KR20090082583A - Preparation method of carbon fiber using irradiation and carbon fiber using thereof - Google Patents

Preparation method of carbon fiber using irradiation and carbon fiber using thereof Download PDF

Info

Publication number
KR20090082583A
KR20090082583A KR1020080008425A KR20080008425A KR20090082583A KR 20090082583 A KR20090082583 A KR 20090082583A KR 1020080008425 A KR1020080008425 A KR 1020080008425A KR 20080008425 A KR20080008425 A KR 20080008425A KR 20090082583 A KR20090082583 A KR 20090082583A
Authority
KR
South Korea
Prior art keywords
fiber
carbon fiber
irradiation
polyacrylonitrile
carbon
Prior art date
Application number
KR1020080008425A
Other languages
Korean (ko)
Other versions
KR100956543B1 (en
Inventor
강필현
전준표
노영창
이영석
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020080008425A priority Critical patent/KR100956543B1/en
Publication of KR20090082583A publication Critical patent/KR20090082583A/en
Application granted granted Critical
Publication of KR100956543B1 publication Critical patent/KR100956543B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

A preparation method of a carbon fiber and the carbon fiber prepared by the same are provided to substantially reduce time and costs by irradiating radiation on a green fiber at room temperature, thereby stabilizing the green fiber within a short time. A preparation method of a carbon fiber comprises a first step of irradiating radiation onto a green fiber as raw material of the carbon fiber in the air to stabilize the green fiber, and a second step of heating the stabilized green fiber to a temperature range of 600 to 1500 deg.C in an inert gas atmosphere, thereby carbonizing the green fiber to prepare the carbon fiber. The green fiber is selected from the group consisting of a rayon-based fiber, a pitch based general-purpose fiber, a phenolic fiber, and a polyacrylonitrile-based fiber. The radiation is selected from the group consisting of gamma ray, electron beam, ion beam, and ultraviolet ray. The inert gas is selected from the group consisting of nitrogen, helium, neon, and argon.

Description

방사선 조사에 의한 탄소섬유의 제조방법 및 이를 이용하여 제조되는 탄소섬유{Preparation method of carbon fiber using irradiation and carbon fiber using thereof}Preparation method of carbon fiber by radiation and carbon fiber manufactured using the same {Preparation method of carbon fiber using irradiation and carbon fiber using example}

본 발명은 탄소섬유의 제조방법 및 이를 이용하여 제조되는 탄소섬유에 관한 것으로, 더욱 상세하게는 탄소섬유의 원료로 이용되는 미가공 섬유를 방사선을 이용하여 안정화시킨 후 탄화과정을 거쳐 탄소섬유를 제조하는 방법에 관한 것이다.The present invention relates to a carbon fiber manufacturing method and a carbon fiber manufactured by using the same, and more particularly, to stabilize the raw fiber used as a raw material of the carbon fiber by radiation to produce a carbon fiber through a carbonization process after stabilization It is about a method.

일반적인 탄소섬유의 출발원료로서는 기술적, 경제적인 측면과 최종제품의 물성을 고려하여, 레이온(rayon), 핏치(pitch)계 범용섬유, 페놀계 섬유, 폴리아크릴로니트릴(PAN)계 섬유 등이 사용된다.As starting materials of general carbon fiber, rayon, pitch general purpose fiber, phenolic fiber, polyacrylonitrile (PAN) fiber, etc. are used in consideration of technical and economical aspects and physical properties of the final product. do.

모든 탄소섬유는 두 가지 이상의 공정을 거침으로써 제조된다. PAN계 미가공 섬유의 경우 1차 공정인 안정화 공정은 200~300 ℃ 의 온도에서 수 시간 (보통 4~5시간) 동안 공기 중에서 이루어지게 된다. 이때 폴리아크릴로니트릴계 미가공섬 유 내부에서 분자 간 가교반응, 제거반응 등의 반응이 일어나게 되어 다음 과정인 탄화공정에 접합한 분자구조, 즉 열안정성이 뛰어난 구조를 갖게 되며 이를 미가공섬유의 안정화라 한다.All carbon fibers are made by going through two or more processes. In the case of PAN-based raw fiber, the stabilization process, which is a primary process, is performed in air for several hours (usually 4 to 5 hours) at a temperature of 200 to 300 ° C. At this time, reactions such as intermolecular crosslinking reactions and removal reactions occur inside the polyacrylonitrile-based raw fiber, and thus have a molecular structure bonded to the carbonization process, that is, excellent thermal stability, and thus stabilize the raw fiber. do.

공기 중에서 안정화를 거친 폴리아크릴로니트릴계 섬유는 열적 안정성을 갖게 되어 800~1500 ℃의 탄화공정을 거쳐 탄소섬유로 된다. 탄화공정은 고온에서 행하여지기 때문에 탄소섬유의 물성 측면에서 완전한 불활성 분위기의 조성이 중요하다. 이와 같은 탄화처리를 해줌으로써 섬유 내에서 탄소의 결정성이 커지고 배열상태가 양호해지면 섬유의 탄성율과 강도가 상당히 향상된다.Polyacrylonitrile-based fibers stabilized in air have thermal stability and become carbon fibers through a carbonization process at 800 to 1500 ° C. Since the carbonization process is performed at a high temperature, the composition of a completely inert atmosphere is important in terms of the physical properties of the carbon fibers. This carbonization treatment results in a significant increase in the elastic modulus and strength of the fiber when the crystallinity of the carbon in the fiber is increased and the arrangement is good.

그러나, 탄소섬유를 제조하는 종래의 방법은 상술한 바와 같이 200~300 ℃의 고온에서 장시간 미가공 섬유의 안정화 과정을 수행하기 때문에 제조시간이 길어지며 제조 시 생산원가도 높아지는 문제점을 가지고 있다. However, the conventional method of manufacturing carbon fiber has a problem that the production time is long and the production cost is also increased during the manufacturing process because it performs a stabilization process of the raw fiber for a long time at a high temperature of 200 ~ 300 ℃ as described above.

이에 본 발명자들은 탄소섬유의 제조에 있어 미가공 섬유를 안정화시키는 단계에서 종래 사용되던 열에 의한 안정화 대신 미가공 섬유에 방사선을 조사할 경우 상온에서 단시간 내에 안정화가 이루어짐으로써 비용 및 시간 면에서 우수한 탄소섬유를 제조할 수 있음을 알아내고 본 발명을 완성하였다.Therefore, the inventors of the present invention, when irradiating the raw fibers in place of the stabilization of the raw fibers in the stabilization of the raw fibers in the manufacture of carbon fibers, the stabilization is made within a short time at room temperature to produce excellent carbon fibers in terms of cost and time It was found that this can be done to complete the present invention.

본 발명의 목적은 방사선 조사에 의한 탄소섬유의 제조방법을 제공하는 데 있다.An object of the present invention is to provide a method for producing carbon fiber by irradiation.

본 발명의 다른 목적은 방사선 조사에 의하여 제조되는 탄소섬유를 제공하는 데 있다.Another object of the present invention is to provide a carbon fiber produced by irradiation.

상기 목적을 달성하기 위해, 본 발명은 방사선 조사에 의하여 미가공섬유를 가열하지 않고 상온에서 안정화시켜 제조시간 및 제조비용을 절감할 수 있는 탄소섬유의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a carbon fiber that can reduce the production time and manufacturing cost by stabilizing the raw fiber at room temperature without heating.

또한 본 발명은 방사선 조사에 의하여 제조되는 탄소섬유를 제공한다.The present invention also provides a carbon fiber produced by irradiation.

본 발명에 의하면, 탄소섬유를 제조하기 위하여 미가공섬유를 안정화시키는 단계에서 종래 사용되는 미가공섬유의 가열 대신 상온에서 방사선을 조사하여 짧은 시간에 미가공섬유를 안정화시킴으로써 시간 및 비용면에서 획기적인 절감이 가능하므로 탄소섬유의 제조공정에 유용하게 사용될 수 있다.According to the present invention, by stabilizing the raw fiber in the step of stabilizing the raw fiber in order to manufacture the carbon fiber by irradiating radiation at room temperature to stabilize the raw fiber in a short time it is possible to significantly reduce the time and cost It can be usefully used in the manufacturing process of the carbon fiber.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 미가공섬유를 공기중에서 방사선을 조사하여 안정화시키는 단계(단계 1); 및The present invention comprises the steps of stabilizing the raw fiber by irradiation in the air (step 1); And

상기 단계 1에서 안정화된 섬유를 불활성기체 분위기에서 가열하여 탄화시켜 탄소섬유를 제조하는 단계(단계 2)를 포함하는 방사선 조사에 의한 탄소섬유의 제조방법을 제공한다.It provides a method of producing carbon fibers by irradiation comprising the step (step 2) of carbonizing the fiber stabilized in step 1 by heating in an inert gas atmosphere to carbonize.

이하, 본 발명을 단계별로 더욱 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail step by step.

본 발명에 따른 단계 1은 미가공섬유를 공기중에서 방사선을 조사하여 안정화시키는 단계이다. Step 1 according to the present invention is a step of stabilizing the raw fiber by irradiation in the air.

상기 방사선 조사에 의한 탄소섬유의 출발 원료물질인 미가공섬유는 레이온계 섬유, 핏치계 범용섬유, 페놀계 섬유, 폴리아크릴로니트릴계 섬유 등을 사용할 수 있으며, 바람직하게는 폴리아크릴로니트릴계 섬유를 사용할 수 있다. The raw fiber, which is the starting raw material of the carbon fiber by radiation, may be a rayon fiber, a pitch general purpose fiber, a phenolic fiber, a polyacrylonitrile fiber, or the like, and preferably a polyacrylonitrile fiber. Can be used.

상기 미가공섬유가 탄소섬유로 전환되기 위해서는 섬유를 구성하고 있는 성분 중에서 탄소를 제외한 성분이 제거되어야 하며, 이를 위한 공정으로 미가공 섬유를 안정화시키는 것이 가장 간단하고 경제적인 방법일 수 있다. 이 경우 미가공 섬유의 안정화를 위해서 종래에는 미가공섬유를 가열하는 방법을 사용하였으나, 본 발명에 따른 탄소섬유의 제조방법에서는 방사선을 조사함으로써 간단하게 미가공섬유를 안정화시킬 수 있다. In order to convert the raw fibers into carbon fibers, components other than carbon must be removed from the components constituting the fibers, and stabilizing the raw fibers may be the simplest and most economical method. In this case, in order to stabilize the raw fiber, a method of heating the raw fiber was conventionally used, but in the method of manufacturing the carbon fiber according to the present invention, the raw fiber can be stabilized simply by irradiation with radiation.

상기 미가공섬유의 안정화를 위한 방사선은 감마선, 전자선, 이온빔, 자외선(UV) 등을 사용할 수 있으며, 상기 방사선의 조사선량은 100~50,000 kGy의 범위에서 조사하는 것이 바람직하다.As the radiation for stabilizing the raw fiber, gamma rays, electron beams, ion beams, ultraviolet rays (UV), and the like may be used, and the irradiation dose of the radiation is preferably irradiated in the range of 100 to 50,000 kGy.

만약, 상기 방사선의 조사선량이 100 kGy 미만인 경우에는 축중합반응이 원활하게 일어나지 못하여 여전히 탄소 이외의 성분이 잔존하는 문제가 있다. 한편, 조사선량이 50,000 kGy를 초과하는 경우에는 조사선량에 비해 안정화된 섬유의 탄소 함량의 증가량이 작기 때문에 불필요한 조사로 인하여 경제적인 측면에서 불리하다는 문제가 있다.If the irradiation dose of the radiation is less than 100 kGy, the polycondensation reaction may not occur smoothly, and there is still a problem that components other than carbon remain. On the other hand, when the irradiation dose exceeds 50,000 kGy, there is a problem in terms of economics due to unnecessary irradiation because the increase in the carbon content of the stabilized fiber is small compared to the irradiation dose.

본 발명에 따른 단계 2는 상기 단계 1에서 안정화된 섬유를 불활성기체 분위기에서 가열하여 탄화시켜 탄소섬유를 제조하는 단계이다.Step 2 according to the present invention is a step of carbonizing the fiber stabilized in step 1 by heating in an inert gas atmosphere to produce a carbon fiber.

상기 불활성기체 분위기는 상기 단계 1에서 안정화된 섬유의 탄화공정이 고온에서 수행되기 때문에 탄소섬유의 물성 면에서 완전한 불활성기체 분위기를 조성하는 것이 중요하기 때문에 요구된다. 이러한 불활성기체 분위기를 만들기 위하여 질소, 헬륨, 네온, 아르곤 가스 등의 불활성기체 중 어느 하나 이상을 충진하여 상기 안정화섬유의 탄화 공정을 수행할 수 있다.The inert gas atmosphere is required because it is important to form a complete inert gas atmosphere in terms of physical properties of the carbon fiber because the carbonization process of the fiber stabilized in step 1 is performed at a high temperature. In order to make the inert gas atmosphere, any one or more of inert gases such as nitrogen, helium, neon, and argon gas may be filled to perform a carbonization process of the stabilized fibers.

또한 상기 안정화된 섬유의 탄화 과정은 바람직하게는 600~1500 ℃의 범위에서 상기 단계 1에서 안정화된 섬유를 가열함으로써 수행될 수 있으며, 더욱 바람직하게는 700~900 ℃로 가열할 수 있다.In addition, the carbonization process of the stabilized fibers may be carried out by heating the stabilized fibers in step 1 in the range of preferably 600 ~ 1500 ℃, more preferably can be heated to 700 ~ 900 ℃.

만일 상기 활성화가 600 ℃ 미만의 온도에서 수행될 경우에는 상대적으로 낮은 비표면적을 갖는 문제가 있으며, 1500 ℃를 초과하는 온도에서 수행될 경우에는 수율이 감소할 뿐만 아니라 장치의 부식이 매우 심하게 발생하는 문제가 있다.If the activation is carried out at a temperature of less than 600 ℃ there is a problem with a relatively low specific surface area, when carried out at a temperature exceeding 1500 ℃ not only the yield is reduced but also the corrosion of the device is very severe there is a problem.

또한 본 발명은 상기 제조방법에 의하여 제조되는 방사선 조사에 의한 탄소섬유를 제공한다.In another aspect, the present invention provides a carbon fiber by radiation irradiation produced by the above production method.

본 발명에 따른 탄소섬유는 방사선 조사에 의하여 활성탄소섬유의 제조시간이 단축되어 제조비용을 절감할 수 있다.Carbon fiber according to the present invention can reduce the manufacturing cost of the activated carbon fiber by the radiation irradiation.

이하, 본 발명을 실시예 및 도면을 참조하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and drawings. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

<실시예 1> 전자선을 이용한 폴리아크릴로니트릴계 탄소섬유의 제조Example 1 Preparation of Polyacrylonitrile Carbon Fiber Using Electron Beam

단계 1: 미가공 Step 1: Raw 폴리아크릴로니트릴Polyacrylonitrile 섬유의 안정화 Stabilization of fiber

미가공 폴리아크릴로니트릴 섬유를 전자선 가속기(EB-tech, ELV-4 accelerator)를 이용하여 안정화시켰다. 이 경우 상기 전자선 가속기의 전력은 1 MeV로 조절하였으며, 조사선량은 10 kGy/pass 으로 전체 조사량을 100~20,000 kGy로 하여 전자선을 조사하였다. 상기 전자선 조사에 의하여 안정화된 섬유의 사진을 도 1에 나타내었으며, 조사된 안정화섬유의 라만분광분석 결과를 도 2, X-선 회절분석기를 통한 분석 결과를 도 3에 나타내었다. The raw polyacrylonitrile fiber was stabilized using an electron beam accelerator (EB-tech, ELV-4 accelerator). In this case, the power of the electron beam accelerator was adjusted to 1 MeV, and the irradiation dose was 10 kGy / pass, and the electron beam was irradiated with the total dose of 100-20,000 kGy. The photo of the fiber stabilized by the electron beam irradiation is shown in Figure 1, the Raman spectroscopy analysis of the irradiated stabilizing fiber is shown in Figure 2, X-ray diffractometer analysis results are shown in FIG.

도 2를 참조하면, 조사된 폴리아크릴로니트릴 섬유의 아크릴 관능기 (-C≡N)가 안정화로 인해 그 피크가 사라지는 것을 확인할 수 있었으며, 도 3을 참조하면 열에 의하여 안정화가 됨에 따라 2 theta 값이 17 부근에서 피크의 강도가 감소하는 것을 확인하였는데, 전자선 조사(12 MGy)에 의하여 안정화 될 경우 17에서 나타나던 피크가 거의 사라지는 것을 확인하였다. 이와같은 피크는 탄화과정을 거쳐 생성되는 탄소섬유에서는 완전히 소멸되는 것을 확인할 수 있다.Referring to Figure 2, the acrylic functional group (-C 기 N) of the irradiated polyacrylonitrile fiber was confirmed that the peak disappears due to stabilization, referring to Figure 3 as the stabilization by heat 2 theta value is It was confirmed that the intensity of the peak was reduced in the vicinity of 17, and when it was stabilized by electron beam irradiation (12 MGy), it was confirmed that the peak appearing at 17 almost disappeared. These peaks can be seen to completely disappear from the carbon fiber produced through the carbonization process.

단계 2 : Step 2: 폴리아크릴로니트릴계Polyacrylonitrile 탄소섬유의Carbon fiber 제조 Produce

상기 단계 1에서 안정화된 폴리아크릴로니트릴 섬유를 아르곤분위기에서 분당 10℃의 승온속도로 800℃ 까지 승온시킨 후 1시간 동안 유지하며 탄화시켜 탄소섬유를 제조하였다. 이 경우 제조된 폴리아크릴로니트릴 탄소섬유의 단면은 장측으로 3~4 ㎛, 단축으로 1~2 ㎛ 정도로 탄화한 후 단면이 감소하였음을 확인할 수 있었다. The polyacrylonitrile fiber stabilized in step 1 was carbonized by maintaining the temperature for 1 hour after raising the temperature to 800 ° C. at an elevated temperature rate of 10 ° C. per minute in an argon atmosphere. In this case, the cross section of the prepared polyacrylonitrile carbon fiber was 3 to 4 μm in the long side and 1 to 2 μm in the short axis.

<실시예 2> 감마선을 이용한 폴리아크릴로니트릴계 탄소섬유의 제조Example 2 Preparation of Polyacrylonitrile Carbon Fiber Using Gamma Rays

단계 1: 미가공 Step 1: Raw 폴리아크릴로니트릴Polyacrylonitrile 섬유의 안정화 Stabilization of fiber

미가공 폴리아크릴로니트릴 섬유를 60Co 감마선 발생기(MDS Nordion, Canada, 490 kCi)를 이용하여 안정화시켰다. 이 경우 상기 감마선 발생기의 조사선량은 10 kGy/hr로 전체 조사량을 100~2000 kGy로 하여 감마선을 조사하였다. 감마선 조사에 의하여 안정화된 섬유의 사진을 도 4에 나타내었다.The raw polyacrylonitrile fiber was stabilized using a 60 Co gamma ray generator (MDS Nordion, Canada, 490 kCi). In this case, the gamma ray generator was irradiated with gamma rays at a dose of 10 kGy / hr and a total dose of 100-2000 kGy. The photograph of the fiber stabilized by gamma irradiation is shown in FIG. 4.

단계 2 : Step 2: 폴리아크릴로니트릴계Polyacrylonitrile 탄소섬유의Carbon fiber 제조 Produce

상기 단계 1에서 안정화된 폴리아크릴로니트릴 섬유를 질소분위기에서 분당 10 ℃의 승온속도로 800 ℃ 까지 승온시킨 후 1 시간 동안 유지하며 탄화시켜 탄소섬유를 제조하였다. 이 경우 제조된 폴리아크릴로니트릴계 탄소섬유의 단면은 장측으로 3~4 ㎛, 단축으로 1~2 ㎛ 정도로 탄화한 후 단면이 감소하였음을 확인할 수 있었다.The polyacrylonitrile fiber stabilized in step 1 was carbonized by maintaining the temperature for 1 hour after heating up to 800 ° C. at a temperature rising rate of 10 ° C. per minute in a nitrogen atmosphere. In this case, the cross section of the prepared polyacrylonitrile-based carbon fiber was 3 to 4 μm in the long side and 1 to 2 μm in the short axis.

도 1은 본 발명의 일 실시예에 따라 제조된 전자선 조사((b): 2MGy, (c): 6 MGy, (d): 20 MGy)에 의해 안정화된 탄소섬유 및 전자선을 조사하지 않은 폴리아크릴로니트릴섬유(a), 탄화과정을 통해 제조한 탄소섬유(e)를 나타내는 사진이고,1 is a carbon fiber stabilized by electron beam irradiation prepared according to an embodiment of the present invention ((b): 2MGy, (c): 6 MGy, (d): 20 MGy) and polyacrylic without irradiation Ronitrile fiber (a), a picture showing the carbon fiber (e) produced through the carbonization process,

도 2는 본 발명의 일 실시예에 따라 제조된 전자선 조사에 의하여 안정화된 폴리아크릴로니트릴섬유((b) : 500 kGy, (c) : 1000 kGy, (d) : 1500 kGy, (e) : 2000 kGy) 및 전자선을 조사하지 않은 폴리아크릴로니트릴섬유(a)의 라만분광분석 그래프이고,2 is a polyacrylonitrile fiber stabilized by electron beam irradiation prepared according to an embodiment of the present invention ((b): 500 kGy, (c): 1000 kGy, (d): 1500 kGy, (e): 2000 kGy) and Raman spectroscopic analysis of the polyacrylonitrile fiber (a) not irradiated with an electron beam,

도 3은 폴리아크릴로니트릴섬유(a)와 열처리에 의하여 안정화된 폴리아크릴로니트릴섬유(b) 그리고 본 발명의 일 실시예에 따라 제조된 전자선 조사에 의하여 안정화된 폴리아크릴로니트릴섬유(c, 2000 kGy), 및 탄화과정을 거쳐 제조한 탄소섬유(d)의 X-선 회절분석 결과 그래프이고,Figure 3 is a polyacrylonitrile fiber (a) and polyacrylonitrile fiber (b) stabilized by heat treatment and polyacrylonitrile fiber (c, stabilized by electron beam irradiation prepared according to an embodiment of the present invention) 2000 kGy), and the result of X-ray diffraction analysis of carbon fiber (d) prepared through carbonization process,

도 4는 본 발명의 일 실시예에 따라 제조된 감마선 조사에 의하여 안정화된 탄소섬유((b) : 500 kGy, (c) : 1000 kGy) 및 전자선을 조사하지 않은 폴리아크릴로니트릴섬유(a)를 나타내는 사진이다.Figure 4 is a carbon fiber stabilized by gamma irradiation prepared according to an embodiment of the present invention ((b): 500 kGy, (c): 1000 kGy) and the polyacrylonitrile fiber (a) not irradiated with an electron beam It is a photograph showing.

Claims (7)

탄소섬유의 원료가 되는 미가공섬유를 공기중에서 방사선을 조사하여 안정화시키는 단계(단계 1); 및Stabilizing the raw fiber, which is a raw material of carbon fiber, by irradiating with radiation in air (step 1); And 상기 단계 1에서 안정화된 섬유를 불활성기체 분위기에서 가열하여 탄화시켜 탄소섬유를 제조하는 단계(단계 2)를 포함하는 방사선 조사에 의한 탄소섬유의 제조방법.Method of producing a carbon fiber by irradiation comprising the step (step 2) to carbonize the fiber stabilized in step 1 by heating in an inert gas atmosphere. 청구항 1에 있어서, 상기 단계 1의 미가공섬유는 레이온계 섬유, 핏치계 범용 섬유, 페놀계 섬유 및 폴리아크릴로니트릴계 섬유로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 방사선 조사에 의한 탄소섬유의 제조방법.The method of claim 1, wherein the raw fiber of step 1 is selected from the group consisting of rayon-based fibers, pitch-based general-purpose fibers, phenol-based fibers and polyacrylonitrile-based fibers. . 청구항 2에 있어서, 상기 미가공 섬유는 폴리아크릴로니트릴계 섬유인 것을 특징으로 하는 방사선 조사에 의한 탄소섬유의 제조방법.The method of claim 2, wherein the raw fiber is a polyacrylonitrile-based fiber. 청구항 1에 있어서, 상기 단계 1의 방사선은 감마선, 전자선, 이온빔 및 자외선(UV)으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 방사선 조사에 의한 탄소섬유의 제조방법.The method of claim 1, wherein the radiation of step 1 is selected from the group consisting of gamma rays, electron beams, ion beams, and ultraviolet (UV) radiation. 청구항 1에 있어서, 상기 단계 1의 방사선의 조사선량은 100~50,000 kGy인 것을 특징으로 하는 방사선 조사에 의한 탄소섬유의 제조방법.The method of claim 1, wherein the radiation dose of the radiation of step 1 is 100 ~ 50,000 kGy. 청구항 1에 있어서, 상기 단계 2의 불활성기체는 질소, 헬륨, 네온 및 아르곤으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 방사선 조사에 의한 탄소섬유의 제조방법.The method of claim 1, wherein the inert gas of step 2 is selected from the group consisting of nitrogen, helium, neon and argon. 청구항 1에 있어서, 상기 단계 2의 안정화된 섬유 탄화 공정은 600~1500 ℃의 범위에서 가열하여 수행되는 것을 특징으로 하는 방사선 조사에 의한 탄소섬유의 제조방법. The method of claim 1, wherein the stabilized fiber carbonization process of step 2 is performed by heating in the range of 600 ~ 1500 ℃ carbon fiber manufacturing method by irradiation.
KR1020080008425A 2008-01-28 2008-01-28 Preparation method of carbon fiber using irradiation and carbon fiber using thereof KR100956543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080008425A KR100956543B1 (en) 2008-01-28 2008-01-28 Preparation method of carbon fiber using irradiation and carbon fiber using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080008425A KR100956543B1 (en) 2008-01-28 2008-01-28 Preparation method of carbon fiber using irradiation and carbon fiber using thereof

Publications (2)

Publication Number Publication Date
KR20090082583A true KR20090082583A (en) 2009-07-31
KR100956543B1 KR100956543B1 (en) 2010-05-07

Family

ID=41293863

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080008425A KR100956543B1 (en) 2008-01-28 2008-01-28 Preparation method of carbon fiber using irradiation and carbon fiber using thereof

Country Status (1)

Country Link
KR (1) KR100956543B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327972B1 (en) * 2011-12-21 2013-11-13 한국수력원자력 주식회사 Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method
KR20160129182A (en) * 2015-04-29 2016-11-09 충남대학교산학협력단 Manufacturing method of pitch-based fibers using radiation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386700B1 (en) 2012-10-17 2014-04-18 한국원자력연구원 Apparatus for continuous fiber stabilization
KR101406119B1 (en) 2013-03-21 2014-06-13 주식회사 우리나노 Method of manufacturing carbon nanofiber based on polyacrylonitrile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616315A (en) 1984-06-20 1986-01-13 Idemitsu Kosan Co Ltd Production of carbon fiber
JPH0827619A (en) * 1994-05-10 1996-01-30 Toray Ind Inc Acrylic precursor for carbon fiber and production of carbon fiber
US6372192B1 (en) 2000-01-28 2002-04-16 Ut-Battelle, Inc. Carbon fiber manufacturing via plasma technology
KR100811205B1 (en) 2006-08-17 2008-03-07 (주) 아모센스 Antibacterial nano-fibers containing silver nano-particles and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327972B1 (en) * 2011-12-21 2013-11-13 한국수력원자력 주식회사 Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method
KR20160129182A (en) * 2015-04-29 2016-11-09 충남대학교산학협력단 Manufacturing method of pitch-based fibers using radiation

Also Published As

Publication number Publication date
KR100956543B1 (en) 2010-05-07

Similar Documents

Publication Publication Date Title
US8080199B2 (en) Interaction of microwaves with carbon nanotubes to facilitate modification
CN109874344B (en) Charge conversion film for ion beam
Shin et al. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment
KR100956543B1 (en) Preparation method of carbon fiber using irradiation and carbon fiber using thereof
US20040222081A1 (en) Use of microwaves to crosslink carbon nanotubes
EP3556916B1 (en) Apparatus for manufacturing carbon fiber by using microwaves
Talabi et al. Structural evolution during the catalytic graphitization of a thermosetting refractory binder and oxidation resistance of the derived carbons
RU2009128759A (en) METHOD FOR STABILIZING CARBON-CONTAINING FIBER AND METHOD FOR PRODUCING CARBON FIBER
KR101755267B1 (en) Carbon fiber using electron beam cross-linked polyacrylonitrile fiber and method for preparing the same
KR101327972B1 (en) Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method
Park et al. Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties
KR20110115332A (en) Preparation method of carbon fiber by radiation and thermal stabilization
CN102383224B (en) Method of preparing carbon fibers through crosslinked reaction of boron trichloride and polyacrylonitrile precursors
US20240026225A1 (en) Using stimulus to convert coal to mesophase pitch and carbon fibers
KR20130029421A (en) Preparation method of carbon fiber by radiation and thermal stabilization
KR20170037130A (en) Carbon Fiber Production Method Using Thermal Decomposition of Carbon Fiber Reinforced Plastics and Carbon Fiber
Yao et al. Graphitization of PAN-based carbon fibers by CO 2 laser irradiation
Liu et al. Study on the structural evolution of polyacrylonitrile fibers in stepwise heat treatment process and its relationship with properties
US8414861B2 (en) Carbonized cellulose material having graphite nanolayer and synthesis method thereof
KR20170077612A (en) Preparing method for carbon fiber using hybrid crosslinking and carbon fiber
KR101406119B1 (en) Method of manufacturing carbon nanofiber based on polyacrylonitrile
KR101519042B1 (en) Method of manufacturing silicon carbide fiber by using ozon gas and manufacturing system for the same
Shin et al. Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers
KR20180001611A (en) Manufacturing method of carbon fibers with improved physical properties by heat treatment after electron beam irradiation
KR20200133520A (en) Method for manufacturing isotropic pitch from low-grade coal and ashfreechol and method for application of manufacturing low-cost high-strength isotropic carbon fiber using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160324

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 9