KR20090106112A - Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications - Google Patents

Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications Download PDF

Info

Publication number
KR20090106112A
KR20090106112A KR1020080031629A KR20080031629A KR20090106112A KR 20090106112 A KR20090106112 A KR 20090106112A KR 1020080031629 A KR1020080031629 A KR 1020080031629A KR 20080031629 A KR20080031629 A KR 20080031629A KR 20090106112 A KR20090106112 A KR 20090106112A
Authority
KR
South Korea
Prior art keywords
silicon carbide
thin film
polycrystalline silicon
aluminum nitride
sic
Prior art date
Application number
KR1020080031629A
Other languages
Korean (ko)
Inventor
정귀상
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020080031629A priority Critical patent/KR20090106112A/en
Publication of KR20090106112A publication Critical patent/KR20090106112A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for depositing an aluminium nitride film for a micro or nano electromechanical system on a poly-crystal silicon carbide buffer layer is provided to improve thermal and chemical properties and mechanical property by wide energy band gap and high thermal conductivity. CONSTITUTION: A method for depositing an aluminium nitride film for a micro or nano electromechanical system on a poly-crystal silicon carbide buffer layer comprises following steps. A silicon dioxide layer of 800 nm is grown in a silicon substrate through a wet thermal oxidation process(S10). A poly-crystal silicon carbide thin film of 300 nm thickness is evaporated in the silicon substrate(S20). An aluminium nitrate membrane of 400 nm thickness is evaporated in the silicon substrate in which the poly-crystal silicon carbide thin film is evaporated(S30).

Description

다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법{Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications}Deposition of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications

본 발명은 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법에 관한 것으로, 더욱 세부적으로는 다결정 탄화규소(3C-SiC)를 완충층으로 사용하여 질화알루미늄(AlN) 박막을 증착시키는 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법에 관한 것이다.The present invention relates to a method for depositing an aluminum nitride film for micro or nanoelectromechanical systems on a polycrystalline silicon carbide buffer layer, and more particularly, to deposit an aluminum nitride (AlN) thin film using polycrystalline silicon carbide (3C-SiC) as a buffer layer. A method of depositing an aluminum nitride film for micro or nanoelectromechanical systems on a polycrystalline silicon carbide buffer layer.

질화알루미늄(AlN; Aluminum nitride)은 육방정계 섬유아연석(Wurtzite) 결정구조를 갖는 Ⅲ-Ⅴ족 화합물 반도체로서, 매우 넓은 에너지 밴드갭(6.2eV)과 높은 열전도도, 높은 전기적 저항, 높은 절연상수, 높은 항복전압 및 우수한 기계적 강도를 가질 뿐 아니라 열적·화학적으로도 안정된 특성을 가진다.Aluminum nitride (AlN) is a group III-V compound semiconductor with hexagonal fiber zincite (Wurtzite) crystal structure, which has a very wide energy band gap (6.2 eV), high thermal conductivity, high electrical resistance, and high dielectric constant. It not only has high breakdown voltage and excellent mechanical strength, but also has stable thermal and chemical properties.

상기와 같은 유용한 특성을 가진 질화알루미늄(AlN) 박막은 실리콘 온 인슐레이터(SOI; Si on Insulator) 구조에서 절연체로서 흔히 사용되는 이산화규소(SiO2)의 자체 발열효과를 감소시키기 위한 대체 물질과 고전력 소자의 게이트 절연물질로서 사용되고 있다.The aluminum nitride (AlN) thin film having such useful properties is a high power device and an alternative material for reducing the self-heating effect of silicon dioxide (SiO 2 ), which is commonly used as an insulator in a silicon on insulator (SOI) structure. It is used as a gate insulating material.

최근에는 다결정 질화알루미늄(AlN) 박막의 압전특성에 관한 연구가 활발히 진행되고 있으며, 압전 물질들 중에서도 PZT(Lead zirconate titanate)와 ZnO(Zinc oxide) 같은 물질에 비해 작은 압전 상수를 가지지만, 다결정 질화알루미늄(AlN) 박막은 낮은 온도에서 증착이 가능하므로 CMOS(Complementary Metal Oxide Semiconductor) 공정과의 호환성을 가진 가장 유용한 압전 물질로 주목을 받고 있다.Recently, research on the piezoelectric properties of polycrystalline aluminum nitride (AlN) thin films has been actively conducted. Among the piezoelectric materials, they have smaller piezoelectric constants than those of materials such as lead zirconate titanate (PZT) and zinc oxide (ZnO), Aluminum (AlN) thin films are attracting attention as the most useful piezoelectric materials compatible with Complementary Metal Oxide Semiconductor (CMOS) processes because they can be deposited at low temperatures.

또한, 빠른 표면 탄성파 전파속도를 가지고 있어서 질화알루미늄(AlN) 박막의 압전특성을 이용한 표면 탄성파(SAW: Surface Acoustic Wave) 소자나 체적 탄성파 공진기(FBAR: Film bulk acoustic resonator) 그리고 마이크로 전자기계시스템(MEMS) 또는 나노 전자기계시스템(NEMS)와 같은 응용분야에 아주 적합하다.In addition, it has a high surface acoustic wave propagation speed, and it uses surface acoustic wave (SAW) elements, film bulk acoustic resonators (FBAR), and microelectromechanical systems (MEMS) using piezoelectric properties of aluminum nitride (AlN) thin films. ) Or nano electromechanical systems (NEMS).

그러나, 실리콘(Si) 기판위에 질화알루미늄(AlN) 박막을 증착할 경우, 두 물질 간에 격자상수(19%)와 열팽창 계수(17%)의 차이가 상당히 크므로 질화알루미늄(AlN) 박막의 특성을 악화시키게 문제점이 발생된다.However, when the aluminum nitride (AlN) thin film is deposited on a silicon (Si) substrate, the difference in lattice constant (19%) and coefficient of thermal expansion (17%) between the two materials is considerably large. The problem is exacerbated.

상술한 바와 같은 문제점을 해결하기 위하여, 본 발명에서는 질화알루미늄(AlN)과의 격자 비정합(1%) 및 열팽창 계수(7%)의 차이가 상대적으로 작은 다결정 탄화규소(3C-SiC) 박막을 완충층으로 사용하여 특성을 개선한 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법을 제공하는데 목적이 있다.In order to solve the above problems, the present invention provides a polycrystalline silicon carbide (3C-SiC) thin film having a relatively small difference in lattice mismatch (1%) and thermal expansion coefficient (7%) with aluminum nitride (AlN). An object of the present invention is to provide a method for depositing an aluminum nitride film for a micro or nanoelectromechanical system on a polycrystalline silicon carbide buffer layer having improved characteristics by using a buffer layer.

목적을 달성하기 위한 방법으로는, 실리콘(Si)기판을 습식 열산화 공정을 거쳐 800 ㎚의 이산화규소(SiO2)막을 성장시키는 제1단계와; 상기 이산화규소(SiO2)막이 성장된 실리콘(Si)기판에 1100℃의 증착 온도하에서 대기압 고온 화학기상증착(APCVD)법으로 300 ㎚ 두께의 다결정 탄화규소(3C-SiC) 박막을 증착시키는 제2단계와; 상기 다결정 탄화규소(3C-SiC) 박막이 증착된 실리콘(Si) 기판에 40 ㎑ 펄스 직류 마그네트론 반응성 스퍼터링 장비를 이용하여 400 ㎚ 두께를 가진 질화알루미늄(AlN) 박막을 증착시키는 제3단계를 포함한다.A method for achieving the object includes a first step of growing a 800 nm silicon dioxide (SiO 2 ) film through a wet thermal oxidation process on a silicon (Si) substrate; A second layer for depositing a 300 nm thick polycrystalline silicon carbide (3C-SiC) thin film on the silicon (Si) substrate on which the silicon dioxide (SiO 2 ) film is grown by an atmospheric pressure high temperature chemical vapor deposition (APCVD) method at a deposition temperature of 1100 ° C; Steps; And a third step of depositing a 400 nm thick aluminum nitride (AlN) thin film on a silicon (Si) substrate on which the polycrystalline silicon carbide (3C-SiC) thin film is deposited using a 40 kHz pulse direct current magnetron reactive sputtering equipment. .

본 발명의 다른 특징으로서, 상기 제2단계의 대기압 고온 화학기상증착(APCVD)에 사용되는 캐리어 가스는 아르곤(Ar)과 수소(H2)를 각각 10 slm과 1 slm를 혼합하여 사용하며, 1100℃로 가열되어 온도가 안정된 상태에서 1sccm의 헥사메틸다이사이레인(HMDS; Hexamethyldisilane) 전구체를 주입하여 약 30분 동안 성장시키면서 300 ㎚ 두께의 다결정 탄화규소(3C-SiC) 박막을 증착시킨다.As another feature of the present invention, the carrier gas used in the atmospheric atmospheric high temperature chemical vapor deposition (APCVD) of the second step is used by mixing argon (Ar) and hydrogen (H 2 ) 10 slm and 1 slm, respectively, 1100 Hexamethyldisilane (HMDS) precursor was injected at 1 ° C. while the temperature was stabilized and the temperature was stabilized to grow for about 30 minutes to deposit a 300 nm thick polycrystalline silicon carbide (3C-SiC) thin film.

본 발명의 또 다른 특징으로서, 상기 제3단계는 스퍼터링 챔버 내부에 다결정 탄화규소(3C-SiC) 박막이 증착된 기판을 고정시킨 상태에서 Al 금속타겟과 N2가스를 주입시키고, 상기 주입된 N2가스 이온이 Al 금속타겟과 충돌되면서 Al 원자가 방출되며, 상기 방출된 Al 원자가 N과 결합되면서 상기 다결정 탄화규소(3C-SiC) 표면에 증착되어, 질화알루미늄(AlN) 박막이 증착된다.As another feature of the present invention, in the third step, the Al metal target and the N 2 gas are injected while the substrate on which the polycrystalline silicon carbide (3C-SiC) thin film is deposited is fixed in the sputtering chamber. Al gas is released as the two gas ions collide with the Al metal target, and the released Al atoms are bonded to the N and deposited on the surface of the polycrystalline silicon carbide (3C-SiC) to deposit an aluminum nitride (AlN) thin film.

상기한 바와 같이, 본 발명은 질화알루미늄(AlN)과의 격자 비정합(1%) 및 열팽창 계수(7%)의 차이가 상대적으로 작은 다결정 탄화규소(3C-SiC) 박막을 완충층으로 사용하여 특성 즉, 넓은 에너지 밴드갭과 높은 열전도도 및 열적·화학적으로 안정된 특성과 기계적 특성을 개선시키는 효과가 있다.As described above, the present invention is characterized by using a polycrystalline silicon carbide (3C-SiC) thin film having a relatively small difference in lattice mismatch (1%) and thermal expansion coefficient (7%) with aluminum nitride (AlN) as a buffer layer. That is, there is an effect of improving the wide energy bandgap, high thermal conductivity, thermally and chemically stable characteristics and mechanical properties.

도 1은 본 발명에 따른 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법의 순서도이고, 도 2는 본 발명에 따른 열산화된 실리콘 기판위에 증착된 다결정 탄화규소 박막의 XRD 스펙트럼이고, 도 3은 본 발명에 따른 c-축 방향에서 바라본 질화알루미늄과 탄화규소 박막의 원자 배열을 나타낸 도면이고, 도 4는 본 발명에 따른 다결정 탄화규소 버퍼층위에 성장된 질화알루미늄막의 단면 FE-SEM 사진이고, 도 5는 본 발명에 따른 질화알루미늄/탄 화규소 구조의 XRD 결과와 (002)면의 진동곡선을 나타낸 그래프이고, 도 6은 본 발명에 따른 질화알루미늄/탄화규소 구조의 FT-IR 분석결과를 나타낸 그래프이다.1 is a flowchart of a method for depositing an aluminum nitride film for a micro or nanoelectromechanical system on a polycrystalline silicon carbide buffer layer according to the present invention, and FIG. 2 is an XRD spectrum of a polycrystalline silicon carbide thin film deposited on a thermally oxidized silicon substrate according to the present invention. 3 is a view showing the atomic arrangement of the aluminum nitride and silicon carbide thin film viewed from the c-axis direction according to the present invention, Figure 4 is a cross-sectional FE-SEM of the aluminum nitride film grown on the polycrystalline silicon carbide buffer layer according to the present invention 5 is a graph showing the XRD results of the aluminum nitride / silicon carbide structure according to the present invention and the vibration curve of the (002) plane, and FIG. 6 is the FT-IR of the aluminum nitride / silicon carbide structure according to the present invention. This graph shows the analysis results.

이하, 도면을 참고로 구성요소를 설명하면 다음과 같다.Hereinafter, the components will be described with reference to the drawings.

도 1은 본 발명의 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법의 순서도로서, 실리콘(Si)기판을 습식 열산화 공정을 거쳐 800 ㎚의 이산화규소(SiO2)막을 성장시키는 제1단계(S10)와; 상기 이산화규소(SiO2)막이 성장된 실리콘(Si)기판에 1100℃의 증착 온도하에서 대기압 고온 화학기상증착(APCVD)법으로 300 ㎚ 두께의 다결정 탄화규소(3C-SiC) 박막을 증착시키는 제2단계(S20)와; 상기 다결정 탄화규소(3C-SiC) 박막이 증착된 실리콘(Si) 기판에 40 ㎑ 펄스 직류 마그네트론 반응성 스퍼터링 장비를 이용하여 400 ㎚ 두께를 가진 질화알루미늄(AlN) 박막을 증착시키는 제3단계(S30)를 포함한다.1 is a flowchart of a method for depositing an aluminum nitride film for a micro or nanoelectromechanical system on a polycrystalline silicon carbide buffer layer of the present invention, wherein a silicon (Si) substrate is subjected to a wet thermal oxidation process to grow a 800 nm silicon dioxide (SiO 2 ) film. First step (S10) to make; A second layer for depositing a 300 nm thick polycrystalline silicon carbide (3C-SiC) thin film on the silicon (Si) substrate on which the silicon dioxide (SiO 2 ) film is grown by an atmospheric pressure high temperature chemical vapor deposition (APCVD) method at a deposition temperature of 1100 ° C; Step S20; A third step (S30) of depositing a 400 nm thick aluminum nitride (AlN) thin film on a silicon (Si) substrate on which the polycrystalline silicon carbide (3C-SiC) thin film is deposited using a 40 ㎑ pulse direct current magnetron reactive sputtering apparatus It includes.

상기 제2단계(S20)의 대기압 고온 화학기상증착(APCVD)에 사용되는 캐리어 가스는 아르곤(Ar)과 수소(H2)를 각각 10 slm과 1 slm를 혼합하여 사용하며, 1100℃로 가열되어 온도가 안정된 상태에서 1sccm의 헥사메틸다이사이레인(HMDS; Hexamethyldisilane) 전구체를 주입하여 약 30분 동안 성장시키면서 300 ㎚ 두께의 다결정 탄화규소(3C-SiC) 박막을 증착시키고, 상기 증착이 끝난 후, 헥사메틸다이사이레인(HMDS)의 주입을 차단하고 반응관을 실온에서 냉각시키게 된다.Carrier gas used in the atmospheric pressure high temperature chemical vapor deposition (APCVD) of the second step (S20) is a mixture of argon (Ar) and hydrogen (H 2 ) 10 slm and 1 slm, respectively, and heated to 1100 ℃ Injecting 1 sccm of hexamethyldisilane (HMDS; Hexamethyldisilane) precursor at a stable temperature to grow for about 30 minutes to deposit a 300 nm thick polycrystalline silicon carbide (3C-SiC) thin film, and after the deposition, The injection of hexamethyldiisirane (HMDS) was blocked and the reaction tube was allowed to cool at room temperature.

본 발명에 사용되는 아르곤(Ar)과 수소(H2)의 최적 가스 비율은 10:1로 사용되고 있지만, 박막의 두께 및 표면평탄도의 특성에 따라 상기 아르곤(Ar)의 유량을 조절하여 아르곤(Ar)과 수소(H2)의 혼합비율을 7:1 또는 5:1 및 3:1의 비율로 사용할 수도 있다.Although the optimal gas ratio of argon (Ar) and hydrogen (H 2 ) used in the present invention is 10: 1, argon (Ar) is controlled by adjusting the flow rate of argon (Ar) according to the thickness of the thin film and the characteristics of surface flatness. A mixing ratio of Ar) and hydrogen (H 2 ) may be used in a ratio of 7: 1 or 5: 1 and 3: 1.

상기 헥사메틸다이사이레인(HMDS)는 탄화규소(SiC) 형성에 직접적인 영향을 주는 규소(Si)와 탄소(C)를 포함한 물질로서, 상기 헥사메틸다이사이레인(HMDS)의 주입량은 박막 두께에 많은 영향을 주며, 헥사메틸다이사이레인(HMDS)의 유량이 증가 할수록 박막의 두께 또한 증가하게 된다. 그러나 이러한 증가는 선형적이 아니며, 과다한 헥사메틸다이사이레인(HMDS)는 또 다른 문제(동종핵생성)를 발생시키기 때문에 적절한 유량의 제어가 중요하며, 본 발명에서는 1sccm의 헥사메틸다이사이레인(HMDS)를 사용해도 박막 공정에 요구되는 두께를 만족하고, 동종핵생성의 문제가 없기 때문에 1sccm을 사용하게 된다.The hexamethyldicylein (HMDS) is a material containing silicon (Si) and carbon (C) that has a direct effect on the formation of silicon carbide (SiC), the injection amount of the hexamethyldiisirane (HMDS) is a thin film thickness As the flow rate of hexamethyldicylein (HMDS) increases, the thickness of the thin film also increases. However, this increase is not linear, and the control of proper flow rate is important because excessive hexamethyldicylein (HMDS) creates another problem (homologous nucleation), and in the present invention, 1 sccm of hexamethyldiisirane (HMDS) is important. ), 1 sccm is used because it satisfies the thickness required for the thin film process and there is no problem of homogenous nucleation.

상기 제3단계(S30)는 스퍼터링 챔버 내부에 다결정 탄화규소(3C-SiC) 박막이 증착된 기판을 고정시킨 상태에서 Al 금속타겟과 N2가스를 주입시키고, 상기 주입된 N2가스 이온이 Al 금속타겟과 충돌되면서 Al 원자가 방출되며, 상기 방출된 Al 원자가 N과 결합되면서 상기 다결정 탄화규소(3C-SiC) 표면에 증착되어, 질화알루미늄(AlN) 박막이 증착된다.In the third step (S30), the Al metal target and the N 2 gas are injected while the substrate on which the polycrystalline silicon carbide (3C-SiC) thin film is deposited is fixed in the sputtering chamber, and the injected N 2 gas ions are Al Al atoms are released as they collide with the metal target, and the released Al atoms are bonded to N and deposited on the surface of the polycrystalline silicon carbide (3C-SiC) to deposit an aluminum nitride (AlN) thin film.

상기와 같이 구성되는 본 발명의 다결정 탄화규소(3C-SiC) 버퍼층위에 증착된 질화알루미늄(AlN) 박막의 특성을 분석하기 위하여, 전계방사 주사전자현미경(FE-SEM; Field Emission Scanning Electron Microscope)과 X선회절(XRD; X-ray diffraction)을 이용하였으며, JCPDS(Joint Committee on Powder Diffraction Standards)의 자료에 의하면, 질화알루미늄(AlN)의 (002)면과 탄화규소(SiC)의 (111)면을 가리키는 피크의 위상차가 2θ×0.6°이므로 여기서, 본 발명에 사용된 X선회절(XRD) 기기로는 두 피크를 구분하는 것이 불가능하므로, 상기 질화알루미늄(AlN) 박막 증착 전과 후, 두 번에 걸쳐서 다결정 탄화규소(3C-SiC)와 질화알루미늄(AlN) 박막의 결정성을 조사하였고, 마지막으로 적외선분광기(FT-IR: Fourier Transformation Infrared Spectroscopy)를 이용하여 질화알루미늄(AlN)의 화학적 구성을 분석하였다.In order to analyze the characteristics of the aluminum nitride (AlN) thin film deposited on the polycrystalline silicon carbide (3C-SiC) buffer layer of the present invention configured as described above, the field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) was used, and according to data from Joint Committee on Powder Diffraction Standards (JCPDS), the (002) plane of aluminum nitride (AlN) and the (111) plane of silicon carbide (SiC) Since the phase difference of the peak indicating 2θ x 0.6 ° is not possible to distinguish the two peaks by the X-ray diffraction (XRD) device used in the present invention, before and after the deposition of the aluminum nitride (AlN) thin film, The crystallinity of polycrystalline silicon carbide (3C-SiC) and aluminum nitride (AlN) thin films was investigated. Finally, the chemical composition of aluminum nitride (AlN) was analyzed by Fourier Transformation Infrared Spectroscopy (FT-IR). It was.

도 2는 본 발명에 따른 열산화된 실리콘(Si) 기판위에 증착된 다결정 탄화규소(3C-SiC)박막의 X선회절(XRD; X-ray diffraction) 측정 결과로서, 두 개의 피크가 2Θ = 35.54, 60.24°에서 각각 관찰되는데, 이 중 높은 세기를 가지는 피크는 다결정 탄화규소(3C-SiC) 박막의 (111)면을 가리키고, 낮은 피크는 (220)면을 가리킨다.2 is an X-ray diffraction (XRD) measurement result of a polycrystalline silicon carbide (3C-SiC) thin film deposited on a thermally oxidized silicon (Si) substrate according to the present invention, wherein two peaks are 2Θ = 35.54 , 60.24 °, each of which has a high intensity peak indicating the (111) plane of the polycrystalline silicon carbide (3C-SiC) thin film and a low peak indicating the (220) plane.

상기 결과로부터 이산화규소(SiO2) 위에 성장된 다결정 탄화규소(3C-SiC) 박막은 (111)면을 주 결정면으로 하여 성장함을 알 수 있으며, 상기 (111)면의 우선 배향성을 가진 다결정 탄화규소(3C-SiC) 박막이 가장 큰 영률을 가진 것으로 알려져 있다.From the above results, it can be seen that the polycrystalline silicon carbide (3C-SiC) thin film grown on silicon dioxide (SiO 2 ) grows with the (111) plane as the main crystal plane, and the polycrystalline silicon carbide having the preferential orientation of the (111) plane. It is known that (3C-SiC) thin films have the largest Young's modulus.

도 3은 본 발명에 따른 다결정 탄화규소(3C-SiC)와 질화알루미늄(AlN) 박막 사이의 격자 비정합을 분석하기 위하여 두 물질의 원자배열을 도식적으로 나타낸 것으로, 도 3(a)는 c-축 방향에서 바라본 질화알루미늄(AlN) 박막의 원자 배열을 나타낸 것이고, 도 3(b)는 c-축 방향에서 바라본 다결정 탄화규소(3C-SiC) 박막의 원자 배열을 나타낸 것이다.Figure 3 schematically shows the atomic arrangement of the two materials in order to analyze the lattice mismatch between the polycrystalline silicon carbide (3C-SiC) and aluminum nitride (AlN) thin film according to the present invention, Figure 3 (a) is a c- The atomic arrangement of the aluminum nitride (AlN) thin film viewed from the axial direction is shown, and FIG. 3 (b) shows the atomic arrangement of the polycrystalline silicon carbide (3C-SiC) thin film viewed from the c-axis direction.

섬유아연석(Wurtzite) 결정 구조를 가지는 질화알루미늄(AlN)의 [110]방향과 평행인 a-축에서의 격자 상수는 3.11Å이고, 입방체구조에서 a-축과 평행한 방향으로 다결정 탄화규소(3C-SiC)와 실리콘(Si) 원자간의 간격은 각각 3.08과 3.84Å이다.The lattice constant in the a-axis parallel to the [110] direction of aluminum nitride (AlN) having a wurtzite crystal structure is 3.11Å, and the polycrystalline silicon carbide (A) in the direction parallel to the a-axis in the cubic structure The spacing between 3C-SiC) and silicon (Si) atoms is 3.08 and 3.84Å, respectively.

이를 이용하여 a-축 방향으로의 질화알루미늄(AlN)과 다결정 탄화규소(3C-SiC) 사이의 격자 비정합은 1%이고, 상기 질화알루미늄(AlN)과 실리콘(Si) 사이의 격자 비정합은 19%이하가 된다. 또한, 상기 질화알루미늄(AlN)과 같은 섬유아연석(Wurtzite) 결정구조인 산화아연(ZnO) 박막을 실리콘(Si) 기판 위에 증착시, (111)면으로 배향된 다결정 탄화규소(3C-SiC) 버퍼층을 이용함으로서, 산화아연(ZnO) (002) 결정면의 배향성을 향상시키게 된다.Using this, the lattice mismatch between the aluminum nitride (AlN) and the polycrystalline silicon carbide (3C-SiC) in the a-axis direction is 1%, and the lattice mismatch between the aluminum nitride (AlN) and silicon (Si) is It is less than 19%. In addition, when a zinc oxide (ZnO) thin film having a wurtzite crystal structure such as aluminum nitride (AlN) is deposited on a silicon (Si) substrate, polycrystalline silicon carbide (3C-SiC) oriented to the (111) plane By using the buffer layer, the orientation of the zinc oxide (ZnO) (002) crystal plane is improved.

도 4는 본 발명에 따른 다결정 탄화규소(3C-SiC) 버퍼층위에 성장된 질화알루미늄(Al)막의 단면 전계방사 주사전자현미경(FE-SEM; Field Emission Scanning Electron Microscope) 사진으로, 서로 다른 구조를 가진 두 개의 층 즉, 탄화규소(SiC)층과 질화알루미늄(AlN)층이 존재함을 알 수 있으며, 400 ㎚ 두께의 질화알루미늄(AlN) 박막은 기판에 수직 방향으로 성장되어 주사형 구조를 가지고 있는 반면에, 300 ㎚ 두께인 탄화규소(SiC) 박막은 둥그런 모양의 그레인들이 적측되어 있는 구조임을 알 수 있다.FIG. 4 is a cross-sectional field emission scanning electron microscope (FE-SEM) photograph of an aluminum nitride (Al) layer grown on a polycrystalline silicon carbide (3C-SiC) buffer layer according to the present invention. FIG. It can be seen that there are two layers, a silicon carbide (SiC) layer and an aluminum nitride (AlN) layer, and the 400 nm thick aluminum nitride (AlN) thin film is grown in a direction perpendicular to the substrate and has a scanning structure. On the other hand, the 300 nm thick silicon carbide (SiC) thin film can be seen that the rounded grains are stacked structure.

도 5는 본 발명에 따른 다결정 탄화규소 버퍼층위에 증착된 질화알루미늄 구 조의 X선회절(XRD; X-ray diffraction) 결과 및 (002)면의 진동곡선(Rocking curve)을 나타낸 그래프로서, 상기 X선회절(XRD; X-ray diffraction) 결과에 나타난 3개의 피크 중 2Θ = 36.05°의 위상을 가지는 피크는 질화알루미늄(AlN) 박막의 (002) 배향성을 보여주는데, 이것은 질화알루미늄(AlN) 박막의 압전특성을 평가할 때 중요한 요소이며, (002) 방향의 결정성 정도를 분석하기 위하여 진동곡선(Rocking curve)를 이용하여 반폭치(FWHM; Full Width of Half Maximum)가 Θ = 1.3°임을 알 수 있다.FIG. 5 is a graph showing the X-ray diffraction (XRD) results of the aluminum nitride structure deposited on the polycrystalline silicon carbide buffer layer according to the present invention and the rocking curve of the (002) plane. Of the three peaks in the X-ray diffraction (XRD) result, the peak having a phase of 2Θ = 36.05 ° shows the (002) orientation of the aluminum nitride (AlN) thin film, which indicates the piezoelectric properties of the aluminum nitride (AlN) thin film. It is an important factor when evaluating, and it can be seen that the full width of half maximum (FWHM) is Θ = 1.3 ° by using a rocking curve to analyze the degree of crystallinity in the (002) direction.

이 결과는 다결정 실리콘(Si) 박막위에 성장된 질화알루미늄(AlN)의 반폭치(FWHM) 값(4.9°)보다 훨씬 낮은 값을 나타내는 것으로, 따라서 다결정 탄화규소(3C-SiC) 버퍼층 위에 성장된 질화알루미늄(AlN) 박막이 더 높은 정도의 (002) 배향성을 가지고 성장됨을 알 수 있고, 일반적으로 상기 질화알루미늄(AlN) 박막의 압전특성 평가는 반폭치(FWHM)를 이용할 수 있으며, 상기 반폭치(FWHM)가 작을수록 다시 말하면, (002)면의 결정성이 좋을수록 압전계수 (d33)뿐만 아니라 전기기계 결합계수 (k)가 높은 값을 가짐을 알 수 있다.This result is much lower than the half width (FWHM) value (4.9 °) of aluminum nitride (AlN) grown on polycrystalline silicon (Si) thin film, and thus is grown on the polycrystalline silicon carbide (3C-SiC) buffer layer. It can be seen that the aluminum (AlN) thin film is grown with a higher degree of (002) orientation, and in general, the piezoelectric property evaluation of the aluminum nitride (AlN) thin film may use a half width (FWHM), and the half width ( In other words, the smaller the FWHM), the better the crystallinity of the (002) plane, the higher the piezoelectric coefficient (d 33 ) as well as the electromechanical coupling coefficient (k).

이러한 사실을 바탕으로 탄화규소(SiC) 버퍼층을 이용하여 증착된 질화알루미늄(AlN) 박막의 압전특성이 실리콘(Si) 위에 증착된 것에 비해 향상되며, 상기 질화알루미늄(AlN) 박막이 높은 k값을 가지기 위해서는 완전한 (002) 배향성이 요구된다. 그러나, 도 5를 보면 (002)면을 제외한 두 개의 결정면에 대한 피크가 49.85, 66.08°에서 관찰되었고, 이들 각각은 (102), (103)면의 배향성을 보여주며 질화알루미늄(AlN) 박막에서의 결합과 관련이 있다.Based on this fact, the piezoelectric properties of aluminum nitride (AlN) thin films deposited using a silicon carbide (SiC) buffer layer are improved compared to those deposited on silicon (Si), and the aluminum nitride (AlN) thin films have a high k value. Full (002) orientation is required to have. However, in FIG. 5, peaks for two crystal planes except for the (002) plane were observed at 49.85 and 66.08 °, and each of them showed the orientation of the (102) and (103) planes, and was observed in the aluminum nitride (AlN) thin film. It is related to the combination of.

상기와 같은 결과로부터 다결정 탄화규소(3C-SiC) 버퍼층을 이용하여 실리콘(Si) 기판 위에 증착된 질화알루미늄(AlN) 박막은 매우 높은 정도의 (002) 배향성을 보이지만, 그 이외의 결정성장면 또한 존재하게 되며, 완전한 (002) 배향성을 가진 질화알루미늄(AlN) 박막을 얻기 위해서 두 가지 방법이 있는데, 첫 번째로는 질화알루미늄(AlN) 박막의 두께를 조정하여, (002) 배향성을 향상시키는 것이고, 두 번째로는 높은 정도의 (002) 배향성을 가지고 있는 질화알루미늄(AlN) 박막의 경우, 급속 열처리(RTA; Rapid Thermal Annealing)를 통하여 결정성을 도모할 수 있다.From the above results, the aluminum nitride (AlN) thin film deposited on the silicon (Si) substrate using the polycrystalline silicon carbide (3C-SiC) buffer layer shows a very high degree of (002) alignment, but other crystal growth surfaces There are two ways to obtain an aluminum nitride (AlN) thin film with full (002) orientation, firstly by adjusting the thickness of the aluminum nitride (AlN) thin film to improve the (002) orientation. Secondly, in the case of an aluminum nitride (AlN) thin film having a high degree of (002) orientation, crystallinity can be achieved through rapid thermal annealing (RTA).

상기 두 번째 방법은 질화알루미늄(AlN) 박막의 결함을 줄이고 결정성을 향상시키는데 도움을 주지만 압전특성에는 큰 영향을 끼치지 않으며, 같은 방향성을 가진 그레인들 중에서도 극성이 반대인 그레인들이 있는데, 열처리 공정이 그레인들의 극성을 반대로 변화시키지는 않기 때문이다.The second method helps to reduce defects and improve crystallinity of aluminum nitride (AlN) thin films, but does not affect piezoelectric properties, and among the grains having the same directionality, grains having opposite polarities are included. This is because the polarity of these grains is not reversed.

상기와 같은 다결정 탄화규소(3C-SiC) 버퍼층위에 증착된 질화알루미늄(AlN)의 결정구조에 관한 X선회절(XRD; X-ray diffraction) 결과에서, 다결정 탄화규소(3C-SiC)에 관한 피크가 전혀 나타나지 않았고, 질화알루미늄(AlN) 박막에서 (002)면을 가리키는 피크와 상기 다결정 탄화규소(3C-SiC) 박막에서 (111) 결정면을 나타내는 피크사이의 위상차는 2Θ = 0.6°에 불과하기 때문이다. 그러나, 도 6의 다결정 탄화규소 버퍼층위에 증착된 질화알루미늄 구조의 적외선분광기(FT-IR: Fourier Transformation Infrared Spectroscopy) 분석결과를 나타낸 그래프에서 실 리콘(Si)와 탄소(C)의 결합 모드가 810.1㎝-1에서 보이므로 탄화규소(SiC)층의 존재를 확인할 수 있다.In the X-ray diffraction (XRD) result of the crystal structure of aluminum nitride (AlN) deposited on the polycrystalline silicon carbide (3C-SiC) buffer layer as described above, the peak for the polycrystalline silicon carbide (3C-SiC) Was not shown at all, and the phase difference between the peak indicating the (002) plane in the aluminum nitride (AlN) thin film and the peak representing the (111) crystal plane in the polycrystalline silicon carbide (3C-SiC) thin film was only 2Θ = 0.6 °. to be. However, the bonding mode of silicon (Si) and carbon (C) is 810.1 cm in the graph showing the results of Fourier Transformation Infrared Spectroscopy (FT-IR) analysis of the aluminum nitride structure deposited on the polycrystalline silicon carbide buffer layer of FIG. 6. As seen from -1 , the presence of the silicon carbide (SiC) layer can be confirmed.

한편, 이산화규소(SiO2)층과 관련된 피크가 1095.6㎝-1에서 크게 나타나는데, 이는 산화막층의 높은 두께에 기인하며, 이외에 남아 있는 두 개의 피크가 613.4, 671.2㎝-1에서 두 개가 관찰되는데, 이는 알루미늄(Al)과 질소(N)의 결합에 의한 Al(TO)와 EI(TO) 모드를 의미한다.On the other hand, the peak related to the silicon dioxide (SiO 2 ) layer is large at 1095.6 cm −1 , which is due to the high thickness of the oxide layer, and two remaining peaks are observed at 613.4 and 671.2 cm −1 . This means Al (TO) and EI (TO) mode by combining aluminum (Al) and nitrogen (N).

질화알루미늄(AlN) 박막의 Al(TO) 모드는 X선회절(XRD) 결과에서 보였던 (002)면을 제외한 결정면의 존재 즉, 결함과 관련있으며, E1(TO) 피크는 (002)면의 결정성과 깊은 연계성이 있다. 즉, E1(TO)의 반폭치(FWHM)가 작을수록 결정성이 우수한 특성을 가지며, 이러한 적외선분광기(FT-IR) 결과는 X선회절(XRD) 분석결과와 일치함을 알 수 있다.The Al (TO) mode of the aluminum nitride (AlN) thin film is related to the presence of crystal planes, ie defects, except for the (002) plane shown in the X-ray diffraction (XRD) results. There is a strong connection with performance. In other words, the smaller the half width (FWHM) of E1 (TO), the more excellent the crystallinity, and the result of the infrared spectroscopy (FT-IR) is consistent with the X-ray diffraction (XRD) analysis results.

또한, 상기 질화알루미늄(AlN) 박막의 적외선분광기(FT-IR) 분석결과로서 생기는 두 피크의 위치에 따른 박막 내의 잔류응력을 측정한 결과, 다결정 탄화규소(3C-SiC) 박막 위에 증착된 질화알루미늄(AlN) 박막의 스트레스를 평가하면 스트레스가 거의 없는 상태인 양호한 질화알루미늄(AlN) 박막이 증착됨을 확인할 수 있다.In addition, the aluminum nitride deposited on the polycrystalline silicon carbide (3C-SiC) thin film as a result of measuring the residual stress in the thin film according to the position of the two peaks generated as a result of the infrared spectroscopy (FT-IR) analysis of the aluminum nitride (AlN) thin film. When the stress of the (AlN) thin film is evaluated, it can be confirmed that a good aluminum nitride (AlN) thin film is deposited in a state where there is little stress.

따라서, 본 발명은 다결정 탄화규소(3C-SiC) 버퍼층을 이용하여 마이크로 전자기계시스템(MEMS) 또는 나노 전자기계시스템(NEMS)용 다결정 질화알루미늄(AlN) 박막을 펄스 직류 반응성 마그네트론 스퍼터링 방식으로 실리콘(Si) 기판 위에 증착하고, 상기 질화알루미늄(AlN)과 다결정 탄화규소(3C-SiC) 박막의 a-축 방향으로의 원자간 거리를 이용하여 계산한 결과, 대략 1%의 격자 비정합을 얻을 수 있으며, 기판에 수직 방향으로 성장된 질화알루미늄(AlN) 박막이 전계방사 주사전자현미경(FE-SEM) 이미지를 통하여 관찰되었고, X선회절(XRD) 분석결과로부터 다결정 탄화규소(3C-SiC) 버퍼층을 이용하여 증착된 질화알루미늄(AlN) 박막이 다결정 실리콘(Si) 박막을 이용한 것보다 높은 (002) 배향성을 갖으며, 압전특성 또한 우수한 것으로 나타난다.Accordingly, the present invention provides a polycrystalline aluminum nitride (AlN) thin film for a microelectromechanical system (MEMS) or a nanoelectromechanical system (NEMS) using a polycrystalline silicon carbide (3C-SiC) buffer layer in the form of a pulsed DC reactive magnetron sputtering method. Si) deposited on a substrate and calculated using the interatomic distances in the a-axis direction of the aluminum nitride (AlN) and polycrystalline silicon carbide (3C-SiC) thin films, yielding a lattice mismatch of approximately 1%. An aluminum nitride (AlN) thin film grown in a direction perpendicular to the substrate was observed through a field emission scanning electron microscope (FE-SEM) image, and a polycrystalline silicon carbide (3C-SiC) buffer layer was obtained from X-ray diffraction (XRD) analysis. The aluminum nitride (AlN) thin film deposited by using has a higher (002) orientation than that of the polycrystalline silicon (Si) thin film, and the piezoelectric properties are also excellent.

그러나, (002)면 이외의 결정면 또한 존재함을 확인할 수 있는데, 이는 두께 조정 또는 급속 열처리(RTA; Rapid Thermal Annealing) 공정으로 이러한 문제점을 해결할 수 있으며, 또한 적외선분광기(FT-IR) 분석으로 스트레스가 거의 없는 질화알루미늄(AlN) 박막이 다결정 탄화규소(3C-SiC) 버퍼층위에 형성됨을 알 수 있다.However, it can be seen that there is also a crystal plane other than the (002) plane, which can be solved by the thickness adjustment or rapid thermal annealing (RTA) process, and also by the infrared spectroscopy (FT-IR) analysis It can be seen that the aluminum nitride (AlN) thin film having little is formed on the polycrystalline silicon carbide (3C-SiC) buffer layer.

상기와 같은 결과로부터 다결정 탄화규소(3C-SiC) 버퍼층을 이용하여 실리콘(Si) 기판위에 증착된 다결정 질화알루미늄(AlN) 박막은 마이크로 전자기계시스템(MEMS) 또는 나노 전자기계시스템(NEMS) 분야에 유용하게 응용될 수 있다.From the above results, polycrystalline aluminum nitride (AlN) thin films deposited on silicon (Si) substrates using polycrystalline silicon carbide (3C-SiC) buffer layers have been applied to microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS). It can be usefully applied.

본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 첨부된 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 당업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.While the invention has been shown and described with respect to particular embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention as set forth in the appended claims. Anyone can grow up easily.

도 1은 본 발명에 따른 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법의 순서도.1 is a flow chart of a method for depositing an aluminum nitride film for a micro or nanoelectromechanical system on a polycrystalline silicon carbide buffer layer according to the present invention.

도 2는 본 발명에 따른 열산화된 실리콘 기판위에 증착된 다결정 탄화규소 박막의 XRD 스펙트럼.2 is an XRD spectrum of a polycrystalline silicon carbide thin film deposited on a thermally oxidized silicon substrate according to the present invention.

도 3은 본 발명에 따른 c-축 방향에서 바라본 질화알루미늄과 탄화규소 박막의 원자 배열을 나타낸 도면.3 is a view showing an atomic arrangement of aluminum nitride and silicon carbide thin film viewed in the c-axis direction according to the present invention.

도 4는 본 발명에 따른 다결정 탄화규소 버퍼층위에 성장된 질화알루미늄막의 단면 FE-SEM 사진.4 is a cross-sectional FE-SEM photograph of an aluminum nitride film grown on a polycrystalline silicon carbide buffer layer according to the present invention.

도 5는 본 발명에 따른 다결정 탄화규소 버퍼층위에 증착된 질화알루미늄 구조의 XRD 결과 및 (002)면의 진동곡선을 나타낸 그래프.5 is a graph showing the XRD results of the aluminum nitride structure deposited on the polycrystalline silicon carbide buffer layer according to the present invention and the vibration curve of the (002) plane.

도 6은 본 발명에 따른 다결정 탄화규소 버퍼층위에 증착된 질화알루미늄 구조의 FT-IR 분석결과를 나타낸 그래프.6 is a graph showing the results of the FT-IR analysis of the aluminum nitride structure deposited on the polycrystalline silicon carbide buffer layer according to the present invention.

Claims (3)

다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법에 있어서,A method of depositing an aluminum nitride film for micro or nanoelectromechanical systems on a polycrystalline silicon carbide buffer layer, 실리콘(Si)기판을 습식 열산화 공정을 거쳐 800 ㎚의 이산화규소(SiO2)막을 성장시키는 제1단계(S10)와;A first step (S10) of growing a 800 nm silicon dioxide (SiO 2 ) film through a wet thermal oxidation process on a silicon (Si) substrate; 상기 이산화규소(SiO2)막이 성장된 실리콘(Si)기판에 1100℃의 증착 온도하에서 대기압 고온 화학기상증착(APCVD)법으로 300 ㎚ 두께의 다결정 탄화규소(3C-SiC) 박막을 증착시키는 제2단계(S20)와;A second layer for depositing a 300 nm thick polycrystalline silicon carbide (3C-SiC) thin film on the silicon (Si) substrate on which the silicon dioxide (SiO 2 ) film is grown by an atmospheric pressure high temperature chemical vapor deposition (APCVD) method at a deposition temperature of 1100 ° C; Step S20; 상기 다결정 탄화규소(3C-SiC) 박막이 증착된 실리콘(Si) 기판에 40 ㎑ 펄스 직류 마그네트론 반응성 스퍼터링 장비를 이용하여 400 ㎚ 두께를 가진 질화알루미늄(AlN) 박막을 증착시키는 제3단계(S30)를 포함하는 것을 특징으로 하는 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법.A third step (S30) of depositing a 400 nm thick aluminum nitride (AlN) thin film on a silicon (Si) substrate on which the polycrystalline silicon carbide (3C-SiC) thin film is deposited using a 40 ㎑ pulse direct current magnetron reactive sputtering apparatus Aluminum nitride film deposition method for a micro or nano-electromechanical system on a polycrystalline silicon carbide buffer layer comprising a. 제 1항에 있어서,The method of claim 1, 상기 제2단계(S20)의 대기압 고온 화학기상증착(APCVD)에 사용되는 캐리어 가스는 아르곤(Ar)과 수소(H2)를 각각 10 slm과 1 slm를 혼합하여 사용하며, 1100℃로 가열되어 온도가 안정된 상태에서 1sccm의 헥사메틸다이사이레인(HMDS; Hexamethyldisilane) 전구체를 주입하여 약 30분 동안 성장시키면서 300 ㎚ 두께의 다결정 탄화규소(3C-SiC) 박막을 증착시키는 것을 특징으로 하는 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법.Carrier gas used in the atmospheric pressure high temperature chemical vapor deposition (APCVD) of the second step (S20) is a mixture of argon (Ar) and hydrogen (H 2 ) 10 slm and 1 slm, respectively, and heated to 1100 ℃ Polycrystalline silicon carbide, characterized by depositing a 300 nm thick polycrystalline silicon carbide (3C-SiC) thin film while growing for about 30 minutes by injecting 1 sccm of hexamethyldisilane (HMDS) precursor at a stable temperature. A method of depositing aluminum nitride films for micro or nanoelectromechanical systems on a buffer layer. 제 1항에 있어서,The method of claim 1, 상기 제3단계(S30)는 스퍼터링 챔버 내부에 다결정 탄화규소(3C-SiC) 박막이 증착된 기판을 고정시킨 상태에서 Al 금속타겟과 N2가스를 주입시키고, 상기 주입된 N2가스 이온이 Al 금속타겟과 충돌되면서 Al 원자가 방출되며, 상기 방출된 Al 원자가 N과 결합되면서 상기 다결정 탄화규소(3C-SiC) 표면에 증착되어, 질화알루미늄(AlN) 박막이 증착되는 것을 특징으로 하는 다결정 탄화규소 버퍼층위에 마이크로 또는 나노 전자기계시스템용 질화알루미늄막 증착방법.In the third step (S30), the Al metal target and the N 2 gas are injected while the substrate on which the polycrystalline silicon carbide (3C-SiC) thin film is deposited is fixed in the sputtering chamber, and the injected N 2 gas ions are Al Al atoms are released as they collide with the metal target, and the released Al atoms are bonded to the N and deposited on the surface of the polycrystalline silicon carbide (3C-SiC), and the polycrystalline silicon carbide (AlN) thin film is deposited. Aluminum nitride film deposition method for micro or nano electromechanical system on.
KR1020080031629A 2008-04-04 2008-04-04 Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications KR20090106112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080031629A KR20090106112A (en) 2008-04-04 2008-04-04 Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080031629A KR20090106112A (en) 2008-04-04 2008-04-04 Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications

Publications (1)

Publication Number Publication Date
KR20090106112A true KR20090106112A (en) 2009-10-08

Family

ID=41535763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080031629A KR20090106112A (en) 2008-04-04 2008-04-04 Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications

Country Status (1)

Country Link
KR (1) KR20090106112A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824592A (en) * 2010-05-26 2010-09-08 湖南大学 Deposition method capable of enhancing preferred orientation growth of AlN film
KR101347892B1 (en) * 2010-07-05 2014-01-08 울산대학교 산학협력단 Surface Acoustic Wave Device Including Polycrystalline 3C-SiC buffer layer
KR101418731B1 (en) * 2012-02-01 2014-07-11 미쓰비시덴키 가부시키가이샤 Method of manufacturing silicon carbide semiconductor device
CN107833825A (en) * 2016-09-09 2018-03-23 诺发系统公司 Adulterate the deposition based on remote plasma of the silicon carbide film of oxygen
US11264234B2 (en) 2012-06-12 2022-03-01 Novellus Systems, Inc. Conformal deposition of silicon carbide films
CN114214726A (en) * 2021-12-07 2022-03-22 江苏籽硕科技有限公司 Method for preparing piezoelectric AIN film by utilizing plasma enhanced atomic layer deposition
CN115148584A (en) * 2022-07-05 2022-10-04 苏州璋驰光电科技有限公司 Substrate material with high quality factor, preparation method and application
US11680315B2 (en) 2013-05-31 2023-06-20 Novellus Systems, Inc. Films of desired composition and film properties
US11848199B2 (en) 2018-10-19 2023-12-19 Lam Research Corporation Doped or undoped silicon carbide deposition and remote hydrogen plasma exposure for gapfill

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824592A (en) * 2010-05-26 2010-09-08 湖南大学 Deposition method capable of enhancing preferred orientation growth of AlN film
KR101347892B1 (en) * 2010-07-05 2014-01-08 울산대학교 산학협력단 Surface Acoustic Wave Device Including Polycrystalline 3C-SiC buffer layer
KR101418731B1 (en) * 2012-02-01 2014-07-11 미쓰비시덴키 가부시키가이샤 Method of manufacturing silicon carbide semiconductor device
US11264234B2 (en) 2012-06-12 2022-03-01 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US11894227B2 (en) 2012-06-12 2024-02-06 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US11708634B2 (en) 2013-05-31 2023-07-25 Novellus Systems, Inc. Films of desired composition and film properties
US11732350B2 (en) 2013-05-31 2023-08-22 Novellus Systems, Inc. Films of desired composition and film properties
US11680315B2 (en) 2013-05-31 2023-06-20 Novellus Systems, Inc. Films of desired composition and film properties
US11680314B2 (en) 2013-05-31 2023-06-20 Novellus Systems, Inc. Films of desired composition and film properties
CN107833825A (en) * 2016-09-09 2018-03-23 诺发系统公司 Adulterate the deposition based on remote plasma of the silicon carbide film of oxygen
US11848199B2 (en) 2018-10-19 2023-12-19 Lam Research Corporation Doped or undoped silicon carbide deposition and remote hydrogen plasma exposure for gapfill
CN114214726A (en) * 2021-12-07 2022-03-22 江苏籽硕科技有限公司 Method for preparing piezoelectric AIN film by utilizing plasma enhanced atomic layer deposition
CN115148584A (en) * 2022-07-05 2022-10-04 苏州璋驰光电科技有限公司 Substrate material with high quality factor, preparation method and application

Similar Documents

Publication Publication Date Title
KR20090106112A (en) Depostion of polycrystalline AlN films on 3C-SiC buffer layers for MEMS or NEMS applications
EP1672091B1 (en) Laminate containing wurtzrite crystal layer, and method for production thereof
Chu et al. Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering
Liu et al. Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature
CN111244263B (en) Piezoelectric thin film element
JP7078947B2 (en) A base substrate for diamond film formation and a method for manufacturing a diamond substrate using the substrate.
Chauhan et al. Influence of process parameters and formation of highly c-Axis oriented AlN thin films on mo by reactive sputtering
CN113174574A (en) Preparation method of high-quality scandium-doped aluminum nitride film template
Zhang et al. Effects of sputtering atmosphere on the properties of c-plane ScAlN thin films prepared on sapphire substrate
US8097499B2 (en) Semiconductor device and methods thereof
JP2022507504A (en) Transition from III-N to rare earths in semiconductor structures
WO2022053038A1 (en) Method for growing aln single crystal film and surface acoustic wave resonator having film
Sundarapandian et al. Influence of growth temperature on the properties of aluminum nitride thin films prepared by magnetron sputter epitaxy
Fawzy et al. Piezoelectric thin film materials for acoustic mems devices
CN111593332B (en) Method for sputtering and depositing piezoelectric film on flexible glass
Lin et al. Effects of growth temperature and reactor pressure on AlN thin film grown by metal-organic chemical vapor deposition
Hullavarad et al. Advances in pulsed-laser-deposited AIN thin films for high-temperature capping, device passivation, and piezoelectric-based RF MEMS/NEMS resonator applications
US20230200245A1 (en) Hybrid chemical and physical vapor deposition of transition-metal-alloyed piezoelectric semiconductor films
Zhang et al. Ferroelectric properties of Pb (Mn1/3Nb2/3) O3− Pb (Zr, Ti) O3 thin films epitaxially grown on (001) MgO substrates
CN113491020B (en) High-purity piezoelectric film and method for manufacturing element using the same
Iqbal et al. RF sputtering of polycrystalline (100),(002), and (101) oriented AlN on an epitaxial 3C-SiC (100) on Si (100) substrate
Nurfahana et al. Growth and characterization of AlN thin film deposited by sol-gel spin coating techniques
Patouillard Optimization of innovative AlN-based stacks and texturing on 2D-MoS2-Applications to acoustic wave resonators and power electronics
Chen et al. Synthesis and SAW characteristics of AlN thin films fabricated on Si and GaN using helicon sputtering system
Eledath et al. Status review of the science and technology of PZT/diamond heterostructures and their applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application