KR20090093148A - Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition - Google Patents

Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition

Info

Publication number
KR20090093148A
KR20090093148A KR1020080018506A KR20080018506A KR20090093148A KR 20090093148 A KR20090093148 A KR 20090093148A KR 1020080018506 A KR1020080018506 A KR 1020080018506A KR 20080018506 A KR20080018506 A KR 20080018506A KR 20090093148 A KR20090093148 A KR 20090093148A
Authority
KR
South Korea
Prior art keywords
thin film
ruthenium
temperature
deposition
controlling
Prior art date
Application number
KR1020080018506A
Other languages
Korean (ko)
Inventor
김형준
박상준
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020080018506A priority Critical patent/KR20090093148A/en
Publication of KR20090093148A publication Critical patent/KR20090093148A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition is provided to improve device character and convenience of device fabrication by selectively changing phase between ruthenium layers or ruthenium oxide thin films. A phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition comprises following steps. The ruthenium precursor vaporized on a heated substrate is injected into a reaction chamber with the argon gas for 2 seconds. A bubbler filled with the precursor is x with is heated at 65°C. The temperature of a feeding line is maintained at 10 ~ 15°C temperature higher than the bubbler. The flow rate of the argon gas is maintained as 20 sccm. The argon purging gas of 50 sccm is injected into the chamber for 2 seconds. The oxygen gas of 10 sccm is injected into the chamber for 2 seconds. The argon purging gas of 50 sccm is injected into the camber for 2 seconds. The precursor of the ruthenium is the Ru2. The substrate temperature is maintained at 300±25°C when depositing the ruthenium metal thin film.

Description

원자층 증착 방법에서의 증착 온도 조절을 통한 루테늄 및 전도성 루테늄 산화물 박막의 상 제어방법 {PHASE CONTROLLING METHOD BETWEEN RUTHENIUM THIN FILM AND CONDUCTIVE RUTHENIUM OXIDE THIN FILM BY CONTROLLING THE DEPOSITION TEMPERATURE IN ATOMIC LAYER DEPOSITION}Phase Control Method of Ruthenium and Conductive Ruthenium Oxide Thin Films by Controlling Deposition Temperature in Atomic Layer Deposition Method

본 발명은 원자층 증착 방법을 이용하여 Ru 금속 박막 및 전도성 RuOx 박막을 증착함에 있어서 증착되는 박막의 상(phase)을 Ru 금속 박막 또는 전도성 RuOx 박막으로 제어하는 방법에 관한 것으로, 보다 구체적으로는 증착 온도를 조절함으로써 Ru 금속 박막 또는 전도성 RuOx 박막으로의 선택이 가능한 상 제어방법에 관한 것이다.The present invention relates to a method of controlling a phase of a deposited thin film to a Ru metal thin film or a conductive RuO x thin film by depositing a Ru metal thin film and a conductive RuO x thin film using an atomic layer deposition method. The present invention relates to a phase control method capable of selecting a Ru metal thin film or a conductive RuO x thin film by adjusting the deposition temperature.

루테늄은 비저항이 7.6μΩcm로 전도성이 좋을 뿐만 아니라 열적 화학적으로 안정하기 때문에, 메모리 캐패시터나 트랜지스터의 전극 물질 등으로 이용하기 위하여 루테늄 박막의 증착에 대한 연구가 많이 이루어져 왔다.Since ruthenium has a high resistivity of 7.6 μΩcm as well as being thermally and chemically stable, a lot of researches have been conducted on the deposition of ruthenium thin films for use as memory capacitors and transistor electrode materials.

또한, 루테늄 산화물은 40μΩcm의 낮은 비저항을 갖는 전도성 산화물로서 전극 물질로 이용할 수 있다.In addition, ruthenium oxide can be used as an electrode material as a conductive oxide having a low resistivity of 40 mu OMEGA cm.

이에 따라, 루테늄 관련 박막을 증착함에 있어서, 루테늄 박막 또는 루테늄 산화물 박막 간의 상 제어가 필요하게 된다.Accordingly, in depositing a ruthenium-related thin film, phase control between the ruthenium thin film or the ruthenium oxide thin film is required.

한편, 화학적 기상 증착법을 통해 상기 루테늄 박막 또는 루테늄 산화물 박막의 증착을 할 때, 산소 유량을 조절함으로써 루테늄 박막 또는 루테늄 산화물 박막 간의 상 제어가 가능하다는 연구가 보고되고 있다.On the other hand, when the deposition of the ruthenium thin film or ruthenium oxide thin film by the chemical vapor deposition method, a study has been reported that the phase control between the ruthenium thin film or ruthenium oxide thin film by controlling the oxygen flow rate.

그러나, 소자 제작 측면에 있어서, 산소 유량을 증가시키는 것은 루테늄 박막 루테늄 산화물 박막 형성 전(前) 공정에 좋지 않은 영향을 줄 수 있는 문제점이 있다.However, in terms of device fabrication, increasing the oxygen flow rate may adversely affect the ruthenium thin film ruthenium oxide thin film formation process.

본 발명은 전술한 종래기술의 문제점을 해결하기 위해 창안된 것으로서, 소자 제작시에 문제가 있는 산소 유량의 조절이 아닌 증착 온도의 조절을 통해 루테늄과 루테늄 산화물 사이의 상 제어를 할 수 있는 단순하고도 소자 제작에 영향을 주지 않는 루테늄 금속과 루테늄 산화물 상 간의 제어방법을 제공하는 것을 기술적 과제로 한다.The present invention was devised to solve the above-mentioned problems of the prior art, and it is simple and capable of controlling phase between ruthenium and ruthenium oxide through the control of the deposition temperature rather than the control of the oxygen flow rate, which is a problem when manufacturing the device. It is a technical object of the present invention to provide a control method between a ruthenium metal and a ruthenium oxide phase that does not affect device fabrication.

상기 과제를 해결하기 위한 수단으로서 본 발명은, 원자층 증착 방법을 이용하여 루테늄 박막 또는 루테늄 산화물 박막을 제조함에 있어서 다른 증착 조건의 조절 없이 증착 온도의 조절을 통해 증착되는 박막의 상(phase)을 루테늄 또는 루테늄 산화물 형태로 제어하는 것을 특징으로 하는 박막의 상 제어방법을 제공한다.As a means for solving the above problems, the present invention, in the preparation of ruthenium thin film or ruthenium oxide thin film using the atomic layer deposition method, the phase of the thin film deposited through the control of the deposition temperature without the control of other deposition conditions It provides a phase control method of a thin film, characterized in that the control in the form of ruthenium or ruthenium oxide.

이와 같이, 본 발명에 의한 루테늄 또는 루테늄 산화물 박막의 증착은 화학적 기상 증착법에서 알려진 바 있는 산소 가스의 유량 조절 없이, 원자층 증착 방법 공정에서의 증착 온도 조절을 통해 루테늄 또는 루테늄 산화물 박막으로의 상 조절이 가능한 점에 그 응용 가치가 있다.As described above, the deposition of the ruthenium or ruthenium oxide thin film according to the present invention is phase controlled to the ruthenium or ruthenium oxide thin film by controlling the deposition temperature in the atomic layer deposition method process without adjusting the flow rate of oxygen gas known in chemical vapor deposition. It is worth applying to this possible point.

또한, 원자층 증착 방법을 통할 경우, 일반적인 화학적 기상 증착법보다 낮은 증착 온도에서 루테늄 박막의 증착이 가능할 뿐만 아니라, 반응기로 사용된 산소 가스의 유량 조절 없이 단순히 증착 온도를 변경함으로써 전도성을 갖는 루테늄 산화물 박막의 증착이 가능하기 때문에 소자 제작의 편의성을 현저하게 증진시킬 수 있게 된다.In addition, through the atomic layer deposition method, not only the ruthenium thin film can be deposited at a lower deposition temperature than the general chemical vapor deposition method, but also the ruthenium oxide thin film having conductivity by simply changing the deposition temperature without adjusting the flow rate of the oxygen gas used as the reactor. Since the deposition of is possible, it is possible to significantly improve the convenience of device fabrication.

또한, 본 발명에 따른 상 제어방법에 있어서, 선택적으로 상기 증착 온도의 조절은 기판 온도의 조절을 통해서 수행한다.In addition, in the phase control method according to the invention, optionally the adjustment of the deposition temperature is carried out through the control of the substrate temperature.

또한, 본 발명에 따른 상 제어방법에 있어서, 상기 루테늄의 전구체는 Ru(EtCp)2(bis(ethylcyclopentadienyl)ruthenium)인 것을 특징으로 한다.In addition, in the phase control method according to the invention, the precursor of ruthenium is characterized in that Ru (EtCp) 2 (bis (ethylcyclopentadienyl) ruthenium).

또한, 본 발명에 따른 상 제어방법에 있어서, 상기 루테늄 금속 박막을 증착할 때에는 기판의 온도를 300±25℃로 유지하는 것이 바람직한데, 이는 상기 온도 범위의 하한치 미만으로 할 경우 비저항이 낮은 고품질의 금속 루테늄 박막이 증착되지 않는 것으로 나타났을 뿐만 아니라 증착 온도가 250℃ 이하일 경우에는 증착 자체가 이루어지지 않고, 또한 상기 온도범위의 상한치를 초과할 경우에는 루테늄 금속 산화물 박막이 형성될 수 있기 때문이다.In addition, in the phase control method according to the present invention, when depositing the ruthenium metal thin film, it is preferable to maintain the temperature of the substrate at 300 ± 25 ℃, which is a high quality of low specific resistance when lower than the lower limit of the temperature range This is because not only the metal ruthenium thin film is not deposited, but also when the deposition temperature is 250 ° C. or less, the deposition itself is not performed, and when the upper limit of the temperature range is exceeded, the ruthenium metal oxide thin film may be formed.

또한, 본 발명에 따른 상 제어방법에 있어서, 루테늄 금속 산화물 박막을 증착할 때는 기판의 온도를 350±25℃로 유지하는 것이 바람직한데, 상기 온도의 하한치 미만의 온도에서는 루테늄 금속 박막이 형성될 수 있고, 상한치를 초과하게 되면 온도를 유지하기 위한 시간과 에너지 비용이 많이 소요될 뿐 아니라 형성된 박막의 모폴로지(morphology)도 나빠질 수 있기 때문이다.In addition, in the phase control method according to the present invention, when depositing a ruthenium metal oxide thin film, it is preferable to maintain the temperature of the substrate at 350 ± 25 ℃, the ruthenium metal thin film may be formed at a temperature less than the lower limit of the temperature. In addition, if the upper limit is exceeded, time and energy costs for maintaining the temperature are not only high, but also the morphology of the formed thin film may be deteriorated.

또한, 본 발명에 따른 상 제어방법에 있어서, 상기 루테늄 전구체를 챔버 내로 주입할 때는, 적절한 증기압을 얻기 위하여 65± 10℃로 가열되는 것을 특징으로 한다.In addition, in the phase control method according to the invention, when injecting the ruthenium precursor into the chamber, it is characterized in that it is heated to 65 ± 10 ℃ to obtain an appropriate vapor pressure.

본 발명에 따른 루테늄 박막 또는 전도성 루테늄 산화물 박막 간의 상 제어방법에 의하면, 종래의 방법과 같이 산소의 조절이 아니라 단순한 증착 온도의 조절을 통해서 루테늄 박막 또는 루테늄 산화물 박막 간의 상의 선택적인 변경이 가능하게 되어, 소자 특성과 소자 제작의 편의성을 크게 개선할 수 있다.According to the phase control method between the ruthenium thin film or the conductive ruthenium oxide thin film according to the present invention, it is possible to selectively change the phase between the ruthenium thin film or the ruthenium oxide thin film by controlling the deposition temperature rather than the control of oxygen as in the conventional method. Therefore, the device characteristics and the convenience of device fabrication can be greatly improved.

또한, 본 발명에 따른 루테늄 박막 또는 전도성 루테늄 산화물 박막 간의 상 제어방법은, 산소 분위기에서 루테늄 금속과 산화물 박막의 선택이 가능하기 때문에, 산소 분위기에서 높은 온도를 요하는 고유전율 박막 공정이 함께 사용되는 메모리의 캐패시터의 전극이나 트랜지스터의 게이트 전극 분야에 다양하게 이용될 수 있다.In addition, in the phase control method between the ruthenium thin film or the conductive ruthenium oxide thin film according to the present invention, since the ruthenium metal and the oxide thin film can be selected in an oxygen atmosphere, a high dielectric constant thin film process requiring a high temperature in an oxygen atmosphere is used together. Various applications can be made in the fields of electrodes of capacitors of memory and gate electrodes of transistors.

도 1은 본 발명의 실시예에 따른 루테늄 또는 루테늄 산화물 박막의 제조 방법에 대한 공정도이다.1 is a process chart for a method of manufacturing a ruthenium or ruthenium oxide thin film according to an embodiment of the present invention.

도 2는 기판 온도 300℃에서 증착한 루테늄 박막과 350 ℃에서 증착한 루테늄 산화물 박막의 X선 회절 스펙트럼이다.2 is an X-ray diffraction spectrum of a ruthenium thin film deposited at a substrate temperature of 300 ° C. and a ruthenium oxide thin film deposited at 350 ° C. FIG.

도 3은 기판 온도 300℃에서 증착한 루테늄 박막의 X선 광전자 분광 분석 스펙트럼이다.3 is an X-ray photoelectron spectroscopy spectrum of a ruthenium thin film deposited at a substrate temperature of 300 ° C.

도 4는 350 ℃에서 증착한 루테늄 산화물 박막의 X선 광전자 분광 분석 스펙트럼이다.4 is an X-ray photoelectron spectroscopic analysis spectrum of the ruthenium oxide thin film deposited at 350 ℃.

이하 첨부한 도면을 참조로 본 발명의 바람직한 실시예에 대해 설명한다. 그러나 본 발명의 기술적 사상 내에서 다양한 변형이 가능하며 하기 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. However, various modifications are possible within the technical idea of the present invention and are not limited to the following examples.

도 1은 본 발명의 실시예에 따른, 루테늄 또는 루테늄 산화물 박막의 제조 방법에 대한 공정도이고, 도 2는 각각 300℃에서 증착한 루테늄 박막과 350℃에서 증착한 루테늄 산화물 박막의 X선 회절 스펙트럼이며, 도 3과 4는 각각 그 박막의 X선 광전자 분광 분석 스펙트럼이다.1 is a process chart for a method of manufacturing a ruthenium or ruthenium oxide thin film according to an embodiment of the present invention, Figure 2 is an X-ray diffraction spectrum of the ruthenium thin film deposited at 300 ℃ and ruthenium oxide thin film deposited at 350 ℃, respectively 3 and 4 are X-ray photoelectron spectroscopy spectra of the thin films, respectively.

도 1에 도시된 바와 같이, 본 발명에 따른 루테늄 박막과 루테늄 산화물 박막의 제조는, 원자층 증착법을 사용하여 동일하게 루테늄 전구체 투입, 아르곤 가스 퍼징, 산소 가스 투입, 아르곤 가스 퍼징의 4단계로 이루어진 사이클을 반복함으로써 이루어진다.As shown in FIG. 1, the ruthenium thin film and the ruthenium oxide thin film according to the present invention may be prepared in the same manner by using atomic layer deposition, including four steps of ruthenium precursor injection, argon gas purging, oxygen gas injection, and argon gas purging. By repeating the cycle.

루테늄 박막의 증착Deposition of Ruthenium Thin Films

먼저, 예비단계로 실리콘(001) 기판을 300℃까지 가열한 뒤, Ta2O5 박막을 탄탈륨 전구체와 산소 플라즈마를 이용한 플라즈마 원자층 증착 방법을 통해 증착한다.First, the silicon (001) substrate is heated to 300 ° C. as a preliminary step, and then a Ta 2 O 5 thin film is deposited by a plasma atomic layer deposition method using a tantalum precursor and an oxygen plasma.

이어서 루테늄 박막을 형성하기 위한 상기 사이클의 첫 번째 단계로서, 300℃로 가열된 기판 위로 기화된 루테늄 전구체로서 Ru(EtCp)2 [Ru(C5H4C2H5)2]을 캐리어(carrier) 가스인 아르곤 가스와 함께 반응 챔버로 2초간 투입시킨다. 이때, 전구체의 적절한 증기압을 얻기 위해 전구체가 담긴 버블러(bubbler)를 65℃로 가열해주며, 기화된 전구체가 버블러에서 반응 챔버로 전달되는 동안 응축되는 것을 막기 위해 피딩 라인(feeding line)을 버블러보다 10 ~ 15℃ 높은 온도로 유지시켜주며, 이때 사용되는 아르곤 캐리어 가스의 유량은 20 sccm으로 유지하였다.Subsequently, as a first step in the cycle for forming a ruthenium thin film, a carrier of Ru (EtCp) 2 [Ru (C 5 H 4 C 2 H 5 ) 2 ] as a ruthenium precursor vaporized onto a substrate heated to 300 ° C. ) 2 seconds into the reaction chamber together with argon gas. At this time, the bubbler containing the precursor is heated to 65 ° C. in order to obtain an appropriate vapor pressure of the precursor, and a feeding line is prevented to prevent the vaporized precursor from condensing while being transferred from the bubbler to the reaction chamber. It was maintained at a temperature of 10 ~ 15 ℃ higher than the bubbler, the flow rate of the argon carrier gas used at this time was maintained at 20 sccm.

두 번째 단계에서는, 기판 위에 물리적 또는 화학적으로 흡착된 루테늄 전구체를 제외한 잉여 전구체를 반응 챔버 내에서 제거하기 위해 50 sccm의 아르곤 퍼징 가스 (purging gas)를 2초간 챔버로 투여한다.In the second step, 50 sccm of argon purging gas is administered to the chamber for 2 seconds to remove the excess precursor in the reaction chamber except the ruthenium precursor physically or chemically adsorbed onto the substrate.

세 번째 단계에서는, 10 sccm의 산소 가스를 2초간 흘려주어, 첫 번째 단계에서 흡착된 루테늄 전구체의 리간드와 투입된 산소와의 산화 반응 일으킨다.In the third step, 10 sccm of oxygen gas is flowed for 2 seconds, causing an oxidation reaction between the ligand of the ruthenium precursor adsorbed in the first step and the introduced oxygen.

네 번째 단계에서는, 반응 후의 잉여 가스 및 부산물들을 50 sccm의 아르곤 퍼징 가스를 2초간 챔버에 투여하여 제거한다.In the fourth step, excess gas and by-products after the reaction are removed by administering 50 sccm of argon purging gas to the chamber for 2 seconds.

이상의 네 단계로 이루어진 1 사이클을 300회 반복함으로써 박막을 증착한 결과, 두께 365Å의 박막을 얻었다. 이와 같이 얻어진 박막에 대해 비저항을 측정한 결과 16μΩcm의 낮은 비저항을 가졌음을 확인하였고, 도 2의 X-선 회절 분석과 도 3의 X-선 광전자 분광 스펙트럼 분석을 통해 형성된 박막이 루테늄 금속 박막임을 확인하였다.The thin film was deposited by repeating the above four cycles 300 times to obtain a thin film having a thickness of 365 kHz. As a result of measuring the specific resistance of the thin film thus obtained, it was confirmed that it had a low specific resistance of 16 μΩcm, and the thin film formed through the X-ray diffraction analysis of FIG. 2 and the X-ray photoelectron spectral spectrum analysis of FIG. 3 was confirmed to be a ruthenium metal thin film. It was.

루테늄 산화물 박막의 증착Deposition of Ruthenium Oxide Thin Films

실리콘 기판의 온도를 350℃로 유지한 것을 제외하고는, 상기 루테늄 금속 박막 동일한 조건으로 증착한 결과, 두께 1543Å의 박막을 얻었다. 이와 같이 얻어진 박막에 대해 비저항을 측정한 결과 76μΩcm으로 상기 박막이 전도성을 나타냄을 확인하였고, 도 2의 X-선 회절 분석과 도 4의 X-선 광전자 분광 스펙트럼 분석을 통해 형성된 박막이 루테늄 산화물 박막임을 확인하였다.Except having maintained the temperature of the silicon substrate at 350 degreeC, it deposited on the same conditions as the said ruthenium metal thin film, and obtained the thin film of thickness 1543 kPa. As a result of measuring the resistivity of the thin film thus obtained, it was confirmed that the thin film exhibited conductivity at 76 μΩcm, and the thin film formed through X-ray diffraction analysis of FIG. 2 and X-ray photoelectron spectroscopic spectrum of FIG. 4 was ruthenium oxide thin film. It was confirmed that.

즉, 본 발명의 실시예에 따르면, 다른 모든 공정 조건을 동일하게 하고 단순히 기판 온도의 조절만을 통해서, 루테늄 또는 루테늄 산화물 박막으로 형성되는 상을 제어할 수 있게 됨을 알 수 있다.That is, according to the embodiment of the present invention, it can be seen that it is possible to control the phase formed of the ruthenium or ruthenium oxide thin film by simply adjusting all other process conditions and simply adjusting the substrate temperature.

Claims (5)

원자층 증착 방법을 이용하여 루테늄 박막 또는 루테늄 산화물 박막을 제조함에 있어서, 다른 증착 조건의 조절 없이 증착 온도의 조절을 통해 증착되는 박막의 상(phase)을 루테늄 금속 또는 루테늄 산화물 형태로 제어하는 것을 특징으로 하는 박막의 상 제어방법.In preparing a ruthenium thin film or ruthenium oxide thin film by using an atomic layer deposition method, the phase of the thin film deposited by controlling the deposition temperature without controlling other deposition conditions is characterized in that the ruthenium metal or ruthenium oxide form Phase control method of a thin film. 제 1 항에 있어서, 상기 증착 온도의 조절은 기판 온도의 조절을 통하는 것을 특징으로 하는 박막의 상 제어방법.The method of claim 1, wherein the deposition temperature is controlled by controlling a substrate temperature. 제 1 항 또는 제 2 항에 있어서, 상기 루테늄의 전구체는 Ru(EtCp)2인 것을 특징으로 하는 박막의 상 제어방법.3. The method of claim 1, wherein the precursor of ruthenium is Ru (EtCp) 2. 4 . 제 2 항에 있어서, 루테늄 금속 박막을 증착할 때에는 기판의 온도를 300±25℃로 유지하고, 루테늄 금속 산화물 박막을 증착할 때는 기판의 온도를 350±25℃로 유지하는 것을 특징으로 하는 박막의 상 제어방법.The method of claim 2, wherein the temperature of the substrate is maintained at 300 ± 25 ° C. when the ruthenium metal thin film is deposited, and the temperature of the substrate is maintained at 350 ± 25 ° C. when the ruthenium metal oxide thin film is deposited. Phase control method. 제 3 항에 있어서, 상기 루테늄 전구체는 챔버 내로 주입시에 65±10℃로 가열되는 것을 특징으로 하는 박막의 상 제어방법.The method of claim 3, wherein the ruthenium precursor is heated to 65 ± 10 ° C. upon injection into the chamber.
KR1020080018506A 2008-02-28 2008-02-28 Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition KR20090093148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080018506A KR20090093148A (en) 2008-02-28 2008-02-28 Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080018506A KR20090093148A (en) 2008-02-28 2008-02-28 Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition

Publications (1)

Publication Number Publication Date
KR20090093148A true KR20090093148A (en) 2009-09-02

Family

ID=41301660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080018506A KR20090093148A (en) 2008-02-28 2008-02-28 Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition

Country Status (1)

Country Link
KR (1) KR20090093148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118841A1 (en) * 2017-12-16 2019-06-20 Applied Materials, Inc. Selective atomic layer deposition of ruthenium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118841A1 (en) * 2017-12-16 2019-06-20 Applied Materials, Inc. Selective atomic layer deposition of ruthenium
US11066743B2 (en) 2017-12-16 2021-07-20 Applied Materials, Inc. Selective atomic layer deposition of ruthenium

Similar Documents

Publication Publication Date Title
KR100716654B1 (en) Method for manufacturing tetragonal zirconium oxide and method for manufacturing capacitor with the same
JP5013662B2 (en) Capacitor and manufacturing method thereof
TWI394203B (en) Ald formed titanium nitride films
Han et al. Growth of RuO2 thin films by pulsed-chemical vapor deposition using RuO4 precursor and 5% H2 reduction gas
WO2005081933A2 (en) Chemical vapor deposition of high conductivity, adherent thin films of ruthenium
WO2008033436A1 (en) Systems and methods for forming strontium-and/or barium-containing layers
KR20070082245A (en) Method of depositing ru film using peald and dense ru film
KR20090039083A (en) Method of depositing ruthenium film
TWI722384B (en) The organometallic compounds and the thin film using thereof
Park et al. Effect oxygen exposure on the quality of atomic layer deposition of ruthenium from bis (cyclopentadienyl) ruthenium and oxygen
Kim et al. Effect of growth temperature during the atomic layer deposition of the SrTiO3 seed layer on the properties of RuO2/SrTiO3/Ru capacitors for dynamic random access memory applications
KR20150052283A (en) Direct liquid injection of solution based precursors for atomic layer deposition
JP3488007B2 (en) Thin film forming method, semiconductor device and manufacturing method thereof
Lee et al. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH3 and H2 as reactants
JP2009545135A (en) Improved atomic layer deposition
KR20090093148A (en) Phase controlling method between ruthenium thin film and conductive ruthenium oxide thin film by controlling the deposition temperature in atomic layer deposition
US20150072085A1 (en) Titanium bis diazadienyl precursor for vapor deposition of titanium oxide films
TW202348607A (en) Activator, method for forming thin film using the same, semiconductor substrate and semiconductor device prepared therefrom
KR101152390B1 (en) Dielectric layer in capacitor and fabricating using the same and capacitor in semiconductor device and fabricating using the same
KR102211654B1 (en) A tungsten precursor compound and tungsten containing thin film prepared by using the same
KR102644483B1 (en) Novel Organoruthenium Compound, Preparation method thereof, and Method for deposition of thin film using the same
KR20240038417A (en) Metal precursor compound for and deposition method for preparing film using the same
US20070071892A1 (en) Organic-metal precursor material and method of manufacturing metal thin film using the same
KR102682682B1 (en) Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same
US20220341039A1 (en) Ruthenium pyrazolate precursor for atomic layer deposition and similar processes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application