KR20090062454A - Composition of acrylic polymer with impact resistance using emulsion latex - Google Patents

Composition of acrylic polymer with impact resistance using emulsion latex Download PDF

Info

Publication number
KR20090062454A
KR20090062454A KR1020070129712A KR20070129712A KR20090062454A KR 20090062454 A KR20090062454 A KR 20090062454A KR 1020070129712 A KR1020070129712 A KR 1020070129712A KR 20070129712 A KR20070129712 A KR 20070129712A KR 20090062454 A KR20090062454 A KR 20090062454A
Authority
KR
South Korea
Prior art keywords
impact
producing
weight
polymethyl methacrylate
resistant transparent
Prior art date
Application number
KR1020070129712A
Other languages
Korean (ko)
Other versions
KR100956392B1 (en
Inventor
서효정
이영수
서혜원
전은진
Original Assignee
엘지엠엠에이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지엠엠에이 주식회사 filed Critical 엘지엠엠에이 주식회사
Priority to KR1020070129712A priority Critical patent/KR100956392B1/en
Publication of KR20090062454A publication Critical patent/KR20090062454A/en
Application granted granted Critical
Publication of KR100956392B1 publication Critical patent/KR100956392B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Abstract

A polymethylmethacrylate resin composition is provided to improve the dispersibility of impact reinforcing agent to a matrix resin, to show impact resistance while reducing the degradation of heat resistance and scratch resistance. A method for manufacturing a transparent polymethylmethacrylate resin composition comprises the steps of: (i) emulsifying by using an anionic emulsifier to obtain a latex impact reinforcing agent; (ii) mixing the impact reinforcing agent and an unsaturated momoner, and transferring the coagulated impact reinforcing agent by using a specific coagulant to the unsaturated monomer phase; and (iii) polymerizing the unsaturated monomer phase dispersed with the coagulated impact reinforcing agent.

Description

내충격성이 우수한 투명 아크릴계 수지 및 이의 제조 방법{Composition of Acrylic polymer with impact resistance using emulsion latex}Transparent acrylic resin with excellent impact resistance and manufacturing method thereof {Composition of Acrylic polymer with impact resistance using emulsion latex}

본 발명은 중합 후, 별도의 충격보강제 사용하거나 또는 압출가공을 거치지 않고, 가전제품 외장용 소재와 같이 내충격성 및 경도가 요구되는 분야에 적용이 가능한 폴리메틸메타크릴레이트(이하 ‘PMMA’라 칭함) 수지 조성물에 관한 것이다.The present invention is a polymethyl methacrylate (hereinafter referred to as 'PMMA') that can be applied to a field requiring impact resistance and hardness, such as a material for home appliances exterior, without using a separate impact modifier or extrusion process after polymerization. It relates to a resin composition.

PMMA 수지는 메틸메타크릴레이트(이하 'MMA'라 칭함)의 중합체로서 MMA만을 단독으로 중합하거나 소량의 다른 아크릴레이트 단량체를 괴상중합, 현탁중합, 용액중합 등으로 공중합하여 제조되는 수지이다. 그러나 이와 같은 방법으로 제조된 PMMA 수지는 다른 플라스틱 소재에 비해 충격강도가 약하므로 외부의 충격에 의해 쉽게 깨지는 결점을 가지고 있다. 이에 충격보강제를 이용한 내충격성 보강에 관한 기술들이 연구되었다. PMMA resin is a polymer of methyl methacrylate (hereinafter referred to as 'MMA'), which is prepared by polymerizing only MMA alone or copolymerizing a small amount of other acrylate monomers by bulk polymerization, suspension polymerization, solution polymerization, or the like. However, the PMMA resin produced in this way has a weaker impact strength than other plastic materials, so it has a defect that is easily broken by external impact. Therefore, techniques for impact resistance reinforcement using impact modifiers have been studied.

종래 내충격성 PMMA 수지는 엘라스토머 라텍스를 응집, 탈수 및 건조시키는 단계에서 수득된 분말이나 플레이크 형태의 충격보강제를 PMMA 수지에 고온으로 용융하는 압출 가공으로 얻어진다. 그러나 유화중합에 의해 제조된 라텍스를 분말형 태로 얻는 경우에는 경제적인 관점이나 에너지 절약 면에서 만족스럽다고 말하기 어렵다. 또한 고온 용융혼합 방법은 매트릭스 수지로의 충격보강제 분산문제가 있어 충격강도를 발현하기 위해서는 많은 양의 충격보강제를 사용해야하는 단점을 지니고 있다.Conventional impact resistant PMMA resins are obtained by extrusion processing in which a powder or flake type impact modifier obtained in the step of flocculating, dehydrating and drying the elastomer latex is melted at high temperature in the PMMA resin. However, it is difficult to say that the latex produced by emulsion polymerization in powder form is satisfactory in terms of economics and energy saving. In addition, the high temperature melt mixing method has a problem in that the impact modifier dispersion into the matrix resin has a problem that a large amount of impact modifier must be used to express the impact strength.

이러한 단점을 극복하기 위해, 일본 특허 소56-50907, 소50-31598에는 상기 언급한 탈수, 건조공정을 생략하고 유화중합 라텍스를 부분응집하고 매트릭스 수지를 제조할 에틸렌계 단량체를 교반 하에 첨가하여 유화계로부터 현탁계로 중합계를 전환한 후 현탁중합을 실시하는 방법으로서 유화-현탁중합법이 제안된 바 있다. 그러나 이 방법은 응집제의 다량 사용이 요구되며, 유화계로부터 현탁계로 전환할 때의 계의 점도 상승이 극히 현저해지는 단점이 있다.In order to overcome these disadvantages, Japanese Patent Nos. 56-50907 and 50-31598 omit the dehydration and drying processes mentioned above, partially coagulate the emulsion polymerization latex, and emulsify by adding an ethylene monomer to prepare a matrix resin under stirring. An emulsion-suspension polymerization method has been proposed as a method of performing suspension polymerization after switching a polymerization system from a system to a suspension system. However, this method requires a large amount of flocculant and has a disadvantage in that the viscosity increase of the system at the time of switching from the emulsion system to the suspension system is extremely remarkable.

또한 대한민국 특허 1995-0014843에는 응집제가 다량 사용되는 단점을 극복하기 위해 혼합물의 pH를 극도로 낮추어 라텍스 입자를 비닐 단량체로 이송시켜 유화계에서 현탁중합으로 계를 전환시키는 방법을 제안하였다. 그러나 이는 양산시 폐수처리에 문제가 있다.In addition, the Republic of Korea Patent 1995-0014843 proposed a method for converting the system from the emulsion system to suspension polymerization by transferring the latex particles to the vinyl monomer by extremely lowering the pH of the mixture to overcome the disadvantage of using a large amount of flocculant. However, this has a problem in wastewater treatment in mass production.

이에 본 발명자들은 상기와 같은 문제점을 개선하기 위하여, 응집제를 사용하여 안정적인 유화-현탁 중합함으로써 매트릭스 수지에 충격보강제의 분산성을 높여 낮은 충격보강제 함량에서도 충분한 정도의 충격강도를 가지는 PMMA계 수지 조성물을 제공하고자 한다.Thus, the present inventors improve the dispersibility of the impact modifier in the matrix resin by using a flocculant to improve the above problems, to improve the dispersion of the impact modifier in the matrix resin having a sufficient impact strength even at a low impact modifier content PMMA-based resin composition To provide.

즉, 본 발명의 목적은 유화중합 라텍스를 탈수, 건조 공정을 거치지 않고 소량의 응집제를 사용하여 불포화 단량체로 이동시켜 현탁중합을 함으로써, 같은 충격보강제 함량에서 고온혼합을 통해 수득한 내충격성 수지보다 충격강도는 높으며 다른 물성의 저하는 최소화하는 내충격성 PMMA계 수지 조성물을 제공하는 것이다.That is, the object of the present invention is to move the emulsion polymerization latex to the unsaturated monomer using a small amount of flocculant without undergoing the dehydration and drying process, and then to carry out suspension polymerization, thereby impacting the impact-resistant resin obtained through high-temperature mixing at the same impact modifier content. It is to provide an impact resistant PMMA resin composition that has high strength and minimizes the deterioration of other physical properties.

상기의 과제를 해결하기 위해 노력한 결과, 본 발명자들은 (B) 음이온계 유화제를 사용하여 중합한 라텍스를 물 층에서 불포화 단량체 층으로 이동시키는 과정에 특정한 종류와 함량의 응집제를 처방함으로써 단량체 층에 라텍스의 분산을 고르게 하여, 적은 함량으로 우수한 내충격성을 발휘하는 수지 조성물을 제조할 수 있음을 발견하고 본 발명을 완성하였다. As a result of efforts to solve the above problems, the present inventors (B) in the process of moving the latex polymerized using an anionic emulsifier from the water layer to the unsaturated monomer layer by prescribing a specific type and content of flocculant in the latex monomer layer The present invention was completed by finding that it is possible to produce a resin composition exhibiting excellent impact resistance with a small amount by uniformly dispersing the resin.

이를 구체적으로 살피면, 본 발명은 (A) 음이온계 유화제를 이용한 유화중합을 통하여 라텍스 형태의 충격보강제를 수득하는 단계; (B) 상기 충격보강제와 불포화 단량체들을 혼합하고 특정의 응집제를 사용하여 응집된 아크릴계 라텍스를 불포화 단량체 층으로 이동시키는 단계; (C) 상기의 이동된 라텍스가 분산되어 있는 불포화 단량체 상을 현탁중합 함으로써 본 발명을 완성하게 되었다.Specifically, the present invention is to obtain a latex type impact modifier through emulsion polymerization using an anionic emulsifier; (B) mixing the impact modifier with unsaturated monomers and transferring the aggregated acrylic latex to the unsaturated monomer layer using a specific flocculant; (C) The present invention has been completed by suspension polymerization of the unsaturated monomer phase in which the transferred latex is dispersed.

본 발명의 또 다른 양태는 (A) 음이온계 유화제를 이용한 유화중합을 통하여 라텍스 형태의 충격보강제를 수득하는 단계; (B) 상기 충격보강제와 불포화 단량체들을 혼합하고 응집제를 사용하여 10마이크론 이하, 좋게는 0.1~7미크론의 크기로 응집된 아크릴계 라텍스를 불포화 단량체 층으로 이동시키는 단계; (C) 상기의 이동된 라텍스가 분산되어 있는 불포화 단량체 상을 현탁중합 함으로써 본 발명을 완성하게 되었다.Another embodiment of the present invention (A) obtaining an impact modifier in the form of a latex through emulsion polymerization using an anionic emulsifier; (B) mixing the impact modifier with unsaturated monomers and using the flocculant to transfer the aggregated acrylic latex to the unsaturated monomer layer to a size of 10 microns or less, preferably 0.1 to 7 microns; (C) The present invention has been completed by suspension polymerization of the unsaturated monomer phase in which the transferred latex is dispersed.

본 발명에서 제조한 내충격성 PMMA 수지에서, 라텍스 고형분의 함량은 1~40중량%까지 가능하지만, 본 발명의 목적을 달성하기 위해서는 7~25중량%의 라텍스 함량을 함유하도록 함으로써 충분히 달성할 수 있다.In the impact-resistant PMMA resin prepared in the present invention, the content of latex solids can be up to 1 to 40% by weight, but in order to achieve the object of the present invention, it can be sufficiently achieved by containing a latex content of 7 to 25% by weight. .

이하는 본 발명의 구성에 대하여 자세히 살펴본다.Hereinafter, the configuration of the present invention will be described in detail.

본 발명의 유화중합에 의해 제조되는 라텍스 상의 충격보강제를 제조하는 상기 (A) 단계는, 제조된 라텍스가 경질의 PMMA 수지를 강화하기위한 2~3단계 유화중합에 의한 코어/쉘(core/shell) 구조를 갖는 충격보강제이다. 본 발명의 라텍스를 제조하는 방법은 유리전이온도가 20℃ 이상인 가교된 글래스상을 만드는 제 1단계 중합; 1단계에서 중합된 글래스상 위에 유리전이온도가 0℃ 이하인 고무상을 그라프트시키는 제 2단계 중합; 이상에서 형성된 두 상 위에 유리전이온도가 20℃ 이상인, 아크릴 수지와 상용성이 있는 글래스상 아크릴 단독 중합체 또는 공중합체를 그라프트시키는 제 3단계 중합의 반응으로 이루어진다. 제 1단계 중합은 선택적 단계로 생략이 가능하다.(A) step of preparing the impact modifier on the latex prepared by the emulsion polymerization of the present invention, the prepared latex is a core / shell by two to three stages emulsion polymerization to strengthen the hard PMMA resin (core / shell ) Impact modifier with structure. The method for producing a latex of the present invention comprises the first step of making a crosslinked glass phase having a glass transition temperature of 20 ℃ or more; A second step of grafting a rubber phase having a glass transition temperature of 0 ° C. or less on the glass phase polymerized in the first step; It consists of the reaction of the 3rd step superposition | grafting the glass phase acrylic homopolymer or copolymer which is compatible with an acrylic resin whose glass transition temperature is 20 degreeC or more on the two phases formed above. The first stage polymerization can be omitted as an optional step.

먼저, 제 1단계에서는 질소기류 하에서 이온교환수의 온도가 70~90℃ 에 도달하면, 아크릴계 불포화 단량체, 유화제, 가교제, 그라프트제 및 개시제가 혼합된 용액을 반응기에 투입하여 평균입자경이 60~200nm인 가교된 글래스상을 얻는다. 최내각 글래스상 중합체의 크기를 조절하기 위하여 유화제의 함량을 조절하며 고형분의 함량을 낮게 하는데, 전체 단량체 대비 0~40중량%정도의 아크릴계 단량체 사용량이 적당하다. First, in the first step, when the temperature of the ion-exchanged water reaches 70-90 ° C. under a nitrogen stream, a solution containing an acrylic unsaturated monomer, an emulsifier, a crosslinking agent, a graft agent, and an initiator is added to the reactor to have an average particle diameter of 60 to 200 nm. Phosphorus crosslinked glass phase is obtained. In order to control the size of the innermost glass-like polymer, the content of the emulsifier is controlled and the solid content is lowered. The amount of the acrylic monomer of about 0 to 40% by weight relative to the total monomers is appropriate.

다음 2단계 중합에서는, 상기 1단계의 반응 생성물에 고무상을 형성할 수 있는 아크릴 단량체와 굴절율을 조절하기 위하여 적당량의 굴절율이 높은 스티렌 또는 할로겐이나 탄소수 1~20의 알킬 또는 아릴기로 치환된 스티렌 유도체를 공단량체로 소량 사용하여 중합한다. 아크릴 단량체는 탄소수 1~15의 알킬 (메타)아크릴레이트 중 바람직하게는 탄소수 2~8의 n-부틸 아크릴레이트, 에틸 아크릴레이트 등을 사용할 수 있으며, 2단계의 고무상 중합체의 중량이 충격보강제 전체 단량체 중량 대비 40~90중량%가 되도록 하는 것이 바람직하다. 여기에 가교제, 유화제, 개시제, 그라프트제를 용액에 서서히 적가하여 가교된 고무상을 제조한다. 2단계에서 사용하는 단량체들의 적가시간 및 중합시간이 충분치 못하거나 유화제를 사용하지 않는 경우에는 단량체들의 서로 뭉치는 문제가 발생할 수 있다. 가교된 고무상 중합체의 평균크기는 100~600nm가 바람직하며, 더욱 바람직하게는 150~300nm 정도이며, 입자 크기는 매우 균일하다.In the next two-step polymerization, an acryl monomer capable of forming a rubber phase in the reaction product of the first step and a styrene derivative having a high refractive index of appropriate amount or a styrene derivative substituted with halogen or an alkyl or aryl group having 1 to 20 carbon atoms in order to control the refractive index Is polymerized using a small amount as a comonomer. As the acrylic monomer, among the alkyl (meth) acrylates having 1 to 15 carbon atoms, n-butyl acrylate, ethyl acrylate and the like having 2 to 8 carbon atoms may be used, and the weight of the rubber polymer of the two stages is increased. It is preferable to make it 40 to 90 weight% with respect to the monomer weight. A crosslinking agent, an emulsifier, an initiator, and a graft agent are gradually added dropwise thereto to prepare a crosslinked rubbery phase. If the dropping time and polymerization time of the monomers used in the second step is not sufficient or the emulsifier is not used, problems of monomers may agglomerate with each other. The average size of the crosslinked rubbery polymer is preferably 100 to 600 nm, more preferably about 150 to 300 nm, and the particle size is very uniform.

다음으로 제 3단계 중합에 대하여 설명한다. 3단계 중합단계는 계면활성제와 가교제를 사용하지 않음으로써 가교되지 않은 글래스상 중합체를 얻으며, 또한 분 자량의 조절을 위해 사슬이동제를 사용한다. 아크릴계 불포화 단량체의 함량은 10~40중량%, 최종 글래스상 중합을 끝낸 투명 아크릴계 수지용 충격보강제의 에멀젼의 크기는 150~800nm가 바람직하며, 최종 입자크기 역시 균일하다. 고무상 위에 글래스 층을 입히지 않으면, 라텍스 입자를 유화계에서 현탁계로 이동하여 중합을 실시할 때, 안정성이 저하되어 현탁중합이 불가능해지며, 외각층 두께가 너무 얇으면 단량체들이 침윤하여 고무상 유리전이온도가 상승하므로 바람직한 충격강도를 얻을 수 없게 된다.Next, the third stage polymerization will be described. The three-step polymerization step results in the use of a surfactant and a crosslinking agent, thereby obtaining an uncrosslinked glassy polymer, and also using a chain transfer agent for controlling the molecular weight. The content of the acrylic unsaturated monomer is 10 to 40% by weight, the size of the emulsion of the impact modifier for the transparent acrylic resin after the final glass-phase polymerization is preferably 150 ~ 800nm, the final particle size is also uniform. If the glass layer is not coated on the rubber phase, when the latex particles are transferred from the emulsion system to the suspension system and subjected to polymerization, the stability decreases and suspension polymerization becomes impossible, and if the outer layer thickness is too thin, the monomers infiltrate the rubber-like glass. As the transition temperature rises, the desired impact strength cannot be obtained.

1단계와 3단계에서 사용하는 아크릴계 단량체는 방향족 비닐계 단량체, 탄소수 1~15개의 알킬 (메타)아크릴레이트 단량체 및 탄소수 1~15개의 (메타)아크릴산 단량체 중에서 선택된 1종 이상의 것이다.The acrylic monomer used in steps 1 and 3 is at least one selected from an aromatic vinyl monomer, a C1-C15 alkyl (meth) acrylate monomer, and a C1-C15 (meth) acrylic acid monomer.

본 발명에서 사용하는 유화제는 탄소수 4~30개 정도의 알칼리성 알킬인산염 및 나트륨 도데실설페이트, 나트륨 도데실벤젠설페이트 등의 알킬설페이트염 등의 음이온계 유화제로써 전체 단량체 대비 0.2~4중량% 사용한다.The emulsifier used in the present invention is used as an anionic emulsifier such as alkaline alkyl phosphates having 4 to 30 carbon atoms and alkyl sulfate salts such as sodium dodecyl sulfate and sodium dodecylbenzene sulfate, and is used in an amount of 0.2 to 4% by weight based on the total monomers.

가교제로는 1,2-에탄디올디(메타)아크릴레이트, 1,3-프로판디올디(메타)아크릴레이트, 1,4-부탄디올디(메타)아크릴레이트, 1,5-펜탄디올디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 디비닐벤젠, 에틸렌글리콜디(메타)아크릴레이트, 프로필렌글리콜디(메타)아크릴레이트, 부틸렌글리콜디(메타)아크릴레이트, 트리에틸렌글리콜디(메타)아크릴레이트, 폴리에틸렌글리콜디(메타)아크릴레이트, 폴리프로필렌글리콜디(메타)아크릴레이트, 폴리부틸렌글리콜디(메타)아크릴레이트 또는 알릴(메타)아크릴레이트 등을 사용하며, 이들의 사용량은 전체 단량체 대비 0.1~10중량%를 사용한다. Examples of the crosslinking agent include 1,2-ethanediol di (meth) acrylate, 1,3-propanedioldi (meth) acrylate, 1,4-butanedioldi (meth) acrylate and 1,5-pentanedioldi (meth) ) Acrylate, 1,6-hexanediol di (meth) acrylate, divinylbenzene, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, tri Ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate or allyl (meth) acrylate, etc. are used, The amount of these used is 0.1 to 10% by weight relative to the total monomers.

그라프트제는 알릴(메타)아크릴레이트 또는 디알릴말레이트 등 반응성이 서로 다른 이중결합을 지닌 1종 이상의 단량체를 사용한다. 이들의 사용량은 전체 단량체 대비 0.1~10중량%를 사용하는 것이 바람직하다.The graft agent uses at least one monomer having a double bond having different reactivity such as allyl (meth) acrylate or diallyl maleate. The amount of these used is preferably 0.1 to 10% by weight relative to the total monomers.

그리고 개시제로는 황산 제1철, 에티렌디아민테트라아세테이트나트륨, 포름알데히드술폭실산나트륨의 존재 하에 큐멘하이드로퍼옥사이드, 터셔리부틸퍼옥사이드 등 을 사용하며, 그 사용량은 전체 단량체 대비 10중량% 이하가 바람직하다. In addition, as an initiator, cumene hydroperoxide, tertiary butyl peroxide, and the like are used in the presence of ferrous sulfate, ethylenediaminetetraacetate sodium, and sodium formaldehyde sulfoxylate. desirable.

3단계에서 사용되는 분자량 조절을 위한 사슬이동제는 탄소수 2~18의 알킬메르캅탄, 벤질메르캅탄, 메르캅토산 등을 사용할 수 있으며, 바람직하게는 탄소수 4~12개의 알킬메르캅탄이다.Chain transfer agent for molecular weight control used in step 3 may be used an alkyl mercaptan having 2 to 18 carbon atoms, benzyl mercaptan, mercaptoic acid and the like, preferably an alkyl mercaptan having 4 to 12 carbon atoms.

이온교환수는 전체 단량체에 비해 100~500중량%를 사용한다.Ion-exchanged water uses 100 to 500% by weight relative to the total monomers.

다음 본 발명의 (B)단계에 대하여 설명한다. Next, step (B) of the present invention will be described.

(B)단계는 (A)단계를 통해 수득된 라텍스를 아크릴계 불포화 단량체 층으로 이동시키는 단계로, 소량의 응집제를 사용하여 응집된 라텍스, 좋게는 0.1~10마이크로미터의 크기로 응집된 라텍스를 단량체 층으로 이동시킴으로써 현탁 중합 후 매트릭스 수지에서의 분산성을 좋게 한다.Step (B) is a step of transferring the latex obtained through step (A) to the acrylic unsaturated monomer layer, wherein the latex agglomerated using a small amount of flocculant, preferably latex agglomerated to a size of 0.1 to 10 micrometers By moving to the layer, the dispersibility in the matrix resin after suspension polymerization is improved.

이온교환수에 아크릴계 불포화 단량체를 넣고 (A)단계에서 수득된 라텍스를 넣어 충분히 교반하며 응집제를 적가하여 라텍스의 안정성을 저하시켜 단량체로 이동되는데, 이 때 분산제를 투입하여 팽윤 상태로 균일하게 분산되어 있는 라텍스 입자를 함유하는 단량체들이 물 층에 현탁된다. The acrylic unsaturated monomer is added to the ion-exchanged water, and the latex obtained in step (A) is sufficiently stirred, and the coagulant is added dropwise to reduce the stability of the latex to the monomer. The dispersant is added and dispersed uniformly in a swelling state. Monomers containing latex particles are suspended in the water layer.

본 발명에서 사용되는 응집제는 유기산염 수용액을 사용하는데, 자세하게는 아세트산나트륨, 아세트산칼슘, 포름산나트륨, 포름산칼슘 등을 사용할 수 있다. 응집제를 과량 투입하게 되면 응집제 농도가 높아져서 10 마이크로미터 크기 이상의 라텍스 입자가 생기게 된다. 이는 불포화 현탁 단량체 층에서 라텍스 입자의 분산성을 저하시키므로 소량의 응집제를 20~60분의 충분한 시간을 두고 적가시킨다. 유기산염 사용량은 전체 현탁 중합용액 대비 0.01~2.8중량%이며, 더 바람직하게는 0.1~1중량%이다.The flocculant used in the present invention uses an aqueous organic acid salt solution, and in detail, sodium acetate, calcium acetate, sodium formate, calcium formate and the like can be used. Excessive coagulant concentration increases the coagulant concentration, resulting in latex particles larger than 10 micrometers. This lowers the dispersibility of the latex particles in the unsaturated suspension monomer layer, so that a small amount of flocculant is added dropwise over a sufficient time of 20 to 60 minutes. The amount of the organic acid salt used is 0.01 to 2.8% by weight relative to the total suspension polymerization solution, more preferably 0.1 to 1% by weight.

현탁 단량체들은 상기 서술한 (A)단계의 아크릴계 불포화 단량체들을 사용할 수 있다. 바람직하게는 메틸메타크릴레이트 80~99중량%와 메틸아크릴레이트, 에틸(메타)아크릴레이트, 부틸(메타)아크릴레이트, 스티렌 중에서 선택된 공단량체 20~1중량%의 비로 중합하여 사용하는 것이 좋다. 더욱 좋게는 메틸메타크릴레이트 85~97중량%, 공단량체 15~3중량%를 사용하는 것이 매트릭스 수지의 경도 및 내열성을 상실하지 않으므로 좋다. 현탁 단량체들과 물의 비율은 0.1~1 사이이며, 0.3~0.5사이가 바람직하다.Suspension monomers may use the acrylic unsaturated monomers of step (A) described above. Preferably, the polymerization is preferably carried out at a ratio of 80 to 99% by weight of methyl methacrylate and 20 to 1% by weight of comonomer selected from methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and styrene. More preferably, using 85 to 97% by weight of methyl methacrylate and 15 to 3% by weight of comonomers does not lose the hardness and heat resistance of the matrix resin. The ratio of suspension monomers and water is between 0.1 and 1, preferably between 0.3 and 0.5.

(B)단계에서 라텍스 입자를 포함하는 현탁 단량체 100중량%당, 99~60중량%의 현탁 단량체와 1~40중량%의 라텍스 고형질 입자를 사용할 수 있으며, 더 좋게는 93~75중량%의 현탁 단량체와 7~25중량%의 라텍스 고형질 입자를 사용한다.In step (B) per 100% by weight of the suspension monomer containing latex particles, 99 to 60% by weight of the suspension monomer and 1 to 40% by weight of latex solid particles can be used, more preferably 93 to 75% by weight of Suspension monomers and 7-25 wt% latex solid particles are used.

분산제는 (메타)아크릴산 및 메틸메타크릴레이트의 공중합체 및 그 염, 폴리비닐알코올 등이 사용된다. 바람직한 사용량은 수용액 내에서 전체 단량체 대비 0.1~2중량% 이며, 소량의 무기염이 분산 보조제로 사용될 수 있다.As a dispersing agent, the copolymer of (meth) acrylic acid and methyl methacrylate, its salt, polyvinyl alcohol, etc. are used. The preferred amount is 0.1 to 2% by weight relative to the total monomer in the aqueous solution, a small amount of inorganic salt may be used as a dispersing aid.

본 발명에서의 (C)단계는 상기 (B)단계의 조성물에 현탁 개시제와 사슬이동제를 첨가하여 현탁중합을 실시하는 단계이다. Step (C) in the present invention is a step of performing suspension polymerization by adding a suspension initiator and a chain transfer agent to the composition of step (B).

현탁중합은 질소 분위기 하에서, 500~700rpm의 교반속도로, 60~110℃사이의 온도에서 충분한 시간동안 (B)단계 결과로 얻은 조성물을 가열하여 중합시킨다. 반응이 완결되면 세척 및 건조시켜 내충격성을 가진 비드상태의 아크릴계 수지 조성물을 얻는다.Suspension polymerization is polymerized by heating the composition obtained as a result of step (B) for a sufficient time at a temperature between 60 ~ 110 ℃ at a stirring speed of 500 ~ 700rpm, under a nitrogen atmosphere. Upon completion of the reaction, washing and drying is performed to obtain an acrylic resin composition in a bead state having impact resistance.

본 발명에 따르는 수지 조성물은 충진제, 보강제, 착색제, 활제, 안정제, 산화방지제, 내열제 및 자외선 안정제 및 다른 화합물 성분과 같은 일반적인 열가소성 첨가물을 포함할 수 있다.The resin composition according to the present invention may comprise common thermoplastic additives such as fillers, reinforcing agents, colorants, lubricants, stabilizers, antioxidants, heat resistant and ultraviolet stabilizers and other compound components.

상술한 설명들에 의하여, 기술 분야의 당 업자는 본 발명의 필수적인 특징들을 쉽게 이해할 수 있을 것이며, 이 발명의 요지 및 범주를 벗어나지 않는 범위 내에서 다양한 용도, 조건 및 구체적인 예에 적합한 변경 및 수정이 가해질 수 있다. Based on the above description, those skilled in the art will be able to easily understand the essential features of the present invention, and changes and modifications suitable for various uses, conditions, and specific examples can be made without departing from the spirit and scope of the present invention. Can be applied.

본 발명에 따른 조성물은 사출 및 압출 등의 방법에 의해 성형품으로 제조가 가능하며, 구체적으로는 표면경도와 내열성 및 광학특성을 해치지 않고 내충격성을 필요로 하는 제품에 적용이 가능함을 알 수 있다. The composition according to the present invention can be manufactured into a molded article by a method such as injection and extrusion, and in particular, it can be seen that it can be applied to a product requiring impact resistance without harming the surface hardness, heat resistance and optical properties.

본 발명에 따른 수지 조성물을 사용함에 따라 유화중합으로 얻은 충격보강제의 분말 입자와 매트릭스 수지를 압출가공하지 않고도 내충격 특성을 향상시킬 수 있으므로, 유화중합 라텍스를 분말로 만드는 후가공 및 매트릭스 수지와의 고온 용융혼련 공정을 생략함으로써, 저렴하게 내충격성 아크릴 수지를 수득할 수 있으면 서도 경도 및 충격강도 등의 물성이 바람직한 균형을 이루어 투명성과 내충격성이 동시에 필요한 사출물에 적용이 가능하다. 즉 본 발명에 따른 조성물은 매트릭스 수지에의 충격보강제 분산성을 획기적으로 향상시켜 내스크래치성, 내열성의 저하를 최소로 줄이면서 내충격성이 최대로 발현될 수 있어, 그 자체로서 내충격성을 요하는 소재로 가공가능한 새로운 PMMA계 수지 조성물을 제공할 수 있다.By using the resin composition according to the present invention, it is possible to improve the impact resistance properties of the impact modifier powder obtained by the emulsion polymerization and the matrix resin without extrusion processing, so that the post-processing of the emulsion polymerization latex into a powder and hot melting with the matrix resin By omitting the kneading step, it is possible to obtain an impact-resistant acrylic resin at a low cost, while achieving a desirable balance of physical properties, such as hardness and impact strength, and can be applied to an injection molded article that requires transparency and impact resistance at the same time. In other words, the composition according to the present invention can significantly improve the impact modifier dispersibility in the matrix resin, and the maximum impact resistance can be expressed while minimizing the reduction of scratch resistance and heat resistance, and thus requires impact resistance as such. It is possible to provide a new PMMA resin composition that can be processed into a material.

본 발명에 있어서 각종 물성은 아래 방법으로 측정한다.Various physical properties in the present invention are measured by the following method.

취성 : ASTM D256 방법에 따라 실온에서 노치드 아이조드 충격강도(kg.cm/cm)를 측정Brittleness: Notched Izod impact strength (kg.cm/cm) measured at room temperature according to ASTM D256 method

투명도(%) 및 탁도(Haze) : ASTM D1003 방법에 의거 Hazemeter로 측정 Transparency (%) and haze (Haze): measured by Hazemeter according to ASTM D1003 method

황색지수(YI) : ASTM D1925 방법 Yellow Index (YI): ASTM D1925 Method

열변형 온도(HDT) : ASTM D648에 따라 18.5kg의 하중에서 측정 Heat deflection temperature (HDT): measured at a load of 18.5 kg according to ASTM D648

경도 : ASTM D785 방법 Hardness: ASTM D785 Method

이하에서 본 발명의 범주를 제한하지 않는 실시예에 의하여 본 발명에 따른 PMMA계 수지 조성물을 설명한다.Hereinafter, the PMMA resin composition according to the present invention will be described by examples which do not limit the scope of the present invention.

[실시예 및 비교예][Examples and Comparative Examples]

(실시예 1)(Example 1)

본 실시예는 아크릴 유화 라텍스 중합체 11중량%를 포함하는 PMMA계 수지의 제조에 관한 것이다.This example relates to the production of PMMA-based resins comprising 11% by weight of an acrylic emulsified latex polymer.

(A)단계 : 유화중합에 의한 아크릴레이트계 라텍스의 제법(A) step: preparation of acrylate-based latex by emulsion polymerization

1단계는 이온교환수 250부, 황산 제 1철 0.002부, EDTA·2Na염 0.008부 및 포름알데히드술폭실산나트륨 0.2부, 나트륨 도데실설페이트 0.04부를 교반기 부착 반응기에 주입하고 질소치환 후, 80℃까지 승온하였다. 여기에 메틸메타크릴레이트 69.5중량%, 에틸아크릴레이트 30중량%, 알릴 메타크릴레이트 0.3중량%, 1,4-부탄디올디메타아크릴레이트 0.2중량%, 큐멘하이드로퍼옥시드 0.2부 혼합용액을 2시간 동안 적가한 후 1시간 동안 교반하며 유화중합하였다. 이 때 수득된 글래스상 중합체의 평균입자경은 150nm 이었다.In the first step, 250 parts of ion-exchanged water, 0.002 parts of ferrous sulfate, 0.008 parts of EDTA.2Na salt, 0.2 parts of sodium formaldehyde sulfoxylate, and 0.04 parts of sodium dodecyl sulfate were introduced into a reactor with a stirrer, and then replaced with nitrogen to 80 ° C. It heated up. 69.5% by weight of methyl methacrylate, 30% by weight of ethyl acrylate, 0.3% by weight of allyl methacrylate, 0.2% by weight of 1,4-butanediol dimethacrylate, and 0.2 parts of cumene hydroperoxide in 2 hours After the dropwise addition, the mixture was emulsified with stirring for 1 hour. The average particle diameter of the glassy polymer obtained at this time was 150 nm.

2단계에서는 1단계에서 제조된 글래스상 라텍스에 이어서 황산 제 1철 0.002부, EDTA·2Na염 0.004부 및 포름알데히드술폭실산나트륨 0.1부, 나트륨 도데실설페이트 1.8부를 주입한다. 여기에 부틸아크릴레이트 81.5중량%, 스티렌 17중량%, 알릴 메타크릴레이트 1.3중량%, 1,4-부탄디올디메타크릴레이트 0.2중량%, 큐멘하이드로퍼옥시드 0.1부 혼합용액을 3시간에 걸쳐 적가한 후 2시간 동안 중합하였다. 이 때 제조된 라텍스 입자의 크기는 210nm 이었다.In step 2, 0.002 parts of ferrous sulfate, 0.004 parts of EDTA.2Na salt, 0.1 part of sodium formaldehyde sulfoxylate, and 1.8 parts of sodium dodecyl sulfate are injected, followed by glass latex prepared in step 1. 81.5% by weight of butyl acrylate, 17% by weight of styrene, 1.3% by weight of allyl methacrylate, 0.2% by weight of 1,4-butanedioldimethacrylate and 0.1 part of cumene hydroperoxide were added dropwise over 3 hours. After polymerization for 2 hours. At this time, the size of the prepared latex particles was 210nm.

마지막으로 3단계는 온도를 80℃로 유지한 상태로 포름알데히드술폭실산나트륨 0.1부를 주입한 후, 메틸 메타크릴레이트 96중량%, 메틸아크릴레이트 4중량%, 도데실메르캅탄 0.2부, 큐멘하이드로퍼옥시드 0.1부 혼합용액을 2시간에 걸쳐 적가 한 후 1시간동안 중합하였다. 최종 중합체의 평균입자크기는 297nm 이었다.Finally, in step 3, after injecting 0.1 part of sodium formaldehyde sulfoxylate while keeping the temperature at 80 ° C., 96% by weight of methyl methacrylate, 4% by weight of methyl acrylate, 0.2 part of dodecyl mercaptan, and cumene hydroper The 0.1 part mixed oxide solution was added dropwise over 2 hours, and then polymerized for 1 hour. The average particle size of the final polymer was 297 nm.

(B)단계 : (A)단계의 유화중합을 통해 수득된 라텍스를 아크릴계 불포화 단량체로 이송하는 단계로 메틸메타크릴레이트 92.4중량%, 메틸아크릴레이트 7.6중량%, 4.5% 폴리비닐알코올 수용액 0.1부(GF-20 : 일본합성화학공업(주)제조), 보릭산 0.001부를 이온교환수 250부에 가한다. 여기에 (A)단계의 라텍스 고형분 입자가 메틸(메타)아크릴레이트 단량체 대비 11중량% 가 되도록 가하고 수득된 혼합물을 교반한다. 그 다음 전체 현탁 용액대비 0.2중량%의 5% 아세트산칼슘 수용액을 30분간 적가하면, 평균 직경이 약 8마이크로미터인 아크릴 라텍스 입자를 함유하는 메틸(메타)아크릴레이트 분산계가 나타나게 된다.(B) step: to transfer the latex obtained through the emulsion polymerization of step (A) to the acrylic unsaturated monomer 92.4% by weight of methyl methacrylate, 7.6% by weight of methyl acrylate, 0.1 parts of 4.5% polyvinyl alcohol aqueous solution ( GF-20: Japan Synthetic Chemical Co., Ltd.), 0.001 part of boric acid is added to 250 parts of ion-exchanged water. The latex solid particles of step (A) are added to 11% by weight relative to the methyl (meth) acrylate monomer, and the resulting mixture is stirred. Then, when 0.2% by weight of 5% aqueous calcium acetate solution was added dropwise to the total suspension for 30 minutes, a methyl (meth) acrylate dispersion system containing acrylic latex particles having an average diameter of about 8 micrometers appeared.

(C)단계 : (B)단계를 통해 얻은 분산계를 현탁중합을 실시하는 과정으로써, 도데실메르캅탄 0.3부, 아조비스이소부티로니트릴 0.15부를 (B)단계의 용액에 가하여 혼합용액을 80℃로 상승시킨 후 120분간 중합을 진행시켜 현탁중합을 완료하였다. 중합 후 얻어진 비드의 평균입자경은 180마이크로미터이었다.Step (C): A process of performing suspension polymerization of the dispersion system obtained in step (B), adding 0.3 parts of dodecyl mercaptan and 0.15 parts of azobisisobutyronitrile to the solution in step (B) to add a mixed solution at 80 ° C. After the polymerization was carried out, polymerization was performed for 120 minutes to complete suspension polymerization. The average particle diameter of the beads obtained after polymerization was 180 micrometers.

(실시예 2)(Example 2)

본 실시예는 아크릴 유화 라텍스 중합체 25중량%를 포함하는 PMMA계 수지의 제조에 관한 것으로 (B)단계에서 라텍스 고형분 입자가 메틸(메타)아크릴레이트 단량체 대비 25중량%가 되도록 가하는 것을 제외하고는 실시예 1과 동일한 과정으로 내충격성 PMMA계 수지 조성물을 제조하였다.This embodiment relates to the production of PMMA-based resin comprising 25% by weight of the acrylic emulsified latex polymer, except that in step (B) the latex solid particles are added to 25% by weight relative to the methyl (meth) acrylate monomer. Impact-resistant PMMA-based resin composition was prepared in the same manner as in Example 1.

(비교예 1) (Comparative Example 1)

상기 실시예 1과 동일한 방법으로 내충격성 PMMA계 수지를 제조하되, (B)단계에서 5% 아세트산칼슘 수용액을 전체 현탁 용액대비 5중량%를 가한다.An impact-resistant PMMA-based resin was prepared in the same manner as in Example 1, but in step (B), 5% by weight of 5% calcium acetate aqueous solution was added to the total suspension solution.

(비교예 2)(Comparative Example 2)

상기 실시예 1과 동일한 방법으로 (A)단계의 아크릴 라텍스 입자를 제조하되, 이와 같이 얻어진 라텍스를 70~90℃로 예열된 1% 마그네슘설페이트 용액 700g에 서서히 가하면서 강하게 교반함으로써 분말형태의 고체를 얻었다. 이 분말을 여과하여 70℃의 증류수로 닦아주는 동일과정을 3~4회 반복 후 80℃ 진공오븐에서 24시간 동안 건조하여 충격보강제 분말을 수득하였다. 그 후 메틸메타크릴레이트 92.4중량%, 메틸아크릴레이트 7.6중량%, 도데실메르캅탄 0.3부, 아조비스이소부티로니트릴 0.15부를 혼합한 용액을 현탁중합하여 얻은 아크릴 비드 89중량%와 상기 응고 및 건조 과정을 통해 얻은 충격보강제 11%를 압출 가공하여 내충격성 PMMA계 수지 조성물을 제조하였다.The acrylic latex particles of step (A) were prepared in the same manner as in Example 1, except that the latex thus obtained was slowly added to 700 g of a 1% magnesium sulfate solution preheated at 70 to 90 ° C., followed by vigorous stirring to obtain a solid in powder form. Got it. This powder was filtered and wiped with distilled water at 70 ° C. for 3 to 4 times, followed by drying in a vacuum oven at 80 ° C. for 24 hours to obtain an impact modifier powder. Then, 89% by weight of the acrylic beads obtained by suspension polymerization of a solution of 92.4% by weight of methyl methacrylate, 7.6% by weight of methyl acrylate, 0.3 part of dodecyl mercaptan and 0.15 part of azobisisobutyronitrile and the solidification and drying The impact modifier 11% obtained through the process was extruded to prepare an impact-resistant PMMA resin composition.

(비교예 3)(Comparative Example 3)

상기 비교예 2와 동일한 방법으로 내충격성 PMMA계 수지 조성물을 제조하되, 다만 현탁 중합을 통해 얻은 아크릴 비드 75중량%와 응고 및 건조 과정을 통해 얻은 충격보강제 25%를 압출 가공하였다.The impact-resistant PMMA-based resin composition was prepared in the same manner as in Comparative Example 2, except that 75% by weight of the acrylic beads obtained through suspension polymerization and 25% of the impact modifier obtained through the solidification and drying processes were extruded.

기본물성시험을 평가하기 위한 샘플은 사출성형기(LG전선, 170톤)를 이용하여 사출물을 제조하였다. 사출물은 물성 평가를 위하여 상온에서 48시간 체류 후에 측정하였으며, 그 결과를 다음 표 1에 나타내었다.Samples for evaluating basic physical properties were prepared by injection molding machine (LG wire, 170 tons). The injection molded product was measured after a 48-hour stay at room temperature for physical properties evaluation, and the results are shown in Table 1 below.

[표 1]TABLE 1

Figure 112007089596716-PAT00001
Figure 112007089596716-PAT00001

상기 표 1의 결과로부터, 소량의 유기산염을 사용하여 유화 라텍스를 불포화 현탁 단량체로 이동시켜 중합함으로써 실시예 1~2의 폴리메틸메타크릴레이트 수지는 열변형 온도와 경도의 큰 손실없이 충격강도가 향상되었음을 알 수 있다. 또한 광학특성에 있어서도 광투과율이 높을 뿐만 아니라 탁도, 황색지수도 낮아 투명성과 내충격성을 동시에 만족시킴을 알 수 있다.From the results of Table 1, the polymethyl methacrylate resins of Examples 1 to 2 were polymerized by transferring the emulsion latex to an unsaturated suspension monomer using a small amount of organic acid salts, without impacting the heat deformation temperature and hardness. It can be seen that the improvement. In addition, it can be seen that not only the light transmittance is high, but also the turbidity and yellowness index are also low in optical properties, thereby satisfying both transparency and impact resistance.

Claims (11)

(A) 음이온계 유화제를 사용하여 유화중합하여 라텍스 충격보강제를 수득하는 단계; (B) 상기 불포화단량체에 상기 충격보강제의 혼합물에 응집제를 이용하여 응집된 충격보강제를 불포화단량체 상으로 이동시키는 단계; (C) 상기의 응집된 충격보강제가 분산된 불포화 단량체 상을 중합하여 얻어지는 내충격성 투명 폴리메틸메타크릴레이트계 수지 조성물의 제조방법.(A) emulsion polymerization using an anionic emulsifier to obtain a latex impact modifier; (B) transferring the aggregated impact modifier onto the unsaturated monomer by using a flocculant in the mixture of the impact modifier to the unsaturated monomer; (C) A method for producing an impact-resistant transparent polymethylmethacrylate resin composition obtained by polymerizing an unsaturated monomer phase in which the aggregated impact modifier is dispersed. 제 1항에 있어서,The method of claim 1, 상기 충격보강제가 폴리메틸메타크릴레이트계 수지에 1~40중량% 함유되는 내충격성 투명 폴리메틸메타크릴레이트계 수지 조성물의 제조방법.A method for producing an impact resistant transparent polymethyl methacrylate resin composition, wherein the impact modifier is contained in 1 to 40% by weight of the polymethyl methacrylate resin. 제 1 또는 2항에 있어서,The method according to claim 1 or 2, 상기 음이온계 유화제는 알칼리성 알킬인산염 또는 알킬설페이트염에서 선택되는 내충격성 투명 폴리메틸메타크릴레이트계 수지 제조방법.The anionic emulsifier is an impact resistant transparent polymethyl methacrylate resin production method selected from alkaline alkyl phosphate or alkyl sulfate salt. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 응집제는 유기산염을 사용하는 내충격성 투명 폴리메틸메타크릴레이트계 수지의 제조방법.The flocculant is a method of producing an impact-resistant transparent polymethyl methacrylate resin using an organic acid salt. 제 4항에 있어서,The method of claim 4, wherein 상기 유기산염은 전체 불포화단량체 상을 함유하는 전체의 현탁중합용액 대비 0.01~2.8중량% 첨가되는 것을 특징으로 하는 내충격성 투명 폴리메틸메타크릴레이트계 수지의 제조방법.The organic acid salt is a method of producing a shock-resistant transparent polymethyl methacrylate resin, characterized in that the addition of 0.01 to 2.8% by weight relative to the total suspension polymerization solution containing the entire unsaturated monomer phase. 제 1항에 있어서,The method of claim 1, 상기 충격보강제는 유리전이온도가 0℃ 보다 적은 고무상 입자를 제조한 후, 유리전이온도가 20℃이상의 아크릴계를 그라프트 중합하여 제조하는 내충격성 투명 폴리메틸메타크릴레이트 수지의 제조방법.The impact modifier is a method of producing a shock-resistant transparent polymethyl methacrylate resin prepared by producing a rubber-like particles having a glass transition temperature of less than 0 ℃, graft polymerization of an acrylic system having a glass transition temperature of 20 ℃ or more. 제 6항에 있어서,The method of claim 6, 상기 고무상 입자는 유리전이 온도가 20℃ 이상인 가교 글래스상 중합체 입자를 제조한 후 그라프트 되는 내충격성 투명 폴리메틸메타크릴레이트 수지의 제조방법.The rubber-like particle is a method of producing a shock-resistant transparent polymethyl methacrylate resin is grafted after producing a cross-linked glass polymer particles having a glass transition temperature of 20 ℃ or more. 제 7항에 있어서,The method of claim 7, wherein 상기 가교글래스 상 중합체 입자는 아크릴계 불포화단량체, 유화제, 가교제, 그라프트제를 투입하여 제조되는 평균입자가 60~180nm의 가교 글래스상 중합입자인 내충격성 투명 폴리메틸메타크릴레이트 수지의 제조방법.The crosslinked glass phase polymer particle is a method for producing an impact resistant transparent polymethyl methacrylate resin wherein the average particle is prepared by adding an acrylic unsaturated monomer, an emulsifier, a crosslinking agent, and a graft agent. 제 6항에 있어서,The method of claim 6, 상기 고무상 중합체는 전체 충격보강제 중량에 대하여 40~90중량%로서 두께가 10~150nm인 내충격성 투명 폴리메틸메타크릴레이트 수지의 제조방법.The rubber polymer is a method of producing a shock-resistant transparent polymethyl methacrylate resin having a thickness of 10 to 150nm 40 to 90% by weight based on the total impact modifier weight. 제 1항에 있어서,The method of claim 1, 상기 음이온계 유화제는 탄소수 4~30개 정도의 알칼리성 알킬인산염, 나트륨 도데실설페이트, 나트륨 도데실벤젠설페이트에서 선택되는 알킬설페이트염으로서, 전체 조성물에 대하여 0.2~4중량%인 내충격성 투명 폴리메틸메타크릴레이트 수지의 제조방법.The anionic emulsifier is an alkyl sulfate salt selected from alkaline alkyl phosphates having 4 to 30 carbon atoms, sodium dodecyl sulfate and sodium dodecylbenzene sulfate, and is 0.2 to 4% by weight of the impact resistant transparent polymethyl meta based on the total composition. Method for producing acrylate resin. 제 1항에 있어서,The method of claim 1, 상기 (B)단계에서, 불포화단량체 : 라텍스 고형질 입자가 93~75:7~25중량비로 혼합되는 내충격성 투명 폴리메틸메타크릴레이트 수지의 제조방법.In the step (B), unsaturated monomer: latex solid particles of 93 to 75: 7 to 25 in a weight ratio of the production method of impact-resistant transparent polymethyl methacrylate resin.
KR1020070129712A 2007-12-13 2007-12-13 Composition of Acrylic polymer with impact resistance using emulsion latex KR100956392B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070129712A KR100956392B1 (en) 2007-12-13 2007-12-13 Composition of Acrylic polymer with impact resistance using emulsion latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070129712A KR100956392B1 (en) 2007-12-13 2007-12-13 Composition of Acrylic polymer with impact resistance using emulsion latex

Publications (2)

Publication Number Publication Date
KR20090062454A true KR20090062454A (en) 2009-06-17
KR100956392B1 KR100956392B1 (en) 2010-05-07

Family

ID=40991702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070129712A KR100956392B1 (en) 2007-12-13 2007-12-13 Composition of Acrylic polymer with impact resistance using emulsion latex

Country Status (1)

Country Link
KR (1) KR100956392B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132869A2 (en) * 2010-04-19 2011-10-27 한국화학연구원 Suspension polymerization method of methacrylic resin using alkali-soluble polymer emulsion as dispersion stabilizer
KR101123400B1 (en) * 2009-12-17 2012-03-23 엘지엠엠에이 주식회사 Method for high flow impact modified PMMA resin
KR102498071B1 (en) 2022-07-11 2023-02-10 주식회사 엘엑스엠엠에이 High heat-resistance unpainted polymethyl methacrylate compound resin for car exterior parts
KR102498072B1 (en) 2022-09-05 2023-02-10 주식회사 엘엑스엠엠에이 Resin composition for unpainted automobile exterior and molded article including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101579719B1 (en) * 2014-09-22 2015-12-23 주식회사 에스폴리텍 Multi-layered acryl plate having good insulation and impact strength

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3865499B2 (en) * 1998-03-31 2007-01-10 三菱レイヨン株式会社 Method for producing methacrylate resin plate with excellent impact resistance
KR100696081B1 (en) 2000-05-01 2007-03-16 주식회사 코오롱 Impact modifier for transparent acrylic resin
JP2007284465A (en) 2006-04-12 2007-11-01 Mitsubishi Rayon Co Ltd Method for producing methacrylic resin molded product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123400B1 (en) * 2009-12-17 2012-03-23 엘지엠엠에이 주식회사 Method for high flow impact modified PMMA resin
WO2011132869A2 (en) * 2010-04-19 2011-10-27 한국화학연구원 Suspension polymerization method of methacrylic resin using alkali-soluble polymer emulsion as dispersion stabilizer
WO2011132869A3 (en) * 2010-04-19 2012-03-08 한국화학연구원 Suspension polymerization method of methacrylic resin using alkali-soluble polymer emulsion as dispersion stabilizer
KR102498071B1 (en) 2022-07-11 2023-02-10 주식회사 엘엑스엠엠에이 High heat-resistance unpainted polymethyl methacrylate compound resin for car exterior parts
KR102498072B1 (en) 2022-09-05 2023-02-10 주식회사 엘엑스엠엠에이 Resin composition for unpainted automobile exterior and molded article including same

Also Published As

Publication number Publication date
KR100956392B1 (en) 2010-05-07

Similar Documents

Publication Publication Date Title
KR101101092B1 (en) A mehtod for preparing graft copolymer for impact strength modifiers, an impact strength modifiers, and methacryl resin composition containing the same
KR101429801B1 (en) Impact modifier for polymethylmetacrylate resin having excellent impact strength and transparency and method of preparing the same
JPH04226558A (en) Transparent impact resistant plastic
TWI603987B (en) Pmma modified for impact resistance with improved optical properties
KR100956392B1 (en) Composition of Acrylic polymer with impact resistance using emulsion latex
KR101288280B1 (en) Transparent acrylic resin composition having Multi-layer structure and the manufacturing method thereof
KR101061874B1 (en) Manufacturing method of transparent acrylic resin with excellent impact resistance
KR101537843B1 (en) Acrylate based impact modifier and environment-friendly polylactic acid resin composition comprising thereof
US6602933B2 (en) In-situ co-polymerization process for preparing in-organic filler-reinforced polymer-matrix composites
US8450395B2 (en) Resin having superior impact strength and color, and method for preparing the same
KR101219276B1 (en) Acrylic laminate films and method for fabricating the same
JP2014533764A (en) Acrylic laminate film excellent in weather resistance and moldability and method for producing the same
KR100564816B1 (en) Method of Preparing ABS Resin Composition with Good Heat Resistance, Transparence and Natural Color
KR100996822B1 (en) Method for Acrylic polymer with impact resistance using emulsion latex
KR100423873B1 (en) A process for preparing transparent thermoplastic resin composition
KR101123400B1 (en) Method for high flow impact modified PMMA resin
KR100989813B1 (en) Acrylic polymer with improved impact resistance and transparency using emulsion latex and Method thereof
KR101082777B1 (en) Method for Acrylic polymer with impact resistance using emulsion latex
KR100558675B1 (en) Manufacturing method of impact modifier for transparent acrylic resin
KR102034597B1 (en) Resin composition for automobile glazing
KR101181674B1 (en) Method for making uniformly particle sized Acrylic polymer with impact resistance using emulsion latex
KR20140082134A (en) Transparent thermoplastic resin composition and method for preparing them
KR102173493B1 (en) Transparent thermoplastic resin composition and method for preparing the same
KR101717442B1 (en) Cross-linked methacrylate copolymer for polycarbonate, polycarbonate composition
CN116368192A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160428

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190410

Year of fee payment: 10