribosylglycinamide formyltransferase, AICAR transformylase/IMP cyclohydrolase, phosphoribosylamine-glycine ligase, beta-glucosidase, UDP-glucose 4-epimerase , ribose 5-phosphate isomerase, PTS system, fructose(mannose)-specific IIA component, PTS system, fructose(mannose)-specific IIB, PTS system, fructose(mannose)-specific IIC, PTS system, fructose(mannose)- specific IID, branched-chain-amino-acid transaminase (ilvE), Fructokinase, fructose-1,6-bisphosphatase, malic enzyme, malate dehydrogenase (oxaloacetate-decarboxylating), phosphoserine phosphatase family enzyme, bifunctional enzyme phosphoribosylformylglycinamidine (FGAM) synthase (synthetase domain/glutamine amidotransferase domain), aspartate ammonia-lyase, glycogen phosphorylase, large subunit of NADH-dependent glutamate synthase, small subunit of NADPH-dependent glutamate synthase, periplasmic phosphate-binding protein, phosphate permease, permease component of ATP-dependent phosphate uptake system, ATPase component of ABC-type phosphate transport system, glycerol 3-phosphate dehydrogenase, L-asparaginase, guanylate kinase, YLOD B.subtilis ortholog, flavoprotein involved in panthothenate metabolism, YLOI B.subtilis ortholog, pentose-5-phosphate-3-epimerase, phosphopantetheine adenylyltransferase, phosphate acetyltransferase, acetate kinase, nicotinic acid phosphoribosyltransferase, NH(3)-dependent NAD(+) synthase (nadE) fused to amidohydrolasedomain, uridylate kinase, CDP-diglyceride synthetase, riboflavin kinase/FAD synthase, Aspartokinase, phosphatidylglycerophosphate synthase , aspartate aminotransferase , phosphocarrier protein (Hpr), adenylosuccinate lyase, homoserine trans-succinylase, cytidylate kinase, 3-oxoacyl-(acyl-carrier-protein) synthase, purine nucleoside phosphorylase, Phosphopentomutase, predicted kinase, tetrahydrofolate dehydrogenase/cyclohydrolase (FolD), nucleoside phosphorylase, cation transport P-type ATPase, phosphoserine phosphatase family enzyme, pyruvate:ferredoxin oxidoreductase, cysteine synthase/cystathionine beta-synthase (CysK), ADP-glucose pyrophosphorylase, ADP-glucose pyrophosphorylase, glycogen synthase (glgA), N-terminal domain of asparagine synthase, UDP-glucose pyrophosphorylase, glycine hydroxymethyltransferase, adenine phosphoribosyltransferase (Apt), UDP-glucose 4-epimerase, UTP-glucose-1-phosphate uridylyltransferase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, PLP-dependent aminotransferase, tetrahydrodipicolinate N-succinyltransferase, N-acetylornithine aminotransferase, acetylglutamate kinase, N-acetyl-gamma-glutamyl-phosphate reductase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, folylpolyglutamate synthase, 2-oxoacid ferredoxin oxidoreductase beta subunit, 2-oxoacid ferredoxin oxidoreductase alpha subunit, xylulose kinase, transcriptional regulators of NagC/XylR family, beta-phosphoglucomutase, diaminopimelate epimerase, possible 3-ketoacyl-acyl carrier protein reductase, carbamoylphosphate synthase large subunit, carbamoylphosphate synthase small subunit, dihydroorotate dehydrogenase, orotidine-5'-phosphate decarboxylase, aspartate carbamoyltransferase regulatory subunit, aspartate carbamoyltransferase catalytic subunit, glutamine synthetase type III, pyruvate carboxylase (PYKA ), glucose-6-phosphate isomerase, sugar kinase, ribokinase family, trehalose/maltose hydrolase (phosphorylase), GMP synthase, IMP dehydrogenase, 3-hydroxybutyryl-CoA dehydrogenase, electron transfer flavoprotein alpha-subunit, electron transfer flavoprotein beta-subunit, butyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, deacethylase/dipeptidase/desuccinylase family of Zn-dependenthydrolases, putative histidinol-phosphatase, O-acetylhomoserine (thiol)-lyase , Acylphosphatases (ACYP), PLP-dependent aminotransferase, glycerate kinase, galactose-1-phosphate uridylyltransferase, S-adenosylmethionine synthetase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, acetyl-CoA acetyltransferase, deoxycytidylate deaminase, ribose 5-phosphate isomerase (RpiB), fusion of alpha-glucosidase (family 31 glycosyl hydrolase), CTP synthase (UTP-ammonia lyase), D-alanine-D-alanine ligase, ketopantoate hydroxymethyltransferase, pantoate--beta-alanine ligase, aspartate 1-decarboxylase, mannose-6 phospate isomerase, dihydropteroate synthase, dihydroneopterin aldolase fused to 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase, ketopantoate reductase PanE/ApbA, uncharacterized conserved protein fron YGAG family, predictedmetal-dependent enzyme, 3-phosphoserine aminotransferase (Possible phosphoglycerate dehydrogenase), tagatose-6-phosphate kinase, galactose-6-phosphate isomerase, galactose-6-phosphate isomerase, PTS system galactitol-specific IIC component, PTS system galactitol-specific IIB component, PTS system galactitol-specific IIA component putative, Galactokinase, UDP-galactose 4-epimerase, 6-phospho-beta-D-galactosidase, PTS system lactose-specific enzyme IIBC, PTS system lactose-specific enzyme IIA, alpha-acetolactate decarboxylase, 2-keto-3-deoxy-6-phosphogluconate aldolase (eda/kdgA), PTS system (Glucose-specific) component IIA, thymidylate synthase, dihydrofolate reductase, adenosine deaminase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, histidinol-phosphate aminotransferase, butyrate kinase (BUK), phosphate butyryltransferase, phosphoenolpyruvate-protein kinase (PTS system enzyme I), fumarate hydratase, subunit B (C-terminal domain of FumA E.coli), fumarate hydratase, subunit A (N-terminal domain of FumA E.coli), adenylate kinase , tryptophan synthase alpha chain, tryptophan synthase beta chain, phosphoribosylanthranilate isomerase, indole-3-glycerol phosphate synthase, anthranilate phosphoribosyltransferase, putative anthranilate synthase component II, para-aminobenzoate synthase component I, acetolactate synthase large subunit, dihydroxyacid dehydratase, isopropylmalate dehydrogenase , 3-isopropylmalate dehydratase, small subunit, 3-isopropylmalate dehydratase, large subunit, 2-isopropylmalate synthase , acetolactate synthase small subunit, predicted transcriptional regulator, homolog of Bvg accessory factor, formate--tetrahydrofolate ligase, hypoxanthine-guanine phosphoribosyltransferase, phosphoribosylpyrophosphate synthetase, glucosamine-1-phosphate N-acetyltransferase , possible glutamate racemase , pyrroline-5-carboxylate reductase, glutamate 5-kinase , gamma-glutamyl phosphate reductase , ribonucleotide reductase beta subunit , ribonucleotide reductase alpha subunit, NADH-dependent butanol dehydrogenase B (BDH II), NADH-dependent butanol dehydrogenase A (BDH I), possible cardiolipin synthase (phospholipase D family), alanine racemase , possible homocysteine S-methyltransferase , alcohol dehydrogenase, low specificity L-threonine aldolase, PTS system, (possibly glucose-specific) IIBC component , 6-phospho-alpha-glucosidase, PTS system, (possibly glucose-specific) IIA component, 3-oxoacyl-acyl carrier protein reductase, GMP reductase , UDP-N-acetylglucosamine enolpyruvyl transferase, lactate dehydrogenase, acetyl-CoA carboxylase alpha subunit, acetyl-CoA carboxylase beta subunit, biotin carboxylase, hydroxymyristoyl-(acyl carrier protein) dehydratase, biotin carboxyl carrier protein of acetyl-CoA carboxylase, 3-oxoacyl-(acyl-carrier-protein) synthase I , 3-ketoacyl-acyl carrier protein reductase, malonyl CoA-acyl carrier protein transacylase, trans-2-enoyl-ACP reductase II, 3-oxoacyl-[acyl-carrier-protein] synthase III, adenylosuccinate synthase, phosphatidylglycerophosphate synthase, dihydrodipicolinate synthase , dihydroxy-acid dehydratase , GTP cyclohydrolase I, acetolactate synthase large subunit, beta-glucosidase, pyruvate decarboxylase, alcohol dehydrogenase / acetaldehyde dehydrogenase, fructose-bisphosphate aldolase class I , mannose-specific phosphotransferase system component IIAB, mannose/fructose-specific phosphotransferase system component IIC, mannose-specific phosphotransferase system component IID, acetyl coenzyme A acetyltransferase (thiolase), 3-oxoacyl-acyl-carrier protein synthase, alcohol dehydrogenase / acetaldehyde dehydrogenase, butyrate-acetoacetate CoA-transferase subunit A, butyrate-acetoacetate CoA-transferase subunit B 및 acetoacetate decarboxylase.D-3-phosphoglycerate dehydrogenase, aspartate-semialdehyde dehydrogenase, deoxycytidine triphosphate deaminase, orotate phosphoribosyltransferase, phosphatidylserine decarboxylase, D-3-phosphoglycerate dehydrogenase, ketol-acid reductoisomerase, ferredoxin-nitrite reductase, O-thidenkinylrinesasease , sulfate adenylyltransferase subunit 2, adenylylsulfate kinase / sulfate adenylyltransferase subunit 1, PTS system, mannitol-specific IIBC component (gene MtlA), PTS system, mannitol-specific IIA domain (Ntr-type) (gene MltF), mannitol-1-phosphate 5-dehydrogenase, glucosamine--fructose-6-phosphate aminotransferase (isomerizing), glucosamine-6-phosphate isomerase (glucosamine-6-phosphate), N-acetylglucosamine-6-phosphate deacetylase (gene nagA), prephenate dehydrotase (pheA), 1-phosphofructokinase (fructoso 1-phosphate kinase), nitrogenase iron protein (nitrogenase component II) gene nifH, nitrogenase molybdenum-iron protein, alpha chain (nitrogenase componen t I) gene nifD, nitrogenase molibdenum-iron protein, beta chain, gene nifK, phosphoserine phosphatase related protein, L-lactate dehydrogenase, 2-isopropylmalate synthase, aspartate ammonia-lyase (aspartase) gene ansB (aspA), aspartate kinase, cytosine / guanine deaminase related protein, ornithine carbomoyltransferase, PTS cellobiose-specific component IIA, PTS system, cellobiose-specific component BII, beta-glucosidase, PTS cellobiose-specific component IIC, cystathionine gamma-synthase, cystathionine beta-lyase, dedol phosphogluconate al kdgA), 2-keto-3-deoxygluconate kinase (gene kdgK), fusion: PTS system, beta-glucosides specific IIABC component, Fructokinase, sucrase-6-phosphate hydrolase (gene sacA), oxygen-sensitive ribonucleoside-triphosphate reductase nrdD, Phosphomannomutase, alanine racemase, UDP-N-acetylenolpyruvoylglucosamine reductase (murB), 6-phosphofructokinase, pyruvate kinase (pykA), Dihydroorotase, PTS system, maltose-specific enzyme IIBC component, malt ose-6'-phosphate glucosidase (glvA), phosphoenolpyruvate synthase (gene pps), malate dehydrogenase, aspartate semialdehyde dehydrogenase (gene asd), PTS system, glucose-specific IIABC component, cobalamine-dependent methionine synthase I (methyltransferase and cobalamine-binding domain ), diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-amino-6- (5-phosphoribosylamino) uracil reductase, riboflavin synthase alpha chain, riboflavin biosynthes protein RIBA (GTPcyclohydrolase / 3,4-dihydroxy-2-butanone 4-phosphate synthase), riboflavin synthase beta chain , diaminopimelate decarboxilase (lisA), L-serine dehydratase, beta chain, L-serine dehydratase, alpha chain, phosphatidylserine synthase, ammonium transporter (membrane protein nrgA), serine acetyltransferase, glyceraldehyde 3-phosphate dehydrogenase, gene gapC, phosphoglycerate phosphate isomerase (TIM), 2,3-bisphosphoglycerate-independent phosphoglycerate mutase gene, Enolase, ribose 5-phosphate isomerase RpiB, NADP-spe cific glutamate dehydrogenase, NADPH-dependent glutamate synthase beta chain, glycerol uptake facilitator protein (permease), phosphatidylserine synthase, nucleoside-diphosphate-sugar epimerase (UDP-glucose 4-epimerase), phosphatidylserine decarboxylase, 3-oxoacylyl-ac protein] synthase III, phosphoribosylpyrophosphate synthetase, fructose-bisphosphate aldolase, glucan phosphorylase, thioredoxine reductase, adenine deaminase, phospho-2-dehydro-3-deoxyheptonate aldolase, prephenate dehydrogenase, 3-dehydroquinate synthetase, 5-enolpyruatelshikimate chorismate synthase, fusion: chorismate mutase and shikimate 5-dehydrogenase, shikimate kinase, 3-dehydroquinate dehydratase II, cystathionine gamma-synthase, cysteine synthase, ATP phosphoribosyltransferase, histidinol dehydrogenase, imidazoleglycerol-phosphate dehydratylformamide, hydrochloride ribonucleotide (ProFAR) isomerase, imidazoleglycerol-phos phate synthase cyclase, phosphoribosyl-AMP cyclohydrolase, phosphoribosyl-ATP pyrophosphohydrolase, Transketolase, aconitase A, isocitrate dehydrogenase, argininosuccinate synthase, argininosuccinate lyase, pyruvate-formate lyase, 1-acyl-sylserinefergenase synthase, aspartate aminotransferase, nicotinic acid phosphoribosyltransferase, superfamily I DNA helicase (rep-like helicase), P-loop kinase (uridine kinase family), nicotinate-nucleotide pyrophosphorylase, aspartate oxidase, quinolinate synthase, pyruvate kinase, ribonucleotide reductase dependent, NH (3) -dependent NAD (+) synthetase, Arginase, beta-glucosidase family protein, beta-glucosidase family protein, GlpX-like protein (Fructose-1,6-bisphosphatase related protein), 5-formyltetrahydrofolate cyclo-ligase , anaerobic ribonucleotide reductase, deoxyuridine 5'triphosphate nucleotidohydrolase (DUPTase), chorismate mutase PheB of B.subtilis ortholog, homoserine kinase (thrB), predicted nucleotidyltransferases of NarD / TagD family (N-term. domain) (yqeJ ortholog), diacylglycerol kinase (dgkA) fused to phosphatase B domain (pgpB), glycerol uptake facilitator protein (GLPF), glycerol kinase (GLPK), ribulose-5-phosphate 4-epimerase family protein, L-arabinose isomerase , sugar kinase, possible xylulose kinase, L-arabinose isomerase, Transaldolase, Transketolase (TKT), aldose-1-epimerase, phosphotransferase system IIC component (possibly N-acetylglucosamine-specific), PTS system (N-acetylglucosamine-specific IIA component, putative), histidinol-phosphate aminotransferase, cobalamin biosynthesis enzyme CobT, phosphoribosylcarboxyaminoimidazole (NCAIR) mutase, phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase, glutamine phosphoribosylpyrophosphate amidotransferase, phosphoribosylaminolythe- diasease phosphorase ligase, beta-glucosidase, UDP-glucose 4-epimerase, ribose 5-phosphate iso merase, PTS system, fructose (mannose) -specific IIA component, PTS system, fructose (mannose) -specific IIB, PTS system, fructose (mannose) -specific IIC, PTS system, fructose (mannose)-specific IID, branched-chain -amino-acid transaminase (ilvE), Fructokinase, fructose-1,6-bisphosphatase, malic enzyme, malate dehydrogenase (oxaloacetate-decarboxylating), phosphoserine phosphatase family enzyme, bifunctional enzyme phosphoribosylformylglycinamidine (FGAM) synthase (synthetase amidotransase domain / glutamine domain / glutamine domain , aspartate ammonia-lyase, glycogen phosphorylase, large subunit of NADH-dependent glutamate synthase, small subunit of NADPH-dependent glutamate synthase, periplasmic phosphate-binding protein, phosphate permease, permease component of ATP-dependent phosphate uptake system, ATPase component of ABC -type phosphate transport system, glycerol 3-phosphate dehydrogenase, L-asparaginase, guanylate kinase, YLOD B.subtilis ortholog, flavoprotein involved in panthothenate metabolism, YLO I B.subtilis ortholog, pentose-5-phosphate-3-epimerase, phosphopantetheine adenylyltransferase, phosphate acetyltransferase, acetate kinase, nicotinic acid phosphoribosyltransferase, NH (3) -dependent NAD (+) synthase (nadE) fused to amidohydrolasedomain, uridylate kinase CDP-diglyceride synthetase, riboflavin kinase / FAD synthase, Aspartokinase, phosphatidylglycerophosphate synthase, aspartate aminotransferase, phosphocarrier protein (Hpr), adenylosuccinate lyase, homoserine trans-succinylase, cytidylate kinase, 3-acoxyylase- nucleoside phosphorylase, Phosphopentomutase, predicted kinase, tetrahydrofolate dehydrogenase / cyclohydrolase (FolD), nucleoside phosphorylase, cation transport P-type ATPase, phosphoserine phosphatase family enzyme, pyruvate: ferredoxin oxidoreductase, cysteine synthase / cystacosease A pyrophosphorylase, ADP-glucose pyrophosphorylase, glycogen synthase (glgA), N-terminal domain of asparagine synt hase, UDP-glucose pyrophosphorylase, glycine hydroxymethyltransferase, adenine phosphoribosyltransferase (Apt), UDP-glucose 4-epimerase, UTP-glucose-1-phosphate uridylyltransferase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, PLP-dependent aminotransferolinate acetylornithine aminotransferase, acetylglutamate kinase, N-acetyl-gamma-glutamyl-phosphate reductase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, folylpolyglutamate synthase, 2-oxoacid ferredoxin oxidoreductase beta subunit, 2-oxoacid ferredoxin subunitase xunitase , transcriptional regulators of NagC / XylR family, beta-phosphoglucomutase, diaminopimelate epimerase, possible 3-ketoacyl-acyl carrier protein reductase, carbamoylphosphate synthase large subunit, carbamoylphosphate synthase small subunit, dihydroorotate dehydrogenase, orotidine-5'-phosphate decarboxybase, subunit, asp artate carbamoyltransferase catalytic subunit, glutamine synthetase type III, pyruvate carboxylase (PYKA), glucose-6-phosphate isomerase, sugar kinase, ribokinase family, trehalose / maltose hydrolase (phosphorylase), GMP synthase, IMP dehydrogenase, 3-hydroxybutyryl-CoA dehydrogen electron transfer flavoprotein alpha-subunit, electron transfer flavoprotein beta-subunit, butyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase, deacethylase / dipeptidase / desuccinylase family of Zn-dependenthydrolases, putative histidinol-phosphatase, O-acetylhomoserine (thiol) -lyase , Acylphosphatases (ACYP), PLP-dependent aminotransferase, glycerate kinase, galactose-1-phosphate uridylyltransferase, S-adenosylmethionine synthetase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, acetyl-CoA acetyltransferase, deoxycytidylate deaminate isomerase 5-Ripase ), fusion of alpha-glucosidase (family 31 glycosyl hydrolase), CTP synthase (UTP-ammonia lyase), D-alanine-D-alanine ligase, ke topantoate hydroxymethyltransferase, pantoate--beta-alanine ligase, aspartate 1-decarboxylase, mannose-6 phospate isomerase, dihydropteroate synthase, dihydroneopterin aldolase fused to 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase, ketopantoate reductase, PanE / Apb conprotein fron YGAG family, predictedmetal-dependent enzyme, 3-phosphoserine aminotransferase (Possible phosphoglycerate dehydrogenase), tagatose-6-phosphate kinase, galactose-6-phosphate isomerase, galactose-6-phosphate isomerase, PTS system galactitol-specific IIC component, PTS system galactitol-specific IIB component, PTS system galactitol-specific IIA component putative, Galactokinase, UDP-galactose 4-epimerase, 6-phospho-beta-D-galactosidase, PTS system lactose-specific enzyme IIBC, PTS system lactose-specific enzyme IIA, alpha-acetolactate decarboxylase, 2-keto-3-deoxy-6-phosphogluconate aldolase (eda / kdgA), PTS system (Glucose-specific) component IIA, thymidylate synthase, dihydrofolat e reductase, adenosine deaminase, amino-acid N-acetyltransferase / glutamate N-acetyltransferase, histidinol-phosphate aminotransferase, butyrate kinase (BUK), phosphate butyryltransferase, phosphoenolpyruvate-protein kinase (PTS system enzyme I), fumarate hydratase -terminal domain of FumA E.coli), fumarate hydratase, subunit A (N-terminal domain of FumA E.coli), adenylate kinase, tryptophan synthase alpha chain, tryptophan synthase beta chain, phosphoribosylanthranilate isomerase, indole-3-glycerol phosphate synthase , anthranilate phosphoribosyltransferase, putative anthranilate synthase component II, para-aminobenzoate synthase component I, acetolactate synthase large subunit, dihydroxyacid dehydratase, isopropylmalate dehydrogenase, 3-isopropylmalate dehydratase, small subunit, 3-isopropylmalate dehydratase, large subtolacate, 2-isopropylmalate synthase small subunit, predicted transcriptional regulator, homolog of Bvg accessory factor, formate-- tetrahydrofolate ligase, hypoxanthine-guanine phosphoribosyltransferase, phosphoribosylpyrophosphate synthetase, glucosamine-1-phosphate N-acetyltransferase, possible glutamate racemase, pyrroline-5-carboxylate reductase, glutamate 5-kinase, gamma-glutamyl phosphate reductase, ribonucleotideunitducto betanucleotide subunit, NADH-dependent butanol dehydrogenase B (BDH II), NADH-dependent butanol dehydrogenase A (BDH I), possible cardiolipin synthase (phospholipase D family), alanine racemase, possible homocysteine S-methyltransferase, alcohol dehydrogenase, low specificity L-threonine aldolase, PTS system, (possibly glucose-specific) IIBC component, 6-phospho-alpha-glucosidase, PTS system, (possibly glucose-specific) IIA component, 3-oxoacyl-acyl carrier protein reductase, GMP reductase, UDP-N- acetylglucosamine enolpyruvyl transferase, lactate dehydrogenase, acetyl-CoA carboxylase alpha subunit, acetyl-CoA carboxylase beta subunit, biotin carboxyl ase, hydroxymyristoyl- (acyl carrier protein) dehydratase, biotin carboxyl carrier protein of acetyl-CoA carboxylase, 3-oxoacyl- (acyl-carrier-protein) synthase I, 3-ketoacyl-acyl carrier protein reductase, malonyl CoA-acyl carrier protein transacylase, trans-2-enoyl-ACP reductase II, 3-oxoacyl- [acyl-carrier-protein] synthase III, adenylosuccinate synthase, phosphatidylglycerophosphate synthase, dihydrodipicolinate synthase, dihydroxy-acid dehydratase, GTP cyclohydrolase I, acetolactate bethta subunit -glucosidase, pyruvate decarboxylase, alcohol dehydrogenase / acetaldehyde dehydrogenase, fructose-bisphosphate aldolase class I, mannose-specific phosphotransferase system component IIAB, mannose / fructose-specific phosphotransferase system component IIC, mannose-specific phosphotransferase coacetylase acetyl thiolase), 3-oxoacyl-acyl-carrier protein synthase, alcohol dehydrogenase / acetaldehyde dehydrogenase, butyrate-acetoacetat e CoA-transferase subunit A, butyrate-acetoacetate CoA-transferase subunit B and acetoacetate decarboxylase. 제1항에 있어서, 상기 부탄올 생성 미생물의 대사특성 분석용 대사 네트워크 모델은 하기 표 1의 유전자-단백질-반응식 (Gene-Protein-Reaction: GPR)관계를 포함하는 것을 특징으로 하는 대사 특성 분석용 대사 네트워크 모델:According to claim 1, wherein the metabolic network model for metabolism analysis of the butanol-producing microorganism metabolism for metabolic characterization characterized in that the gene-protein-reaction (GPR) relationship of Table 1 below Network model: <표 1> TABLE 1
Figure 112009022497119-PAT00043
Figure 112009022497119-PAT00043
Figure 112009022497119-PAT00044
Figure 112009022497119-PAT00044
Figure 112009022497119-PAT00045
Figure 112009022497119-PAT00045
Figure 112009022497119-PAT00046
Figure 112009022497119-PAT00046
Figure 112009022497119-PAT00047
Figure 112009022497119-PAT00047
Figure 112009022497119-PAT00048
Figure 112009022497119-PAT00048
Figure 112009022497119-PAT00049
Figure 112009022497119-PAT00049
Figure 112009022497119-PAT00050
Figure 112009022497119-PAT00050
Figure 112009022497119-PAT00051
Figure 112009022497119-PAT00051
Figure 112009022497119-PAT00052
Figure 112009022497119-PAT00052
Figure 112009022497119-PAT00053
Figure 112009022497119-PAT00053
Figure 112009022497119-PAT00054
Figure 112009022497119-PAT00054
Figure 112009022497119-PAT00055
Figure 112009022497119-PAT00055
Figure 112009022497119-PAT00056
Figure 112009022497119-PAT00056
Figure 112009022497119-PAT00057
Figure 112009022497119-PAT00057
Figure 112009022497119-PAT00058
Figure 112009022497119-PAT00058
Figure 112009022497119-PAT00059
Figure 112009022497119-PAT00059
Figure 112009022497119-PAT00060
Figure 112009022497119-PAT00060
Figure 112009022497119-PAT00061
Figure 112009022497119-PAT00061
Figure 112009022497119-PAT00062
Figure 112009022497119-PAT00062
Figure 112009022497119-PAT00063
Figure 112009022497119-PAT00063
Figure 112009022497119-PAT00064
Figure 112009022497119-PAT00064
Figure 112009022497119-PAT00065
Figure 112009022497119-PAT00065
Figure 112009022497119-PAT00066
Figure 112009022497119-PAT00066
Figure 112009022497119-PAT00067
Figure 112009022497119-PAT00067
Figure 112009022497119-PAT00068
Figure 112009022497119-PAT00068
Figure 112009022497119-PAT00069
Figure 112009022497119-PAT00069
Figure 112009022497119-PAT00070
Figure 112009022497119-PAT00070
Figure 112009022497119-PAT00071
Figure 112009022497119-PAT00071
Figure 112009022497119-PAT00072
Figure 112009022497119-PAT00072
Figure 112009022497119-PAT00073
Figure 112009022497119-PAT00073
제1항에 있어서, 상기 부탄올 생성 미생물은 클로스트리듐(Clostridium) 속 미생물임을 특징으로 하는 대사 특성 분석용 대사 네트워크 모델.The metabolic network model for metabolic characterization as claimed in claim 1, wherein the butanol-producing microorganism is Clostridium microorganism. 제1항 또는 제4항 중 어느 한 항의 대사 네트워크 모델을 이용하는 것을 특징으로 하는 부탄올 생성 미생물의 대사특성 분석방법.Method for analyzing metabolic properties of butanol-producing microorganisms using the metabolic network model of any one of claims 1 and 4. 제5항에 있어서, 상기 대사특성은 대사흐름인 것을 특징으로 하는 방법.6. The method of claim 5, wherein said metabolic property is metabolic flow. 제6항에 있어서, 다음 단계를 포함하는 것을 특징으로 하는 방법:The method of claim 6 comprising the following steps: (a) 상기 대사 네트워크 모델 중 사용가능한 탄소원 및 질소원에 대한 수송 반응식을 보정하는 단계; 및(a) calibrating the transport scheme for available carbon and nitrogen sources in the metabolic network model; And (b) 상기 탄소원 및 질소원을 이용하여 대사흐름분석하는 단계.(b) metabolic flow analysis using the carbon and nitrogen sources. 제1항 또는 제4항 중 어느 한 항의 대사 네트워크 모델의 토폴로지(topology)를 분석하는 방법.Method for analyzing the topology of the metabolic network model of claim 1. 제8항에 있어서, 상기 토폴로지의 분석은 다음의 클로스터 계수 Cn을 이용하는 것을 특징으로 하는 방법: 10. The method of claim 8, wherein the analysis of the topology uses the following clouter coefficient Cn : CnCn = N/M  = N / M N : n번째 노드와 이웃한 노드간의 연결된 선의 개수 N : Number of connected lines between nth node and neighboring nodes M : n번째 노드와 이웃한 노드간의 최대한으로 연결 가능한 선의 개수 M : the maximum number of possible lines between nth node and neighboring nodes 여기서, 상기 노드는 상기 대사 네트워크의 대사산물을 나타내고, 2개의 노드를 연결하는 상기 선은 두 대사산물을 매개하는 효소반응식임.Wherein the node represents a metabolite of the metabolic network and the line connecting the two nodes is an enzymatic reaction mediating two metabolites. 제8항에 있어서, 상기 토폴로지의 분석은 다음의 클로스터 계수 Cn을 이용하는 것을 특징으로 하는 방법: 10. The method of claim 8, wherein the analysis of the topology uses the following clouter coefficient Cn : n = 2 en /( kn ( kn -1)) (단일방향으로 구성된 네트워크의 경우) n = 2 en / ( kn ( kn -1)) (for unidirectional networks) Cn = en /( kn ( kn -1)) (양방향으로 구성된 네트워크의 경우) Cn = en / ( kn ( kn -1)) (for bidirectional networks) kn : n번째 노드의 인접한 연결된 노드의 개수 kn : number of contiguous connected nodes in nth node en : n번째 노드의 모든 이웃 중 연결된 쌍의 수 en : the number of connected pairs among all neighbors of the nth node 여기서, 상기 노드는 상기 대사 네트워크의 대사산물을 나타내고, 2개의 노드를 연결하는 상기 선은 두 대사산물을 매개하는 효소반응식임.Wherein the node represents a metabolite of the metabolic network and the line connecting the two nodes is an enzymatic reaction mediating two metabolites. 제1항 또는 제4항 중 어느 한 항의 대사 네트워크 모델에서 효소반응식들을 하나 또는 둘 이상씩 차단하며 선형계획법을 적용하되, 특정 대사산물의 생성능이 증가하는 경우 차단된 효소 반응식의 효소를 결실 표적효소로 선정하거나, 이를 코딩하는 유전자를 결실 표적유전자로 선정하는 것을 특징으로 하는 부탄올 생성 미생물의 특정 대사산물의 생산을 증가시키기 위한 결실 표적 효소 또는 그 유전자의 스크리닝 방법.In the metabolic network model of any one of claims 1 or 4, one or two or more enzyme reactions are blocked and a linear programming is applied, but when the ability to produce a specific metabolite increases, the enzyme of the blocked enzyme reaction is deleted. Or a method of screening for a deletion target enzyme or a gene for increasing the production of a specific metabolite of a butanol producing microorganism, characterized in that it is selected as a deletion target gene. 제11항에 있어서, 성장 반응식의 반응속도 또는 대사흐름값이 양수인 조건에서 특정 대사산물의 생성능이 증가하는 경우에 차단된 효소 반응식의 효소를 결실 표적효소로 선정하거나, 이를 코딩하는 유전자를 결실 표적유전자로 선정하는 것을 특징으로 하는 방법.12. The method according to claim 11, wherein the enzyme of the blocked enzyme reaction is selected as a deletion target enzyme or the gene encoding the enzyme is deleted when the growth rate or the metabolic flow value is positive, and the production capacity of the specific metabolite is increased. Method for selecting a gene. 제12항에 있어서, 부탄올 생산 미생물의 대사 네트워크 모델에서 효소반응식들을 하나 또는 둘 이상씩 차단하며 선형계획법을 적용하는 단계를 추가로 수행하되, 성장 반응식의 반응속도 또는 대사흐름값이 0인 조건에서 특정 대사산물의 생성능이 증가하는 경우에 차단된 효소 반응식의 효소를 2차 결실 표적효소 후보로 선정한 후, 상기 성장 반응식의 반응속도 또는 대사흐름값이 양수인 조건의 결실 표적효소와 중복되는 경우에만 결실 표적효소로 선정하거나, 이를 코딩하는 유전자를 결실 표적유전자로 선정하는 것을 특징으로 하는 방법.13. The method of claim 12, further comprising applying a linear programming method by blocking one or more enzyme reactions in a metabolic network model of a butanol producing microorganism, wherein the growth rate or the rate of metabolic flow is zero. When the enzyme of the blocked enzyme reaction is selected as a candidate candidate for secondary deletion target enzyme in case of increasing the ability of a specific metabolite, the deletion is performed only when the reaction rate or metabolic flow value of the growth scheme overlaps with a target enzyme that is positive. A method for selecting a target enzyme or selecting a gene encoding the same as a deletion target gene. 제12항에 있어서, 상기 성장 반응식은 반응식 Ⅰ인 것을 특징으로 하는 방법:The method of claim 12, wherein said growth scheme is Scheme I: [반응식 Ⅰ]Scheme I 0.5284 PROTEIN + 0.0655 RNA + 0.026 DNA + 0.076 PHOSPHOLIPID + 0.1009 PEPTIDOGLYCAN + 0.08 TEICH + 0.0432 CARBOHYDRATE + 0.0494 TRACE + 85 ATP -> BIOMASS + 85 ADP + 85 Pi 0.5284 PROTEIN + 0.0655 RNA + 0.026 DNA + 0.076 PHOSPHOLIPID + 0.1009 PEPTIDOGLYCAN + 0.08 TEICH + 0.0432 CARBOHYDRATE + 0.0494 TRACE + 85 ATP-> BIOMASS + 85 ADP + 85 Pi 제11항에 있어서, 상기 특정 대사산물은 부탄올, 아세트산, 부틸레이트(butyrate), 에탄올 및 아세트산으로 구성된 군에서 선택되는 것임을 특징으로 하는 방법.12. The method of claim 11, wherein the specific metabolite is selected from the group consisting of butanol, acetic acid, butyrate, ethanol and acetic acid. 부탄올 생성 미생물에서 제11항의 방법에 의하여 스크리닝된 결실 표적유전자를 결실시키는 것을 특징으로 하는 특정 대사산물의 생성능이 증가된 변이 미생물의 제조방법.A method for producing a mutant microorganism having increased production ability of a specific metabolite, wherein the deletion target gene screened by the method of claim 11 is deleted in the butanol producing microorganism. 제16항의 방법으로 제조된 특정 대사산물의 생성능이 증가된 변이 미생물.Mutant microorganisms with increased production capacity of certain metabolites prepared by the method of claim 16. 제17항의 변이 미생물을 배양하는 단계; 및 상기 배양액으로부터 특정 대사산물을 회수하는 단계를 포함하는 특정 대사산물의 제조방법. Culturing the mutant microorganism of claim 17; And recovering a specific metabolite from the culture solution. 제1항 또는 제4항 중 어느 한 항의 대사 네트워크 모델을 이용한 부탄올 생성 미생물의 대사흐름 예측방법.A method for predicting metabolic flow of butanol-producing microorganisms using the metabolic network model of claim 1. 제19항에 있어서, 기질의 흡수속도를 선행 입력값으로 한 선행계획법 또는 이차계획법을 이용하는 것을 특징으로 하는 부탄올 생성 미생물의 대사흐름 예측방법.20. The method for predicting metabolic flow of butanol-producing microorganisms according to claim 19, characterized by using a prior art planing method or a second planing method in which the absorption rate of the substrate is a prior input value. 제20항에 있어서, 다음의 반응식 Ⅱ을 이용하는 것을 특징으로 하는 방법:The method of claim 20, wherein the following Scheme II is used: [반응식 Ⅱ]Scheme II
Figure 112009022497119-PAT00074
Figure 112009022497119-PAT00074
제한 조건:Restrictions: S·ν=0, ν minνν max S ν = 0, ν minνν max 여기서, ν acid는 산 생성기에서의 대사흐름 벡터이고; ν sol는 용매 생성기에서의 대사흐름 벡터이고;
Figure 112009022497119-PAT00075
는 용매 생성기에서 조효소 A 전달 효소에 의한 부티르산의 흡수 속도이고;
Figure 112009022497119-PAT00076
는 용매 생성기에서 조효소 A 전달 효소에 의한 아세트산의 흡수 속도이고;
Figure 112009022497119-PAT00077
는 산 생성기에서 부티르산의 생성 속도이고;
Figure 112009022497119-PAT00078
는 산 생성기에서 아세트산의 생성 속도임.
Where ν acid is the metabolic flow vector at the acid generator; ν sol is a metabolic flow vector in the solvent generator;
Figure 112009022497119-PAT00075
Is the rate of uptake of butyric acid by the coenzyme A transfer enzyme in the solvent generator;
Figure 112009022497119-PAT00076
Is the rate of absorption of acetic acid by the coenzyme A transfer enzyme in the solvent generator;
Figure 112009022497119-PAT00077
Is the rate of production of butyric acid in the acid generator;
Figure 112009022497119-PAT00078
Is the rate of acetic acid production in the acid generator.
KR1020090032406A 2008-04-14 2009-04-14 Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same KR101100866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090032406A KR101100866B1 (en) 2008-04-14 2009-04-14 Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20080034238 2008-04-14
KR1020080034238 2008-04-14
KR1020090032406A KR101100866B1 (en) 2008-04-14 2009-04-14 Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same

Publications (2)

Publication Number Publication Date
KR20090109072A true KR20090109072A (en) 2009-10-19
KR101100866B1 KR101100866B1 (en) 2012-01-02

Family

ID=41199565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090032406A KR101100866B1 (en) 2008-04-14 2009-04-14 Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same

Country Status (2)

Country Link
KR (1) KR101100866B1 (en)
WO (1) WO2009128644A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111887473A (en) * 2020-07-14 2020-11-06 云南省烟草农业科学研究院 Prediction method for smoke harmful component release amount based on whole genome selection and application

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006716A1 (en) * 2011-04-04 2012-10-04 Evonik Degussa Gmbh Microorganism and process for the fermentative production of an organic chemical compound
KR102561863B1 (en) * 2014-11-19 2023-08-01 바스프 에스이 Genetic modification of eremothecium to increase imp dehydrogenase activity
SI3432916T1 (en) 2016-09-13 2020-01-31 Allergan, Inc. Stabilized non-protein clostridial toxin compositions
CN106947717A (en) * 2017-04-14 2017-07-14 江南大学 It is a kind of that the technology that rare-earth tailing improves microbial inoculum is prepared by raw material culture plant-growth promoting rhizobacteria of pig manure
CN107988242B (en) * 2017-12-14 2021-05-11 大连理工大学 Application of manY/levF gene fragment in butanol production
CN114657217A (en) * 2020-12-22 2022-06-24 安徽华恒生物科技股份有限公司 Efficient preparation method of D-pantoic acid
CN114657216A (en) * 2020-12-22 2022-06-24 安徽华恒生物科技股份有限公司 D-pantoic acid, preparation method and application thereof
CN115011646A (en) * 2022-07-11 2022-09-06 宁夏华吉生物有限公司 Method for preparing guanine and D-ribose by using guanosine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831993A (en) * 1981-08-20 1983-02-24 Idemitsu Kosan Co Ltd Preparation of butanol
US4539293A (en) * 1983-05-10 1985-09-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Production of butanol by fermentation in the presence of cocultures of clostridium
DE102004031177A1 (en) * 2004-06-29 2006-01-19 Henkel Kgaa New odoriferous gene products from Bacillus licheniformis and improved biotechnological production processes based on them
US8962298B2 (en) 2006-05-02 2015-02-24 Butamax Advanced Biofuels Llc Recombinant host cell comprising a diol dehydratase
US20110020888A1 (en) * 2006-12-15 2011-01-27 Biofuelchem Co., Ltd. METHOD FOR PREPARING BUTANOL THROUGH BUTYRYL-CoA AS AN INTERMEDIATE USING BACTERIA

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111887473A (en) * 2020-07-14 2020-11-06 云南省烟草农业科学研究院 Prediction method for smoke harmful component release amount based on whole genome selection and application
CN111887473B (en) * 2020-07-14 2022-07-01 云南省烟草农业科学研究院 Prediction method for smoke harmful component release amount based on whole genome selection and application

Also Published As

Publication number Publication date
WO2009128644A3 (en) 2010-01-21
WO2009128644A9 (en) 2010-04-15
WO2009128644A2 (en) 2009-10-22
KR101100866B1 (en) 2012-01-02

Similar Documents

Publication Publication Date Title
KR101100866B1 (en) Genome­scale Metabolic Network Model in Butanol­producing Microorganism and Method for Analyzing Metabolic Feature and for Screening Knock­out Targets in Butanol­producing Microorganism Using the Same
JP5081187B2 (en) Compositions and methods for modeling yeast metabolism
Breuer et al. Essential metabolism for a minimal cell
US20030224363A1 (en) Compositions and methods for modeling bacillus subtilis metabolism
US8606553B2 (en) Methods for identifying drug targets based on genomic sequence data
Henry et al. Thermodynamics-based metabolic flux analysis
Selkov et al. A reconstruction of the metabolism of Methanococcus jannaschii from sequence data
Schilling et al. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis
Goelzer et al. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis
US7869957B2 (en) Methods and systems to identify operational reaction pathways
US8311790B2 (en) Reverse engineering genome-scale metabolic network reconstructions for organisms with incomplete genome annotation and developing constraints using proton flux states and numerically-determined sub-systems
Levering et al. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets
KR20140015998A (en) Genome-scale metabolic network model reconstruction of kluyveromyces marxianus and strategies for engineering non-native pathways for 3-hydroxypropionate production in kluyveromyces marxianus
KR101132395B1 (en) Systems-oriented Approach for Predicting Drug Targets in Vibrio family
KR101132394B1 (en) Systems-Oriented Approach for Predicting Drug Targets in Microbial Pathogens
Lulli et al. A mathematical model for optimal functional disruption of biochemical networks
Özer Bioinformatics based metabolic network reconstruction of levan producing Halomonas smyrnensis AAD6
da Cunha Genome-scale reconstruction of the metabolic model of the probiotic bacterium Lactobacillus acidophilus
O'Connell Likelihood-Based Gap-Filling of Genome-Scale Metabolic Models Using K-Mer Distance Evidence
Reed Model driven analysis of Escherichia coli metabolism
Burgard Optimization-based frameworks for the analysis and redesign of metabolic networks
Jankowski On the feasibility of novel biochemical transformations: A thermodynamics and constraints-based study
Dufault-Thompson et al. Investigation of the Structure of Element Transfer Networks within Metabolism
Daefler et al. Using Computer Models to Identify Common Therapeutic Targets in Host Adapted Bacterial Threat Agents
Peifer In-depth analysis of the purine biosynthetic pathway of Corynebacterium glutamicum

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191224

Year of fee payment: 9