KR20090068841A - Method for measuring three dimension - Google Patents

Method for measuring three dimension Download PDF

Info

Publication number
KR20090068841A
KR20090068841A KR1020070136623A KR20070136623A KR20090068841A KR 20090068841 A KR20090068841 A KR 20090068841A KR 1020070136623 A KR1020070136623 A KR 1020070136623A KR 20070136623 A KR20070136623 A KR 20070136623A KR 20090068841 A KR20090068841 A KR 20090068841A
Authority
KR
South Korea
Prior art keywords
reference mirror
image
frame
interference
pzt
Prior art date
Application number
KR1020070136623A
Other languages
Korean (ko)
Other versions
KR100922625B1 (en
Inventor
이상윤
강민구
임쌍근
Original Assignee
(주) 인텍플러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 인텍플러스 filed Critical (주) 인텍플러스
Priority to KR1020070136623A priority Critical patent/KR100922625B1/en
Publication of KR20090068841A publication Critical patent/KR20090068841A/en
Application granted granted Critical
Publication of KR100922625B1 publication Critical patent/KR100922625B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A three dimensional measuring method is provided to improve inspection speed by obtaining interference patterns of different positions simultaneously through a single image by a PZT(piezoelectric) actuator which has faster operation speed than a camera. A three dimensional measuring method to obtain interference patterns of each position simultaneously includes the steps of photographing the image of a first frame via a CCD(Charge-Coupled Device) camera, photographing the image of a second frame by the CCD camera, and obtaining the image of an Nth frame by controlling the PZT actuator from the time that the reference mirror is located at position N to the time that a reference mirror is located at position N+1, which is apart from the position N by a reference distance. The image of the first frame is obtained after locating the reference mirror at a first position and a second position, which is added by the reference distance to the first position under the control of a PZT actuator. The image of the second frame is obtained after locating the reference mirror at a third position between the first and second positions and a fourth position, which is added by the reference distance to the third position, under the control of the PZT actuator.

Description

입체 형상 측정 방법{METHOD FOR MEASURING THREE DIMENSION} Three-dimensional shape measurement method {METHOD FOR MEASURING THREE DIMENSION}

본 발명은 입체 형상 측정 방법에 관한 것으로서, 더욱 상세하게는 PZT 구동 제어 방식 변경을 통해 최고점과 최저점 단차를 가지는 대상에 대한 영상 획득을 동시에 할 수 있는 입체 형상 측정 방법에 관한 것이다.The present invention relates to a three-dimensional shape measuring method, and more particularly, to a three-dimensional shape measuring method capable of simultaneously acquiring an image for the object having the highest point and the lowest point by changing the PZT driving control scheme.

전자, 기계부품의 소형화와 정밀화가 가속되어 가고 있는데, 이러한 소형의 전자 및 기계부품의 가공과 제조 상태를 확인하기 위해서는 그 치수, 형상, 표면조도에 대한 고정도(高精度)의 측정이 이루어져야 한다.The miniaturization and precision of electronic and mechanical parts is accelerating. In order to confirm the processing and manufacturing status of such small electronic and mechanical parts, it is necessary to measure the accuracy of the dimensions, shape, and surface roughness. .

예를 들면, 전자부품인 반도체 웨이퍼와 이 반도체 웨이퍼상에 가공된 집적회로의 미세 패턴에 대한 치수, 형상, 레이저 마킹 상태, 표면조도는 주지의 접촉식 측정장치를 이용하여 측정할 수 없으며, 촉침을 이용한 접촉식 표면조도 측정기를 이용하는 경우에도 촉침의 팁(tip)이 물체의 표면에 미세한 흠집을 발생시킬 뿐만 아니라 면적에 대한 정보를 얻기 힘들다는 문제점이 있었다.For example, the size, shape, laser marking state, and surface roughness of the semiconductor wafer, which is an electronic component, and the fine pattern of the integrated circuit processed on the semiconductor wafer cannot be measured using a well-known contact measuring device. In the case of using a contact surface roughness measuring device using a touch surface roughness measuring device, the tip of the stylus not only causes minute scratches on the surface of the object but also has a problem in that it is difficult to obtain information on the area.

이에 광원에서 방사되는 광을 기준 패턴화하여 측정물에 영사하고 그 측정물의 형상에 따라 변형된 광을 기준패턴과 비교하여 측정물에 대한 형상을 측정하는 광학 현미경을 이용한 2차원 및 3차원 측정 장치 및 방법이 개발되고 있다.Accordingly, two-dimensional and three-dimensional measuring apparatuses using optical microscopes which measure the shape of the measured object by comparing the light emitted from the light source with the reference pattern and projecting it on the measured object, and comparing the light deformed according to the shape of the measured object with the reference pattern. And methods are being developed.

상기 광학 현미경을 이용한 3차원 형상 측정 방법으로 백색광 제한 간섭(white scanning interferometry, 이하 WSI라함 )을 이용한 방법이 제안된바 있다.As a 3D shape measurement method using the optical microscope, a method using white scanning interferometry (hereinafter referred to as WSI) has been proposed.

일반적으로, 간섭이라 함은 두 광속이 중첩되었을 때 밝기가 증감되는 현상을 간섭이라 하며, WSI 방법은 미세 구동부 예를 들어 PZT(Piezoelectric) 엑츄에이터를 구동하여 기준미러를 이송하면서 영상을 획득하여 간섭무늬가 존재하는 영역을 찾은 후 가시성이 최대인 위치를 찾아 표면 조도를 획득하여 3차원 형상을 측정하는 것이다.In general, interference refers to a phenomenon in which brightness increases or decreases when two beams overlap each other, and the WSI method drives a micro driver, for example, a PZT (Piezoelectric) actuator, transfers a reference mirror to acquire an image and acquires an interference pattern. After finding the area where is present, find the position where the maximum visibility is obtained by measuring the surface roughness to measure the three-dimensional shape.

도 1은 종래의 백색광 제한 간섭을 이용한 3차원 형상 측정 장치원리를 나타난 도면으로, 이를 참조하여, 백색광 제한 간섭법을 설명하면 다음과 같다.1 is a view showing the principle of a three-dimensional shape measurement apparatus using a conventional white light limited interference, with reference to this, the white light limited interference method as follows.

우선, 간섭무늬는 측정 대상의 표면에서 반사되는 측정광과 기준미러에서 발생하는 기준광이 동일한 광경로를 가질 경우 생성되므로, 단차를 가지는 대상에 대한 최고점과 최저점에 대한 검사를 수행하기 위해서 기준미러의 위치를 PZT(Piezoelectric) 엑츄에이터를 이용하여 미소 이동시킨다. First, since the interference fringe is generated when the measurement light reflected from the surface of the measurement object and the reference light generated from the reference mirror have the same optical path, the interference mirror is used to inspect the highest and lowest points of the object having the step difference. The position is microscopically moved using a piezoelectric (PZT) actuator.

즉, 기준미러에서 반사되는 기준광이 경로가 측정 대상의 최저점에서 반사되는 측정광과 동일한 광경로를 갖도록 PZT(Piezoelectric) 엑츄에이터를 이용하여 기준미러를 미소 이동시키고, 이때 생성되는 간섭무늬를 카메라를 통해 획득한다. That is, the reference mirror reflected from the reference mirror has a light path that has the same optical path as the measurement light reflected at the lowest point of the measurement target, and the reference mirror is moved by using a PZT (Piezoelectric) actuator, and the generated interference pattern is moved through the camera. Acquire.

그리고, 기준미러에서 반사되는 기준광의 경로가 측정 대상의 최고점에서 반사되는 측정광과 동일한 광경로를 갖도록 PZT(Piezoelectric) 엑츄에이터를 이용하여 기준미러를 미소 이동시키고, 이때 생성되는 간섭무늬를 카메라를 통해 획득한 다. Then, the reference mirror is moved by using a PZT (Piezoelectric) actuator so that the path of the reference light reflected from the reference mirror has the same optical path as the measured light reflected from the highest point of the measurement target, and the interference pattern generated at this time is moved through the camera. Obtained.

이렇게 각각의 단계에서 획득된 간섭무늬를 하나의 영상으로 합성하여 표면 형상 정보를 얻고, 이에 대한 분석을 통해 결함 유무를 판단하게 된다. In this way, the interference fringes obtained at each step are synthesized into one image to obtain surface shape information, and the presence or absence of defects is determined through analysis thereof.

그런데, 이러한 종래 기술의 경우 PZT(Piezoelectric) 엑츄에이터를 이용하여, 기준미러의 위치를 각각 한 번씩 이동시키고, 측정점의 최고점에 대한 간섭무늬와, 측정점의 최저점에 대한 간섭무늬를 각각 따로 획득해야 한다.However, in the prior art, the position of the reference mirror is moved once by using a PZT (Piezoelectric) actuator, and an interference fringe for the highest point of the measurement point and an interference fringe for the lowest point of the measurement point must be obtained separately.

이와 같이, 종래 기술은 단차를 가지는 측정 대상에 대하여 최고점과 최저점에 대한 간섭무늬를 각각 한 번씩 획득해야 하므로, 측정 단계가 번거로울 뿐만 아니라 측정 시간이 오래 소요되어 측정 효율성이 낮은 단점이 있다.As described above, the prior art has to obtain the interference fringes for the highest point and the lowest point once for the measurement object having the step.

본 발명은 케메라에서 1 프레임(fraim)의 영상을 획득하는 동안 동작 속도가 카메라 동작 속도보다 빠른 PZT 엑츄에이터를 이용하여, 기준미러를 서로 다른 두 위치로 순간적으로 미소 이동시켜, 서로 다른 위치의 간섭무늬를 동시에 획득할 수 있도록 하는 입체 형상 측정 방법을 제공함에 있다. The present invention instantaneously smiles a reference mirror to two different positions by using a PZT actuator whose operating speed is faster than the camera operating speed while acquiring an image of one frame in the camera, thereby interfering with different positions. The present invention provides a three-dimensional shape measuring method for acquiring a pattern simultaneously.

상기 과제를 해결하기 위한 본 발명의 입체 형상 측정 방법은, 빔분할기를 통해 분할된 빛을 각각 측정물의 측정면과 PZT 엑츄에이터를 이용하여 미소 이동시킨 기준미러에 조사하고, 기준미러와 측정면으로부터 각각 반사되는 기준광과 측정광 간섭에 의해 생성되는 간섭무늬를 CCD 카메라로 촬영하여 촬영된 영상을 통해 측정물의 입체 형상을 측정하는 방법에 있어서, 상기 CCD 카메라 1 프레임 촬영시 상기 기준미러가 시간차를 두고 서로 다른 위치에 놓이도록 제어하고 각각의 위치에서 생성되는 간섭무늬를 한번에 획득하는 것이다.In the three-dimensional shape measuring method of the present invention for solving the above problems, the light split through the beam splitter is irradiated to the reference mirror, which is moved microscopically by using the measuring surface and the PZT actuator, respectively, from the reference mirror and the measuring surface, respectively. A method of measuring a three-dimensional shape of a workpiece through an image taken by photographing an interference fringe generated by interference of reflected reference light and measurement light with a CCD camera. It is controlled so as to be placed at different positions, and the interference fringe generated at each position is acquired at once.

본 발명은 카메라 1 프레임 촬영시 서로 다fms 위치의 간섭무늬를 동시의 하나의 화상으로 얻을 수 있어, 검사 속도를 향상시킬 수 있다.According to the present invention, the interference fringes of different fms positions can be obtained as one image at the same time when photographing one frame of the camera, and the inspection speed can be improved.

본 발명은 빔분할기를 통해 분할된 빛을 각각 측정물의 측정면과 PZT 엑츄에이터를 이용하여 미소 이동시킨 기준미러에 조사하고, 기준미러와 측정면으로부터 각각 반사되는 기준광과 측정광 간섭에 의해 생성되는 간섭무늬를 CCD 카메라로 촬영하여 촬영된 영상을 통해 측정물의 입체 형상을 측정하는 방법에 관한 것으로서, CCD 카메라 1 프레임 촬영시 상기 기준미러가 시간차를 두고 서로 다른 위치에 놓이도록 제어하고 각각의 위치에서 생성되는 간섭무늬를 한번에 획득하는 것이다. According to the present invention, the light split through the beam splitter is irradiated to the reference mirror, which is moved microscopically using the measurement surface and the PZT actuator, respectively, and the interference generated by the reference light and the measurement light interference reflected from the reference mirror and the measurement surface, respectively. The present invention relates to a method of measuring a three-dimensional shape of a workpiece through an image taken by photographing a pattern with a CCD camera, wherein the reference mirror is controlled to be placed at different positions with a time difference when photographing a frame of a CCD camera. The interference fringe is obtained at a time.

도 2는 본 발명의 입체 형상 측정 방법을 설명하기 위한 참조도면으로, 일반적인 간섭계를 이용한 방법을 적용한다. 2 is a reference view for explaining a three-dimensional shape measuring method of the present invention, a method using a general interferometer is applied.

우선, PZT 엑츄에이터를 제어하여 기준미러를 제 1 위치 및 제 1 위치에 대하여 기준 거리(d)만큼 더해진 제 2 위치에 놓이도록 한 후 CCD 카메라를 통해 1 프레임의 영상 촬영을 한다.First, the PZT actuator is controlled so that the reference mirror is positioned at the first position and the second position added by the reference distance d with respect to the first position, and then one frame of image is photographed by the CCD camera.

그리고, PZT 엑츄에이터를 제어하여 기준미러를 제 1위치와 제 2 위치 사이의 제 3 위치 및 와 제 3 위치에 대하여 기준 거리(d) 만큼 더해진 제 4 위치에 놓이도록 한 후 CCD 카메라를 통해 다름 프레임의 영상을 촬영한다.Then, the PZT actuator is controlled so that the reference mirror is placed at the third position between the first position and the second position, and at the fourth position added by the reference distance d with respect to the third position. Shoot the video.

이러한 단계를 반복하여 기준미러가 시간차를 두고 N 위치와 N 위치에 대하여 기준거리(d) 만큼 이격된 N+1 위치에 위치에 놓일 때까지 PZT 엑츄에이터를 제어하고 제 N 프레임의 영상을 획득한다. By repeating these steps, the PZT actuator is controlled and the image of the Nth frame is obtained until the reference mirror is positioned at the N + 1 position spaced by the reference distance d with respect to the N position and the N position with a time difference.

일반적인 CCD 카메라의 1 프레임 촬영 속도는 PZT 엑추에이터 구동 속도를 따라가지 못한다.The shooting speed of one frame of a typical CCD camera does not match the driving speed of the PZT actuator.

즉, PZT 엑추에이터는 CCD 카메라의 1프레임 촬영 속도보다 빠른 동작 속도를 가진다.In other words, the PZT actuator has an operating speed that is faster than the shooting speed of one frame of the CCD camera.

따라서, CCD 카메라 1프레임 촬영시 PZT 엑츄에이터를 서로 다른 2 지점으로 이동시키면, 각각의 지점에 해당하는 간섭무늬가 1프레임의 영상에 모두 들어오게 할 수 있다. Therefore, when the PZT actuator is moved to two different points when capturing one frame of the CCD camera, the interference fringes corresponding to the respective points may enter the image of one frame.

다시 말해서, 일반적으로 간섭무늬는 측정면 표면에서 반사되는 측정광과 기준미러로부터 반사되는 기준광의 경로가 일치할 경우에 생성되므로, 기준미러를 미소 이동시켜 측정광과 동일한 광경로를 만들어 줘야한다.In other words, the interference fringe is generally generated when the paths of the measurement light reflected from the measurement surface and the reference light reflected from the reference mirror coincide with each other. Therefore, the reference mirror must be moved to make the same optical path as the measurement light.

그런데, 이 기준미러를 미소 이동시키는 PZT 엑츄에이터의 구동 속도는 카메라의 1프레임 촬영 속도보다 빠르므로, CCD 카메라 1프레임 영상 획득 시간 동안에 PZT 엑츄에이터를 이용하여 기준미러가 서로 다른 위치의 2 지점에 놓이도록 순간적으로 이동시키면, CCD 카메라에서는 서로 다른 2 지점에서의 영상을 하나의 영상에 잡아내는 것이다. However, since the driving speed of the PZT actuator that moves the reference mirror finely is faster than the camera's one frame shooting speed, the reference mirror is placed at two points at different positions by using the PZT actuator during the CCD camera one frame image acquisition time. When moved instantaneously, the CCD camera captures images from two different points into one image.

이를 이용하여, 최고점과 최저점 사이의 단차를 가지는 측정물에 대하여 최고점 간섭무늬와 최저점에서의 간섭무늬 각각 하나씩만 필요로 하는 경우, 최고점과 최저점에 대한 영상을 동시에 한 장으로 획득할 수 있다.By using this, when only one interference peak and one interference peak at the lowest point are required for a measurement object having a step between the highest point and the lowest point, images of the highest point and the lowest point may be simultaneously acquired in one sheet.

즉, CCD 카메라에 촬영 제어 신호를 1번 출력함과 동시에 측정물의 최저점에 해당하는 측정광과 동일한 광경로를 가지는 위치에 기준미러가 놓이도록 PZT 엑츄에이터를 구동하고, 순간적으로 PZT 엑츄에이터를 구동시켜 기준미러를 측정물의 단차 만큼 이동시켜 측정물의 최고점 반사거리와 동일한 광경로를 만들어, 이때 각각 생성되는 측정물 최고점 간섭무늬와 최저점 간섭무늬를 하나의 영상에 얻는다.That is, the PZT actuator is driven so that the reference mirror is positioned at the position having the same optical path as the measurement light corresponding to the lowest point of the workpiece while outputting the imaging control signal once to the CCD camera, and momentarily driving the PZT actuator The mirror is moved by the step of the workpiece to create an optical path that is equal to the peak reflection distance of the workpiece, whereby the workpiece peak interference fringes and the bottom interference fringes are generated in one image.

그리고, 검사 대상에 대하여 높이별 간섭무늬가 필요할 경우 도 1과 같이 PZT 엑츄에이터를 이용하여 기준미러를 제 1 위치-> 제 1 위치에 대하여 기준거 리(d) 만큼 떨어진 제 2 위치-> 제 1 위치 방향으로 이동시킨 제 3 위치-> 제 3 위치에 대하여 기준거리(d) 만큼 떨어진 제 4 위치-> 제 2 위치 방향으로 이동시킨 제 5 위치->…제 N 위치->제 N 위치에 대하여 기준거리(d) 만큼 떨어진 제 N+1 위치로 순차로 미소 이동시키면서, 각각의 제 N, 제 N+1에서의 간섭무늬를 동시에 하나의 화상으로 얻는다. And, if the interference pattern for each height is required for the inspection object as shown in FIG. 1, the reference mirror is separated from the first position by the reference distance (d) with respect to the first position using the PZT actuator as shown in FIG. 3rd position moved to a position direction-> 4th position moved by the reference distance d with respect to a 3rd position-> 5th position moved to a 2nd position direction->. The interference fringes at each of the Nth and N + 1th are simultaneously obtained as one image, while gradually moving to the N + 1th position separated by the reference distance d with respect to the Nth position-> Nth position.

이상과 같이 본 발명은 CCD 카메라 1 프레임 촬영시 서로 다른 위치에 기준미러가 놓이도록 기준미러를 순간적으로 미소 이동시켜, 단차를 가지는 측정물의 서로 다른 단차에서의 간섭무늬를 1 프레임 촬영시 동시에 하나의 화상으로 얻을 수 있다. As described above, according to the present invention, the reference mirror is momentarily minutely moved so that the reference mirror is placed at different positions when one frame of CCD camera is photographed, and one frame at the same time when the interference pattern at different levels of the measurement object having the step is taken. Can be obtained with burns.

도 1은 종래의 백색광 제한 간섭을 이용한 3차원 형상 측정 장치를 도시한 구성도.1 is a block diagram showing a three-dimensional shape measurement apparatus using a conventional white light limited interference.

도 2는 본 발명의 입체 형상 측정 방법을 설명하기 위한 참조도면.2 is a reference view for explaining a three-dimensional shape measuring method of the present invention.

Claims (3)

빔분할기를 통해 분할된 빛을 각각 측정물의 측정면과 PZT 엑츄에이터를 이용하여 미소 이동시킨 기준미러에 조사하고,The light split through the beam splitter is irradiated to the reference mirror, which is moved microscopically using the measuring surface of the workpiece and the PZT actuator, respectively. 기준미러와 측정면으로부터 각각 반사되는 기준광과 측정광 간섭에 의해 생성되는 간섭무늬를 CCD 카메라로 촬영하여 촬영된 영상을 통해 측정물의 입체 형상을 측정하는 방법에 있어서, In the method of measuring the three-dimensional shape of the workpiece through the image taken by photographing the interference pattern generated by the reference light and the measurement light interference reflected from the reference mirror and the measurement surface, respectively, 상기 CCD 카메라 1 프레임 촬영시 상기 기준미러가 시간차를 두고 서로 다른 위치에 놓이도록 제어하고 각각의 위치에서 생성되는 간섭무늬를 한번에 획득하는 것을 특징으로 하는 입체 형상 측정 방법.3. The method of claim 3, wherein the reference mirror is controlled to be positioned at different positions at a time difference when capturing one frame of the CCD camera, and the interference fringes generated at each position are acquired at a time. 제 1항에 있어서,The method of claim 1, 상기 간섭무늬를 한번에 획득하는 것은,Acquiring the interference fringe at once, 상기 PZT 엑츄에이터를 제어하여 기준미러를 제 1 위치 및 제 1 위치에 대하여 기준 거리(d)만큼 더해진 제 2 위치에 놓이도록 한 후 CCD 카메라를 통해 제 1 프레임의 영상 촬영을 하는 단계와,Controlling the PZT actuator so that the reference mirror is positioned at a first position and a second position added by a reference distance d with respect to the first position, and then photographing the first frame through a CCD camera; 상기 PZT 엑츄에이터를 제어하여 기준미러를 상기 제 1위치와 제 2 위치 사이의 제 3 위치 및 와 제 3 위치에 대하여 기준 거리(d) 만큼 더해진 제 4 위치에 놓이도록 한 후 CCD 카메라를 통해 제 2 프레임의 영상을 촬영하는 단계와,The PZT actuator is controlled so that the reference mirror is positioned at the third position between the first position and the second position, and at a fourth position added by the reference distance d with respect to the third position and the second through the CCD camera. Taking an image of the frame; 상기 기준미러가 시간차를 두고 N 위치와 N 위치에 대하여 기준거리(d) 만큼 이격된 N+1 위치에 위치에 놓일 때까지 PZT 엑츄에이터를 제어하고 제 N 프레임의 영상을 획득하는 단계를 포함함을 특징으로 하는 입체 형상 측정 방법.Controlling the PZT actuator and acquiring an image of the Nth frame until the reference mirror is positioned at an N + 1 position spaced by a reference distance d with respect to the N position and the N position with a time difference; A three-dimensional shape measuring method characterized by the above-mentioned. 제 2항에 있어서,The method of claim 2, 상기 기준거리(d)는 상기 측정물의 최고점과 최저점 사이의 단차와 동일한 것을 특징으로 하는 입체 형상 측정 방법.The reference distance (d) is a three-dimensional shape measuring method, characterized in that the same as the step between the highest point and the lowest point of the workpiece.
KR1020070136623A 2007-12-24 2007-12-24 Method for measuring three dimension KR100922625B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070136623A KR100922625B1 (en) 2007-12-24 2007-12-24 Method for measuring three dimension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070136623A KR100922625B1 (en) 2007-12-24 2007-12-24 Method for measuring three dimension

Publications (2)

Publication Number Publication Date
KR20090068841A true KR20090068841A (en) 2009-06-29
KR100922625B1 KR100922625B1 (en) 2009-10-21

Family

ID=40996172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070136623A KR100922625B1 (en) 2007-12-24 2007-12-24 Method for measuring three dimension

Country Status (1)

Country Link
KR (1) KR100922625B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697927A (en) * 1985-11-29 1987-10-06 Kabushiki Kaisha Toshiba Method and apparatus for measuring a forming error of an object
JPH08201034A (en) * 1995-01-27 1996-08-09 Tokyo Seimitsu Co Ltd Method and device for measuring non-contact surface shape

Also Published As

Publication number Publication date
KR100922625B1 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
CN105301865B (en) Automatic focusing system
KR100740249B1 (en) Apparatus and method for measuring image
US20120307259A1 (en) Apparatus and method for inspecting an object with increased depth of field
KR20090063874A (en) System for measuring surface shape and method for measuring the same
KR20070042840A (en) Apparatus and method for measuring image
KR101921762B1 (en) Height measuring method and height measuring device
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
KR101116295B1 (en) Apparatus for measurment of three-dimensional shape
JP2011033507A (en) Three-dimensional measuring apparatus
US20160238380A1 (en) Image measuring method and image measuring apparatus
JP5208896B2 (en) Defect inspection apparatus and method
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
JP2023176026A (en) Method for determining scan range
KR100922625B1 (en) Method for measuring three dimension
JP6665028B2 (en) Shape measuring device and coating device equipped with the same
KR101178055B1 (en) Device and method for measuring height between top and bottom of sample
TWI606227B (en) Three-dimensional measuring device
KR20230036950A (en) Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image through a single scan
JP2008039427A (en) Measuring method of depth of minute hole
JP2018146496A (en) Surface shape measurement method
KR20140032665A (en) 3d shape mesurement mehod and device by using amplitude of projection grating
JP2016080517A (en) Surface inspection device
WO2016204062A1 (en) Shape measurement device and coating device equipped with same
KR20140023792A (en) Surface shape measuring equipment
JP7198731B2 (en) Imaging device and focus adjustment method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121008

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131004

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191002

Year of fee payment: 11