KR20090049638A - Micro alloyed steel and method for manufacturing crankshaft using the same - Google Patents

Micro alloyed steel and method for manufacturing crankshaft using the same Download PDF

Info

Publication number
KR20090049638A
KR20090049638A KR1020070115808A KR20070115808A KR20090049638A KR 20090049638 A KR20090049638 A KR 20090049638A KR 1020070115808 A KR1020070115808 A KR 1020070115808A KR 20070115808 A KR20070115808 A KR 20070115808A KR 20090049638 A KR20090049638 A KR 20090049638A
Authority
KR
South Korea
Prior art keywords
weight
bainite
present
crankshaft
coated steel
Prior art date
Application number
KR1020070115808A
Other languages
Korean (ko)
Inventor
김성환
고영상
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070115808A priority Critical patent/KR20090049638A/en
Publication of KR20090049638A publication Critical patent/KR20090049638A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

본 발명은 가공성 및 내구성이 우수한 베이나이트 비조질강 및 이를 이용한 크랭크샤프트 제조 방법에 관한 것으로서, 더욱 상세하게는 높은 피로강도를 확보하고 동시에 가공성을 확보할 수 있으며, 강도 및 수익성 측면에서 유리한 효과를 가져올 수 있는 가공성 및 내구성이 우수한 베이나이트 비조질강 및 이를 이용한 크랭크샤프트 제조 방법에 관한 것이다.The present invention relates to a bainite non-alloyed steel having excellent workability and durability, and a crankshaft manufacturing method using the same, and more particularly, to ensure high fatigue strength and at the same time to secure workability, and bring about advantageous effects in terms of strength and profitability. The present invention relates to bainite non-coated steel having excellent processability and durability, and a crankshaft manufacturing method using the same.

이를 위해 본 발명은 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.2~0.3 중량%, 규소(Si) 0.5~1.5 중량%, 망간(Mn) 0.1~2.0 중량%, 크롬(Cr) 0.5~1.5 중량%, 몰리브덴(Mo) 0.05~0.3 중량%, 알루미늄(Al) 0.0005~0.03 중량%, 황(S) 0.05~0.10 중량%, 티탄늄(Ti) 0.02~0.05 중량%, 바나듐(V) 0.15~0.24 중량%, 보론(B) 0.002~0.005 중량%가 함유된 베이나이트 비조질강 및, 이를 이용하여 소재를 1150~1250℃까지 가열하여 열간 단조를 실시하는 단계와; 이후 냉각속도를 2~3℃/sec로 하여 350~450℃까지 냉각하여 베이나이트 조직을 생성시키는 단계와; 350~450℃에서 10~20분 정도 유지한 후 상온(25℃)까지 공냉하는 단계; 로 이루어지는 것을 특징으로 하는 베이나이트 비조질강을 이용한 크랭크샤프트 제조 방법을 제공한다.To this end, the present invention is based on iron (Fe), carbon (C) 0.2 ~ 0.3 wt%, silicon (Si) 0.5 ~ 1.5 wt%, manganese (Mn) 0.1 ~ 2.0 wt%, chromium (Cr) 0.5 to 1.5 wt%, molybdenum (Mo) 0.05 to 0.3 wt%, aluminum (Al) 0.0005 to 0.03 wt%, sulfur (S) 0.05 to 0.10 wt%, titanium (Ti) 0.02 to 0.05 wt%, vanadium (V) A) bainite non-coated steel containing 0.15-0.24% by weight and 0.002-0.15% by weight of boron (B), and heating the material to 1150-1250 ° C. to perform hot forging; Then cooling to 350 to 450 ° C. at a cooling rate of 2 to 3 ° C./sec to generate bainite structure; 10 to 20 minutes at 350 to 450 ° C., followed by air cooling to room temperature (25 ° C.); It provides a crankshaft manufacturing method using bainite non-coated steel, characterized in that consisting of.

베이나이트, 비조질강, 크랭크샤프트, 제조 방법  Bainite, non-alloy steel, crankshaft, manufacturing method

Description

가공성 및 내구성이 우수한 베이나이트 비조질강 및 이를 이용한 크랭크샤프트 제조 방법{Micro alloyed steel and method for manufacturing crankshaft using the same}Microstructured steel and method for manufacturing crankshaft using the same}

본 발명은 가공성 및 내구성이 우수한 베이나이트 비조질강 및 이를 이용한 크랭크샤프트 제조 방법에 관한 것으로서, 더욱 상세하게는 높은 피로강도를 확보하고 동시에 가공성을 확보할 수 있으며, 강도 및 수익성 측면에서 유리한 효과를 가져올 수 있는 가공성 및 내구성이 우수한 베이나이트 비조질강 및 이를 이용한 크랭크샤프트 제조 방법에 관한 것이다.The present invention relates to a bainite non-alloyed steel having excellent workability and durability, and a crankshaft manufacturing method using the same, and more particularly, to ensure high fatigue strength and at the same time to secure workability, and bring about advantageous effects in terms of strength and profitability. The present invention relates to bainite non-coated steel having excellent processability and durability, and a crankshaft manufacturing method using the same.

최근 자동차 엔진은 고성능, 고출력 및 고효율화가 되기 때문에 엔진 부품의 고강도화가 요구되고 있으며, 특히 크랭크 샤프트의 경우 엔진 출력 및 효율이 높아질수록 하중을 더 크게 받으며 회전하기 때문에 강성과 내구성 확보를 위해 피로 강도가 커야 한다.Recently, high-performance, high-power and high-efficiency automotive engines are required to increase the strength of engine parts.In particular, crankshafts receive higher loads as the engine power and efficiency increase, resulting in higher loads and fatigue strength for securing rigidity and durability. It must be large.

이러한 점을 감안하여, 크랭크샤프트 제조공법은 크게 주철을 이용하여 제작 하는 주조공법과, 단조강을 열간단조하여 제작하는 방법을 적용하고 있다.In view of this, the crankshaft manufacturing method is largely applied to the casting method produced by using cast iron, and the method of manufacturing the forged steel by hot forging.

주조공법의 경우 주철의 특성상 가공성이 낮고, 주조 결함 등의 문제가 발생하는 단점이 있고, 열간 단조 공법은 합금강 및 비조질강 등을 이용하여, 열간에서 단조를 실시하는 바, 합금강의 경우 열처리를 실시해야 하기 때문에 수익성 측면에서 불리하다.The casting method has a disadvantage in that cast iron has low workability and problems such as casting defects. In the hot forging method, forging is performed using alloy steel and non-steel, and heat treatment is performed for alloy steel. This is disadvantageous in terms of profitability.

이러한 단점을 보완하기 위해, 열처리 과정이 생략된 페라이트 및 펄라이트 비조질강이 현재 사용 중이지만, 인장강도가 1000Mpa 넘지 못하며, 항복비가 낮은 단점이 있다.In order to compensate for these disadvantages, ferrite and pearlite non-alloyed steel, in which the heat treatment is omitted, are currently in use, but the tensile strength does not exceed 1000 Mpa, and has a low yield ratio.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 열간 단조 후 제어 냉각을 통한 균일한 베이나이트 조직을 생성시켜 인장강도 1000Mpa, 항복강도 750Mpa 이상의 강도를 확보하여, 기존 상용되고 있는 소재 대비 피로강도를 약 40% 이상 향상시킬 수 있고, 또한 현재 크랭크샤프트에 적용되는 합금강 및 비조질강은 탄소 함량이 약 4% 수준이지만, 탄소 함량을 0.2~0.3%로 감소시킬 수 있기 때문에 가공성을 향상시킴과 함께 수익성 측면에서도 높은 효과를 가져올 수 있도록 한 가공성 및 내구성이 우수한 베이나이트 비조질강 및 이를 이용한 크랭크샤프트 제조 방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above point, by producing a uniform bainite structure through controlled cooling after hot forging to secure a tensile strength of 1000Mpa, yield strength of 750Mpa or more, fatigue strength compared to conventional commercial materials Can be improved by about 40% or more, and alloy steels and non-alloyed steels currently applied to the crankshaft have a carbon content of about 4%, but can reduce the carbon content to 0.2 to 0.3%, thereby improving workability. An object of the present invention is to provide a bainite non-alloyed steel having excellent workability and durability and a crankshaft manufacturing method using the same, which can bring about high effects in terms of profitability.

상기한 목적을 달성하기 위한 본 발명의 일 구현예는 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.2~0.3 중량%, 규소(Si) 0.5~1.5 중량%, 망간(Mn) 0.1~2.0 중량%, 크롬(Cr) 0.5~1.5 중량%, 몰리브덴(Mo) 0.05~0.3 중량%, 알루미늄(Al) 0.0005~0.03 중량%, 황(S) 0.05~0.10 중량%, 티탄늄(Ti) 0.02~0.05 중량%, 바나듐(V) 0.15~0.24 중량%, 보론(B) 0.002~0.005 중량%가 함유된 것을 특징으로 하는 베이나이트 비조질강을 제공한다.One embodiment of the present invention for achieving the above object is based on iron (Fe), carbon (C) 0.2 ~ 0.3% by weight, silicon (Si) 0.5 ~ 1.5% by weight, manganese (Mn) 0.1 ~ 2.0 wt%, chromium (Cr) 0.5 ~ 1.5 wt%, molybdenum (Mo) 0.05 ~ 0.3 wt%, aluminum (Al) 0.0005 ~ 0.03 wt%, sulfur (S) 0.05 ~ 0.10 wt%, titanium (Ti) It provides a bainite non-coated steel, characterized in that 0.02 ~ 0.05 wt%, vanadium (V) 0.15 ~ 0.24 wt%, boron (B) 0.002 ~ 0.005 wt%.

상기한 목적을 달성하기 위한 본 발명의 다른 구현예는 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.2~0.3 중량%, 규소(Si) 0.5~1.5 중량%, 망간(Mn) 0.1~2.0 중량%, 크롬(Cr) 0.5~1.5 중량%, 몰리브덴(Mo) 0.05~0.3 중량%, 알루미늄(Al) 0.0005~0.03 중량%, 황(S) 0.05~0.10 중량%, 티탄늄(Ti) 0.02~0.05 중량%, 바나듐(V) 0.15~0.24 중량%, 보론(B) 0.002~0.005 중량%가 함유된 소재를 1150~1250℃까지 가열하여 열간 단조를 실시하는 단계와; 이후 냉각속도를 2~3℃/sec로 하여 350~450℃까지 냉각하여 베이나이트 조직을 생성시키는 단계와; 350~450℃에서 10~20분 정도 유지한 후 상온(25℃)까지 공냉하는 단계; 로 이루어지는 것을 특징으로 하는 베이나이트 비조질강을 이용한 크랭크샤프트 제조 방법을 제공한다.Another embodiment of the present invention for achieving the above object is iron (Fe) as a main component, carbon (C) 0.2 to 0.3% by weight, silicon (Si) 0.5 to 1.5% by weight, manganese (Mn) 0.1 ~ 2.0 wt%, chromium (Cr) 0.5 ~ 1.5 wt%, molybdenum (Mo) 0.05 ~ 0.3 wt%, aluminum (Al) 0.0005 ~ 0.03 wt%, sulfur (S) 0.05 ~ 0.10 wt%, titanium (Ti) Performing a hot forging by heating a material containing 0.02 to 0.05 weight%, vanadium (V) 0.15 to 0.24 weight%, and boron (B) 0.002 to 0.005 weight% to 1150 to 1250 ° C .; Then cooling to 350 to 450 ° C. at a cooling rate of 2 to 3 ° C./sec to generate bainite structure; 10 to 20 minutes at 350 to 450 ° C., followed by air cooling to room temperature (25 ° C.); It provides a crankshaft manufacturing method using bainite non-coated steel, characterized in that consisting of.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above problem solving means, the present invention provides the following effects.

본 발명에 따르면, 합금성분 제어 및 제어 냉각을 실시하여, 기존재 대비 40% 이상의 피로강도 향상 효과를 가져올 수 있으며, 탄소 함량을 저감하여 가공성을 향상시킬 수 있다.According to the present invention, by performing the alloy component control and controlled cooling, can bring about 40% or more fatigue strength improvement effect compared to the existing material, and can improve the workability by reducing the carbon content.

이에, 향후 개발되는 고성능, 고출력 및 고효율 엔진을 만족시키는 높은 피로강도의 크랭크샤프트를 제조할 수 있으며, 가공성 향상 및 경량화에 의해 수익성 향상을 기대할 수 있다.Therefore, it is possible to manufacture a high fatigue strength crankshaft that satisfies high-performance, high-output and high-efficiency engines to be developed in the future, and can be expected to improve profitability by improving workability and weight.

이하, 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 높은 피로강도를 갖는 크랭크샤프트 제조를 위한 베이나이트 비조질강을 제공하고자 한 것으로서, 기존의 비조질강과 그 성분비를 대비한 하기 표 1에 기재된 바와 같이, 본 발명의 비조질강은 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.2~0.3 중량%, 규소(Si) 0.5~1.5 중량%, 망간(Mn) 0.1~2.0 중량%, 크롬(Cr) 0.5~1.5 중량%, 몰리브덴(Mo) 0.05~0.3 중량%, 알루미늄(Al) 0.0005~0.03 중량%, 황(S) 0.05~0.10 중량%, 티탄늄(Ti) 0.02~0.05 중량%, 바나듐(V) 0.15~0.24 중량%, 보론(B) 0.002~0.005 중량%가 함유된다.The present invention is to provide a bainite non-coated steel for producing a crankshaft having a high fatigue strength, as compared to the existing non-coated steel and its component ratio as shown in Table 1 below, the non-coated steel of the present invention is iron (Fe ) As a main component, 0.2 to 0.3% by weight of carbon (C), 0.5 to 1.5% by weight of silicon (Si), 0.1 to 2.0% by weight of manganese (Mn), 0.5 to 1.5% by weight of chromium (Cr), and molybdenum ( Mo) 0.05 to 0.3 wt%, aluminum (Al) 0.0005 to 0.03 wt%, sulfur (S) 0.05 to 0.10 wt%, titanium (Ti) 0.02 to 0.05 wt%, vanadium (V) 0.15 to 0.24 wt%, boron (B) 0.002-0.005 weight% is contained.

Figure 112007081494243-PAT00001
Figure 112007081494243-PAT00001

여기서, 본 발명의 주요 구성원소 및 그 함량의 한정 이유에 대해 설명하면 다음과 같다.Here, the main components of the present invention and the reason for limitation of the content are described as follows.

1) 탄소(C) 0.2~0.3 중량%1) 0.2 ~ 0.3 wt% of carbon (C)

탄소의 경우 0.15 중량% 이상을 확보해야 원하는 기계적 강도를 확보할 수 있으며, 0.4 중량%를 넘으면 가공성이 악화되기 때문에 0.2~0.3 중량%의 범위로 첨가하기로 한다.In the case of carbon, 0.15% by weight or more should be secured to obtain the desired mechanical strength, and if it exceeds 0.4% by weight, the workability deteriorates.

2) 규소(Si) 0.5~1.5 중량%2) 0.5 ~ 1.5 wt% of silicon (Si)

규소는 페라이트 강화 효과와 피로강도를 증가시키기 위해서 첨가하였으며, 본 발명에서는 0.5~1.5 중량%로 한정하였다.Silicon was added to increase the ferrite strengthening effect and the fatigue strength, it was limited to 0.5 to 1.5% by weight in the present invention.

3) 망간(Mn) 0.1~2.0 중량%3) Manganese (Mn) 0.1 ~ 2.0 wt%

망간(Mn)은 강도를 확보하기 위해서 첨가하였으며, 함량이 높아지면 편석을 생성시킬 수 있기 때문에 첨가량을 0.1~2.0 중량%로 제한하였다.Manganese (Mn) was added to secure the strength, and the content was limited to 0.1 to 2.0% by weight because it can generate segregation when the content is high.

4) 크롬(Cr) 0.5~1.5 중량%4) 0.5 ~ 1.5 wt% of chromium (Cr)

크롬 또한 강도 향상을 위해 첨가하였으며, 본 발명에서는 0.5~1.5 중량%로 한정하기로 한다.Chromium was also added to improve strength, in the present invention will be limited to 0.5 to 1.5% by weight.

5) 몰리브덴(Mo) 0.05~0.3 중량%5) Molybdenum (Mo) 0.05 ~ 0.3 wt%

몰리브덴 역시 강도 향상을 위해 첨가하였으며, 본 발명에서는 0.05~0.3 중량%로 한정하기로 한다.Molybdenum was also added to improve the strength, in the present invention will be limited to 0.05 to 0.3% by weight.

6) 알루미늄(Al) 0.0005~0.03 중량%6) Aluminum (Al) 0.0005 ~ 0.03 wt%

알루미늄 함량이 높으면 오스테나이트 조대화를 유발하기 때문에 본 발명에서는 0.0005~0.03 중량%로 제한하였다.High aluminum content causes austenite coarsening, so it was limited to 0.0005 to 0.03 wt% in the present invention.

7) 황(S) 0.05~0.10 중량%7) Sulfur (S) 0.05 ~ 0.10 wt%

황(S)은 가공성을 향상시키기 위해서 첨가하였으며, 과도하게 첨가하면 개재물을 생성하기 때문에 0.05~0.10 중량%로 한정한다.Sulfur (S) was added in order to improve the processability, and when added excessively, inclusions are limited to 0.05 to 0.10 wt%.

8) 바나듐(V) 0.15~0.24 중량%8) Vanadium (V) 0.15 ~ 0.24 wt%

바나듐은 미세한 탄질화물을 석출시켜 재료의 강도를 향상시키기 때문에 첨가하였으며, 본 발명에서는 0.15~0.24 중량%로 한정하기로 한다.Vanadium was added because it precipitates fine carbonitrides to improve the strength of the material. In the present invention, it is limited to 0.15 to 0.24 wt%.

9) 보론(B) 0.002~0.005 중량%9) Boron (B) 0.002 ~ 0.005 wt%

보론은 냉각능을 증대시키기 위해 첨가되며, 본 발명에서는 0.002~0.005 중량%로 한정하기로 한다.Boron is added to increase the cooling capacity, in the present invention will be limited to 0.002 ~ 0.005% by weight.

이러한 조성비를 갖는 본 발명의 베이나이트 비조질강을 이용하여 크랭크샤프트 제조를 위한 열처리 방법을 설명하면 다음과 같다.Referring to the heat treatment method for producing the crankshaft using the bainite non-coated steel of the present invention having such a composition ratio as follows.

본 발명의 제어 냉각은 균일한 베이나이트 조직을 형성하는 소재를 제조하기 위해 기존 냉각 방식과는 달리, 첨부한 도 2에서 도시된 바와 같이 제어 냉각을 실시한다.The controlled cooling of the present invention, unlike the conventional cooling method for producing a material forming a uniform bainite structure, performs the controlled cooling as shown in the accompanying FIG.

즉, 상기한 본 발명의 비조질강 소재를 소재 온도 1150~1250℃까지 가열하여 열간 단조를 실시하고, 이후 냉각속도를 2~3℃/sec로 350~450℃까지 냉각하여 베이나이트 조직을 생성시킨 다음, 해당 소재를 350~450℃에서 10~20분 정도 유지한 후 상온(25℃)까지 공냉하면, 소재 전체에 균일한 베이나이트 조직을 확보할 수 있다.That is, the forged steel material of the present invention is heated to a material temperature of 1150 ~ 1250 ℃ hot forging, and then cooled to 350 ~ 450 ℃ at a cooling rate of 2 ~ 3 ℃ / sec to generate bainite structure Next, if the material is maintained at 350 to 450 ° C. for about 10 to 20 minutes and then cooled to room temperature (25 ° C.), a uniform bainite structure may be secured to the entire material.

이하, 본 발명의 실시예를 비교예와 함께 더욱 상세하게 설명하겠는바, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the embodiment of the present invention will be described in more detail with a comparative example, but the present invention is not limited to the following examples.

실시예Example

철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.3 중량%, 규소(Si) 1.0 중량%, 망간(Mn) 1.0 중량%, 크롬(Cr) 1.0 중량%, 몰리브덴(Mo) 0.1 중량%, 알루미늄(Al) 0.1 중량%, 황(S) 0.05 중량%, 티탄늄(Ti) 0.03 중량%, 바나듐(V) 0.2 중량%, 보론(B) 0.003 중량%가 함유된 소재를 1200℃까지 가열하여 열간 단조를 실시한 후, 냉각속도를 3℃/sec로 하여 400℃까지 냉각하여 베이나이트 조직을 생성시켰으며, 연속해서 400℃에서 20분 정도 유지한 후 상온(25℃)까지 공냉시켜, 크랭크샤프트 제조를 위한 베이나이트 비조질강 시편을 제작하였다.Iron (Fe) as a main component, 0.3 wt% carbon (C), 1.0 wt% silicon (Si), 1.0 wt% manganese (Mn), 1.0 wt% chromium (Cr), 0.1 wt% molybdenum (Mo) , 0.1% by weight of aluminum (Al), 0.05% by weight of sulfur (S), 0.03% by weight of titanium (Ti), 0.2% by weight of vanadium (V) and 0.003% by weight of boron (B) After hot forging, the cooling rate was 3 ° C./sec, cooled to 400 ° C. to produce bainite structure, and continuously maintained at 400 ° C. for about 20 minutes, followed by air cooling to room temperature (25 ° C.), and cranking. A bainite non-coated steel specimen was prepared for shaft manufacture.

비교예Comparative example

철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.4 중량%, 규소(Si) 0.6 중량%, 망간(Mn) 1.5 중량%, 크롬(Cr) 0.2 중량%, 몰리브덴(Mo) 0.05 중량%, 알루미늄(Al) 0.02 중량%, 황(S) 0.05 중량%, 바나듐(V) 0.2 중량%가 함유된 소재를 통상의 열간 단조 방법 및 기존 열처리 방법을 통하여 크랭크샤프트 제조를 위한 비조질강 시편으로 제작하였다.Iron (Fe) as a main component, carbon (C) 0.4% by weight, silicon (Si) 0.6% by weight, manganese (Mn) 1.5% by weight, chromium (Cr) 0.2% by weight, molybdenum (Mo) 0.05% by weight , 0.02% by weight of aluminum (Al), 0.05% by weight of sulfur (S), 0.2% by weight of vanadium (V) are produced as non-elastic steel specimens for the manufacture of crankshafts through conventional hot forging methods and conventional heat treatment methods. It was.

실험예Experimental Example

실시예 및 비교예에 의한 시편에 대하여, 기계적 성질로서 인장강도, 항복강도, 신율을 통상의 측정장비를 이용하여 측정하였으며, 그 결과는 아래의 표 2에 나타낸 바와 같다.For the specimens according to the Examples and Comparative Examples, the tensile strength, yield strength, and elongation were measured using a conventional measuring equipment as mechanical properties, and the results are shown in Table 2 below.

Figure 112007081494243-PAT00002
Figure 112007081494243-PAT00002

위의 표 2에서 보는 바와 같이, 본 발명의 비조질강이 기존재 대비 40% 이상의 강도 향상을 제공할 수 있음을 알 수 있었다.As shown in Table 2 above, it was found that the non-coated steel of the present invention can provide a strength improvement of more than 40% compared to the existing material.

도 1 크랭크샤프트의 적용 가능한 재질별 조직 사진,Figure 1 is a tissue picture of the applicable material of the crankshaft,

도 2는 본 발명에 따른 베이나이트 비조질강을 이용한 크랭크샤프트 제조시, 제어 냉각을 설명하는 공정도.Figure 2 is a process chart illustrating controlled cooling in the manufacture of crankshafts using bainite non-coated steel according to the present invention.

Claims (2)

철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.2~0.3 중량%, 규소(Si) 0.5~1.5 중량%, 망간(Mn) 0.1~2.0 중량%, 크롬(Cr) 0.5~1.5 중량%, 몰리브덴(Mo) 0.05~0.3 중량%, 알루미늄(Al) 0.0005~0.03 중량%, 황(S) 0.05~0.10 중량%, 티탄늄(Ti) 0.02~0.05 중량%, 바나듐(V) 0.15~0.24 중량%, 보론(B) 0.002~0.005 중량%가 함유된 것을 특징으로 하는 베이나이트 비조질강.Iron (Fe) as a main component, carbon (C) 0.2-0.3 wt%, silicon (Si) 0.5-1.5 wt%, manganese (Mn) 0.1-2.0 wt%, chromium (Cr) 0.5-1.5 wt% , Molybdenum (Mo) 0.05 to 0.3 wt%, Aluminum (Al) 0.0005 to 0.03 wt%, Sulfur (S) 0.05 to 0.10 wt%, Titanium (Ti) 0.02 to 0.05 wt%, Vanadium (V) 0.15 to 0.24 wt% %, Boron (B) bainite non-coated steel, characterized in that it contains 0.002 to 0.005% by weight. 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.2~0.3 중량%, 규소(Si) 0.5~1.5 중량%, 망간(Mn) 0.1~2.0 중량%, 크롬(Cr) 0.5~1.5 중량%, 몰리브덴(Mo) 0.05~0.3 중량%, 알루미늄(Al) 0.0005~0.03 중량%, 황(S) 0.05~0.10 중량%, 티탄늄(Ti) 0.02~0.05 중량%, 바나듐(V) 0.15~0.24 중량%, 보론(B) 0.002~0.005 중량%가 함유된 소재를 1150~1250℃까지 가열하여 열간 단조를 실시하는 단계와;Iron (Fe) as a main component, carbon (C) 0.2-0.3 wt%, silicon (Si) 0.5-1.5 wt%, manganese (Mn) 0.1-2.0 wt%, chromium (Cr) 0.5-1.5 wt% , Molybdenum (Mo) 0.05 to 0.3 wt%, Aluminum (Al) 0.0005 to 0.03 wt%, Sulfur (S) 0.05 to 0.10 wt%, Titanium (Ti) 0.02 to 0.05 wt%, Vanadium (V) 0.15 to 0.24 wt% % And boron (B) heating the material containing 0.002 ~ 0.005% by weight to 1150 ~ 1250 ℃ to perform hot forging; 이후 냉각속도를 2~3℃/sec로 하여 350~450℃까지 냉각하여 베이나이트 조직을 생성시키는 단계와;Then cooling to 350 to 450 ° C. at a cooling rate of 2 to 3 ° C./sec to generate bainite structure; 350~450℃에서 10~20분 정도 유지한 후 상온(25℃)까지 공냉하는 단계;10 to 20 minutes at 350 to 450 ° C., followed by air cooling to room temperature (25 ° C.); 로 이루어지는 것을 특징으로 하는 베이나이트 비조질강을 이용한 크랭크샤프트 제조 방법.Crankshaft manufacturing method using the bainite non-coated steel, characterized in that consisting of.
KR1020070115808A 2007-11-14 2007-11-14 Micro alloyed steel and method for manufacturing crankshaft using the same KR20090049638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070115808A KR20090049638A (en) 2007-11-14 2007-11-14 Micro alloyed steel and method for manufacturing crankshaft using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070115808A KR20090049638A (en) 2007-11-14 2007-11-14 Micro alloyed steel and method for manufacturing crankshaft using the same

Publications (1)

Publication Number Publication Date
KR20090049638A true KR20090049638A (en) 2009-05-19

Family

ID=40858295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070115808A KR20090049638A (en) 2007-11-14 2007-11-14 Micro alloyed steel and method for manufacturing crankshaft using the same

Country Status (1)

Country Link
KR (1) KR20090049638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017181A1 (en) 2009-06-04 2010-12-09 Hyundai Motor Company Variable valve lift with a rocker arm
EP2357262A1 (en) * 2010-01-28 2011-08-17 Honda Motor Co., Ltd. Crankshaft and production method therefor
WO2013050936A1 (en) * 2011-10-07 2013-04-11 Babasaheb Neelkanth Kalyani A process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process
CN111961968A (en) * 2020-07-31 2020-11-20 安徽工业大学 Vanadium-titanium microalloyed engineering structural steel and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017181A1 (en) 2009-06-04 2010-12-09 Hyundai Motor Company Variable valve lift with a rocker arm
EP2357262A1 (en) * 2010-01-28 2011-08-17 Honda Motor Co., Ltd. Crankshaft and production method therefor
WO2013050936A1 (en) * 2011-10-07 2013-04-11 Babasaheb Neelkanth Kalyani A process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process
EP2764127B1 (en) 2011-10-07 2015-08-12 Babasaheb Neelkanth Kalyani A process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process
CN111961968A (en) * 2020-07-31 2020-11-20 安徽工业大学 Vanadium-titanium microalloyed engineering structural steel and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105886909A (en) Pressure container steel plate resistant to hydrogen induced cracking and manufacturing method thereof
JP6784960B2 (en) Martensitic stainless steel member
US8540932B2 (en) Ferritic spheroidal graphite cast iron
KR20200002957A (en) Steel parts and how to manufacture them
JP2005344149A (en) High strength steel for large-sized steel forging, and crankshaft
CN104911501A (en) Super-strength high-carbon potential dislocation martensitic steel, and preparation method thereof
JP2012193416A (en) Age-hardenable steel and method for manufacturing machine part
UA127398C2 (en) Hot rolled and steel and a method of manufacturing thereof
KR20090049638A (en) Micro alloyed steel and method for manufacturing crankshaft using the same
JP2008240130A (en) Non-heat treated steel material
JP2004124221A (en) Steel plate of excellent hardenability after hot working, and method for using the same
CN102409246B (en) Bainite cylinder jacket lining and preparation method thereof
KR101639166B1 (en) Non-heat treated steel and manufacturing method thereof
JP4752800B2 (en) Non-tempered steel
CN110106451A (en) Carbon abrasion resistant cast steel and its heat treatment method in a kind of high silicon
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP6056647B2 (en) Bearing steel manufacturing method and bearing steel obtained by the manufacturing method
JP2012020298A (en) Method for manufacturing forging
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
CN115466905A (en) Non-quenched and tempered steel with good corrosion resistance for 10.9-grade large-size wind power bolt and production method thereof
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP2005120397A (en) High strength forged parts with excellent drawability
SE1351509A1 (en) A process for producing a medium carbon steel product and a hot medium steel hot rolled steel product
KR101581557B1 (en) Part for generating unit and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application