KR20090040913A - 무선 수신기 및 전력을 절감하는 방법 - Google Patents

무선 수신기 및 전력을 절감하는 방법 Download PDF

Info

Publication number
KR20090040913A
KR20090040913A KR1020097005192A KR20097005192A KR20090040913A KR 20090040913 A KR20090040913 A KR 20090040913A KR 1020097005192 A KR1020097005192 A KR 1020097005192A KR 20097005192 A KR20097005192 A KR 20097005192A KR 20090040913 A KR20090040913 A KR 20090040913A
Authority
KR
South Korea
Prior art keywords
receiver
resolution
analog
mode
digital converter
Prior art date
Application number
KR1020097005192A
Other languages
English (en)
Inventor
데스몬드 필립스
브라이언 제임스 도나휴
메튜 헤이즈
Original Assignee
아이티아이 스코틀랜드 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이티아이 스코틀랜드 리미티드 filed Critical 아이티아이 스코틀랜드 리미티드
Publication of KR20090040913A publication Critical patent/KR20090040913A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • H04B1/1615Switching on; Switching off, e.g. remotely
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Circuits Of Receivers In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Selective Calling Equipment (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

UWB 신호와 같은 무선 통신 신호를 수신하는 수신기(10)는, 수신기가 전송 신호를 활발하게 수신하고 있을 때에는 제 1 모드에서 동작하고, 수신기가 전송 신호의 수신을 대기하고 있을 때에는 제 2 모드에서 동작한다. 이러한 수신기는 수신된 아날로그 신호를 디지털 신호로 변환하기 위한 아날로그 디지털 변환기(20)를 포함한다. 수신기 제어기는 아날로그 디지털 변환기의 동작 분해능을 제어하여, 제 1 모드에서는, 아날로그 디지털 변환기(20)가 제 1 분해능에서 동작하게 하고, 제 2 모드에서는, 아날로그 디지털 변환기(20)가 제 2 분해능에서 동작하게 한다. 제 2 분해능은 상기 제 1 분해능 보다 낮으며, 그리고 바람직하게는 제 2 분해능은 1 비트 분해능이다.
Figure P1020097005192
무선 수신기, 아날로그 디지털 변환기, 분해능, 분해능 변경, 비트 분해능

Description

무선 수신기 및 전력을 절감하는 방법{WIRELESS RECEIVER AND METHOD OF SAVING POWER}
본 발명은 무선 수신기 및 이러한 무선 수신기에서 전력을 절감하는 방법에 관한 것이다. 보다 특정하게는, 본 발명은 초광대역(ultra wideband, UWB) 수신기 및 스위치가능한 분해능(resolution)을 갖는 전력 절감 아날로그 디지털 변환기를 이용하는 방법에 관한 것이다.
초광대역은 3.1 내지 10.6 GHz의 매우 광범위한 주파수 범위에 걸쳐서 디지털 데이터를 전송하는 무선 기술이다. 이러한 기술은 전형적으로 -41 dBm/MHz 보다 작은 초저 전송 전력을 사용하며, 이에 따라 글자 그대로 기존의 Wi-Fi, GSM 및 블루투스(Bluetooth)와 같은 다른 전송 주파수 아래에 숨을 수 있다. 이는 초광대역이 다른 무선 주파수 기술들과 공존할 수 있음을 의미한다. 하지만, 이러한 기술은 통신 거리를 전형적으로 5 내지 20 미터로 제한하는 한계를 갖는다.
UWB에 대한 두 가지 접근법이 있다. 하나의 접근법은 시간 도메인 접근법으로서, 이는 UWB 성질을 사용하여 펄스 파형으로부터 신호를 구성한다. 다른 하나의 접근법은 주파수 도메인 변조 접근법으로서, 이는 다중 (주파수) 대역에 대해 통상의 FET 기반의 직교 주파수 분할 멀티플렉싱(Orthogonal Frequency Division Multiplexing, OFDM)을 이용함으로써, MB-OFDM을 제공한다. UWB에 대한 두 가지 접근법 모두 주파수 스펙트럼에서 매우 넓은 대역폭을 커버(cover)하는 스펙트럼 성분들을 발생시키며(이에 따라 용어 초광대역이 야기됨), 이에 의해 대역폭은 전형적으로는 적어도 500 MHz의 중심 주파수의 20 퍼센트 이상을 차지하게 된다.
매우 넓은 대역폭과 결합되는 초광대역의 이러한 성질들은, UWB가 집 또는 사무실 환경에서 고속의 무선 통신을 제공하기 위한 이상적인 기술임을 의미하며, 여기서 통신 디바이스들은 서로 20m 범위 내에 있다.
도 1은 초광대역 통신을 위한 다중 대역 직교 주파수 분할 멀티플렉싱(Multi Band Orthogonal Frequency Division Multiplexing, MB-OFDM) 시스템에서의 주파수 대역들의 구성을 보여준다. MB-OFDM 시스템은 각각 528 MHz의 14개의 서브 대역들을 포함하며, 그리고 액세스 방법으로서 서브 대역들 간에 매 312ns 마다 주파수 호핑(frequency hopping)을 이용한다. 각 서브 대역 내에서는, OFDM 및 QPSK 또는 DCM 코딩을 이용하여 데이터를 전송한다. 주목할 사항으로서, 현재 5.1 - 5.8 GHz의, 5 GHz 주위의 서브 대역은, 기존의 협대역 시스템들, 예를 들어 802.11a WLAN 시스템, 보안 에이젼시 통신 시스템(security agency communication system), 또는 항공 산업과의 간섭을 피하기 위해 블랭크(blank) 상태로 남는다.
14개의 서브 대역들은 5개의 대역 그룹으로 조직화되는데, 이 중에서 4개의 대역 그룹은 3개의 528 MHz 서브 대역들을 갖고, 1개의 대역 그룹은 2개의 528 MHz 서브 대역을 갖는다. 도 1에 도시된 바와 같이, 제 1 대역 그룹은 서브 대역 1, 서브 대역 2 및 서브 대역 3을 포함한다. 예시적인 UWB 시스템은 대역 그룹의 서브 대역들 간에 주파수 호핑을 이용하며, 이에 따라 제 1 데이터 심볼은 대역 그룹의 제 1 주파수 서브 대역에서 제1의 312.5ns의 지속 시간 간격에서 전송되고, 제 2 데이터 심볼은 대역 그룹의 제 2 주파수 서브 대역에서 제2의 312.5ns의 지속 시간 간격에서 전송되며, 그리고 제 3 데이터 심볼은 대역 그룹의 제 3 주파수 서브 대역에서 제3의 312.5ns의 지속 시간 간격에서 전송된다. 따라서, 각각의 시간 간격 동안, 데이터 심볼은 528 MHz의 대역폭을 갖는 각각의 서브 대역에서 전송되는 바, 예를 들어 3960 MHz에 중심을 둔 528 MHz 기저대역 신호를 갖는 서브 대역 2에서 전송된다.
UWB 시스템의 기본적인 타이밍 구조는 슈퍼프레임이다. 슈퍼프레임은 256개의 매체 액세스 슬롯(medium access slot, MAS)들로 이루어지며, 각 MAS는 정의된 지속 기간, 예를 들어 256 마이크로세컨드(㎲)를 갖는다. 각 슈퍼프레임은 비컨 기간(Beacon Period)으로 시작되는 바, 이는 1개 이상의 인접하는 MAS들 만큼 계속된다. 비컨 기간 내의 첫번째 MAS의 시작은 "비컨 기간 시작"으로서 알려져있다.
초광대역의 기술적 특징은 데이터 통신 분야에서의 애플리케이션들에 대해 활용될 수 있다. 예를 들어, 다음과 같은 환경들에서 케이블을 대체하는 것에 초점을 둔 광범위한 애플리케이션들이 존재한다.
- PC와 주변 기기들, 즉, 하드 디스크 드라이브, CD 라이터(writer), 프린터, 스캐너 등과 같은 외부 디바이스들 간의 통신.
- 무선 수단, 무선 스피커 등에 의해 접속되는 디바이스 및 텔레비젼과 같은 홈 엔터테인먼트.
- 예를 들어 이동 전화, PDA, 디지털 카메라 및 MP3 플레이어 등과 같은 휴대용 디바이스들과 PC 간의 통신.
MB-OFDM UWB 링크들을 위한 수신기들은 높은 분해능을 갖는 고속의 아날로그 디지털 변환기(ADC)를 필요로 한다. 이러한 링크를 위한 전형적인 ADC는 각 샘플에 대해 6 비트의 분해능으로 528MHz에서 한 쌍(I,Q)의 샘플들을 포획할 것이다. ADC의 전력 소모는 샘플 레이트가 증가함에 따라 증가한다. ADC의 전력 소모는 또한 샘플 분해능에 대해 지수적(exponential)으로, 즉 기하 급수적으로 증가하는데, 이는 ADC가, 전력 소모가 비교기들의 수에 비례하고 비교기들의 수가 2분해능에 비례하는 플래시 변환기(flash converter)이기 때문이다. 이에 따라, 6 비트의 분해능을 갖는 2개의 528 MHz ADC들의 전력 소모는 매우 높을 것이다.
MB-OFDM UWB는 저전력 소모가 매우 중요한 휴대용 디바이스들에서 이용될 것이다. 이러한 디바이스들 내의 UWB 수신기는 연속적으로 동작함으로써, 다른 디바이스들에 의해 전송되는 프레임들을 수신할 수 있는 것이 바람직하다. 하지만, UWB 수신기가 연속적으로 동작하는 경우, 이는 휴대용 디바이스의 전원, 즉 배터리에 허용불가능한 부하가 걸리게 하는데, 그 이유는 수신기 ADC가 너무 많은 전력을 소모하게 될 것이기 때문이다.
너무 많은 전력을 소모하는 ADC의 문제는 2개의 알려진 방법들을 이용하여 완화될 수 있다.
1. 사용자는 통신이 일어날 때의 기간 동안에는 수신기를 스위치 온 시킨 다 음, 통신 이후에는 수신기를 스위치 오프시킬 것이 요구될 수도 있다. 이러한 해결책은, 사용자가 수신기를 스위치 온시키지 않은 경우에는 프레임들을 놓칠(miss) 수 있기 때문에 바람직하지 않다. 또한, 사용자가 수신기를 스위치 오프시키지 않은 경우에는 전력이 낭비될 수 있다.
2. 얼마의 시간 동안 어떤 프레임도 수신되지 않으면, 수신기는 "스누즈(snooze)" 모드에 들어갈 수 있다. 이후, 수신기는 주기적으로 깨어나서, 프레임 액티비티(activity)를 감지한다. 이러한 해결책은, 수신기가 "스누징(snoozing)"하는 동안 프레임들을 놓칠 수 있기 때문에 이상적이지 않다.
따라서, 본 발명의 목적은 개선된 무선 수신기 및 이러한 무선 수신기의 전력을 절감하는 방법을 제공하는 것이다.
본 발명에 따르면, 무선 통신 신호를 수신하는 수신기가 제공되는 바, 이 수신기는, 수신기가 전송 신호를 활발하게 수신하고 있을 때에는 제 1 모드에서 동작하고, 수신기가 전송 신호의 수신을 대기하고 있을 때에는 제 2 모드에서 동작한다. 이러한 수신기는 수신된 아날로그 신호를 디지털 신호로 변환하기 위한 아날로그 디지털 변환기와; 그리고 아날로그 디지털 변환기의 동작 분해능(operating resolution)을 제어하여, 제 1 모드에서는, 아날로그 디지털 변환기가 제 1 분해능에서 동작하게 하고, 제 2 모드에서는, 아날로그 디지털 변환기가 제 2 분해능에서 동작하게 하는 수신기 제어기를 포함하며, 상기 제 2 분해능은 상기 제 1 분해능 보다 낮다.
본 발명의 다른 실시 형태에 따르면, 수신된 아날로그 신호를 디지털 신호로 변환하는 아날로그 디지털 변환기를 갖는 수신기에서 전력을 절감하는 방법이 제공된다. 이 방법은 수신기가 전송 신호를 활발히 수신하고 있을 때에는 수신기를 제 1 모드에서 동작시키는 단계와; 그리고 수신기가 전송 신호의 수신을 대기하고 있을 때에는 수신기를 제 2 모드에서 동작시키는 단계를 포함한다. 아날로그 디지털 변환기는 제 1 모드에서 동작할 때에는 제 1 분해능을 갖고, 제 2 모드에서 동작할 때에는 제 2 분해능을 가지며, 상기 제 2 분해능은 상기 제 1 분해능 보다 낮다.
본 발명은 수신기가 프레임을 활발히 수신하고 있지 않을 때에는 그 수신기를 저전력의 "리스닝(listening)" 모드에 둠으로써 UWB 수신기의 평균 전력 소모를 감소시킬 수 있는 장점을 갖는다. "리스닝" 모드에서, RF 및 검출 상관기(detection correlator)는 활성이며, ADC는 저 전력의 저 분해능 모드(low-resolution mode)가 된다. 검출 상관기가 프레임의 시작에서 프리엠블 심볼(preamble symbol)의 존재를 검출하면, 수신기는 파워업(power-up)되고, ADC는 고 분해능 모드(high-resolution mode)가 된다. 프레임의 끝 (또는 프레임들의 버스트의 마지막 프레임의 끝)에서, 수신기는 "리스닝" 모드로 되돌아갈 수 있다.
본 발명을 보다 잘 이해할 수 있도록, 그리고 본원 발명이 어떻게 실행되는 지를 더욱 명확히 나타내기 위해, 단지 예시의 목적으로 첨부 도면을 참조한다.
도 1은 MB-OFDM 시스템의 MBOA(Multi-Band OFDM Alliance) 승인 주파수 스펙트럼을 나타낸다.
도 2는 본 발명에 따른 수신기의 개략적인 블록도이다.
도 3은 본 발명에 의해 수행되는 단계들을 상세히 설명하는 흐름도이다.
하기의 바람직한 실시예들은 UWB 수신기와 관련하여 설명된다. 하지만, 본 발명은, MB-OFDM 표준 이외의 표준들에서 이용하도록 된 UWB 수신기들을 포함하여, 다른 타입의 무선 수신기들에도 적용될 수 있다는 것을 이해해야 한다.
도 2는 본 발명에 따른 수신기(10)의 개략적인 블록도이다.
수신기(10)는 RF 신호(14)를 수신하는 안테나(12)를 포함한다. RF 부분(16)은 수신된 신호(14)를 증폭시킨 다음, 증폭된 신호(18)를 아날로그 디지털 변환기(20)에 출력한다.
수신기(10)는 검출 상관기(22), 수신기 제어기(24) 및 수신기 기저대역(receiver baseband)(26)을 더 포함한다.
수신기(10)는 2개의 동작 모드들, 즉 수신기가 정상 동작 모드에서 동작하는 (즉, 하나 이상의 다른 UWB 디바이스들로부터 UWB 신호들을 수신할 때의) "수신" 모드 (또는 제 1 모드)와, 그리고 수신기가 본 발명에 따라 전력 절감 모드(power saving mode)에서 동작하는 (예를 들어, 하나 이상의 다른 UWB 디바이스들로부터 UWB 신호들의 수신을 기다리는 때의) "리스닝" 모드 (또는 제 2 모드)를 갖는다.
수신 모드에서 동작하는 동안, 수신기(10)의 모든 부분들은 스위치 온되고, ADC(20)는, 예를 들어 6 비트 분해능과 같은 고 분해능에서 동작한다. 고 분해능 출력(38)은 ADC(20)로부터 수신기 기저대역(26)으로 직접 전송된다. 이해될 사항으 로서, 비록 바람직한 실시예가 샘플당 6 비트의 ADC(20)의 고 분해능에 대해 언급하고 있지만, 다른 분해능들도 이용될 수 있다.
본 발명에 따르면, 수신기 제어기(24)는 전력을 보존하기 위해 수신기(10)를 리스닝 모드에 둔다. 예를 들어, 수신기(10)는 프레임의 끝에서, 또는 프레임들의 버스트의 마지막 프레임 이후에 리스닝 모드가 될 수 있다.
리스닝 모드에서, 수신기 기저대역(26) 및 다른 모든 중요하지 않은 부분들(도 2에는 미도시)은 전력 절감 모드가 된다. 예를 들어, 스위치 오프됨으로써, 수신기(10)의 전력 소모를 줄인다. RF 부분(16), ADC(20), 검출 상관기(22) 및 수신기 제어기(24)는 스위치 온 상태로 유지되기는 하지만, 이러한 블록들의 전력 소모는 정상 동작에서 보다는 감소될 수 있다.
하지만, 본 발명에 따르면, ADC(20)는 수신기가 리스닝 모드에 있을 때에는 저 분해능에서 동작하도록 구성된다. 예를 들어, 바람직한 실시예에서, 저 분해능은 각 샘플에 대해 1 비트이다. 1 비트 분해능 모드에서 동작할 때에는 보다 적은 수의 비교기들이 활성이 되기 때문에, ADC(20)의 전력 소모가 감소되며, 이에 따라 수신기(10)의 전력 소모를 전체적으로 더욱 감소시킨다.
도 3의 흐름도는 본 발명이 정상 동작 모드(즉, 수신 모드)와 저전력 모드(즉, 리스닝 모드) 사이에서 수신기의 동작을 어떻게 제어하느냐에 관한 기본 원리를 설명한다.
단계(301)에서, 예를 들어 프레임 신호의 끝 또는 프레임들의 버스트의 마지막 프레임 이후와 같이, 리스닝 모드에 들어가라는 표시를 수신하면, 단계(303)에 서, 수신기는 ADC(20)를 저 분해능 동작 모드에 둔다. 바람직하게는, 저 분해능 동작 모드는 1 비트 동작 모드이다. 리스닝 모드에 있는 동안, 수신기는 단계(305)에서 ADC(20)의 1 비트 출력에 기초하여 프리엠블 신호의 존재를 검출한다. 어떠한 프리엠블도 검출되지 않으면, 수신기는 리스닝 모드로 유지되고, ADC(20)는 1 비트 모드로 유지된다. 하지만, 프리엠블 신호가 검출되면, 단계(307)에서 ADC는 고 분해능 모드로 한번 더 설정된다.
따라서, 리스닝 모드에 있는 동안, 다른 디바이스에 의해 프레임이 전송되면, 이 프레임은 수신기 RF 부분(16)에 의해 증폭된 다음, ADC(20)에 전달될 것이다. 이후, ADC의 출력은 검출 상관기(22)에 전달된다. 검출 상관기(22)는, 수신된 신호(30)의 1 비트 샘플로부터의 정보에 기초하여, 프레임 프리엠블 심볼의 존재(또는 부재)를 확실하게 검출할 수 있다. 수신기 제어기(24)가 검출 상관기(22)로부터 "프리엠블 존재(preamble present)" 신호(32)를 수신하면, 수신기 제어기(24)는 수신기(10)의 모든 부분들을 즉시 깨우고 ADC(20)를 고 분해능 모드에 두며, 이에 따라 수신기(10)는 "수신 모드"에 있게 되어, 들어오는 프레임을 수신할 수 있게 된다. 이것은, 수신기 기저대역(26)에 "전력 절감" 신호(34)를 전송하여, 수신기 기저대역(26)에게 전력 절감 모드를 빠져나와 파워업할 것을 지시하고, ADC(20)에 "분해능 제어" 신호(36)를 전송하여, ADC에게 고 분해능에서 동작할 것을 지시함으로써 달성된다.
프레임의 끝에서, 또는 프레임 버스트의 마지막 프레임의 끝에서, 수신기 제어기(24)는 수신기 기저대역(26)에 전력 절감 신호(34)를 전송하여, 수신기(10)에 게 전력 절감 모드에 들어갈 것을 지시하고, ADC(20)에 분해능 제어 신호를 전송하여, ADC(20)에게 보다 낮은 분해능에서 동작할 것을 지시한다. 이후, 수신기(10)는 리스닝 모드에 다시 들어간다.
리스닝 모드 또는 전력 절감 모드는, 예를 들어 수신기 기저대역(26) 내의 디지털 논리를 클럭 게이팅(clock-gating)함으로써 달성될 수 있다. 클럭 게이팅은 비활성의 디지털 논리 내의 레지스터들에 대한 클럭들을 일시적으로 디스에이블(disable)시킨다. 이는 비활성의 디지털 논리의 전력 소모를 상당히 감소시킨다. 하지만, 당업자라면 본 발명의 범위를 벗어나지 않으면서 전력 절감 모드를 달성하기 위한 가능한 다른 많은 방법들이 제공될 수 있다는 것을 이해할 것이다.
상기 설명으로부터 알 수 있는 바와 같이, 본 발명은 수신된 신호 내에서의 프리엠블 심볼의 존재를 확실하게 검출할 수 있는 검출 상관기(22) 및 이후 가능한한 어떠한 정보도 잃지 않도록 수신 모드로 비교적 신속하게 스위치될 수 있는 수신기(10)에 의존한다. 본 발명은, UWB 신호에서 발견되는 프리엠블이 비교적 길다는 사실에 의해 가능해진다. 예를 들어, 표준 MB-OFDM 신호는 24개의 프리엠블 심볼들을 포함한다. 하지만, 이러한 프리엠블 심볼들을 보다 적게 이용하면서, 이를 테면 18개의 프리엠블 심볼들 만을 이용하여 프레임을 정확하게 수신하는 것이 가능하다. 이에 따라, 이러한 방식에서, 수신기(10)는 각 패킷의 첫번째 6개의 프리엠블 심볼들을 잃을 수 있다. 검출 상관기(22)가 첫 번째 프리엠블 심볼의 존재를 검출하면, 수신기(10)의 나머지 것들은 5개의 프리엠블 심볼들(즉, 1.5625㎲) 내에 파워업해야 한다.
이는 단지 1 비트 분해능 만을 이용하여 프리엠블이 확실하게 검출될 수 있게 한다. 예를 들어, 1 비트 검출 상관기는 (프리엠블 심볼의 길이와 같은) 슬라이딩 윈도우(sliding window) 내의 샘플들의 기호(sign)가 기대되는 프리엠블 신호의 기호와 얼마나 자주 일치하는 지를 합계(sum)한다. 이러한 합계와 미리 계산된 임계치를 비교하게 되면, MB-OFDM 프리엠블의 존재 또는 부재에 대한 확실한 결정을 내릴 수 있게 된다. 이러한 임계치는 어느 정도의 잘못된 알람(false alarm) 및 프레임을 놓칠 확률(missed frame probability)을 얻기 위해, (검출 상관기의 통계를 모델링함으로써) 선택된다.
상기 설명한 프리엠블의 특징으로 인해, 수신기는 어떠한 데이터도 잃지 않으면서 수신 모드에 놓여질 수 있게 된다.
ADC(20)는 고 분해능과 저 분해능 사이에서 신속하게 스위치할 수 있는데, 왜냐하면 이것은 단지 필요한 여분의 비교기들을 파워업시켜 고 분해능으로 스위칭하거나, 불필요한 비교기들을 파워다운(power down)시켜 저 분해능으로 스위칭하는 것 만을 필요로 하기 때문이다. 또한, 수신기 기저대역(26) 역시, 예를 들어 상기 설명한 클럭 게이팅을 이용함으로써, 동작 모드와 전력 절감 모드 사이에서 신속하게 스위치할 수 있다.
수신기(10)에 대한 추가의 변경들이 당업자에게 자명하다. 예를 들어, 검출 상관기(22)의 프리엠블-검출 기능은 RF 전력 검출 회로에 의해 대체될 수 있다. 이러한 회로는 수신된 신호의 무선 주파수 전력을 검출함으로써 전송 신호의 존재를 추측(infer)할 수 있다. 이는 준최적(sub-optimal)의 해결책인데, 그 이유는 RF 전 력 검출 회로는 프리엠블 심볼들과 다른 무선 통신들을 구별하지 못할 것이기 때문이다. 하지만, 이러한 시스템은 본 발명과 동일한 발명적 개념을 이용하기 때문에, 첨부된 청구항들에서 정의되는 본 발명의 범위 내에 있는 것으로 여겨진다.
리스닝 모드 동안 ADC의 분해능을 변경하는 것에 부가하여, 수신기는 또한, 예를 들어 수신되는 신호의 품질에 의존하여, 수신 모드 동안 ADC의 분해능을 변경하도록 될 수 있다. ADC(20)는 높은 품질의 신호가 수신되고 있을 때에는 3 비트, 4 비트 또는 5 비트와 같은 보다 낮은 분해능에서 동작하고, 품질이 불량한 신호가 수신되고 있을 때에는 6 비트 동작 모드에서 동작하도록 구성될 수 있다.
주목할 사항으로서, 본 발명은 ADC의 정확도를 감소시킴에 의한 전력 절감 모드가 유익한 비무선 시스템(non-wireless system)에 대해서도 이용될 수 있다.
주목할 사항으로서, 상기 설명된 실시예들은 본 발명을 한정하는 것이 아니라 예시하는 것이며, 그리고 당업자들은 첨부된 청구항들의 범위를 벗어나지 않으면서 많은 대안적인 실시예들을 설계할 수 있을 것이다. "포함하는"이라는 단어는 청구항에 리스트된 것들 이외의 요소들 또는 단계들의 존재를 배제하지 않으며, 그리고 단수 표현은 복수의 표현을 배제하지 않는다. 청구항들에서의 임의의 참조 부호들은 그 범위를 제한하는 것으로서 해석되서는 안된다.

Claims (21)

  1. 전송 신호를 활발하게 수신하고 있을 때에는 제 1 모드에서 동작하고, 전송 신호의 수신을 대기하고 있을 때에는 제 2 모드에서 동작할 수 있는, 무선 통신 신호를 수신하는 수신기로서,
    수신된 아날로그 신호를 디지털 신호로 변환하기 위한 아날로그 디지털 변환기와; 그리고
    상기 아날로그 디지털 변환기의 동작 분해능을 제어하여, 상기 제 1 모드에서는, 상기 아날로그 디지털 변환기가 제 1 분해능에서 동작하게 하고, 상기 제 2 모드에서는, 상기 아날로그 디지털 변환기가 제 2 분해능에서 동작하게 하는 수신기 제어기를 포함하며,
    여기서, 상기 제 2 분해능은 상기 제 1 분해능 보다 낮은 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  2. 제 1 항에 있어서,
    상기 아날로그 디지털 변환기의 상기 제 2 분해능은 1 비트 분해능인 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 아날로그 디지털 변환기로부터의 출력을 수신하는 검출 상관기를 더 포 함하며,
    상기 검출 상관기는, 상기 수신기가 상기 제 2 모드에서 동작하고 있을 때 상기 아날로그 디지털 변환기의 상기 제 2 분해능에 기초하여, 상기 디지털화된 신호 내의 프리엠블 심볼의 존재를 검출하는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  4. 제 3 항에 있어서,
    상기 검출 상관기는, 슬라이딩 윈도우 내의 샘플들의 기호가 기대되는 프리엠블 심볼의 기호와 얼마나 자주 일치하는 지를 합계한 다음, 상기 합계를 미리 결정된 임계치와 비교함으로써, 상기 프리엠블 심볼의 존재를 검출하는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  5. 제 4 항에 있어서,
    상기 검출 상관기는 또한 상기 수신기 제어기에 제 1 제어 신호를 전송하여, 프리엠블 심볼이 존재함을 나타냄으로써, 상기 아날로그 디지털 변환기에게 상기 제 1 분해능에서 동작할 것을 지시하는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  6. 제 1 항 또는 제 2 항에 있어서,
    RF 전력 검출 회로를 더 포함하고,
    상기 RF 전력 검출 회로는 상기 아날로그 디지털 신호의 전력에 기초하여 프리엠블 심볼의 존재를 검출하는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  7. 제 6 항에 있어서,
    상기 RF 전력 검출 회로는 또한 상기 수신기 제어기에 제 1 제어 신호를 전송하여, 상기 프리엠블 심볼이 존재함을 나타냄으로써, 상기 아날로그 디지털 변환기에게 상기 제 1 분해능에서 동작할 것을 지시하는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  8. 이전의 항들중 어느 한 항에 있어서,
    상기 제 1 분해능은 샘플당 6비트인 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  9. 이전의 항들중 어느 한 항에 있어서,
    상기 수신기 제어기는, 상기 수신기가 상기 제 1 모드에서 동작하고 있는 동안, 상기 아날로그 디지털 변환기의 상기 제 1 분해능을 변경하는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  10. 이전의 항들중 어느 한 항에 있어서,
    수신기 기저대역 부분을 더 포함하며,
    상기 수신기가 상기 제 2 모드에서 동작하고 있을 때, 상기 수신기 기저대역 부분은 전력 절감 모드가 되는 것을 특징으로 하는 무선 통신 신호를 수신하는 수신기.
  11. 수신된 아날로그 신호를 디지털 신호로 변환하는 아날로그 디지털 변환기를 갖는 무선 수신기에서 전력을 절감하는 방법으로서,
    상기 수신기가 전송 신호를 활발히 수신하고 있을 때에는 상기 수신기를 제 1 모드에서 동작시키는 단계와; 그리고
    상기 수신기가 전송 신호의 수신을 대기하고 있을 때에는 상기 수신기를 제 2 모드에서 동작시키는 단계를 포함하며,
    여기서, 상기 아날로그 디지털 변환기는 상기 제 1 모드에서 동작할 때에는 제 1 분해능을 갖고, 상기 제 2 모드에서 동작할 때에는 제 2 분해능을 가지며, 상기 제 2 분해능은 상기 제 1 분해능 보다 낮은 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  12. 제 11 항에 있어서,
    상기 제 2 모드에서 동작할 때, 상기 아날로그 디지털 변환기의 상기 제 2 분해능은 1 비트 분해능으로 설정되는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  13. 제 11 항 또는 제 12 항에 있어서,
    상기 아날로그 디지털 변환기로부터의 출력을 수신하는 검출 상관기를 제공하는 단계를 더 포함하며,
    상기 검출 상관기는, 상기 수신기가 상기 제 2 모드에서 동작하고 있을 때 상기 아날로그 디지털 변환기의 상기 제 2 분해능에 기초하여, 상기 디지털화된 신호 내의 프리엠블 심볼의 존재를 검출하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  14. 제 13 항에 있어서,
    상기 프리엠블 심볼의 존재를 검출하는 것은,
    슬라이딩 윈도우 내의 샘플들의 기호가 기대되는 프리엠블 심볼의 기호와 얼마나 자주 일치하는 지를 합계하는 단계와; 그리고
    상기 합계를 미리 결정된 임계치와 비교하는 단계에 의해 이루어지는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  15. 제 14 항에 있어서,
    상기 검출 상관기가 프리엠블 심볼의 존재를 검출하는 것에 응답하여, 상기 아날로그 디지털 변환기에게 상기 제 1 분해능에서 동작할 것을 지시하는 단계를 더 포함하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  16. 제 11 항 또는 제 12 항에 있어서,
    상기 수신된 아날로그 신호의 전력에 기초하여, 프리엠블 심볼의 존재를 검출하는 RF 전력 검출 회로를 제공하는 단계를 더 포함하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  17. 제 16 항에 있어서,
    상기 RF 전력 검출 회로가 프리엠블 심볼의 존재를 검출하는 것에 응답하여, 상기 아날로그 디지털 변환기에게 상기 제 1 분해능에서 동작할 것을 지시하는 단계를 더 포함하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  18. 제 11 항 내지 제 17 항 중의 어느 한 항에 있어서,
    상기 아날로그 디지털 변환기를 상기 제 1 분해능에서 동작시키는 단계는 샘플당 6 비트의 분해능을 이용하는 단계를 포함하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  19. 제 11 항 내지 제 18 항 중의 어느 한 항에 있어서,
    상기 수신기가 상기 제 1 모드에서 동작하고 있는 동안, 상기 아날로그 디지털 변환기의 상기 제 1 분해능을 변경하는 단계를 더 포함하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  20. 제 11 항 내지 제 19 항 중의 어느 한 항에 있어서,
    수신기 기저대역 부분을 제공하는 단계와; 그리고
    상기 수신기가 상기 제 2 모드에서 동작하고 있을 때, 상기 수신기 기저대역 부분을 전력 절감 모드로 설정하는 단계를 더 포함하는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
  21. 제 20 항에 있어서,
    상기 수신기 기저대역 부분의 수신기 전력은, 상기 수신된 신호의 수신 신호 품질에 따라 전력 소모를 최적화하기 위해 점진적으로 감소되는 것을 특징으로 하는 무선 수신기에서 전력을 절감하는 방법.
KR1020097005192A 2006-08-18 2007-08-17 무선 수신기 및 전력을 절감하는 방법 KR20090040913A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0616518.7 2006-08-18
GB0616518A GB2440988A (en) 2006-08-18 2006-08-18 Wireless receiver with low resolution ADC power saving mode

Publications (1)

Publication Number Publication Date
KR20090040913A true KR20090040913A (ko) 2009-04-27

Family

ID=37081277

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097005192A KR20090040913A (ko) 2006-08-18 2007-08-17 무선 수신기 및 전력을 절감하는 방법

Country Status (12)

Country Link
US (1) US20100128817A1 (ko)
EP (1) EP2057746B1 (ko)
JP (1) JP2010502043A (ko)
KR (1) KR20090040913A (ko)
CN (1) CN101507124A (ko)
AT (1) ATE499751T1 (ko)
AU (1) AU2007285552A1 (ko)
DE (1) DE602007012720D1 (ko)
GB (1) GB2440988A (ko)
MX (1) MX2009001614A (ko)
TW (1) TW200812309A (ko)
WO (1) WO2008020216A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190098896A (ko) * 2018-01-31 2019-08-23 연세대학교 산학협력단 고주파를 이용하는 신호 수신 시스템 및 이 시스템의 수신 신호 처리 방법, 및 이 시스템에 구비되는 해상도 비트 결정 장치

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630331B2 (en) * 2006-09-27 2009-12-08 Broadcom Corporation Power control techniques for wireless devices
US8073085B1 (en) * 2007-07-07 2011-12-06 Redpine Signals, Inc. Analog to digital converter bit width and gain controller for a wireless receiver
GB2456647B (en) * 2008-01-28 2012-09-12 Cambridge Silicon Radio Ltd Power-savings receiver
US8861502B2 (en) 2008-03-03 2014-10-14 Qualcomm Incorporated Assisted initial network acquisition and system determination
US8798029B2 (en) * 2008-08-06 2014-08-05 Qualcomm Incorporated Ultra wideband assisted initial acquisition
DE102010027019A1 (de) * 2010-07-08 2012-01-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Empfängeranordnung zum drahtlosen Empfang von Daten
US9184756B2 (en) * 2010-11-08 2015-11-10 Analog Devices, Inc. Variable dynamic range receiver
JP2012191359A (ja) * 2011-03-09 2012-10-04 Sony Corp A/d変換装置、a/d変換方法、並びにプログラム
US8861414B2 (en) * 2011-04-08 2014-10-14 The Regents Of The University Of Michigan Reducing energy consumption in wireless devices
KR101997894B1 (ko) 2012-03-19 2019-07-08 삼성전자주식회사 Fm-uwb 통신 시스템에서 전력소모를 줄이기 위한 송수신 장치
US10172105B2 (en) 2013-07-24 2019-01-01 Silicon Laboratories Inc. Apparatus for receiver with multi-bit observation interval and associated methods
US10305676B2 (en) 2013-07-24 2019-05-28 Silicon Laboratories Inc. Apparatus for receiver with digital signal arrival detector and associated methods
US9960946B2 (en) 2014-07-25 2018-05-01 Samsung Electronics Co., Ltd. Methods and apparatus for low power operation utilizing multiple ADCs with different precisions
US10389482B2 (en) 2016-12-06 2019-08-20 Silicon Laboratories Inc. Radio-frequency apparatus with improved power consumption and associated methods
CN110073697B (zh) 2016-12-14 2022-01-11 瑞典爱立信有限公司 唤醒信号构造
KR102174045B1 (ko) * 2016-12-14 2020-11-04 텔레폰악티에볼라겟엘엠에릭슨(펍) 웨이크-업 라디오
US20180287832A1 (en) * 2017-03-29 2018-10-04 Silicon Laboratories Inc. Radio-Frequency Apparatus with Improved Power Consumption and Associated Methods
US11095353B2 (en) * 2019-02-11 2021-08-17 Qualcomm Incorporated Use of low resolution analog-to-digital converter/digital-to-analog converter
CN113078925B (zh) * 2021-03-17 2022-11-01 武汉能钠智能装备技术股份有限公司 丢帧检测方法、设备、存储介质及装置
US11729838B2 (en) * 2021-10-07 2023-08-15 Qualcomm Incorporated Four-step random access channel procedure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9905997D0 (en) 1999-03-16 1999-05-12 Koninkl Philips Electronics Nv Radio receiver
JP3428629B2 (ja) * 1999-03-26 2003-07-22 日本電気株式会社 携帯電話装置及びその電力制御方法
US6504863B1 (en) 1999-09-07 2003-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for adaptive bit resolution in a digital receiver and digital transmitter
US6993291B2 (en) * 2001-10-11 2006-01-31 Nokia Corporation Method and apparatus for continuously controlling the dynamic range from an analog-to-digital converter
JP3647806B2 (ja) * 2001-12-26 2005-05-18 松下電器産業株式会社 A/d変換器、a/d変換方法および信号処理装置
US7522677B2 (en) * 2003-10-21 2009-04-21 Texas Instruments Incorporated Receiver with low power listen mode in a wireless local area network
US6864817B1 (en) * 2003-12-30 2005-03-08 Freescale Semiconductor, Inc. Signaling dependent adaptive analog-to-digital converter (ADC) system and method of using same
US7672405B2 (en) * 2006-05-31 2010-03-02 Via Technologies, Inc. Method for controlling the signal gain of a multiband orthogonal frequency division multiplexing (MB-OFDM) baseband receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190098896A (ko) * 2018-01-31 2019-08-23 연세대학교 산학협력단 고주파를 이용하는 신호 수신 시스템 및 이 시스템의 수신 신호 처리 방법, 및 이 시스템에 구비되는 해상도 비트 결정 장치

Also Published As

Publication number Publication date
DE602007012720D1 (de) 2011-04-07
AU2007285552A1 (en) 2008-02-21
JP2010502043A (ja) 2010-01-21
ATE499751T1 (de) 2011-03-15
GB2440988A (en) 2008-02-20
EP2057746A1 (en) 2009-05-13
MX2009001614A (es) 2009-02-23
CN101507124A (zh) 2009-08-12
GB0616518D0 (en) 2006-09-27
TW200812309A (en) 2008-03-01
US20100128817A1 (en) 2010-05-27
WO2008020216A1 (en) 2008-02-21
EP2057746B1 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
EP2057746B1 (en) Wireless receiver and method of saving power
US11109314B2 (en) Padding for wakeup radio (WUR) packets
KR101419830B1 (ko) 블루투스 스캔 활동 동안 블루투스 수신기를 사용하는 wlan 신호의 검출
US6236674B1 (en) Transceiver control with sleep mode operation
JP5646535B2 (ja) 無線端末ビーコン信号の生成、送信および/または使用に関する方法および装置
CN111527704B (zh) 用于检测蓝牙低功耗分组的控制器
US8477631B2 (en) Dynamic low power radio modes
KR101358894B1 (ko) 다수의 무선 인터페이스들 사이에서의 전력 관리
JP2013509784A (ja) 無線通信システムにおけるパワーセービング方法
Yomo et al. Receiver design for realizing on-demand WiFi wake-up using WLAN signals
KR20130031283A (ko) 이웃한 기지국들을 모니터링하기 위한 유휴 모드 전력 소비 감소
JP2016516347A (ja) 低電力の単一チェーンリッスンと複数チェーン復調の間で切り換えるための方法および装置
EP2614596B1 (en) System and method for managing power consumption in a device
KR102191511B1 (ko) 트랜시버 및 그 동작 방법
EP2060009B1 (en) Wireless device and method
KR100918001B1 (ko) 저전력소비형 임펄스 방식의 송신기, 수신기, 초광대역송수신 시스템 및 그 동작 방법
EP4439990A1 (en) Receiver circuit for detecting and waking up to a wakeup impulse sequence
Pekcokguler et al. A novel RF spectrum monitoring architecture for an ultra-low-power Wi-Fi geopositioning system

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20090312

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid