KR20090056021A - Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of nox - Google Patents

Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of nox Download PDF

Info

Publication number
KR20090056021A
KR20090056021A KR1020070122959A KR20070122959A KR20090056021A KR 20090056021 A KR20090056021 A KR 20090056021A KR 1020070122959 A KR1020070122959 A KR 1020070122959A KR 20070122959 A KR20070122959 A KR 20070122959A KR 20090056021 A KR20090056021 A KR 20090056021A
Authority
KR
South Korea
Prior art keywords
hap
silver
catalyst
nox
solution
Prior art date
Application number
KR1020070122959A
Other languages
Korean (ko)
Other versions
KR101036104B1 (en
Inventor
하헌필
심재혁
홍성호
이준엽
홍석주
조성필
신창훈
Original Assignee
한국전력기술 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력기술 주식회사 filed Critical 한국전력기술 주식회사
Priority to KR1020070122959A priority Critical patent/KR101036104B1/en
Publication of KR20090056021A publication Critical patent/KR20090056021A/en
Application granted granted Critical
Publication of KR101036104B1 publication Critical patent/KR101036104B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

A method of preparing a silver-containing hydroxyapatite catalyst is provided to manufacture a selective catalytic of high efficiency and to control the amount of added silver conveniently. A method of preparing a silver-containing hydroxyapatite catalyst comprise a step for synthesizing HAp(Ca10(PO4)6(OH)2) by reacting a Ca(NO3)2 solution and (NH4)2HPO4, and a step for drying and heating filtered precipitates after precipitating a material by mixing the Ca(NO3)2 solution and the (NH4)2HPO4. A step for precipitating the material includes a drying and heat-treatment process of a compound with an AgNO3 solution.

Description

은이 함유된 수산화아파타이트 선택적 환원 탈질촉매{Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx}Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx

본 발명은 수산화아파타이트에 은이 첨가된 촉매를 만드는 방법에 관한 것으로, 보다 상세하게는 프로펜(propene)을 환원제로 사용하고, 수산화아파타이트(Hydroxyapatite, Ca10(PO4)6(OH)2, 이하 HAp)를 선택적 환원 촉매의 담체로 사용하며 촉매활성물질로 은(Ag)을 첨가하여 촉매를 제조하는 방법에 관한 것이다.The present invention relates to a method of making a catalyst in which silver is added to apatite hydroxide, and more particularly, using propene as a reducing agent, and apatite hydroxide (Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , or less). The present invention relates to a method for preparing a catalyst by using HAp) as a carrier for a selective reduction catalyst and adding silver (Ag) as a catalytically active material.

질소산화물 (NOx)에 의한 대기오염은 가장 심각한 환경문제 중의 하나이다. 이러한 NOx 처리 방법으로 현재까지 SCR(Selective Catalytic Reduction)이 가장 효과적인 것으로 알려져 있다. SCR은 배출되는 NOx를 촉매상에서 환원제에 의하여 무해한 N2와 H2O로 전환하는 공정이다. 대기환경의 주된 오염원인 질소산화물은 고정원으로부터의 배출일 경우 암모나아를 환원제로 하여 선택적으로 환원시키는 SCR(selective catalytic reduction) 촉매를 사용하는 방법이 주종을 이루고 있으나, 암모니아의 저장 및 미반응 암모니아의 유출 등의 문제와 300~400℃로 한정된 작동온도 범위 및 황 등에 의한 피독성 등의 문제점이 존재한다. 한편 자동차와 같 은 이동원이나도시 내부에 있는 탈질설비의 촉매로는 암모니아의 저장 및 사용과정의 위험 및 기피요인으로 인하여 탄화수소계 환원제를 사용하려는 연구가 많이 진행되어져 왔다.Air pollution by nitrogen oxides (NOx) is one of the most serious environmental problems. Selective Catalytic Reduction (SCR) is known to be the most effective method for treating NOx. SCR is a process of converting the discharged NOx into harmless N 2 and H 2 O by a reducing agent on a catalyst. Nitrogen oxides, which are the main pollutants in the air environment, are mainly used to use SCR (selective catalytic reduction) catalysts that selectively reduce ammonia as a reducing agent when it is discharged from a fixed source. Problems such as the leakage of and the operating temperature range limited to 300 ~ 400 ℃ and toxicity such as sulfur exists. On the other hand, as a catalyst for a denitrification facility in a mobile source such as a car or in a city, there have been many studies to use a hydrocarbon-based reducing agent due to the risks and avoidance factors of ammonia storage and use.

종래 한국특허 제0486069호에서는 알코올류를 환원제로 사용하여 액화 천연가스를 연료로 하는 고정배출원에서 배출되는 질소산화물 및 일산화탄소를 저감하기 위한 배기가스 정화용 촉매에 대하여 개시하고 있으며, 한국특허 제0392875호에서는 에탄올을 환원제로 사용하는 촉매에 대하여 개시하고 있다. Conventional Korean Patent No. 0486069 discloses an exhaust gas purification catalyst for reducing nitrogen oxides and carbon monoxide emitted from a fixed emission source using liquefied natural gas as a fuel using alcohols as a reducing agent, and in Korean Patent No. 0392875 A catalyst using ethanol as a reducing agent is disclosed.

한편 메탄을 이용한 촉매와 관련하여 일본 공개특허 제1992-358524호는 Zirconate(XZO3)를 촉매로 사용하고, 메탄과 같은 탄화수소(Hydrocarbon)을 환원제로 사용하고 있으며, 일본 공개특허 제2004-223381호에서는 메탄을 환원제로 사용하고, 정방정계 황산염 그룹 담지 지르코니아(tetragonal sulfate-group-carrying zirconia)와 단사정계 황산염 그룹 담지 지르코니아(monoclinic sulfate-group carrying zirconia)가 혼합된 담체를 포함하는 촉매를 개시하고 있다. On the other hand, in relation to the catalyst using methane, Japanese Laid-Open Patent No. 1992-358524 uses Zirconate (XZO3) as a catalyst, and hydrocarbon such as methane is used as a reducing agent. Disclosed is a catalyst including a carrier using methane as a reducing agent and a mixture of tetragonal sulfate-group-carrying zirconia and monoclinic sulfate-group carrying zirconia.

이와 같이 탄화수소계 탈질환원촉매의 담체로는 알루미나 지르코니아 제올라이트 타이타니아 등이 담체로 사용되어져 왔다. 그러나 이러한 담체들을 수분환경이나 고온환경에서 사용할 경우 고유특성을 발휘하지 못하는 문제점들이 있다. 본 발명에서는 수분에 잘 견디고 열적안정성이 뛰어난 HAp를 탄화수소계 탈질환원촉매의 담체로 적용하고자 하였다. HAp는 침전법, 고체반응법, 수열법, sol-gel법 등에 의해 합성이 가능하다. As a carrier of the hydrocarbon-based denitrification catalyst, alumina zirconia zeolite titania or the like has been used as a carrier. However, there are problems in that these carriers do not exhibit inherent properties when used in a moisture or high temperature environment. In the present invention, HAp, which resists moisture well and has excellent thermal stability, is intended to be applied as a carrier for hydrocarbon denitrification catalysts. HAp can be synthesized by precipitation method, solid reaction method, hydrothermal method, sol-gel method and the like.

상기와 같은 종래 기술의 문제점을 해결하고자 안출된 본 발명의 목적은 HAp를 먼저 미리 합성한 후 일정량의 은을 첨가하는 두 단계로 반응을 시킴으로써 첨가되는 은의 양 조절이 쉬우며, 높은 효율의 선택적 환원촉매를 제조하는 방법을 제공하는 데 있다.An object of the present invention devised to solve the problems of the prior art as described above is to easily adjust the amount of silver added by reacting in two steps to add a predetermined amount of silver after pre-synthesizing HAp, high efficiency selective reduction It is to provide a method for producing a catalyst.

상기와 같은 본 발명의 목적은 Ca(NO3)2와 (NH4)2HPO4를 반응시켜 HAp ( Ca10(PO4)6(OH)2)를 합성하는 단계 및 상기 HAp와 AgNO3를 다시 반응시키는 단계로 이루어진 Ag/HAp 촉매의 2단계 제조방법에 의하여 달성될 수 있다. 이와 같은 2단계반응은 1단계 반응을 통하여 생성된 HAp에 은을 첨가함으로써 촉매 안에 Ag2O를 고르게 퍼뜨리게 하여 촉매의 활성을 높이기 위함이다.An object of the present invention as described above is a step of synthesizing HAp (Ca 10 (PO 4 ) 6 (OH) 2 ) by reacting Ca (NO 3 ) 2 and (NH 4 ) 2 HPO 4 And the HAp and AgNO 3 It can be achieved by a two-step production method of Ag / HAp catalyst consisting of the step of reacting again. This two-step reaction is to increase the activity of the catalyst by evenly spreading Ag 2 O in the catalyst by adding silver to the HAp produced through the one-step reaction.

본 발명은 HAp에 일정량의 은을 첨가함으로써, 촉매의 활성이 높은 선택적 환원촉매를 제조하는 방법을 제공한다.The present invention provides a method for producing a selective reduction catalyst having high catalytic activity by adding a certain amount of silver to HAp.

이와 같은 본 발명에 따른 촉매의 제조방법에 따르면 종래 암모니아를 환원제로 하는 SCR 설비를 본 기술에 의하여 대체할 수 있고, 이로 인하여 위험물로 취급되는 암모니아의 사용을 배제할 수 있다.According to the method for preparing a catalyst according to the present invention, the conventional SCR facility using ammonia as a reducing agent can be replaced by the present technology, and thus it is possible to exclude the use of ammonia which is treated as a dangerous substance.

따라서 도심지에서 배출되는 질소산화물을 제거할 수 있는 설비에 장착이 가능하고, 또한, 자동차의 연료의 일부를 환원제로 사용함으로써 자동차에서 배출되 는 NOx가 효과적으로 제거할 수 있다.Therefore, it is possible to install in a facility that can remove the nitrogen oxides emitted from the city, and also, by using a portion of the fuel of the vehicle as a reducing agent can effectively remove the NOx emitted from the vehicle.

상기 목적을 달성하기 위한 본 발명은 프로펜을 환원제로 하는 탈질촉매의 제조방법에 관한 것으로서, 구체적으로 본 발명은 Ca(NO3)2와 (NH4)2HPO4를 반응시켜 HAp를 합성하는 단계 및 상기 HAp와 AgNO3를 다시 반응시키는 단계의 2단계로 이루어진 Ag/HAp 제조방법을 제공한다.The present invention for achieving the above object relates to a method for producing a denitration catalyst using a propene as a reducing agent, specifically the present invention is to synthesize HAp by reacting Ca (NO 3 ) 2 and (NH 4 ) 2 HPO 4 It provides a Ag / HAp manufacturing method consisting of two steps of the step and the step of reacting the HAp and AgNO 3 again.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 Ca(NO3)2 용액과 (NH4)2HPO4 용액을 혼합하여 침전시킨 후 열처리하여 HAp를 합성하는 단계(단계 1) 및 단계 1의 생성물에 AgNO3를 일정 무게비로 혼합한 후 일정한 온도에서 다시 열처리하는 단계 (단계 2)로 이루어진 Ag/HAp 제조방법을 포함한다.The present invention provides Ca (NO 3 ) 2 solution and (NH 4 ) 2 HPO 4 Ag / HAp preparation consisting of a step of synthesizing HAp by mixing the solution and then heat treatment to synthesize the HAp (step 1) and a step of mixing AgNO 3 in a certain weight ratio to the product of step 1 and then heat treatment again at a constant temperature (step 2) It includes a method.

상기 단계 1은 HAp 합성 단계로, Ca(NO3)2 용액과 미리 NH4OH 용액을 이용해 pH를 11로 맞춰놓은 (NH4)2HPO4 용액을 혼합용액의 pH가 11이 될 때까지 천천히 혼합한 후 침전을 시킨 다음 pH가 다시 7이 될 때까지 증류수로 씻어내어 거른 다음 오븐에서 건조하고, 600℃에서 5시간 동안 열처리한다. 상기 단계는 HAp를 합성하는 단계이다.Step 1 is a step of synthesizing HAp, using a Ca (NO 3 ) 2 solution and NH 4 OH solution to adjust the pH to 11 (NH 4 ) 2 HPO 4 solution until the pH of the mixed solution is 11 After mixing, the precipitate is precipitated, washed with distilled water until the pH is 7 again, filtered, dried in an oven, and heat-treated at 600 ° C. for 5 hours. This step is to synthesize HAp.

상기 단계 2는 상기 단계 1의 생성물에 AgNO3를 일정 무게비(0.5, 1.0, 1.5, 2.0, 4.0)로 첨가하여 다시 열처리하는 과정으로 생성물은 Ag/HAp이다. 상기 단계 2는 단계 1에서 얻은 생성물에 AgNO3 용액을 넣어 1시간 동안 섞은 후에 증발시킨 후, 오븐에서 건조시킨 다음, 다시 600℃에서 5시간 동안 열처리한다. 단계 2에서는 HAp에 넣어주는 은의 함량을 달리하여 촉매의 NOx 변환률 등 촉매의 효율을 조절하는 단계이다. In step 2, AgNO 3 is added to the product of step 1 in a predetermined weight ratio (0.5, 1.0, 1.5, 2.0, 4.0), and heat-treated again. The product is Ag / HAp. In step 2, AgNO 3 solution was added to the product obtained in step 1, mixed for 1 hour, evaporated, dried in an oven, and then heat-treated at 600 ° C. for 5 hours. Step 2 is to adjust the efficiency of the catalyst, such as the NOx conversion rate of the catalyst by varying the amount of silver added to HAp.

도 1의 X-선회절도에서 보면 HAp에 넣어준 은의 함유량이 많은 경우는, 적은 경우(0.5~1.0 wt%)에서는 보이지 않던 Ag2O의 피크가 보인다. 촉매의 은 함유량과 BET-SA(surface area)는 하기 표 1에 정리하였다. 표면적은 은이 들어가지 않은 HAp에서 제일 높은 수치를 보였으며, 은 함유량이 많아질수록 줄어들었다. In the X-ray diffraction diagram of FIG. 1, when the content of silver in HAp is high, the peak of Ag 2 O that is not seen in the small case (0.5 to 1.0 wt%) is seen. The silver content and BET-SA (surface area) of the catalyst are summarized in Table 1 below. The surface area was highest in the silver-free HAp and decreased as the silver content increased.

CatalystCatalyst Wt% of Ag (ICP)Wt% of Ag (ICP) BET-SA (m2/g) BET-SA (m 2 / g) HApHAp 0.000.00 5757 0.5 wt% Ag/HAp0.5 wt% Ag / HAp 0.470.47 5050 1.0 wt% Ag/HAp1.0 wt% Ag / HAp 0.950.95 4646 1.5 wt% Ag/HAp1.5 wt% Ag / HAp 1.551.55 4343 2.0 wt% Ag/HAp2.0 wt% Ag / HAp 1.911.91 4141 4.0 wt% Ag/HAp4.0 wt% Ag / HAp 3.963.96 4040

도 2는 HAp와 은이 1.5 wt%가 함유된 HAp의 X선 광전자 분광 분석(XPS:X-ray Photoelectron Spectroscopy) 결과이다. 도 2의 (a)에서 보면 수산화물과 인화물의 O 1s의 결합에너지는 각각 531.91 eV, 530.79 eV이다. 도 2의 (b)에서 보이는 바와 같이 은이 함유된 HAp 촉매의 경우 529.27 eV에 은산화물(Ag2O) 피크가 하나 더 있는데, 이는 HAp에 은이 퍼져있음을 확인해 준다. FIG. 2 shows X-ray photoelectron spectroscopy (XPS) of HAp and HAp containing 1.5 wt% of silver. In FIG. 2A, the binding energies of the O 1s of the hydroxide and the phosphide are 531.91 eV and 530.79 eV, respectively. As shown in (b) of FIG. 2, the silver-containing HAp catalyst has one more silver oxide (Ag 2 O) peak at 529.27 eV, which confirms that silver is dispersed in HAp.

일반적으로 Ag 3d의 XPS 결과 368.3과 367.8 eV의 두 군데에서 피크를 보이는데(도 3), 이는 각각 은 금속(Ag)과 은 산화물(Ag2O) 피크에 해당된다. 이 두 피크로부터 은 금속과 은 산화물의 비율을 비교할 수 있다.In general, the XPS of Ag 3d shows peaks at two places of 368.3 and 367.8 eV (FIG. 3), which corresponds to silver metal (Ag) and silver oxide (Ag 2 O) peaks, respectively. From these two peaks, the ratio of silver metal and silver oxide can be compared.

모든 촉매들은 실온에서부터 600℃까지 NH3-TPD로 산도(acidity) 측정을 하였는데(표 2), Tmax는 HAp안에 넣어준 은의 함유량이 증가할수록 감소하였으며, 총 산도 또한 은의 양이 증가할수록 감소하였다. All catalysts were measured for acidity with NH3-TPD from room temperature to 600 ° C (Table 2). Tmax decreased with increasing silver content in HAp, and total acidity decreased with increasing silver content.

CatalystCatalyst H2 Uptake (μmol/g)H 2 Uptake (μmol / g) Tmax (°C)Tmax (° C) NH3 desorbed (μmol/g)NH 3 desorbed (μmol / g) Tmax (°C)Tmax (° C) HydroxyapatiteHydroxyapatite 0.00.0 -- 55.455.4 126126 0.5 wt% Ag/HAp0.5 wt% Ag / HAp 10.510.5 210.5210.5 48.248.2 110110 1.0 wt% Ag/HAp1.0 wt% Ag / HAp 38.438.4 203.6203.6 44.744.7 9494 1.5 wt% Ag/HAp1.5 wt% Ag / HAp 48.248.2 179.5179.5 39.639.6 9494 2.0 wt% Ag/HAp2.0 wt% Ag / HAp 37.537.5 182.6182.6 30.830.8 9191 4.0 wt% Ag/HAp4.0 wt% Ag / HAp 35.235.2 167.7167.7 29.529.5 100100

도 4는 H2-TPR 결과로서, HAp에 대한 환원피크는 보이지 않았다. 다만 은이 함유된 촉매에서는 전 영역에서 하나의 피크가 보였는데 그것은 은 산화물에 의한 환원 때문이다. 또한 그 피크의 위치(Tmax)가 은 함유량이 많아질수록 낮은 온도 쪽으로 이동하였는데, 이것은 은이 더 많이 들어가면서 Ag2O 클러스터의 사이즈가 증가하였기 때문으로 보인다. 이들 중에 1.5 wt% Ag/HAp에서 피크가 가장 높았으며, 환원 피크가 넓었는데, 이는 은이 더 들어감에 따라서 많은 양의 작은 Ag2O 클러스터가 잘 퍼져있다는 것을 보여준다. 1.5 wt%보다 많은 양의 은을 넣어준 촉매의 경우, Ag2O의 일부가 수소와 반응하여 은 금속이 되기 때문에, 은 산화물(Ag2O)과 은 금속(Ag) 중에 은 금속의 비율이 더 높게 되어, 오히려 4 wt% Ag/Hap에서의 은 산화물 양이 더 적게 된다. 결국 1.5 wt% 촉매가 NOx 변환률이 가장 높은 결과로부터, activity는 작은 Ag2O 클러스터의 양과 퍼지는 정도의 영향을 받는다고 할 수있다.4 shows the reduction peak for HAp as a result of H2-TPR. However, the silver-containing catalyst showed one peak in all regions due to the reduction by silver oxide. In addition, the position of the peak (Tmax) was moved toward the lower temperature as the content of silver increased, which may be because the size of the Ag 2 O cluster increased as more silver entered. Among them, the peak at 1.5 wt% Ag / HAp was the highest and the reduction peak was wide, indicating that a large amount of small Ag 2 O clusters spread well as silver entered. In the case of a catalyst containing more than 1.5 wt% of silver, the ratio of silver metal in silver oxide (Ag 2 O) and silver metal (Ag) is increased because part of Ag 2 O reacts with hydrogen to become a silver metal. Higher, rather less silver oxide at 4 wt% Ag / Hap. Eventually, the 1.5 wt% catalyst has the highest NOx conversion rate, indicating that the activity is affected by the amount of small Ag 2 O clusters and the extent of their spread.

도 5와 도 6은 Ag함량에 따른 NOx 제거 효율을 나타내고 있다. 상기 도면에서 알 수 있는 바와 같이, HAp는 NOx 환원에 대해 효율이 낮은 것을 볼 수 있으며, 1.5 wt% Ag/HAp는 NOx에서 N2로의 변환률이 은이 1 wt% 나 2 wt% 들어간 촉매에 비해 월등히 높으며, 최대 NOx 변환률이 375℃에서 70% 가량인 것을 볼 수 있는데, 이 또한 은 산화물(Ag2O)이 고르게 퍼져있기 때문으로 보인다. 낮은 온도에서 4 wt% 은이 함유된 HAp의 변환률이 낮은 것은 큰 크기의 Ag2O가 존재하기 때문이며, NOx에서 N2로의 변환률 또한 매우 낮았는데 이것은 아마도 큰 은 금속(Ag) 입자가 존재하기 때문으로 판단되며(XRD와 XPS 결과), 상기 은 금속은 NOx를 비선택적으로 환원하게 하며, 환원제(프로필렌)를 직접 CO2로 분해되게 만드는 것이다. 즉, 정상적인 반응에서는 NO가 프로필렌과 반응하여 N2로 가야하는데, 큰 입자크기의 은 금속이 있는 경우에는 그렇게 되지 못하고 NO가 N2O로 분해되게 만드는 것이다.5 and 6 show the NOx removal efficiency according to the Ag content. As can be seen in the figure, it can be seen that HAp has low efficiency for NOx reduction, and 1.5 wt% Ag / HAp has a conversion rate of NOx to N 2 compared to a catalyst containing 1 wt% or 2 wt% of silver. It is much higher, and the maximum NOx conversion is about 70% at 375 ° C, which is also due to the evenly spreading silver oxide (Ag 2 O). The low conversion rate of HAp containing 4 wt% silver at low temperatures is due to the presence of large size Ag 2 O, and also very low conversion of NOx to N 2 , presumably large silver metal (Ag) particles. It is judged to be due to (XRD and XPS results), the silver metal is to non-selectively reduce the NOx, and the reducing agent (propylene) to be directly decomposed to CO 2 . That is, in the normal reaction, NO must react with propylene to go to N 2 , but if there is a large particle size of silver metal, NO is made to decompose into N 2 O.

도 7은 촉매들의 프로필렌 변환률을 보여준다. 은이 4 wt% 함유된 HAp의 완전한 변환은 375℃에서 보이며, 0.5 wt%들어간 경우와 은이 안 들어간 촉매의 경우는 500℃에서 환원제가 완전히 변환한다. 더 큰 은 금속 입자는 은이 4 wt% 들어간 HAp의 경우처럼, 낮은 온도에서 프로필렌을 산화시켜 분해해 버린다.7 shows the propylene conversion of the catalysts. The complete conversion of HAp containing 4 wt% of silver is seen at 375 ° C., and the reducing agent is completely converted at 500 ° C. for 0.5 wt% and for catalysts without silver. Larger silver metal particles will oxidize and decompose propylene at lower temperatures, as in the case of HAp with 4 wt% silver.

위의 실험 결과들을 정리해보면, 합성된 촉매 활성을 측정한 결과 HAp에 넣어준 은의 함유량이 늘어날수록 NOx 변환률이 증가하다가 1.5 wt%에서 가장 높은 변환률을 보인 후 차차 다시 감소하였다. 은을 1.5 wt% 함유한 HAp는 약 70%의 NOx 변환률을 보였으며, 375℃에서 NOx가 N2로 가장 많이 변환하였다. 이는 촉매 안에 고르게 퍼져있는 은 산화물(Ag2O)의 양이 은 금속(Ag) 보다 많기 때문에 적절한 온도에서 가장 높은 효율을 낸 것으로 보인다.Summarizing the above experimental results, as a result of measuring the synthesized catalytic activity, the NOx conversion rate increased with increasing silver content in HAp, and then decreased again after showing the highest conversion rate at 1.5 wt%. HAp containing 1.5 wt% of silver showed NOx conversion of about 70%, and NOx was most converted to N 2 at 375 ° C. This seems to have the highest efficiency at the appropriate temperature because the amount of silver oxide (Ag 2 O) evenly spread in the catalyst is higher than the silver metal (Ag).

도 1은 은(Ag) 함유량 변화에 따른 촉매들의 X-선 회절도이다. (여기서, (a) HAp, (b) 4 wt% Ag/HAp, (c) 2 wt% Ag/HAp, (d) 1.5 wt% Ag/Hap, (e) 1 wt% Ag/HAp, (f) 0.5 wt% Ag/Hap이다)1 is an X-ray diffraction diagram of catalysts with varying silver (Ag) content. Wherein (a) HAp, (b) 4 wt% Ag / HAp, (c) 2 wt% Ag / HAp, (d) 1.5 wt% Ag / Hap, (e) 1 wt% Ag / HAp, (f 0.5 wt% Ag / Hap)

도 2는 촉매들의 XPS (O 1s) 결과이다. (여기서, (a) HAp, (b) 1.5 wt% Ag/HAp이다)2 is the XPS (O 1s) result of the catalysts. (Wherein (a) HAp, (b) 1.5 wt% Ag / HAp)

도 3은 촉매들의 XPS (Ag 3d) 결과이다. 3 is the XPS (Ag 3d) result of the catalysts.

도 4는 촉매들의 H2-TPR 결과이다. (여기서, (a) HAp, (b) 0.5 wt% Ag/HAp, (c) 1 wt% Ag/HAp, (d) 2 wt% Ag/HAp, (e) 4 wt% Ag/HAp, (f) 1.5 wt% Ag/HAp이다)4 is the H2-TPR result of the catalysts. Wherein (a) HAp, (b) 0.5 wt% Ag / HAp, (c) 1 wt% Ag / HAp, (d) 2 wt% Ag / HAp, (e) 4 wt% Ag / HAp, (f 1.5 wt% Ag / HAp)

도 5는 촉매들의 NOx 변환률을 나타낸다. (조건 : 800 ppm NOx, 800 ppm C3H6, 6 % O2, helium balance, 총 기체량 100 cc/min, 촉매 양 0.25 g)5 shows the NO x conversion of the catalysts. (Conditions: 800 ppm NOx, 800 ppm C 3 H 6 , 6% O 2 , helium balance, total gas volume 100 cc / min, catalyst volume 0.25 g)

도 6은 촉매들의 NOx → N2 변환률을 나타낸다. (조건 : 800 ppm NOx, 800 ppm C3H6, 6 % O2, helium balance, 총 기체량 100 cc/min, 촉매 양 0.25 g)6 shows the NO x → N 2 conversion of the catalysts. (Conditions: 800 ppm NOx, 800 ppm C 3 H 6 , 6% O 2 , helium balance, total gas volume 100 cc / min, catalyst volume 0.25 g)

도 7은 촉매들의 C3H6 변환률을 나타낸다. (조건 : 800 ppm NOx, 800 ppm C3H6, 6 % O2, helium balance, 총 기체량 100 cc/min, 촉매 양 0.25 g)7 shows the C 3 H 6 conversion of the catalysts. (Conditions: 800 ppm NOx, 800 ppm C 3 H 6 , 6% O 2 , helium balance, total gas volume 100 cc / min, catalyst volume 0.25 g)

Claims (5)

(a) Ca(NO3)2용액과 (NH4)2HPO4를 반응시켜 HAp (Ca10(PO4)6(OH)2)를 합성하는 단계; 및 (a) reacting Ca (NO 3 ) 2 solution with (NH 4 ) 2 HPO 4 to synthesize HAp (Ca 10 (PO 4 ) 6 (OH) 2 ); And (b) 상기 HAp에, 촉매의 총 중량을 기준으로 0.5∼4 중량%의 Ag을 첨가시키는 단계를 포함하는 것을 특징으로 하는 Ag/HAp 촉매의 제조 방법.(b) adding 0.5 to 4% by weight of Ag, based on the total weight of the catalyst, to the HAp. 제1항에 있어서, 상기 (a) 단계는, According to claim 1, wherein the step (a), (a1) 상기 Ca(NO3)2용액 및 상기 (NH4)2HPO4용액을 혼합하여 침전시키는 단계; 및 (a1) mixing and precipitating the Ca (NO 3 ) 2 solution and the (NH 4 ) 2 HPO 4 solution; And (a2) 상기 침전물을 여과한 후 건조하여 열처리하는 단계를 포함하는 것을 특징으로 하는 Ag/HAp 촉매의 제조 방법.(A2) The method for producing an Ag / HAp catalyst comprising the step of filtering and drying the precipitate and heat treatment. 제1항에 있어서, 상기 (b) 단계의 상기 Ag은 AgNO3의 형태로 첨가되는 것을 특징으로 하는 Ag/HAp 촉매의 제조 방법. The method of claim 1, wherein the Ag of step (b) is added in the form of AgNO 3 . 제3항에 있어서, 상기 (b) 단계는, The method of claim 3, wherein step (b) comprises: (b1) 상기 (a)단계의 생성물에 AgNO3 용액을 투입하고 혼합시키는 단계; 및 (b1) adding AgNO 3 solution to the product of step (a) and mixing; And (b2) 상기 혼합물을 건조 및 열처리시키는 단계를 포함하는 것을 특징으로 하는 Ag/HAp 촉매의 제조 방법. (b2) a method for producing an Ag / HAp catalyst, comprising drying and heat-treating the mixture. 제1항 내지 제4항 중 어느 하나의 항에 따른 제조방법으로 제조되며, 촉매 중에 활성성분인 Ag이 1.5 wt%함유되는 것을 특징으로 하는 환원 탈질용 Ag/HAp 촉매. The Ag / HAp catalyst for reduction and denitrification, which is prepared by the method according to any one of claims 1 to 4, wherein 1.5 wt% of Ag as an active ingredient is contained in the catalyst.
KR1020070122959A 2007-11-29 2007-11-29 Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx KR101036104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070122959A KR101036104B1 (en) 2007-11-29 2007-11-29 Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070122959A KR101036104B1 (en) 2007-11-29 2007-11-29 Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx

Publications (2)

Publication Number Publication Date
KR20090056021A true KR20090056021A (en) 2009-06-03
KR101036104B1 KR101036104B1 (en) 2011-05-19

Family

ID=40987471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070122959A KR101036104B1 (en) 2007-11-29 2007-11-29 Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx

Country Status (1)

Country Link
KR (1) KR101036104B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459790A (en) * 2011-04-08 2013-12-18 株式会社丰田中央研究所 Exhaust gas purification device, and exhaust gas purification method using same
CN104549386A (en) * 2015-01-15 2015-04-29 复旦大学 Ruthenium supported hydroxyapatite catalyst (HAP), preparation method thereof and application of ruthenium supported hydroxyapatite catalyst in N2O decomposition
CN110975897A (en) * 2019-12-24 2020-04-10 沈阳师范大学 Preparation method of high-stability supported nano-silver catalyst
CN113926846A (en) * 2021-10-14 2022-01-14 江西农业大学 Emission reduction method for greenhouse gas in heavy metal contaminated soil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3323536B2 (en) * 1992-04-28 2002-09-09 株式会社サンギ Catalyst composition for catalytic cracking of lower alcohols
JPH0655075A (en) * 1992-08-07 1994-03-01 Sangi Co Ltd Catalyst for purification of exhaust gas
KR20040051381A (en) * 2002-12-12 2004-06-18 성윤모 Sythesis of Hydroxyapatite Nanopowder
JP4800813B2 (en) 2006-03-29 2011-10-26 富士通株式会社 Photocatalytic apatite composition, method for producing the same, and article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459790A (en) * 2011-04-08 2013-12-18 株式会社丰田中央研究所 Exhaust gas purification device, and exhaust gas purification method using same
EP2696047A1 (en) * 2011-04-08 2014-02-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device, and exhaust gas purification method using same
EP2696047A4 (en) * 2011-04-08 2014-10-01 Toyota Motor Co Ltd Exhaust gas purification device, and exhaust gas purification method using same
CN103459790B (en) * 2011-04-08 2016-06-29 株式会社丰田中央研究所 The exhaust gas-cleaning method of emission-control equipment and the described emission-control equipment of use
CN104549386A (en) * 2015-01-15 2015-04-29 复旦大学 Ruthenium supported hydroxyapatite catalyst (HAP), preparation method thereof and application of ruthenium supported hydroxyapatite catalyst in N2O decomposition
CN104549386B (en) * 2015-01-15 2018-04-27 复旦大学 Hydroxyapatite carries rhodium catalyst and preparation method thereof and is decomposing N2Application in O
CN110975897A (en) * 2019-12-24 2020-04-10 沈阳师范大学 Preparation method of high-stability supported nano-silver catalyst
CN110975897B (en) * 2019-12-24 2022-10-25 沈阳师范大学 Preparation method of high-stability supported nano-silver catalyst
CN113926846A (en) * 2021-10-14 2022-01-14 江西农业大学 Emission reduction method for greenhouse gas in heavy metal contaminated soil
CN113926846B (en) * 2021-10-14 2022-06-24 江西农业大学 Heavy metal contaminated soil greenhouse gas emission reduction method

Also Published As

Publication number Publication date
KR101036104B1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP6489596B2 (en) NOx removal catalyst and method for producing the same
JP6402336B2 (en) Ammonia decomposition catalyst
EP3409360A1 (en) Hybrid binary catalysts, methods and uses thereof
EP3409359A2 (en) 4-way hybrid binary catalysts, methods and uses thereof
CN110366450A (en) The copper loaded catalyst comprising poor Ca hydroxyapatite removed for exhaust gas NOx
CN111097442B (en) Flue gas synergistic denitration and demercuration catalyst and preparation method thereof
KR101036104B1 (en) Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx
TWI555569B (en) A method for purifying exhaust gas containing metallic mercury, an oxidation catalyst for metallic mercury in exhaust gas, and a method of manufacturing the same
KR102303999B1 (en) Sulfated catalyst for selectively reducing nitric oxide and methode for fabrication thereof
KR102161131B1 (en) Antimony / titania carrier and its production method, catalyst for removal of harmful gaseous substances using the carrier, and production method thereof
KR20200009549A (en) Catalyst for selective reduction of nitric oxide and methode for fabrication thereof
KR101298667B1 (en) Apparatus for purifying exhaust gas
KR100473080B1 (en) Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores
KR20200016637A (en) Nitrogen dioxide adsorbent, the Preparation Method thereof, and the Process for Removing Nitrogen oxides Using the Same
KR102447605B1 (en) Catalyst for selective reduction of nitric oxide, methode for fabrication thereof, and uses thereof
KR102558168B1 (en) Catalyst for ammonia oxidation, and method for producing the same
KR102476863B1 (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
KR20030006598A (en) Titanium Dioxide Powder For Selective Catalytic Reduction Support For Removing NOx Compounds And Method Of Preparing Thereof
KR102660953B1 (en) Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant
WO2023203603A1 (en) Exhaust gas denitration method
KR20130106574A (en) Manganese/titania-based catalyst, method of preparing the same and method of removing nox by using the same
KR100382774B1 (en) SELECTIVE DeNOX CATALYST, CATALYST BODY AND METHOD FOR PREPARING THEREOF
Greta Galloni et al. Environmental Reactions of Air-Quality Protection on Eco-Friendly Iron-Based Catalysts
CN115646519A (en) Ceramic filter element catalyst with dust removal and denitration composite functions and preparation method thereof
KR20230085034A (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140110

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150514

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee