KR20090068871A - High strength steel sheet having excellent yield strength and low temperature toughness and manufacturing method thereof - Google Patents

High strength steel sheet having excellent yield strength and low temperature toughness and manufacturing method thereof Download PDF

Info

Publication number
KR20090068871A
KR20090068871A KR1020070136662A KR20070136662A KR20090068871A KR 20090068871 A KR20090068871 A KR 20090068871A KR 1020070136662 A KR1020070136662 A KR 1020070136662A KR 20070136662 A KR20070136662 A KR 20070136662A KR 20090068871 A KR20090068871 A KR 20090068871A
Authority
KR
South Korea
Prior art keywords
weight percent
strength steel
steel
strength
steel sheet
Prior art date
Application number
KR1020070136662A
Other languages
Korean (ko)
Other versions
KR100957990B1 (en
Inventor
배진호
김상현
김덕규
김기수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070136662A priority Critical patent/KR100957990B1/en
Publication of KR20090068871A publication Critical patent/KR20090068871A/en
Application granted granted Critical
Publication of KR100957990B1 publication Critical patent/KR100957990B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high-strength steel plate having excellent yield strength and low temperature toughness, and the manufacturing method thereof are provided to supply a high-strength steel plate having excellent yield strength and low temperature toughness with low expenses by optimizing and controlling component systems and deposits, and controlling hot rolling conditions. A high-strength steel plate having excellent yield strength and low temperature toughness comprises 0.03~0.1 weight percent C, 0.01~0.5 weight percent Si, 1.2~2.0 weight percent Mn, less than 0.02 weight percent S, 0.01~0.1 weight percent Nb, 0.01~0.1 weight percent Ti, less than 0.01 weight percent N, 0.1~0.5 weight percent Mo, 0.1~0.5 weight percent Ni, 0.01~0.1 weight percent V, 0.1~0.5 weight percent Cr, other inevitable impurities and Fe, wherein the Ti, Nb, C and N satisfy the relations as follows: 0.13<= (Ti*/48+Nb*/93)/(C/12) <= 0.25, 0.13<= (Ti*/48+Nb*/93)/(C/12) <= 0.25, 0.24 <= (V/51)/(C*/12) <= 1.6, 0.24 <= (V/51)/(C*/12) <= 1.6, 6<= (Mo/96)/(P/31) <= 30, 6<= (Mo/96)/(P/31) <= 30, and Ti* = Ti - 0.7*(48/14)N, Nb* = Nb-0.7*(93/14)N, C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]. A manufacturing method of a high-strength steel plate comprises the steps of re-heating the high-strength steel plate at 1100~1350°C, going through recystallization and non-recrystallization hot rolling processes within the range of 950~1100°C, going through a hot rolling process for finishing in the reduction ratio of more than 60% at 780~880°C, going through a water cooling process at a velocity of 10~50°C/sec on a run-out table, and winding at 400~600°C.

Description

항복강도와 저온인성이 우수한 고강도 강판 및 그 제조방법{High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof}High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof}

본 발명은 건축, 파이프라인 및 해양구조물 등의 용도로 사용되는 고강도 고인성 후물 열연 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 Nb, V, Mo 및 Ti을 복합첨가하고 열연공정을 적절히 제어함으로써 조직 미세화와 (Ti,Nb)C, NbC, VC 등의 석출에 의하여 항복강도를 향상시키고 Mo를 활용한 P편석 억제로 저온인성을 동시에 개선하는 후물 열연 API 강재 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength tough tough hot rolled steel used in construction, pipelines and offshore structures, and to a method for manufacturing the same. More specifically, a composite addition of Nb, V, Mo, and Ti, and appropriately control the hot rolling process By improving the yield strength by the microstructure and precipitation of (Ti, Nb) C, NbC, VC, and the like, the present invention relates to a hot-rolled API steel and a method for manufacturing the same, which simultaneously improve low-temperature toughness by inhibiting P segregation using Mo.

원유 또는 가스 수송용 강관 사용시 수송 효율을 높이기 위하여 수송압력을 높이고 있으며 최근에는 수송압력이 120기압에 이르고 있다. 이러한 수송압력을 견디기 위해서는 파이프의 두께가 충분히 두꺼워져야 되나, 강재는 그 두께가 증가할 수록 압연 중 압하량이 부족해지고 강재 중심부 부분에서는 충분한 냉각속도를 확보하기 어려워 페라이트 결정립이 조대해질 수 있다. 따라서 강도 및 저온인성이 저하된다 는 문제가 존재한다. When using steel pipes for oil or gas transportation, the transportation pressure is increased to increase the transportation efficiency. Recently, the transportation pressure has reached 120 atm. In order to withstand such transport pressure, the thickness of the pipe must be sufficiently thick, but as the thickness of the steel increases, the amount of rolling reduction during rolling is insufficient, and the ferrite grains may be coarse because it is difficult to secure a sufficient cooling rate in the central portion of the steel. Therefore, there exists a problem that strength and low-temperature toughness fall.

이러한 문제점을 해결하기 위하여 종래에는 성분계 중 Ti와 N의 비율을 적절히 조절하여 슬라브 가열시 초기 오스테나이트 입성장을 막아 미세한 페라이트를 얻어 강도와 저온인성을 동시에 확보할 수 있는 기술이 등장했으나, 이러한 기술로는 18mm 이상의 후물재에서 충분한 강도를 확보하기 어려우며, 또한 슬라브에 잔존하는 P가 입계에 확산하는 것을 방지할 수 없어 열연 강재 권취 후 발생하는 입계취성이 조장될 수 있다. In order to solve this problem, conventionally, a technique of properly controlling the ratio of Ti and N in the component system to prevent initial austenite grain growth during slab heating to obtain fine ferrite to secure strength and low temperature toughness at the same time has appeared. Furnace is difficult to secure sufficient strength in the thick material of 18mm or more, and also can not prevent the diffusion of P remaining in the slab to the grain boundary may promote grain boundary brittleness after the hot-rolled steel winding.

따라서 후물재의 강도와 인성을 동시에 확보하기 위해서는 조직의 조대화를 막는 것과 함께 석출물과 합금원소를 충분히 활용하여 추가적인 강도 및 인성을 확보하는 것이 중요하다.Therefore, in order to secure the strength and toughness of the thick material at the same time, it is important to prevent coarsening of the structure and to secure additional strength and toughness by fully utilizing the precipitates and alloying elements.

본 발명은 상술한 문제점들을 해결하고 아울러 18mm 이상 두께의 열연 강재에서도 충분한 강도를 확보하기 위하여 열간 압연 조건을 최적화하고 성분계 중 Ti, Nb, V, C, Mo와 P의 비를 조정하여 API 규격에 맞는 항복강도를 갖는 후물 고강도 열연 라인파이프용 강재의 제조 방법을 제공하고자 한다.The present invention is to solve the above problems and to optimize the hot rolling conditions in order to ensure sufficient strength even in hot rolled steel having a thickness of 18mm or more and to adjust the ratio of Ti, Nb, V, C, Mo and P in the component system to the API specification. The present invention provides a method for producing a steel material for thick high-strength hot rolled line pipe having a suitable yield strength.

본 발명은 중량%로, C: 0.03~0.1%, Si: 0.01~0.5%, Mn: 1.2~2.0%, S: 0.02% 이하, Nb: 0.01~0.1%, Ti: 0.01~0.1%, N: 0.01% 이하, Mo: 0.1~0.5%, Ni: 0.1~0.5%, V: 0.01~0.1%, Cr: 0.1~0.5%, 기타 불가피한 불순물 및 잔부 Fe를 포함하며, 상기 Ti, Nb, C, N 및 V 사이에는.In the present invention, by weight%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.0%, S: 0.02% or less, Nb: 0.01-0.1%, Ti: 0.01-0.1%, N: 0.01% or less, Mo: 0.1-0.5%, Ni: 0.1-0.5%, V: 0.01-0.1%, Cr: 0.1-0.5%, and other unavoidable impurities and the balance Fe, the Ti, Nb, C, N Between and.

0.13≤ (Ti*/48+Nb*/93)/(C/12) ≤ 0.25;0.13 ≦ (Ti * / 48 + Nb * / 93) / (C / 12) ≦ 0.25;

0.24 ≤ (V/51)/(C*/12) ≤ 1.6; 및0.24 ≦ (V / 51) / (C * / 12) ≦ 1.6; And

6≤ (Mo/96)/(P/31) ≤ 30;6 ≦ (Mo / 96) / (P / 31) ≦ 30;

(단, Ti* = Ti - 0.7*(48/14)N, Nb* = Nb-0.7*(93/14)N, C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]로 정의됨)(Wherein Ti * = Ti-0.7 * (48/14) N, Nb * = Nb-0.7 * (93/14) N, C * = C-0.7 * [(Nb-0.7 * (93/14) N ) + (Ti-0.7 * (48/14) N)])

의 관계를 만족하는 것을 특징으로 하는 고강도 강판을 제공한다.It provides a high strength steel sheet characterized by satisfying the relationship.

나아가 본 발명은 상술한 성분계를 가지는 강 슬라브에 대하여, 1100~1350℃로 재 가열하는 재가열 단계, 950~1100℃ 범위에서 재결정 및 미재결정 압연하는 단계, 780~880℃에서 60% 이상의 압하율로 마무리 열간압연하는 단계, 런-아웃 테이블 상에서 10~50℃/sec의 속도로 수냉하는 단계 및 400~600℃에서 권취하는 권취 단계를 포함하는 고강도 강판의 제조방법을 제공한다.Furthermore, the present invention is a reheating step of reheating to 1100 ~ 1350 ℃ for steel slab having the above-described component system, recrystallized and unrecrystallized rolling in the range of 950 ~ 1100 ℃, a reduction ratio of 60% or more at 780 ~ 880 ℃ It provides a method of producing a high strength steel sheet comprising a step of hot rolling to finish, a step of water cooling at a rate of 10 ~ 50 ℃ / sec on the run-out table and the winding step of winding at 400 ~ 600 ℃.

본 발명과 같이 성분계 및 석출물을 최적화시켜 제어하고 아울러 열간압연 조건을 조절하는 경우, 항복강도와 저온인성이 동시에 우수한 고강도 강판을 저비용으로 제공할 수 있게 된다.In the case of optimizing and controlling the component system and the precipitate as in the present invention and adjusting the hot rolling conditions, it is possible to provide a high strength steel sheet having excellent yield strength and low temperature toughness at a low cost.

본 발명자들은 베이나이트 등 저온변태 조직의 형성없이 후물재의 강도를 확보하며, 저온인성을 향상 시킬수 있는 방법을 분석한 결과 Ti, Nb, V 및 C의 비율을 잘 조절하여 석출물의 형성을 최대로 하고, 저온에서 입계파괴를 조장하는 P의 입계편석을 Mo를 사용하여 억제함으로써 인성을 올릴 수 있슴을 확인하였다. The present inventors secured the strength of the thick material without the formation of low temperature transformation tissue such as bainite, and analyzed the method of improving the low temperature toughness, and well controlled the ratio of Ti, Nb, V and C to maximize the formation of precipitates. In addition, it was confirmed that toughness can be increased by suppressing the grain boundary segregation of P, which promotes grain boundary fracture at low temperature, using Mo.

또한, 이러한 합금 원소를 활용시 압연 온도별, 압하량에 따라 석출물이 석출하는 속도와 양상이 다르기 때문에 각 성분의 비를 최적화하는 것도 역시 필요하다는 결과를 도출하고, 이러한 관점에서 본 발명자들은 두께 18mm 이상의 후물 열연재의 강도 및 저온인성을 동시에 확보하기 위한 본 발명을 완성하였다. In addition, when using such alloying elements, the precipitation rate and aspect of the precipitates are different depending on the rolling temperature and rolling reduction, so that it is also necessary to optimize the ratio of each component. The present invention has been completed to secure the strength and low temperature toughness of the above thick hot rolled material simultaneously.

이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 기본 구성은 다음과 같다.The basic configuration of the present invention is as follows.

1. 제어압연에 의해 강재의 페라이트를 세립화하고 석출물을 이용 후물재에서의 강도 확보.1. Refine the ferrite of steel by control rolling and secure the strength in the material after using precipitate.

2. 0.13≤ (Ti*/48+Nb*/93)/(C/12) ≤ 0.5, 0.24 ≤ (V/51)/(C*/12) ≤ 3 을 만족하는 성분계 조성.2. Component-based composition satisfying 0.13 ≦ (Ti * / 48 + Nb * / 93) / (C / 12) ≦ 0.5, 0.24 ≦ (V / 51) / (C * / 12) ≦ 3.

단, Ti* = Ti - 0.7*(48/14)N, Nb* = Nb-0.7*(93/14)N 및 Provided that Ti * = Ti-0.7 * (48/14) N, Nb * = Nb-0.7 * (93/14) N and

C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]를 만족하며, 석출물의 평균크기가 0.2㎛ 이하로 (Ti, Nb)C, NbC, VC 석출물을 형성하여 후물재 항복강도 확보 C * = C-0.7 * [(Nb-0.7 * (93/14) N) + (Ti-0.7 * (48/14) N)] is satisfied and the average size of precipitates is 0.2㎛ or less (Ti, Nb) C, NbC, VC precipitates are formed to secure the yield strength of thick materials

3. 6≤ (Mo/96)/(P/31) ≤ 30 을 만족하는 Mo의 조절로 P의 입계편석을 억제하여 저온인성 확보3. Securing low temperature toughness by suppressing grain boundary segregation of P by controlling Mo satisfying 6≤ (Mo / 96) / (P / 31) ≤30

본 발명 강재와 같이 두께가 18mm 이상의 후물재인 경우 항복강도를 확보하기 위해 최종적인 페라이트를 세립화하고 석출물을 이용하여 강도를 확보하는 것이 필요하다. 이 경우, 강재의 항복강도(σy)를 나타내는 식으로 Ashby-Orowan는 Hall-Petch 식을 수정하여 아래 (1)식과 같이 나타내었다.In the case of a thick material having a thickness of 18 mm or more, as in the present invention steel, it is necessary to refine the final ferrite in order to secure the yield strength and to secure the strength by using a precipitate. In this case, Ashby-Orowan expressed the yield strength (σy) of the steel as shown in the following formula (1) by modifying the Hall-Petch equation.

σy = σi + KD-1/2 + (10.8f1 /2/X)(ln(X/6.125*10-4)) ------ (1) σy = σi + KD -1/2 + ( 10.8f 1/2 /X)(ln(X/6.125*10 -4)) ------ (1)

여기서, σi는 마찰응력(friction stress), K는 강화계수(strengthening coefficient), D는 결정립 크기, f는 석출물 분율, X는 석출물 크기이다. Where σ i is friction stress, K is strength factor, D is grain size, f is precipitate fraction, and X is precipitate size.

상기 (1)식에 따르면 강재의 항복강도는 결정립 크기가 작을수록, 석출물의 양이 많고, 석출물의 크기가 작을수록 증가함을 알 수 있다. 강재의 최종 두께가 두꺼워질수록 총 압하량이 감소하기 때문에 페라이트 조직을 미세화하기 위해서는 일정량 이상의 미재결정역 압하량을 확보하여야 하며, 본 연구 결과에서는 60% 이상일 경우 항복강도가 안정적으로 확보된다는 결과가 얻어졌다. 또한 압하량 감소에 따른 페라이트 조대화 효과를 상쇄하기 위해 적절한 석출물을 이용하는 것이 중요하다.According to Equation (1), the yield strength of the steel increases as the grain size decreases, the amount of precipitates increases and the size of precipitates decreases. As the final thickness of the steel becomes thicker, the total rolling reduction decreases. Therefore, in order to refine the ferrite structure, it is necessary to secure a certain amount of unrecrystallized reverse rolling reduction. lost. It is also important to use appropriate precipitates to counteract the ferrite coarsening effect of reduced rolling reduction.

강재의 항복강도에 영향을 미치는 석출물은 주로 페라이트가 생성되는 온도역에서 석출하는 석출물이므로, 석출물별 생성온도는 열역학적 평형에 의하여 결정되게 된다. 일반적으로 TiC 석출물의 석출온도가 가장 높으며, NbC, VC 순으로 석출온도가 감소하게 된다. 또한, Ti, Nb 가 같이 첨가되면, (Ti, Nb)C 형태의 복합석출물과 NbC이 동시에 석출하게 되며, V은 석출온도가 상대적으로 낮은 관계로 단독 석출물로서 존재할 확률이 높게 된다. 그러므로 첨가된 Ti, Nb, V을 충분히 활용하여 강도를 확보하기 위해서는 (Ti, Nb)C, NbC가 석출하고 나서도 V이 추가로 석출할 수 있도록 Ti, Nb, C의 양을 조절하는 것이 요구된다.Precipitates affecting the yield strength of steel are mainly precipitated in the temperature range where ferrite is formed, so the formation temperature of each precipitate is determined by thermodynamic equilibrium. In general, the precipitation temperature of TiC precipitate is the highest, and the precipitation temperature decreases in the order of NbC and VC. In addition, when Ti and Nb are added together, the composite precipitate of the (Ti, Nb) C type and NbC are simultaneously precipitated, and V is likely to exist as a single precipitate due to the relatively low precipitation temperature. Therefore, in order to secure the strength by fully utilizing the added Ti, Nb, and V, it is required to adjust the amounts of Ti, Nb, and C so that V can be precipitated even after (Ti, Nb) C and NbC are precipitated. .

나아가 P는 Sb, Sn, As와 더불어 입계에 편석하여 결정립 간의 결합을 약화시켜 템퍼 취성을 일으키는 대표적인 원소이다. 특히 압연 중 코일이 370~600℃ 사이에서 유지되거나 서냉하게 되면 P가 입계로 확산하여 충격에너지가 감소하는 저온인성 열화 현상이 발생하게 된다. In addition, P is a representative element that, together with Sb, Sn and As, segregates at grain boundaries and weakens the bonds between grains, thereby causing temper brittleness. In particular, if the coil is maintained between 370 ~ 600 ℃ during rolling or slow cooling, P is diffused to the grain boundary, the low-temperature toughness degradation phenomenon that the impact energy is reduced.

그러나 Mo가 같이 첨가되게 되면 Fe-Mo-P 화합물을 형성하여 P가 입계에 편석하는 것을 막아주게 되어 P 편석에 따른 입계취화를 방지할 수 있다. 그러나, Mo가 0.5% 이상 첨가되면, 강재의 hardenability가 너무 높아져 저온변태 상이 형성되게 되어 충격인성이 감소하게 되므로, Mo 첨가에 있어 주의가 필요하다. However, when Mo is added together, it forms a Fe-Mo-P compound to prevent P from segregating at the grain boundary, thereby preventing grain embrittlement due to P segregation. However, when Mo is added to 0.5% or more, the hardenability of the steel is too high to form a low-temperature transformation phase to reduce the impact toughness, so care must be taken in adding Mo.

이하, 본 발명을 구성하는 성분계에 관하여 상세히 설명한다. (이하 중량%)EMBODIMENT OF THE INVENTION Hereinafter, the component system which comprises this invention is demonstrated in detail. (Hereinafter by weight)

탄소(C)의 함량: 0.03~0.1%Content of carbon (C): 0.03 ~ 0.1%

C는 강을 강화시키는데 가장 경제적이며 효과적인 원소이나 다량 첨가에 따라 용접성, 성형성 및 인성이 저하되는 원소로, 본 발명에서는 이를 고려하여 0.03-0.10%로 한정한다. C의 첨가량이 0.03% 미만이 되면 동일한 강도를 얻기 위하여 다른 합금원소를 상대적으로 다량 첨가하여야 하기 때문에 경제적이지 못하며 0.10%를 초과하여 첨가하면 용접성, 성형성 및 인성이 저하될 수 있다.C is the most economical and effective element for reinforcing steel, but the weldability, formability and toughness are reduced by the addition of a large amount, and in the present invention, C is limited to 0.03-0.10%. When the amount of C added is less than 0.03%, it is not economical because other alloy elements must be added in a relatively large amount to obtain the same strength, and when it is added in excess of 0.10%, weldability, formability and toughness may be reduced.

실리콘(Si)의 함량: 0.01~0.5%Silicon (Si) content: 0.01 ~ 0.5%

Si는 용강을 탈산시키기 위해서도 필요하고 고용강화 원소로서의 역할을 하므로 0.01~0.50%의 첨가가 필요하다. 첨가량 0.01% 미만에서는 용강의 탈산역할을 충분히 하지 않기 때문에 청정한 강을 얻기 어려우며, 0.5%를 초과하여 첨가하면 열간압연시 Si에 의한 붉은형 스케일이 형성되어 강판표면 형상이 매우 나쁘게 되며 연성도 저하되기 때문에 바람직하지 않다.Si is also needed to deoxidize molten steel and serves as a solid solution strengthening element, so an amount of 0.01 to 0.50% is required. If the added amount is less than 0.01%, it is difficult to obtain clean steel because it does not sufficiently deoxidize the molten steel.If it is added more than 0.5%, the red scale is formed by Si during hot rolling, and the surface shape of the steel sheet becomes very bad and the ductility is also reduced. Because it is not desirable.

망간(Mn)의 함량: 1.2~2.0%Manganese (Mn) content: 1.2 to 2.0%

Mn은 강을 고용강화시키는데 효과적인 원소로서 1.2% 이상 첨가되어야 소입성 증가효과와 더불어 고강도를 발휘할 수 있다. 그러나, 2.0%를 초과하여 첨가하면 제강공정에서 슬라브를 주조시 두께 중심부에서 편석부가 크게 발달되고 최종제품의 용접성을 해치기 때문에 그 상한은 2.0%로 정한다.Mn is an effective element to solidify the steel to be added more than 1.2% can exhibit high strength with an increase in the hardenability. However, if the content exceeds 2.0%, the upper limit is set to 2.0% because segregation is greatly developed at the center of thickness during casting of the slab in the steelmaking process and the weldability of the final product is deteriorated.

황(S)의 함량: 0.02% 이하Sulfur (S) content: 0.02% or less

S도 역시 강 중에 존재하는 불순물 원소로서 Mn 등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 인성 및 강도를 크게 손상시키기 때문에 가능한 한 감소시키는 것이 바람직하므로 그 상한을 0.02%로 정한다.S is also an impurity element present in the steel and forms a non-metallic inclusion by combining with Mn and the like, and thus it is desirable to reduce it as much as possible because it greatly impairs the toughness and strength of the steel. Therefore, the upper limit is set to 0.02%.

니오븀(Nb)의 함량: 0.01~0.1%Niobium (Nb) content: 0.01 ~ 0.1%

Nb은 결정립을 미세화시키는데 아주 유용한 원소이며 동시에 강의 강도도 크게 향 상시키는 역학을 하기 때문에 적어도 0.01% 이상을 첨가하여야 하나, 0.1%를 초과하는 경우에는 과도한 Nb 탄질화물이 석출하여 강재의 인성에 유해하므로 0.01~0.1%로 제한한다.Nb is a very useful element for refining grains and at the same time, it should be added at least 0.01% because of the dynamics that greatly improve the strength of the steel, but if it exceeds 0.1%, excessive Nb carbonitride is precipitated, which is detrimental to the toughness of the steel. Therefore, limit to 0.01 ~ 0.1%.

티타늄(Ti)의 함량: 0.01~0.1%Ti content: 0.01 ~ 0.1%

Ti은 결정립을 미세화시키는데 유용한 원소로써 강 중에 TiN으로 존재하여 열간압연을 위한 가열 과정에서 결정립의 성장을 억제하는 효과가 있으며 또한 질소와 반응하고 남은 Ti이 강 중에 고용되어 탄소와 결합하여 TiC의 석출물이 형성되고 TiC의 형성은 매우 미세하여 강의 강도를 대폭적으로 향상시킨다. 따라서, TiN 석출에 의한 오스테나이트 결정립 성장 억제 효과 및 TiC 형성에 의한 강도 증가를 얻기 위해서는 적어도 0.01%이상의 Ti이 첨가되어야 하나 0.1%를 초과하여 첨가되면 강판을 용접하여 강관으로 제조시 용융점까지 급열됨에 의해서 TiN이 재고용됨에 따라 용접 열영향부의 인성이 열화되기 때문에 Ti 첨가의 상한은 0.1%로 한다.Ti is an element useful for miniaturizing crystal grains. It exists as TiN in steel and has the effect of inhibiting the growth of grains during heating for hot rolling. Also, Ti remaining after being reacted with nitrogen is dissolved in carbon to bond with carbon to precipitate TiC. Is formed and the formation of TiC is very fine, greatly improving the strength of the steel. Therefore, in order to obtain the effect of inhibiting austenite grain growth due to TiN precipitation and increasing the strength due to TiC formation, at least 0.01% of Ti should be added, but if more than 0.1% is added, the steel sheet is welded and melted to the melting point when manufacturing the steel pipe. As the TiN is re-used, the toughness of the weld heat affected zone deteriorates, so the upper limit of Ti addition is made 0.1%.

질소(N)의 함량: 0.01% 이하Nitrogen (N) content: 0.01% or less

N의 성분 한정 사유는 상기의 Ti 첨가에 기인한 것이다. 일반적으로 N은 강 중에 고용되었다가 석출되어 강의 강도를 증가시키는 역할을 하며 이러한 능력은 탄소보다도 훨씬 크다. 그러나, 한편으로 강 중에 질소가 존재하면 할수록 인성은 크게 저하될 수 있어 가능한 한 질소 함유량을 감소시키려는 것이 일반적인 추세이다. 그러나, 본 발명에서는 적정량의 질소를 존재하게 하여 Ti과 반응시켜 TiN를 형성, 재가열 과정에서의 결정립 성장을 억제시키는 역할을 부여하였다. 그러나, Ti의 일부가 N와 반응하지 않고 남는 경우에는 이후의 공정에서 탄소와 반응하여 강재의 강도가 저하될 수 있기 때문에 그 상한은 0.01%로 한다.The reason for component limitation of N is attributable to the above Ti addition. In general, N is dissolved in the steel and precipitates to increase the strength of the steel, which is much greater than carbon. On the other hand, however, the more nitrogen is present in the steel, the toughness can be greatly reduced, and it is a general trend to reduce the nitrogen content as much as possible. However, in the present invention, a proper amount of nitrogen is present to react with Ti to form TiN, thereby imparting a role of inhibiting grain growth during reheating. However, when a part of Ti is left without reacting with N, the upper limit is made 0.01% because the strength of the steel may be reduced by reacting with carbon in a subsequent step.

몰리브덴(Mo)의 함량: 0.1~0.5%Molybdenum content: 0.1 ~ 0.5%

Mo는 소재의 강도를 상승시키는데 매우 유효하며, 저온변태 조직인 침상형(acicular) 페라이트 생성을 조장함에 의해 항복비를 낮추는 역할을 한다. 또한 시멘타이트와 탄화물이 집적되어 있어 열화한 충격특성을 보이며 조관 후 항복강도 저하에 기여하는 펄라이트 조직의 생성을 억제하여 양호한 충격인성 및 조관 후 항복강도 저하를 감소시킬 수 있다. 이를 위해 Mo을 0.1% 이상 첨가하나 Mo는 고가의 원소이며 용접저온 균열을 억제하고, 모재에 저온변태상이 생성되어 인성이 저하되는 것을 막기 위해 그 상한은 0.5%로 제한한다.Mo is very effective in increasing the strength of the material, and serves to lower the yield ratio by promoting the formation of acicular ferrite, a low temperature metamorphic tissue. In addition, cementite and carbide are integrated to exhibit deteriorated impact characteristics and to suppress formation of pearlite tissues that contribute to lowering the yield strength after piping, thereby reducing good impact toughness and lowering yield strength after piping. To this end, Mo is added 0.1% or more, but Mo is an expensive element, and the upper limit is limited to 0.5% in order to prevent welding low temperature cracking, and to prevent the low-temperature transformation phase is generated in the base material to reduce the toughness.

니켈(Ni)의 함량: 0.1~0.5%Nickel (Ni) content: 0.1 ~ 0.5%

Ni은 오스테나이트 안정화 원소로서 펄라이트 형성을 억제하며, 저온변태 조직인 침상형(acicular) 페라이트 형성을 용이하게 하는 원소로 0.1% 이상 첨가하나 Ni은 고가의 원소이고 과량 첨가시 용접부 인성을 저해할 수 있으므로 0.5% 이하로 제한한다.Ni is an austenite stabilizing element that suppresses the formation of pearlite, and is an element that facilitates the formation of acicular ferrite, which is a low-temperature metamorphic structure, and is added in an amount of 0.1% or more. Limited to 0.5% or less.

바나듐(V)의 함량: 0.01~0.1%Vanadium (V) content: 0.01 ~ 0.1%

V은 Nb과 유사한 효과를 갖는다. 특히 V을 Nb과 함께 첨가하는 경우 현저한 효과를 생성하며, 본 발명에 따르는 강의 강도를 추가로 증가시키므로 0.01% 이상을 첨가하여야 하나, 그 함량이 과다하여 0.1%를 초과하는 경우에는 과도한 V 탄질화물이 석출하여 강재의 인성에 유해하며, 특히 용접열 영향부의 인성 및 이에 따른 현장 용접성의 관점에서 0.01~0.1%로 제한한다.V has a similar effect to Nb. Particularly, when V is added together with Nb, a remarkable effect is generated, and since the strength of the steel according to the present invention is further increased, 0.01% or more should be added. However, when the content is excessively greater than 0.1%, excessive V carbonitride This precipitate is detrimental to the toughness of the steel, and is limited to 0.01 to 0.1% in view of the toughness of the weld heat affected zone and consequently on-site weldability.

크롬(Cr)의 함량: 0.1~0.5%Content of chromium (Cr): 0.1 ~ 0.5%

Cr은 일반적으로 직접 급냉시 강의 경화능을 증가시킨다. 또한, 이는 일반적으로 내부식성 및 내수소 균열성을 향상시키며, Mo 마찬가지로 펄라이트 조직의 생성을 억제하여 양호한 충격인성을 얻을 수 있다. 이를 위해 Cr은 0.1% 이상을 첨가하여야 하나 과량 첨가시 현장 용접 후 냉각 균열을 초래하는 경향이 있고, 강 및 이의 HAZ 인성을 악화시키는 경향이 있기 때문에 0.5% 이하로 제한하는 것이 바람직하다.Cr generally increases the hardenability of the steel during direct quenching. In addition, this generally improves corrosion resistance and hydrogen cracking resistance, and like Mo, it is possible to suppress the formation of pearlite structure and obtain good impact toughness. To this end, Cr should be added at least 0.1%, but it is preferable to limit the content to 0.5% or less since excessive tendency may cause cooling cracks after spot welding and deteriorate the steel and its HAZ toughness.

본 발명을 구성하는 각 성분 중 중요한 성분계 사이의 관계식은 다음과 같다.The relationship between the important component systems among the components constituting the present invention is as follows.

[관계식 1][Relationship 1]

0.13≤ (Ti*/48+Nb*/93)/(C/12) ≤ 0.250.13≤ (Ti * / 48 + Nb * / 93) / (C / 12) ≤ 0.25

[관계식 2][Relationship 2]

Ti* = Ti - 0.7*(48/14)NTi * = Ti-0.7 * (48/14) N

[관계식 3][Relationship 3]

Nb* = Nb-0.7*(93/14)NNb * = Nb-0.7 * (93/14) N

상기 관계식 1은 미세한 (Ti,Nb)C 석출물을 확보하기 위한 것이다. 상기 관계식 1에서 Ti*와 Nb*는 Ti와 Nb의 총 함량에서 N과 반응하고 남아서 C과 반응하는 함량이다. Ti*와 Nb*는 상기 관계식 2와 3에 의해 결정된다. 미세한 (Ti,Nb)C 석출물을 확보하기 위해서 상기 관계식 1의 값이 0.13~0.25를 만족하는 것이 바람직하다. 상기 관계식 1의 값이 0.13 이상이 되어야 유효한 (Ti,Nb)C, NbC 석출물이 석출하게 된다. 반면, 0.25 초과의 경우에는 (Ti,Nb)C, NbC 석출물이 조대하게되어 강도확보에 좋지 않으며, V과 결합하여 VC를 만들 수 있는 C의 양이 감소하게 되어 충분한 강도를 확보할 수 없게 된다.The relationship 1 is to secure a fine (Ti, Nb) C precipitate. In relation 1, Ti * and Nb * is a content of reacting with N and remaining with C in the total content of Ti and Nb. Ti * and Nb * are determined by the relations 2 and 3 above. In order to secure a fine (Ti, Nb) C precipitate, it is preferable that the value of the relational formula 1 satisfies 0.13 to 0.25. When the value of the relation 1 is 0.13 or more, effective (Ti, Nb) C and NbC precipitates are precipitated. On the other hand, in case of more than 0.25, (Ti, Nb) C and NbC precipitates are coarse, which is not good for securing strength, and the amount of C which can be combined with V to make VC is reduced, so that sufficient strength cannot be obtained. .

[관계식 4][Relationship 4]

0.24 ≤ (V/51)/(C*/12) ≤ 1.60.24 ≤ (V / 51) / (C * / 12) ≤ 1.6

[관계식 5][Relationship 5]

C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]C * = C-0.7 * [(Nb-0.7 * (93/14) N) + (Ti-0.7 * (48/14) N)]

상기 관계식 4는 미세한 VC 석출물을 확보하기 위한 것이다. 관계식 4에서 C*는 총 C량에서 TI, Nb와 반응하고 남아서 V과 반응하는 C의 함량이다. C*는 상기 관계식 5에 의해서 결정된다. 상기 관계식 4의 값이 0.24 미만인 경우 충분한 VC 석출물을 확보하기 어려우며, 상기 관계식 4의 값이 1.6을 초과하면 Ti, Nb 석출물과 마찬가지로 VC 석출물이 조대해지거나 오히려 석출물 개수가 줄어들어 강도확보에 좋지 않다.The relation 4 is to secure a fine VC precipitate. In relation 4, C * is the amount of C that reacts with TI, Nb and remains with V in the total C content. C * is determined by relation 5 above. When the value of the relation 4 is less than 0.24, it is difficult to secure sufficient VC precipitates, and when the value of the relation 4 exceeds 1.6, VC precipitates become coarse or, like Ti and Nb precipitates, the number of precipitates decreases, which is not good for securing strength.

[관계식 6][Relationship 6]

6≤ (Mo/96)/(P/31) ≤ 306≤ (Mo / 96) / (P / 31) ≤30

상기 관계식 6은 P의 입계편석을 막기 위한 것이다. 관계식 6의 값이 6 미만인 경우 Fe-Mo-P 화합물 형성에 의한 P 입계편석 효과가 충분하지 못하며, 관계식 5의 값이 30 이상인 경우 경화능이 증가에 따른 저온 변태상 형성으로 충격에너지가 감소하게 된다.The relation 6 is for preventing the grain boundary segregation of P. If the value of relation 6 is less than 6, the effect of P grain boundary segregation due to the formation of Fe-Mo-P compound is not sufficient. If the value of relation 5 is 30 or more, impact energy decreases due to the formation of low temperature transformation with increasing hardenability. .

본 발명의 성분계에서 석출물은 미세하게 분포할 수록 유리한데, 바람직하게는 석출물의 평균크기가 0.2㎛ 이하이다. 나아가, 본 발명의 성분계에는 0.2㎛ 이하의 석출물이 다량 분포하는데, 그 분포수는 특별히 제한하지 않는다. 바람직하게는 석출물의 분포수가 ㎟ 당 5X109 개 이상이 바람직하다.In the component system of the present invention, the finer the distribution, the more advantageous. Preferably, the average size of the precipitate is 0.2 μm or less. Furthermore, although the precipitate of 0.2 micrometer or less is largely distributed in the component system of this invention, the distribution number is not specifically limited. Preferably, the distribution number of precipitates is preferably 5 × 10 9 or more per mm 2.

이하, 본 발명의 강재를 제조하는 제조방법에 대해서 설명한다.Hereinafter, the manufacturing method of manufacturing the steel material of this invention is demonstrated.

본 발명은 상기한 조성을 만족하는 강을 열간압연을 통해 열간압연판에 (Ti,Nb)C, NbC, VC 석출물의 평균크기가 0.2㎛ 이하를 만족하도록 하는데 특징이 있다. 열간압연판에서 (Ti,Nb)C, NbC, VC 의 평균 크기는 성분설계와 함께 재가열 온도, 권취온도 등의 제조공정에 영향을 받으며, 특히 열간압연 후의 냉각속도에 직접적인 영향을 받는다. The present invention is characterized by satisfying the average size of (Ti, Nb) C, NbC, VC precipitates in the hot rolled plate by hot rolling a steel satisfying the above-mentioned composition to 0.2 μm or less. The average size of (Ti, Nb) C, NbC, VC in hot rolled plate is influenced by the design process such as reheating temperature, winding temperature, etc., especially in the cooling rate after hot rolling.

슬라브를 재가열하는 온도는 본 발명에서 중요하다. 만약, 재가열온도를 1100℃와 같이 연주과정에서 석출된 첨가 합금원소들이 충분히 재고용되는 온도 이하로 설정하면 열간압연 이후의 공정에서 (Ti,Nb)C, NbC 등의 석출물이 감소하게 된다. 따라서, 재가열 온도를 1100℃ 이상으로 유지함으로써 석출물의 재고용을 조장하고 적당한 크기의 오스테나이트 결정립도를 유지함으로써 소재의 강도수준도 향상시키면서 코일의 길이 방향으로 균일한 미세조직을 얻을 수 있다. 이때, 재가열대 온도가 너무 높으면 오스테나이트 결정립의 이상립 성장에 의하여 강도가 저하되므로 재가열대 온도 상한은 1350℃로 하는 것이 좋다. The temperature of reheating the slabs is important in the present invention. If the reheating temperature is set to 1100 ° C. or lower than the temperature at which the additional alloy elements precipitated during the reworking process are sufficiently reusable, precipitates such as (Ti, Nb) C and NbC are reduced in the process after hot rolling. Accordingly, by maintaining the reheating temperature at 1100 ° C. or higher, it is possible to promote the reusability of the precipitate and maintain the austenite grain size of an appropriate size, thereby obtaining a uniform microstructure in the longitudinal direction of the coil while improving the strength level of the material. At this time, if the reheating zone temperature is too high, the strength decreases due to abnormal grain growth of the austenite grains, so the upper limit of the reheating zone temperature is preferably 1350 ° C.

상기 가열된 슬라브를 950~1100℃ 범위 재결정 및 미재결정 압연을 하고 780~880℃에서 마무리 열간압연을 60% 이상 압연하는 것이 바람직하다. 이는 압연 마무리 온 도가 너무 높으면 최종 조직이 조대하여 원하는 강도를 얻을 수 없으며, 너무 낮으면 마무리 압연기 설비부하 문제가 발생하기 때문이다.The heated slab is preferably recrystallized and unrecrystallized rolling in the range of 950 ~ 1100 ℃ and rolling finish hot rolling 60% or more at 780 ~ 880 ℃. This is because if the rolling finish temperature is too high, the final structure is coarse to obtain the desired strength, and if too low, the finishing mill equipment load problem occurs.

열간압연을 마무리한 후, 런-아웃 테이블 상에서 10~50℃/sec의 속도로 수냉각을 실시함으로써 미세한 페라이트와 석출물을 형성하여 충분한 강도를 확보할 수 있다. 본 발명에 따라 미세한 석출물을 얻기 위하여 그 성분비를 제어하더라도 냉각속도가 10℃/sec 미만이면 석출물의 평균 크기가 0.2㎛를 초과할 수 있다. 즉, 냉각속도가 빨라질수록 많은 수의 핵이 생성하여 석출물이 미세해지기 때문이다. 냉각속도가 빨라질 수록 석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없으나, 냉각속도가 50℃/sec 보다 빨라지더라도 석출물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 10~50℃/sec가 보다 바람직하다.After the hot rolling is finished, water cooling is performed on the run-out table at a rate of 10 to 50 ° C./sec to form fine ferrites and precipitates, thereby securing sufficient strength. Even if the component ratio is controlled to obtain fine precipitates according to the present invention, if the cooling rate is less than 10 ° C / sec, the average size of the precipitates may exceed 0.2 μm. In other words, as the cooling rate increases, a large number of nuclei are generated and the precipitate becomes fine. As the cooling rate increases, the size of the precipitate becomes finer, so it is not necessary to limit the upper limit of the cooling rate.However, even if the cooling rate is faster than 50 ° C / sec, the precipitate refinement effect does not increase any more. Is more preferable.

권취온도는 400-600℃ 온도범위가 적당한데, 600℃보다 높으면 미세조직이 조대한 페라이트와 펄라이트로 형성되고 석출물이 너무 조대하게 성장하여 강도확보가 곤란하다.The coiling temperature is appropriately in the 400-600 ℃ temperature range, if higher than 600 ℃ microstructure is formed of coarse ferrite and pearlite, precipitates grow too coarse, it is difficult to secure the strength.

이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

하기 표1과 같은 화학성분을 갖는 발명강을 연속주조법에 의해 슬라브로 제조한 후, 이를 하기 표 3의 조건으로 60% 이상의 압하율로 열간압연하여 판재를 제조하 였다. Inventive steel having a chemical composition as shown in Table 1 was produced as a slab by the continuous casting method, and then hot-rolled at a reduction ratio of 60% or more under the conditions of Table 3 to prepare a plate.

강종Steel grade CC SiSi MnMn SS NbNb NiNi MoMo TiTi NN VV CrCr 비교강 1Comparative Steel 1 0.0710.071 0.250.25 1.821.82 0.00110.0011 0.0570.057 0.220.22 0.190.19 0.0210.021 0.00330.0033 0.0550.055 0.200.20 비교강 2Comparative Steel 2 0.0760.076 0.240.24 1.801.80 0.00120.0012 0.0550.055 0.210.21 0.170.17 0.0220.022 0.00290.0029 0.0540.054 0.190.19 비교강 3 Comparative Steel 3 0.0680.068 0.230.23 1.831.83 0.0090.009 0.0680.068 0.230.23 0.300.30 0.0190.019 0.00380.0038 0.0580.058 0.150.15 발명강 1Inventive Steel 1 0.0720.072 0.250.25 1.851.85 0.00120.0012 0.0720.072 0.250.25 0.220.22 0.0220.022 0.00340.0034 0.0570.057 0.200.20 발명강 2Inventive Steel 2 0.0520.052 0.240.24 1.781.78 0.00100.0010 0.0520.052 0.230.23 0.280.28 0.0210.021 0.00360.0036 0.0490.049 0.130.13 발명강 3Inventive Steel 3 0.0630.063 0.220.22 1.791.79 0.00110.0011 0.0710.071 0.220.22 0.310.31 0.0200.020 0.00310.0031 0.0480.048 0.130.13

강종Steel grade Ti*Ti * Nb*Nb * (Ti*/48+Nb*/93) /(C/12)(Ti * / 48 + Nb * / 93) / (C / 12) C*C * (V/51) /(C*/12)(V / 51) / (C * / 12) (Mo/93) /(P/31)(Mo / 93) / (P / 31) 20nm 이하 석출물 수 (개/mm2)Number of precipitates below 20nm (pcs / mm 2 ) 석출물의 평균크기 (㎛)Average size of precipitates (㎛) 비교강 1Comparative Steel 1 0.0130.013 0.0420.042 0.120.12 0.0330.033 0.220.22 5.45.4 4.6X109 4.6 X 10 9 0.040.04 비교강 2Comparative Steel 2 0.0150.015 0.0420.042 0.120.12 0.0360.036 0.190.19 5.65.6 4.2X109 4.2 X 10 9 0.040.04 비교강 3Comparative Steel 3 0.0100.010 0.0500.050 0.130.13 0.0260.026 0.290.29 11.411.4 5.2X109 5.2 X 10 9 0.050.05 발명강 1Inventive Steel 1 0.0140.014 0.0560.056 0.150.15 0.0230.023 0.320.32 7.17.1 6.9X109 6.9X10 9 0.030.03 발명강 2Inventive Steel 2 0.0120.012 0.0480.048 0.180.18 0.0100.010 0.660.66 10.910.9 7.3X109 7.3 X 10 9 0.040.04 발명강 3Inventive Steel 3 0.0130.013 0.0570.057 0.170.17 0.0150.015 0.420.42 13.313.3 7.8X109 7.8X10 9 0.040.04 Ti* = Ti - 0.7*(48/14)N Nb* = Nb-0.7*(93/14)N C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]Ti * = Ti-0.7 * (48/14) N Nb * = Nb-0.7 * (93/14) NC * = C-0.7 * [(Nb-0.7 * (93/14) N) + (Ti-0.7 * (48/14) N)]

상기와 같이 열간압연된 판재들로부터 강재의 기계적 성질을 파악하기 위해 인장 시험편은 압연 방향에 대하여 시계 방향으로 30도 방향에서 채취하였으며, 이 방향은 스파이럴 파이프(spiral pipe) 조관시 파이프의 원주 방향에 대응하는 방향이다. 인장 시험편은 API 5L 규격 시험편을 이용하였으며, 인장시험은 크로스 헤드 스피드(cross head speed) 10mm/min에서 시험하였다.In order to understand the mechanical properties of the steel from the hot-rolled sheets as described above, the tensile test piece was taken at 30 degrees clockwise with respect to the rolling direction, which is in the circumferential direction of the pipe when spiral pipe is connected. In the corresponding direction. Tensile test pieces were used for API 5L standard test pieces, and the tensile test was conducted at a cross head speed of 10 mm / min.

발명재와 비교재의 항복강도와 인장강도는 하기 표 3에서 확인할 수 있다. 하기 표 3에서 볼 수 있듯이, 발명강들의 항복강도 및 인장강도는 비교강과 비교하여 유사하나, 저온충격인성 부분에서는 현저한 차이가 나타남을 알 수 있다.Yield strength and tensile strength of the invention and the comparative material can be found in Table 3 below. As shown in Table 3 below, the yield strength and tensile strength of the inventive steels are similar to those of the comparative steel, but it can be seen that a significant difference appears in the low temperature impact toughness.

구분division 재가열 온도(℃)Reheating Temperature (℃) 마무리압연 온도(℃)Finish rolling temperature (℃) 권취온도 (℃)Winding temperature (℃) 냉각속도 (℃/s)Cooling rate (℃ / s) 두께 (mm)Thickness (mm) 항복강도 (MPa)Yield strength (MPa) 인장강도 (MPa)Tensile Strength (MPa) 충격에너지(J) @-20℃Impact Energy (J) @ -20 ℃ 비교강 1Comparative Steel 1 10851085 763763 505505 1717 1818 542542 717717 200200 비교강 2Comparative Steel 2 11421142 782782 521521 1818 1818 551551 745745 180180 비교강 3 Comparative Steel 3 11721172 783783 493493 1919 1818 583583 773773 230230 발명강 1Inventive Steel 1 12301230 767767 525525 2222 1818 582582 787787 260260 발명강 2Inventive Steel 2 12021202 762762 578578 1717 1818 568568 751751 290290 발명강 3Inventive Steel 3 12601260 783783 575575 2121 1818 601601 781781 300300

본 발명에서 상기 실시형태는 하나의 예시로서, 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허 청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.In the present invention, the above embodiment is only one example, and the present invention is not limited thereto. Anything that has substantially the same configuration and achieves the same effect as the technical idea described in the claims of the present invention is included in the technical scope of the present invention.

Claims (6)

중량%로, C: 0.03~0.1%, Si: 0.01~0.5%, Mn: 1.2~2.0%, S: 0.02% 이하, Nb: 0.01~0.1%, Ti: 0.01~0.1%, N: 0.01% 이하, Mo: 0.1~0.5%, Ni: 0.1~0.5%, V: 0.01~0.1%, Cr: 0.1~0.5%, 기타 불가피한 불순물 및 잔부 Fe를 포함하며,By weight%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.0%, S: 0.02% or less, Nb: 0.01-0.1%, Ti: 0.01-0.1%, N: 0.01% or less , Mo: 0.1-0.5%, Ni: 0.1-0.5%, V: 0.01-0.1%, Cr: 0.1-0.5%, and other unavoidable impurities and balance Fe, 상기 Ti, Nb, C, N 및 V 사이에는.Between Ti, Nb, C, N and V. 0.13≤ (Ti*/48+Nb*/93)/(C/12) ≤ 0.25;0.13 ≦ (Ti * / 48 + Nb * / 93) / (C / 12) ≦ 0.25; 0.24 ≤ (V/51)/(C*/12) ≤ 1.6; 및0.24 ≦ (V / 51) / (C * / 12) ≦ 1.6; And 6≤ (Mo/96)/(P/31) ≤ 30;6 ≦ (Mo / 96) / (P / 31) ≦ 30; (단, Ti* = Ti - 0.7*(48/14)N, Nb* = Nb-0.7*(93/14)N, C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]로 정의됨)(Wherein Ti * = Ti-0.7 * (48/14) N, Nb * = Nb-0.7 * (93/14) N, C * = C-0.7 * [(Nb-0.7 * (93/14) N ) + (Ti-0.7 * (48/14) N)]) 의 관계를 만족하는 것을 특징으로 하는 고강도 강판.High strength steel sheet, characterized in that to satisfy the relationship. 제1항에 있어서, 상기 고강도 강판은 (Ti, Nb)C, NbC 및 VC로 이루어지는 그룹으로부터 선택되어진 1종 또는 2종 이상의 석출물을 포함하고 있는 것을 특징으로 하는 것을 특징으로 하는 고강도 강판.The high strength steel sheet according to claim 1, wherein the high strength steel sheet includes one or two or more precipitates selected from the group consisting of (Ti, Nb) C, NbC, and VC. 제2항에 있어서, 상기 석출물의 평균 크기는 0.2㎛ 이하인 것을 특징으로 하는 고강도 강판.The high strength steel sheet according to claim 2, wherein the average size of the precipitate is 0.2 µm or less. 제2항 또는 제3항에 있어서, 상기 석출물의 분포수는 ㎟ 당 5X109개 이상임을 특징으로 하는 고강도 강판.4. The high strength steel sheet according to claim 2 or 3, wherein the number of distribution of precipitates is 5 × 10 9 or more per mm 2. 중량%로, C: 0.03~0.1%, Si: 0.01~0.5%, Mn: 1.2~2.0%, S: 0.02% 이하, Nb: 0.01~0.1%, Ti: 0.01~0.1%, N: 0.01% 이하, Mo: 0.1~0.5%, Ni: 0.1~0.5%, V: 0.01~0.1%, Cr: 0.1~0.5%, 기타 불가피한 불순물 및 잔부 Fe를 포함하며,By weight%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.0%, S: 0.02% or less, Nb: 0.01-0.1%, Ti: 0.01-0.1%, N: 0.01% or less , Mo: 0.1-0.5%, Ni: 0.1-0.5%, V: 0.01-0.1%, Cr: 0.1-0.5%, and other unavoidable impurities and balance Fe, 상기 Ti, Nb, C, N 및 V 사이에는.Between Ti, Nb, C, N and V. 0.13≤ (Ti*/48+Nb*/93)/(C/12) ≤ 0.25;0.13 ≦ (Ti * / 48 + Nb * / 93) / (C / 12) ≦ 0.25; 0.24 ≤ (V/51)/(C*/12) ≤ 1.6; 및0.24 ≦ (V / 51) / (C * / 12) ≦ 1.6; And 6≤ (Mo/96)/(P/31) ≤ 30;6 ≦ (Mo / 96) / (P / 31) ≦ 30; (단, Ti* = Ti - 0.7*(48/14)N, Nb* = Nb-0.7*(93/14)N, C* = C - 0.7*[(Nb-0.7*(93/14)N) + (Ti-0.7*(48/14)N)]로 정의됨)(Wherein Ti * = Ti-0.7 * (48/14) N, Nb * = Nb-0.7 * (93/14) N, C * = C-0.7 * [(Nb-0.7 * (93/14) N ) + (Ti-0.7 * (48/14) N)]) 의 관계를 만족하는 강 슬라브에 대하여,For steel slabs that satisfy the relationship of 1100~1350℃로 재가열하는 재가열 단계;Reheating step to reheat to 1100 ~ 1350 ℃; 950~1100℃ 범위에서 재결정 및 미재결정 압연하는 단계;Recrystallized and unrecrystallized rolling in the range of 950 ~ 1100 ℃; 780~880℃에서 60% 이상의 압하율로 마무리 열간압연하는 단계;Finishing hot rolling at a reduction ratio of 60% or more at 780 to 880 ° C; 런-아웃 테이블 상에서 10~50℃/sec의 속도로 수냉하는 단계; 및Water cooling on a run-out table at a rate of 10-50 ° C./sec; And 400~600℃에서 권취하는 권취 단계;Winding step of winding at 400-600 ° C; 를 포함하는 것을 특징으로 하는 고강도 강판의 제조방법.Method for producing a high strength steel sheet comprising a. 제5항에 있어서, 상기 고강도 강판은 (Ti, Nb)C, NbC 및 VC로 이루어지는 그룹으로부터 선택되어진 1종 또는 2종 이상의 석출물을 포함하는 것을 특징으로 하는 고강도 강판의 제조방법.The method of manufacturing a high strength steel sheet according to claim 5, wherein the high strength steel sheet includes one or two or more precipitates selected from the group consisting of (Ti, Nb) C, NbC, and VC.
KR1020070136662A 2007-12-24 2007-12-24 High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof KR100957990B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070136662A KR100957990B1 (en) 2007-12-24 2007-12-24 High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070136662A KR100957990B1 (en) 2007-12-24 2007-12-24 High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20090068871A true KR20090068871A (en) 2009-06-29
KR100957990B1 KR100957990B1 (en) 2010-05-17

Family

ID=40996199

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070136662A KR100957990B1 (en) 2007-12-24 2007-12-24 High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100957990B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725707A (en) * 2020-12-22 2021-04-30 南阳汉冶特钢有限公司 Production method for producing steel plate with thickness of 350mm for water turbine seat ring by rolling instead of forging

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2295582C (en) * 1997-07-28 2007-11-20 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP3968011B2 (en) * 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP2005232513A (en) 2004-02-18 2005-09-02 Sumitomo Metal Ind Ltd High strength steel sheet and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725707A (en) * 2020-12-22 2021-04-30 南阳汉冶特钢有限公司 Production method for producing steel plate with thickness of 350mm for water turbine seat ring by rolling instead of forging

Also Published As

Publication number Publication date
KR100957990B1 (en) 2010-05-17

Similar Documents

Publication Publication Date Title
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
KR102131538B1 (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
KR102031451B1 (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR20100001333A (en) High strength hot rolled steel sheet having stretch flangeability and good weldability, and method for producing the same
KR20100070639A (en) Steel with excellent low-temperature toughness for construction and manufacturing method thereof
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
KR100957990B1 (en) High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR100957991B1 (en) High Strength Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR20030054700A (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR100306149B1 (en) Method for manufacturing hot rolled steel sheets with high tensile strength higher than 80kg/mm¬2
KR100957907B1 (en) High Strength Ferritic Steel Sheet having Excellent Yield Strength and Low Temperature Toughness and Manufacturing Method Thereof
KR20110077091A (en) Hot-rolled steel for linepipe and method for manufacturing the same
KR102667657B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR101185359B1 (en) High strength api hot-rolled steel sheet with low yield ratio and method for manufacturing the api hot-rolled steel sheet
KR102443927B1 (en) Hot-rolled steel plate having excellent impact toughness of welded zone and method for manufacturing thereof
KR102484998B1 (en) High strength steel sheet having excellent ductility and method for manufacturing thereof
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
KR101105113B1 (en) Manufacturing method of hot rolled steel plate for linepipe having excellent low temperature toughness and corrosion resistance
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
KR102498134B1 (en) Ultra-thick steel plate having excellent low-temperature impact toughness and method for manufacturing thereof
KR100782761B1 (en) Method for producing very thick steel plate having superior strength and toughness in the mid-thickness region
KR101069993B1 (en) Thick Hot-Rolled Steel Plate for Spiral Linepipe Having High Toughness and Strength and Method for Manufacturing the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190508

Year of fee payment: 10