KR20090087603A - Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle - Google Patents

Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle Download PDF

Info

Publication number
KR20090087603A
KR20090087603A KR1020080012940A KR20080012940A KR20090087603A KR 20090087603 A KR20090087603 A KR 20090087603A KR 1020080012940 A KR1020080012940 A KR 1020080012940A KR 20080012940 A KR20080012940 A KR 20080012940A KR 20090087603 A KR20090087603 A KR 20090087603A
Authority
KR
South Korea
Prior art keywords
conductive carbon
dispersion
contact angle
carbon nano
dynamic contact
Prior art date
Application number
KR1020080012940A
Other languages
Korean (ko)
Inventor
박종만
김평기
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020080012940A priority Critical patent/KR20090087603A/en
Publication of KR20090087603A publication Critical patent/KR20090087603A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0208Investigating surface tension of liquids by measuring contact angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method for measuring dispersion degree of carbon nano material in polymer matrix using dynamic contact angle is provided to confirm the peening effect of the carbon nano material and, at the same time, measure the dispersion degree of the conductive carbon nano material dipped inside the conductive carbon nano polymer composite. A method for measuring dispersion degree of carbon nano material in polymer matrix using dynamic contact angle includes a method for indirectly measuring the dispersion degree of the conductive carbon nano material inside the conductive carbon nano polymer composite using dynamic contact angle. The ethanol or the isopropanol is used as the dispersion solvent of the conductive carbon nano material. The Wihelmy plate method is applied for dynamic contact angle measurement In the dispersion degree of the conducting carbon nano polymer composite, contact point is formed using a copper wire at constant intervals inside corresponding conductive carbon nano polymer composite and volume electric resistance between contact points is measured using a four-probe method.

Description

동적 접촉각 측정을 통한 전도성 탄소나노 고분자 복합재료의 분산도 측정방법 {Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle}Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle}

본 발명은 동적 접촉각 측정을 이용하여 전도성 탄소나노 고분자 복합재료 내 전도성 탄소나노소재의 분산도를 측정하는 방법에 관한 것이다.The present invention relates to a method for measuring the dispersion of conductive carbon nanomaterials in a conductive carbon nanopolymer composite material using dynamic contact angle measurement.

최근들어, 탄소나노튜브 (Carbon Nano Tube : CNT)나 탄소나노섬유 (Carbon Nano Fiber : CNF)와 같은 탄소나노소재 (Carbon Nano Material : CNM) 강화 고분자 복합재료 내 탄소나노소재의 분산도 측정에 대한 관심이 급격하게 증가하고 있는 추세이다. Recently, carbon nanomaterials (CNM), such as carbon nanotubes (CNT) and carbon nanofibers (CNF), are used to measure the dispersion of carbon nanomaterials in carbon nanomaterials (CNM) reinforced polymer composites. Interest is growing rapidly.

탄소나노 강화 고분자 복합재료는 상대적으로 적은 탄소나노소재 함량에서도 우수한 강성도와 강도 및 전기전도성을 가지는 장점이 있다. 우수한 기계적물성과 전기 전도성을 가지는 탄소나노 고분자 복합재료는 우주항공용 소재뿐만 아니라 전자파 차폐용 소재로도 응용 가능하다. 이러한 탄소나노 고분자 복합재료 내에서의 탄소나노소재의 분산도는 기계적, 전기적 물성에 큰 영향을 주기 때문이다. Carbon nano-reinforced polymer composites have the advantage of having excellent stiffness, strength and electrical conductivity even at relatively low carbon nanomaterial content. Carbon nanopolymer composites with excellent mechanical properties and electrical conductivity can be applied to electromagnetic shielding materials as well as aerospace materials. This is because the dispersion of carbon nanomaterials in the carbon nanopolymer composite material has a great influence on the mechanical and electrical properties.

피닝 효과((pinning effect)란 소수성과 친수성의 불 균질한 재료 내에서 소수성의 물질이 피닝 점 (pinning point)으로 작용하여 접촉각 실험 시 재료가 용액에 전진할 때 용액을 밀어내는 효과를 일컫는다. 소수성의 재료는 친수성의 재료에서의 용액의 퍼짐현상을 방해하게 된다. 결과적으로 접촉각 실험에서 전진각이 소수성의 피닝 효과로 인해 기대된 전진각보다 높게 나타나게 되는 것이다.(Johnson RE,Dettre R. Wettability and contact angles. Surface Colloid Sci 1964 2: 85-153). The pinning effect refers to the effect of hydrophobic material acting as a pinning point in hydrophobic and hydrophilic heterogeneous materials, pushing the solution as it advances into the solution during contact angle experiments. The materials of h2O interfere with the spreading of the solution in the hydrophilic material, resulting in the advancing angle being higher than expected in the contact angle experiment due to the hydrophobic pinning effect (Johnson RE, Dettre R. Wettability and contact angles.Surface Colloid Sci 1964 2: 85-153).

탄소나노 고분자 복합재료가 전도성을 가지기 위해서는 강화재로 사용된 탄소나노소재가 3차원 네트워크 구조를 가져야 하며, 최소 첨가량에 의해 형성된 이러한 구조를 ‘퍼콜레이션(percolation) 구조’라고 한다. 탄소나노튜브(CNT) 및 탄소나노섬유(CNF)와 같은 탄소나노소재는 카본블랙(CB)이나 금속과 같은 분말 형태의 강화재와 비교하여 보다 더 적은 함량에서 퍼콜레이션 구조를 형성하며, 실제 실험적으로 관찰된 퍼콜레이션 구조는 강화재의 형상비에 가장 크게 의존 한다.  In order for the carbon nanopolymer composite material to have conductivity, the carbon nano material used as the reinforcing material must have a three-dimensional network structure, and such a structure formed by the minimum amount of addition is called a percolation structure. Carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanofibers (CNF) form percolation structures at a lower content compared to powdered reinforcements such as carbon black (CB) or metals. The observed percolation structure is most dependent on the aspect ratio of the reinforcement.

탄소나노튜브 강화 고분자 복합재료 내 탄소나노소재의 분산도 측정은 종래에 SEM 이미지를 통해 확인하는 방법, 혼탁도 및 파티컬 사이즈 측정을 통한 간접적인 비교방법에 대해 많은 연구가 진행되어 있지만, 동적 접촉각 측정을 통하여 분산도를 측정하는 기술은 아직 보고된 바 없다.Dispersion measurement of carbon nanomaterials in carbon nanotube-reinforced polymer composites has been conventionally performed through SEM images, and indirect comparison methods through turbidity and particle size measurements have been conducted. Techniques for measuring dispersion through measurement have not been reported.

이에 본 발명자들은 동적 접촉각 측정을 통하여 전도성 탄소나노 고분자 복합재료 내부에 함침된 전도성 탄소나노소재의 분산도를 측정하여 탄소나노소재의 퍼콜레이션 구조를 간접적으로 확인할 수 있음을 알게 되어 본 발명에 이르게 되었다.Accordingly, the present inventors have found that the percolation structure of carbon nanomaterials can be indirectly determined by measuring the dispersion degree of the conductive carbon nanomaterials impregnated inside the conductive carbon nanopolymer composite material through dynamic contact angle measurement. .

본 발명은 동적 접촉각 측정을 통하여 전도성 탄소나노 고분자 복합재료 내 전도성 탄소나노소재의 분산도를 측정하는 방법임을 특징으로 한다.The present invention is characterized in that the method for measuring the dispersion of the conductive carbon nanomaterials in the conductive carbon nanopolymer composite material by measuring the dynamic contact angle.

본 발명은 동적 접촉각 측정을 이용하여 전도성 탄소나노 고분자 복합재료 내부에 함침된 전도성 탄소나노소재의 분산도를 측정함과 동시에 도 4에서와 같이 탄소나노소재의 피닝 효과를 확인 할 수 있기 때문에 실제 전도성 탄소나노 고분자 복합재료의 신뢰성 평가에 중요한 기술로 응용가능 할 수 있을 것으로 기대된다. Since the present invention measures the degree of dispersion of the conductive carbon nanomaterials impregnated inside the conductive carbon nanopolymer composite material by using dynamic contact angle measurement, the pinning effect of the carbon nanomaterials can be confirmed as shown in FIG. It is expected to be applicable as an important technique for the reliability evaluation of carbon nanopolymer composites.

본 발명에서, 전도성 탄소나노 고분자 복합재료의 동적 접촉각은 핀란드 KSV사 Sigma 70의 Wilhelmy plate 방법을 이용하여 측정한다. In the present invention, the dynamic contact angle of the conductive carbon nanopolymer composite material is measured using the Wilhelmy plate method of Sigma 70, KSV, Finland.

즉, 실험의 측정 용매로는 탈이온화 된 증류수, 포름아미드 에틸렌 글리콜과 디아이오도메탄(diiodomethane)을 사용하여, 분산용매를 달리한 전도성 탄소나노고분자 복합재료의 동적 접촉각 측정, 계면에너지, 공여체(donor)와 수용체(acceptor) 조성, 극성(polar)과 분산(dispersive) 표면 자유 에너지를 측정한다. Wilhelmy plate 방법의 기본 식은 아래와 같다.That is, as the measurement solvent of the experiment, deionized distilled water, formamide ethylene glycol and diiodomethane were used to measure the dynamic contact angle of the conductive carbon nanopolymer composites having different dispersion solvents, interfacial energy, and donors. ) And acceptor composition, polar and dispersive surface free energy. The basic equation of Wilhelmy plate method is as below.

Figure 112008010673571-PAT00001
(1)
Figure 112008010673571-PAT00001
(One)

여기서 F는 전체 하중이고, m은 시편의 질량을 나타내며, g는 중력가속도이다. F b 는 부력, P는 섬유둘레길이이며

Figure 112008010673571-PAT00002
는 측정 용매의 표면장력을 나타내고 F- mg는 측정한 하중과 동일하다. 그 이유는 부력은 물의 표면에서는 "0"이기 때문이다. 그래서 식 (1)를 다음과 같이 정리할 수 있다. Where F is the total load, m is the mass of the specimen, and g is the gravitational acceleration. F b is buoyancy, P is fiber length
Figure 112008010673571-PAT00002
Denotes the surface tension of the solvent measured and F- mg equals the measured load. This is because the buoyancy is "0" at the surface of the water. Thus, Equation (1) can be summarized as

Figure 112008010673571-PAT00003
(2)
Figure 112008010673571-PAT00003
(2)

여기서, M은 측정된 하중이다. 전체 표면에너지,

Figure 112008010673571-PAT00004
는 Lifshitz-van der Waals 조성,
Figure 112008010673571-PAT00005
과 산-염기조성,
Figure 112008010673571-PAT00006
의 각각의 합이다. 고체와 액체에 대한 것은다음과 같다.Where M is the measured load. Total surface energy,
Figure 112008010673571-PAT00004
The Lifshitz-van der Waals composition,
Figure 112008010673571-PAT00005
Peracid-base composition,
Figure 112008010673571-PAT00006
Is the sum of each. For solids and liquids:

Figure 112008010673571-PAT00007
,
Figure 112008010673571-PAT00008
(3)
Figure 112008010673571-PAT00007
,
Figure 112008010673571-PAT00008
(3)

산-염기조성 (또는 수소결합)은 수용체,

Figure 112008010673571-PAT00009
와 공여체,
Figure 112008010673571-PAT00010
의 조성을 포함한다. 그리고 고체와 액체에 대해서는 아래와 같이 주어진다.Acid-base composition (or hydrogen bonding) is a receptor,
Figure 112008010673571-PAT00009
And donor,
Figure 112008010673571-PAT00010
Contains the composition of. And for solids and liquids,

Figure 112008010673571-PAT00011
Figure 112008010673571-PAT00012
(4)
Figure 112008010673571-PAT00011
Figure 112008010673571-PAT00012
(4)

본 발명에 의하면, 준비된 전도성 탄소나노 고분자 복합재료 내에 일정한 간격으로 구리선을 이용해 접점을 형성시킨 후, 각 접점 간 부피전기저항을 4단자법(4 point probe method)을 이용하여 측정한 후, 측정된 부피전기저항의 평균(Average), 표준편차(Standard Deviation), 변동계수(Coefficient Of Variation)를 통해 분산도를 간접적으로 측정하게 된다. According to the present invention, after forming the contacts by using a copper wire at a predetermined interval in the prepared conductive carbon nanopolymer composite material, after measuring the volume electric resistance between each contact using a four-terminal method (4 point probe method), the measured Dispersion is measured indirectly through Average, Standard Deviation, and Coefficient Of Variation.

본 발명에서, 전기-미세역학적 시험법로는 전기적 풀-아웃(Pull-out)시험법을 시행하며 전도성 나노탄소소재와 전도성 탄소나노 고분자 복합재료 사이의 접촉 저항도는 다음의 식을 이용하여 계산한다.In the present invention, the electrical micro-mechanical test is carried out by the electrical pull-out (pull-out) test method and the contact resistance between the conductive nano carbon material and the conductive carbon nanopolymer composite material is calculated using the following equation do.

Figure 112008010673571-PAT00013
Figure 112008010673571-PAT00013

여기서 는 전체 부피 저항도, 는 전도성 나노탄소소재의 부피 저항도, 는 전도성 나노탄소소재와 전도성 탄소나노 고분자 복합재료의 접촉 저항도이며 는 탄소나노 고분자 복합재료의 부피 저항도이다.Where is the total volume resistivity, is the volume resistivity of the conductive nanocarbon material, is the contact resistance of the conductive nanocarbon material and the conductive carbon nanopolymer composite material, and is the volume resistivity of the carbon nanopolymer composite material.

본 발명은 전기-미세역학적 시험법을 연관시켜 전도성 탄소나노복합재료 내부에 함침된 전도성 탄소섬유에 가해진 응력에 따른 전기저항변화를 탄소나노복합재료를 통해 전달되는 접촉저항측정을 통해 퍼콜레이션 구조를 간접적으로 확인하게 된다.The present invention relates to the electro-micromechanical test method to determine the percolation structure through the contact resistance measurement through the carbon nanocomposite, the electrical resistance change according to the stress applied to the conductive carbon fiber impregnated inside the conductive carbon nanocomposite Indirectly confirmed.

이를 보다 구체적으로 설명하면 다음과 같다.This will be described in more detail as follows.

소수성의 물질인 탄소나노소재가 친수성인 물질과 이질상을 구성할 때, 소수성의 탄소나노소재가가 피닝점으로 작용하여 전진 접촉각 측정 시, 시험 용액이 복합재료를 밀어내게 된다. 결과적으로 탄소나노소재가 복합재료의 표면에 고르게 분산될수록 전진 접촉각이 높아지는 것이다. 이러한 결과를 통해 탄소나노소재의 분산도에 따른 탄소나노복합재료의 표면에너지를 측정하게 되면, 상대적으로 낮은 표면에너지를 가진 탄소나노소재의 분산이 좋을수록 복합재료의 표면에너지가 감소한다는 것을 확인 할 수 있다. 이러한 결과는 부피저항 측정을 통해서도 확인 할 수 있다. When the hydrophobic carbon nanomaterial constitutes a heterogeneous phase with the hydrophilic material, the hydrophobic carbon nanomaterial acts as a pinning point, and the test solution pushes out the composite material when measuring the forward contact angle. As a result, as the carbon nanomaterial is evenly dispersed on the surface of the composite material, the forward contact angle becomes higher. Based on these results, when measuring the surface energy of carbon nanocomposites according to the dispersion degree of carbon nanomaterials, it is confirmed that the better the dispersion of carbon nanomaterials having relatively lower surface energy, the lower the surface energy of the composite material. Can be. These results can also be confirmed by measuring the volume resistance.

탄소나노소재, 예를 들면, 탄소나노튜브(CNT) 또는 탄소나노섬유(CNF)를 에폭시와 혼합한 탄소나노복합재료에 일정한 간격으로 구리선을 이용해 접점을 형성 시킨 후, 각 접점 간 부피전기저항을 4단자법(4 point probe method)을 이용하여 측정한 후, 측정된 부피전기저항의 평균(Average), 표준편차(Standard Deviation), 변동계수(Coefficient Of Variation)를 통해 분산도를 간접적으로 측정하게 된다. 분산도가 좋으면 좋을수록 퍼콜레이션 구조가 형성이 잘되어 짐으로 부피저항도의 평균값이 떨어 질 것이며, 평균값의 표준편차 (Standard Deviation)가 줄어들 것이며 최종적으로 분산도를 간접적으로 확인 할 수 있는 변동계수(Coefficient Of Variation: 표준편차/평균 × 100)가 줄어 들 것이다.Carbon nanomaterials, for example, carbon nanotubes (CNT) or carbon nanofibers (CNF) are carbon nanocomposites mixed with epoxy to form contacts at regular intervals using copper wire, and then the volume electrical resistance between After the measurement using the 4-point probe method, the dispersion degree can be indirectly measured through the average, standard deviation, and coefficient of variation of the measured volumetric resistance. do. The better the dispersion, the better the percolation structure is formed, the lower the average value of the volume resistivity, the smaller the standard deviation of the mean, and the coefficient of variation that can indirectly check the dispersion. (Coefficient Of Variation: Standard Deviation / Mean × 100) will be reduced.

최종적으로 동적 접촉각 결과와 전기-미세역학적 시험법을 연관시켜 전도성 탄소나노복합재료 내부에 함침된 전도성 탄소섬유에 가해진 응력에 따른 전기저항변화를 탄소나노복합재료를 통해 전달되는 접촉저항측정을 통해 퍼콜레이션 구조가 잘 형성 되었는지 확인 할 수 있다. 퍼콜레이션 구조가 형성이 잘 되면 탄소섬유에 가해진 응력에 따른 전기저항 변화가 탄소나노복합재료를 통해 잘 전달 되며, 퍼콜레이션 구조가 형성 되지 못하면 탄소섬유에 가해진 응력에 따른 전기저항 변화가 탄소나노복합재료를 통해 전달되지 않는다.Finally, by correlating the dynamic contact angle results with the electro-micromechanical test method, the electrical resistance change according to the stress applied to the conductive carbon fiber impregnated inside the conductive carbon nanocomposite is measured through the contact resistance measurement through the carbon nanocomposite. You can check whether the structure is well formed. If the percolation structure is well formed, the electrical resistance change according to the stress applied to the carbon fiber is well transmitted through the carbon nanocomposite. If the percolation structure is not formed, the electrical resistance change according to the stress applied to the carbon fiber is carbon nanocomposite. It does not pass through the material.

이와 같은 본 발명을 실시 예에 의거하여 더욱 상세히 설명하면 다음과 같다.When the present invention is described in more detail based on the embodiment as follows.

실시예Example

실험재료 : Experimental material:

다중벽 탄소나노튜브 (CNT, 일진 나노텍(주) 제, 한국)를 강화재로 사용하였으며 평균 직경은 각각 20 nm 였다. 평균 직경이 8 ㎛인 탄소섬유 (T700S, Toray Inc., 일본)를 파단 감지 대상 강화재로 사용하였고, 기지재료로는 비스페놀-A 타입의 에폭시수지 (YD-114, 국도화학(주) 제, 한국)를 사용하였고 경화제는 산무수화물 타입의 KBH-1089 (국도화학(주) 제, 한국)을 사용하였다. 동적 접촉각 측정 용매로 는 탈 이온화 된 증류수, 포름아미드 (대정화학사, 한국), 디아이오도메탄 (Tokyo Kasei Kogyo사, 일본), 그리고 에틸렌 글리콜(동양화학공업사, 한국)을 사용하였다.Multi-walled carbon nanotubes (CNT, Iljin Nanotech Co., Ltd., Korea) were used as reinforcing materials and the average diameter was 20 nm. Carbon fiber (T700S, Toray Inc., Japan) with an average diameter of 8 µm was used as a reinforcement target for fracture detection, and as a base material, bisphenol-A type epoxy resin (YD-114, manufactured by Kukdo Chemical Co., Ltd., Korea) ) And an acid anhydride type KBH-1089 (manufactured by Kukdo Chemical Co., Ltd., Korea) was used. Deionized distilled water, formamide (Daejung Chemical Co., Ltd.), diiodomethane (Tokyo Kasei Kogyo Co., Ltd., Japan), and ethylene glycol (Dongyang Chemical Co., Ltd.) were used as the dynamic contact angle measurement solvent.

실험방법:Experimental method:

상기 탄소나노튜브는 Sonication [울트라소닉, 스크레스트(주)제]을 이용하여 에폭시 수지에 균일하게 분산시켰고 분산도를 달리하기 위해 용매를 물, 에탄올, 2-프로판올, 아세톤을 각각 사용하였다. 탄소나노 강화 에폭시 복합재료의 동 적 접촉각 측정은 도 1과 같이 Wilhelmy plate 방법을 이용하여 측정하였다. The carbon nanotubes were uniformly dispersed in an epoxy resin by using Sonication [UltraSonic, Screst Co., Ltd.], and water, ethanol, 2-propanol, and acetone were used as solvents to change the degree of dispersion. Dynamic contact angle measurement of the carbon nano-reinforced epoxy composite was measured using the Wilhelmy plate method as shown in FIG.

부피저항도는 도 2과 같이 구리선과 은 페이스트(silver paste)를 이용하여 일정한 간격으로 전기접점을 형성시킨 후 4탐침(four-point probe) 법을 통한 디지털 멀티미터(digital multimeter: HP344 01A)를 이용하여 측정하였다.As shown in FIG. 2, the volume resistivity is formed using a copper wire and silver paste at regular intervals, and then a digital multimeter (HP344 01A) using a four-point probe method. It measured using.

도 3에서, 전기적 풀-아웃 시험법은 전도성 탄소나노복합재료 내부에 함침된 전도성 탄소섬유에 가해진 응력에 따른 전기저항변화를 탄소나노복합재료를 통해 전달되는 접촉저항측정을 통해 퍼콜레이션 구조가 잘 형성되었는지 확인 할 수 있는 방법으로 반복하중은 만능시험인장기 [하운스필드 (주)제]를 사용하였으며 접촉저항 변화는 4탐침(four-point probe) 법을 통한 디지털 멀티미터(digital multimeter: HP344 01A)를 이용하여 측정하였다.In FIG. 3, the electrical pull-out test method has a good percolation structure through a contact resistance measurement through which a change in electrical resistance due to stress applied to a conductive carbon fiber impregnated inside the conductive carbon nanocomposite is transmitted through the carbon nanocomposite. The repeated load was used as a tester of the universal testing machine [Hunsfield Co., Ltd.], and the change of contact resistance was determined by the four-point probe method. 01A).

실험 결과: Experiment result:

동적 접촉각측정 : Dynamic contact angle measurement :

도 5는 CNT 강화 에폭시 복합재료의 동적 접촉각 측정을 통한 힘-담금 깊이 곡선을 나타낸 것이다. 분산용매를 아세톤이나 2-프로판올을 사용하여 분산이 좋을수록 힘이 작어지는 것을 확인 할 수 있는데, 이는 CNT가 복합재료 표면에 고르게 분산 되어 보다 효과적인 피닝점으로 작용하였기 때문이다. 즉 분산도가 좋은 순으로 힘이 적게 드는 것을 확인 할 수 있었다. 5 shows a force-immersion depth curve through dynamic contact angle measurement of CNT reinforced epoxy composites. Using acetone or 2-propanol as a dispersion solvent, the better the dispersion, the smaller the force. This is because CNT was evenly dispersed on the surface of the composite material, which acted as a more effective pinning point. In other words, it was confirmed that the strength was less in order of good dispersion.

도 6은 분산용매에 따른 CNT 강화 에폭시 복합재료의 접촉각과 표면에너지를 보여주는 도표로서, CNT의 분산이 잘 될수록 접촉각은 크게 되며, 표면 에너지는 줄어드는 것을 확인 할 수 있는데, CNT의 분산도가 좋으면 효과적인 피닝점으로 작 용하여 전진접촉각이 커지게 되는 것이며, 낮은 표면에너지를 가진 CNT의 영향으로 분산도가 좋으면, 복합재의 표면에너지가 낮아지게 되는 것이다. 6 is a diagram showing the contact angle and surface energy of the CNT-reinforced epoxy composite material according to the dispersion solvent, the better the CNT dispersion, the larger the contact angle, the surface energy is reduced, the better the dispersion of the CNT effective The forward contact angle is increased by acting as a pinning point. If the dispersion degree is good under the influence of CNT with low surface energy, the surface energy of the composite is lowered.

도 7은 부피전기저항 측정 하에서 분산용매에 따른 부피저항도의 평균, 표준편차, 변동계수의 차이가 나는 것을 확인 할 수 있다. CNT의 분산이 잘될수록 CNT의 퍼콜레이션 구조가 잘 형성되기 때문에 부피저항도의 평균, 표준편차, 변동계수는 줄어 들 것이다. 그리하여 아세톤과 2-프로판올을 분산 용매로 사용하였을 때 CNT의 분산이 잘되었다는 것을 확인 할 수 있다.Figure 7 can be seen that the difference in the mean, standard deviation, coefficient of variation of the volume resistivity according to the dispersion solvent under the volume electrical resistance measurement. The better the dispersion of CNTs, the better the percolation structure of the CNTs, so the mean, standard deviation, and coefficient of variation in volume resistivity will decrease. Thus, when acetone and 2-propanol were used as the dispersion solvent, it was confirmed that the CNT dispersion was good.

도 8는 전기적 풀-아웃시험에서 탄소섬유에 가해진 반복하중에 의한 전기저항 변화를 CNT 강화 에폭시 복합재료를 통해 감지한 결과이다. 분산도가 좋은 아세톤(a)과 2-프로판올(b)에서 분산시킨 CNT 강화 에폭시 복합재의 경우 전기저항 변화를 확실히 감지하였지만, 분산도가 나쁜 에탄올(c)과 물(d)에서 분산 시킨 경우에는 전기저항 변화를 전혀 감지할 수 없다. 이는 아세톤과 2-프로판올에서 CNT를 분산시 분산도가 좋아 퍼코레이션 구조가 잘 형성된다는 것 확인 할 수 있는 결과이다.8 is a result of detecting the change in electrical resistance due to the cyclic load applied to the carbon fiber in the electrical pull-out test through the CNT reinforced epoxy composite material. In the case of CNT-reinforced epoxy composites dispersed in acetone (a) and 2-propanol (b) with good dispersion, the change in electrical resistance was clearly detected.However, when dispersed in ethanol (c) and water (d) with poor dispersion, No change in electrical resistance can be detected. This result confirms that the dispersion of CNTs in acetone and 2-propanol has a good dispersion so that the percorporation structure is well formed.

도 9는 분산용매에 따른 CNT 강화 에폭시 복합재료의 파단면의 모습을 보여주는 결과이다. 분산이 잘된 경우 CNT가 고르게 분산 되어 있는 것을 FE-SEM을 통해 확인 할 수 있다. 도 9에서 (a)는 아세톤, (b)는 2-프로판올, (c)는 에탄올, (d)는 물의 경우를 나타낸 것이다.9 is a result showing the appearance of the fracture surface of the CNT-reinforced epoxy composite material according to the dispersion solvent. In case of good dispersion, it can be confirmed through FE-SEM that CNT is evenly distributed. In Figure 9 (a) is acetone, (b) is 2-propanol, (c) is ethanol, (d) shows the case of water.

따라서, 동적 접촉각을 통해 CNT의 분산이 잘 되었다고 판단되는 경우, CNT가 CNT/에폭시 복합재료에서 피닝 효과를 크게 내기 때문에 전진 접촉각이 보다 높 게 나타나는 것을 확인할 수 있다.Therefore, if it is determined that the dispersion of the CNT through the dynamic contact angle is well, it can be seen that the forward contact angle appears higher because the CNT produces a pinning effect in the CNT / epoxy composite material.

도 1은 CNT의 분산용매가 다른 CNT 강화 에폭시 복합재료의 동적 접촉각 측정법을 나타내는 모식도이다. 1 is a schematic diagram illustrating a dynamic contact angle measurement method of CNT reinforced epoxy composites having different CNT dispersion solvents.

도 2는 CNT 강화 에폭시 복합재료 시편 및 부피저항 측정시험에 대한 개략도이다.2 is a schematic diagram of a CNT reinforced epoxy composite specimen and volume resistivity test.

도 3는 전기적 풀-아웃시험법에 대한 개략도이다.3 is a schematic diagram of the electrical pull-out test method.

도 4는 피닝 효과에 대한 개략도이다.4 is a schematic diagram of the pinning effect.

도 5는 동적 접촉각 측정법을 통한 힘-담금 깊이 곡선을 나타낸 그래프이다.5 is a graph showing force-immersion depth curves through dynamic contact angle measurement.

도 6는 분산용매에 따른 CNT 강화 에폭시 복합재료의 접촉각과 표면에너지를 나타낸 그래프이다.6 is a graph showing the contact angle and surface energy of the CNT reinforced epoxy composite material according to the dispersion solvent.

도 7은 부피저항도 측정을 통한 간접적 분산도를 나타낸 그래프이다.7 is a graph showing indirect dispersion through volume resistivity measurement.

도 8는 전기적 풀-아웃 시험법 통한 CNT의 분산도에 따른 접촉저항변화를 보여주는 그래프이다.8 is a graph showing a change in contact resistance according to the dispersion of the CNT through the electrical pull-out test method.

도 9는 FE-SEM을 통한 에폭시 기지재내 CNT의 분산형태를 보여주는 사진이다.9 is a photograph showing the dispersion of CNTs in an epoxy matrix through FE-SEM.

Claims (4)

동적 접촉각 측정을 이용하여 전도성 탄소나노 고분자 복합재료 내 전도성 탄소나노 소재의 분산도를 간접적으로 측정하는 방법.A method of indirectly measuring the dispersion of conductive carbon nanomaterials in a conductive carbon nanopolymer composite material using dynamic contact angle measurement. 청구항 1에 있어서,The method according to claim 1, 상기 동적 접촉각 측정을 위한 전도성 탄소나노소재의 분산 용매로는 에탄올 또는 2-프로판올을 사용하여 Wihelmy Plate 방법에 의해서 측정하는 것을 특징으로 하는 동적 접촉각 측정을 이용하여 전도성 탄소나노 고분자 복합재료 내 전도성 탄소나노 소재의 분산도를 간접적으로 측정하는 방법.The conductive carbon nanomaterial in the conductive carbon nano polymer composite material using the dynamic contact angle measurement, characterized in that the measurement by the Wihelmy Plate method using ethanol or 2-propanol as the dispersion solvent of the conductive carbon nano material for the dynamic contact angle measurement Indirect measurement of material dispersion. 청구항 1에 있어서,The method according to claim 1, 추가로 해당 전도성 탄소나노 고분자 복합재료 내에 일정한 간격으로 구리선을 이용해 접점을 형성시킨 후, 각 접점 간 부피전기저항을 4 단자법을 이용하여 측정한 후, 측정된 부피전기저항의 평균, 표준편차, 변동계수를 통해 분산도를 간접적으로 측정하는 것을 특징으로 하는 동적 접촉각 측정을 이용하여 전도성 탄소나노 고분자 복합재료 내 전도성 탄소나노 소재의 분산도를 간접적으로 측정하는 방법.In addition, after forming the contacts using copper wires at regular intervals in the conductive carbon nanopolymer composite material, the volume electrical resistance between the contacts was measured using the four-terminal method, and then the average, standard deviation, A method for indirectly measuring the dispersion of conductive carbon nanomaterials in a conductive carbon nanopolymer composite material by using a dynamic contact angle measurement, in which the dispersion is indirectly measured through a variation coefficient. 청구항 1에 있어서,The method according to claim 1, 추가로 다음의 식에 따라 전기적 풀-아웃 시험법에 따라 전도성 나노탄소소재와 전도성 탄소나노 고분자 복합재료 사이의 접촉 저항도를 계산하고, 퍼콜레이션 구조의 확인으로 전도성 탄소나노 고분자 복합재료 내 전도성 탄소나노 소재의 분산도를 간접적으로 측정하는 방법.In addition, the contact resistance between the conductive nanocarbon material and the conductive carbon nanopolymer composite material was calculated according to the electrical pull-out test method according to the following equation, and the conductive carbon in the conductive carbon nanopolymer composite material was confirmed by the percolation structure. Indirectly measuring the degree of dispersion of nanomaterials.
Figure 112008010673571-PAT00014
Figure 112008010673571-PAT00014
여기서 는 전체 부피 저항도, 는 전도성 나노탄소소재의 부피 저항도, 는 전도성Where is the total volume resistivity, is the volume resistivity of the conductive nanocarbon material, is 나노탄소소재와 전도성 탄소나노 고분자 복합재료의 접촉 저항도이며 는 탄소나노The contact resistance between nano carbon material and conductive carbon nano polymer composite is 고분자 복합재료의 부피 저항도이다. It is the volume resistivity of the polymer composite material.
KR1020080012940A 2008-02-13 2008-02-13 Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle KR20090087603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080012940A KR20090087603A (en) 2008-02-13 2008-02-13 Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080012940A KR20090087603A (en) 2008-02-13 2008-02-13 Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle

Publications (1)

Publication Number Publication Date
KR20090087603A true KR20090087603A (en) 2009-08-18

Family

ID=41206565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080012940A KR20090087603A (en) 2008-02-13 2008-02-13 Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle

Country Status (1)

Country Link
KR (1) KR20090087603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484024B1 (en) * 2013-03-14 2015-01-20 경상대학교산학협력단 Evaluation method of dispersion of reinforcing agent in composite material
KR20150117440A (en) 2014-04-10 2015-10-20 한국과학기술연구원 Method for measuring dispersion degree of carbon nanomaterial in carbon nanomaterial-polymer composite
KR102095457B1 (en) * 2018-11-08 2020-03-31 스미또모 가가꾸 가부시키가이샤 Optical film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484024B1 (en) * 2013-03-14 2015-01-20 경상대학교산학협력단 Evaluation method of dispersion of reinforcing agent in composite material
KR20150117440A (en) 2014-04-10 2015-10-20 한국과학기술연구원 Method for measuring dispersion degree of carbon nanomaterial in carbon nanomaterial-polymer composite
KR102095457B1 (en) * 2018-11-08 2020-03-31 스미또모 가가꾸 가부시키가이샤 Optical film

Similar Documents

Publication Publication Date Title
Bautista-Quijano et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning
Sánchez-Romate et al. Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: Empirical results versus theoretical predictions
Böger et al. Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix
Park et al. Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique
Moosa et al. Mechanical and electrical properties of graphene nanoplates and carbon-nanotubes hybrid epoxy nanocomposites
Kwon et al. Damage sensing and fracture detection of CNT paste using electrical resistance measurements
Park et al. Self-sensing and dispersive evaluation of single carbon fiber/carbon nanotube (CNT)-epoxy composites using electro-micromechanical technique and nondestructive acoustic emission
Ferrer‐Anglada et al. Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu
Chanda et al. Electrical conductivity of random and aligned nanocomposites: Theoretical models and experimental validation
Yasuoka et al. Electrical resistance change under strain of CNF/flexible-epoxy composite
Park et al. Interfacial and hydrophobic evaluation of glass fiber/CNT–epoxy nanocomposites using electro-micromechanical technique and wettability test
Zhang et al. Electrical and mechanical properties of CNT/CB dual filler conductive adhesives (DFCAs) for automotive multi-material joints
Liu et al. Densely packed, highly strain sensitive carbon nanotube composites with sufficient polymer penetration
KR20090087603A (en) Method for measuring dispersion degree of carbon nanomaterial in polymer matrix using dynamic contact angle
Liu et al. Low‐cost carbon black‐loaded functional films for interlaminar toughening and in‐situ delamination monitoring of carbon fiber/epoxy composites
Yang et al. Improved tensile and single-lap-shear mechanical-electrical response of epoxy composites reinforced with gridded nano-carbons
Kim et al. The experimental determination of the onset of electrical and thermal conductivity percolation thresholds in carbon nanotube-polymer composites
Park et al. Self-sensing and interfacial evaluation of Ni nanowire/polymer composites using electro-micromechanical technique
KR100682547B1 (en) Method for nondestructive damage sensing of carbon nanotube and nanofiber/epoxy composites using electro-micromechanical test and acoustic emission
Yang et al. Monitoring the crack length of adhesively bonded carbon-fiber-reinforced polymer by using aligned graphene
KR20090128161A (en) Method for estimating dispersion of conductive nano materials in polymer composite using the technique of volumetric resistivity measurement
Karlsson et al. Sensing abilities of embedded vertically aligned carbon nanotube forests in structural composites: From nanoscale properties to mesoscale functionalities
Moseenkov et al. Effect of ultrasonic treatment on the properties of multiwalled carbon nanotubes–polymethylmethacrylate composites: Effect of applied voltage and pressure on conductivity of the composites
Kanoun et al. Carbon nanotube polymer composites for high performance strain sensors
Meguid et al. Unravelling the sensory capability of MWCNT-reinforced nanocomposites: Experimental and numerical investigations

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination