KR20090034669A - A method and apparatus for converting an analog signal to a digital signal - Google Patents

A method and apparatus for converting an analog signal to a digital signal Download PDF

Info

Publication number
KR20090034669A
KR20090034669A KR1020070100042A KR20070100042A KR20090034669A KR 20090034669 A KR20090034669 A KR 20090034669A KR 1020070100042 A KR1020070100042 A KR 1020070100042A KR 20070100042 A KR20070100042 A KR 20070100042A KR 20090034669 A KR20090034669 A KR 20090034669A
Authority
KR
South Korea
Prior art keywords
comparator
analog
comparison
digital
range
Prior art date
Application number
KR1020070100042A
Other languages
Korean (ko)
Other versions
KR100950010B1 (en
Inventor
김진우
김무영
이호규
김철우
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020070100042A priority Critical patent/KR100950010B1/en
Publication of KR20090034669A publication Critical patent/KR20090034669A/en
Application granted granted Critical
Publication of KR100950010B1 publication Critical patent/KR100950010B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation
    • H03M3/022Delta modulation, i.e. one-bit differential modulation with adaptable step size, e.g. adaptive delta modulation [ADM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

An apparatus and a method for converting an analog signal into a digital signal are provided to reduce the number of preamplifiers and comparators by decreasing a comparison range through the preprocessing. A preprocessor(210) controls a comparison range of a comparator by using a switch. A first comparison unit(230) compares an input voltage and a reference voltage based on the controlled comparison range. An encoding unit(260) encodes a digital code outputted from the first comparison unit. The preprocessor includes a comparator, a flip-flop and a sample holder. The comparator compares the differential input signal. The flip-flop maintains the output of the comparator to the fixed value according to the clock signal. The sample holder outputs the differential input signal having the fixed value.

Description

아날로그 신호를 디지털 신호로 변환하는 장치 및 방법{A method and apparatus for converting an analog signal to a digital signal}A method and apparatus for converting an analog signal to a digital signal}

전 세계적으로 정보의 광대역화 및 초고속화에 대한 요구가 폭발적으로 증가하고 있으며, 이러한 요구에 적합한 밀리미터파 대역(30~300GHz)에 대한 연구가 활발히 진행되고 있다. 밀리미터파 대역과 마이크로파 대역의 경계인 20~40GHz 대역은 현재 미국의 LMDS, 국내의 B-WILL 등 위성통신 기술에서 응용되고 있다. 그 다음으로 관심이 높아지고 있는 주파수 대역이 60GHz 대역이다.The demand for broadband and ultra-high speed of information is exploding all over the world, and the millimeter wave band (30-300 GHz) suitable for such a demand is being actively researched. The 20-40 GHz band, which is the boundary between the millimeter wave band and the microwave band, is currently being applied to satellite communication technologies such as LMDS in the US and B-WILL in Korea. The next higher frequency band is the 60 GHz band.

60GHz 대역은 광대역 전송이 가능할 뿐만 아니라 산소에 의한 전파의 흡수 감쇄가 크기 때문에 위성통신, 군사용, 대용량 단거리 통신 시스템, 가정의 구내배선의 무선화 등 다양한 응용 분야가 있다. 특히, 60GHz 대역은 다른 UWB(3.1GHz~10.2GHz), WPAN(2.4GHz) 등의 근거리 무선 통신들과 밴드가 많이 떨어져 있어서 방해가 적고 표준을 정하는데 있어서 제약이 덜하다는 장점이 있다.The 60 GHz band is not only capable of wideband transmission but also has a large absorption attenuation of radio waves by oxygen, and thus has various applications such as satellite communication, military use, large-capacity short-range communication system, and wireless home wiring. In particular, the 60 GHz band is far away from other UWB (3.1 GHz to 10.2 GHz) and short-range wireless communications such as WPAN (2.4 GHz), so that there is less interference and less restrictions in setting standards.

60GHz 대역에서의 무선 통신은 고주파수 대역을 사용함으로써, 빠른 기가 대역에서의 아날로그-디지털 변환기(ADC)를 필요로 하게 된다. 본 발명에서 사용한 플래시(Flash) 구조의 아날로그-디지털 변환기는 고속 변환이 가능하므로 향후 60GHz 대역 통신 기술에 적용될 것으로 예상된다.Wireless communication in the 60 GHz band uses high frequency bands, requiring an analog-to-digital converter (ADC) in the fast giga band. The flash-to-analog analog-to-digital converter used in the present invention is capable of high-speed conversion and is expected to be applied to future 60GHz band communication technology.

고속 아날로그-디지털 변환기에 사용되는 플래쉬(Flash) 구조는 고속 동작이 용이하다는 장점이 있지만, 해상도(resolution)가 높아질수록 전력 소모가 크게 늘어난다는 단점이 있다. 예를 들어, 4bit의 해상도를 가지는 변환기의 경우, 각각 15개의 프리앰프와 비교기가 필요한 반면, 5bit의 해상도를 가지는 변환기는 4bit 경우의 2배인 각각 31개의 프리앰프와 비교기를 필요로 하게 되어 2배에 가까운 전력 소모 증가를 보인다.The flash structure used in the high-speed analog-to-digital converter has an advantage of easy high-speed operation. However, the higher the resolution, the greater the power consumption. For example, a converter with 4 bits of resolution requires 15 preamps and comparators each, while a converter with 5 bits of resolution requires 31 preamps and comparators, twice that of 4 bits. Seems to increase power consumption close to.

이처럼, 보다 높은 해상도를 가지는 고속 아날로그-디지털 변환기의 전력 소모를 줄이기 위하여 프리앰프와 비교기의 숫자를 조절할 필요가 있다.As such, it is necessary to adjust the number of preamplifiers and comparators in order to reduce the power consumption of higher resolution analog to digital converters.

본 발명의 목적은 아날로그-디지털 변환기의 전력 소모와 면적을 줄이고자 함에 있다. An object of the present invention is to reduce the power consumption and area of the analog-to-digital converter.

본 발명의 다른 목적은, 전처리 과정을 통해 비교기의 비교 범위를 조절하고자 함에 있다.Another object of the present invention is to adjust the comparison range of the comparator through a pretreatment process.

본 발명의 다른 목적은, 비교기에서 추가적인 비교 과정을 수행함으로써 보다 정확한 비교를 수행하고자 함에 있다.Another object of the present invention is to perform a more accurate comparison by performing an additional comparison process in the comparator.

본 발명의 다른 목적은, 비교기의 비교 범위를 줄임으로써 프리앰프와 비교기의 숫자를 줄이고자 함에 있다.Another object of the present invention is to reduce the number of preamplifiers and comparators by reducing the comparison range of comparators.

본 발명은 아날로그 신호를 디지털 신호로 변환하는 장치에 있어서, 스위치를 이용하여 비교기의 비교 범위를 조절하는 전처리부와 상기 조절된 비교 범위에 기초하여 입력 전압과 기준 전압을 비교하는 제1 비교부 및 상기 제1 비교부로부터 출력된 디지털 코드를 인코딩하는 인코딩부를 포함하는 것을 특징으로 하는 아날로그-디지털 변환기를 제공한다.The present invention provides an apparatus for converting an analog signal into a digital signal, comprising: a preprocessor adjusting a comparison range of a comparator using a switch, a first comparing unit comparing an input voltage and a reference voltage based on the adjusted comparison range; It provides an analog-to-digital converter comprising an encoding unit for encoding the digital code output from the first comparison unit.

새로운 전처리 과정을 통해 비교기의 비교 범위를 줄일 수 있다. 상기 비교 범위를 줄임으로써, 프리앰프와 비교기의 숫자를 줄일 수 있고, 상기 프리앰프와 상기 비교기의 숫자를 줄임으로써 아날로그-디지털 변환기의 전력 소모를 줄일 수 있을 뿐만 아니라, 집적도를 높일 수 있다. 그리고, 입력 전압이 일정 범위에 해당되는 경우 비교 과정을 추가적으로 수행함으로써 보다 정확한 비교를 수행할 수 있다. 또한, 상기의 전력 소모 문제와 집적 문제를 해결함으로써, 60GHz 무선 통신용 칩을 용이하게 구현할 수 있다.The new preprocessing process reduces the comparability of comparators. By reducing the comparison range, the number of preamplifiers and comparators can be reduced, and the number of preamplifiers and comparators can be reduced, thereby reducing power consumption of the analog-to-digital converter and increasing the degree of integration. In addition, when the input voltage falls within a predetermined range, the comparison process may be performed to perform a more accurate comparison. In addition, by solving the above power consumption and integration problems, it is possible to easily implement a chip for 60GHz wireless communication.

본 발명은 아날로그 신호를 디지털 신호로 변환하는 장치에 있어서, 스위치를 이용하여 비교기의 비교 범위를 조절하는 전처리부와 상기 조절된 비교 범위에 기초하여 입력 전압과 기준 전압을 비교하는 제 1 비교부 및 상기 제 1 비교부로부터 출력된 디지털 코드를 인코딩하는 인코딩부를 포함하는 것을 특징으로 하는 아날로그-디지털 변환기를 제공한다.The present invention provides an apparatus for converting an analog signal into a digital signal, the apparatus comprising: a preprocessor adjusting a comparison range of a comparator using a switch; a first comparing unit comparing an input voltage and a reference voltage based on the adjusted comparison range; It provides an analog-to-digital converter comprising an encoding unit for encoding the digital code output from the first comparison unit.

또한, 본 발명은, 상기 전처리부는, 차동 입력 신호를 비교하는 비교기와 클록 신호에 따라, 상기 비교기의 출력값을 일정한 값으로 유지시켜주는 플립플롭 및 상기 차동 입력 신호를 일정한 값으로 출력하는 샘플홀더를 포함하는 것을 특징으로 한다.The preprocessor may further include a flip-flop for maintaining a constant value of the comparator and a sample holder for outputting the differential input signal at a constant value according to a comparator and a clock signal comparing the differential input signal. It is characterized by including.

또한, 본 발명은, 상기 플립플롭의 출력값에 기초하여 상기 스위치가 조절되는 것을 특징으로 한다.In addition, the present invention is characterized in that the switch is adjusted based on the output value of the flip-flop.

또한, 본 발명은, 상기 스위치를 이용하여 상기 샘플홀더의 출력값을 반대 위상이 되도록 하는 것을 특징으로 한다.In addition, the present invention is characterized in that the output value of the sample holder to the opposite phase by using the switch.

또한, 본 발명은, 상기 비교 범위는 중간 전압을 기준으로 상위 영역과 하위 영역으로 나뉘는 것을 특징으로 한다.In addition, the present invention is characterized in that the comparison range is divided into an upper region and a lower region on the basis of the intermediate voltage.

또한, 본 발명은, 상기 입력 전압이 일정 범위에 해당되는 경우, 추가적인 비교 과정을 수행하는 제 2 비교부를 더 포함하는 것을 특징으로 한다.The present invention may further include a second comparator configured to perform an additional comparison process when the input voltage falls within a predetermined range.

또한, 본 발명은, 아날로그 신호를 디지털 신호로 변환하는 방법에 있어서, 스위치를 이용하여 비교기의 비교 범위를 조절하는 단계와 상기 조절된 비교 범위에 기초하여 입력 전압과 기준 전압을 비교하는 단계 및 상기 비교 범위에 기초하여 출력된 디지털 코드를 인코딩하는 단계를 포함하는 것을 특징으로 하는 아날로그-디지털 변환 방법을 제공한다.The present invention also provides a method of converting an analog signal into a digital signal, the method comprising: adjusting a comparison range of a comparator using a switch, comparing the input voltage with a reference voltage based on the adjusted comparison range, and It provides an analog-to-digital conversion method comprising the step of encoding the output digital code based on the comparison range.

이하, 첨부된 도면을 참조하여 본 발명의 실시예의 구성과 그 작용을 설명하며, 도면에 의해서 설명되는 본 발명의 구성과 작용은 하나의 실시예로서 설명되는 것이며, 이것에 의해서 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.Hereinafter, the configuration and operation of the embodiments of the present invention with reference to the accompanying drawings, the configuration and operation of the present invention described by the drawings will be described as one embodiment, whereby the technical spirit of the present invention And its core composition and operation are not limited.

아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어를 사용하여 설명한다. 그러한 경우에는 해당 부분의 상세 설명에서 그 의미를 명확히 기재하므로, 본 발명의 설명에서 사용된 용어의 명칭만으로 단순 해석되어서는 안 될 것이며 그 해당 용어의 의미까지 파악하여 해석되어야 함을 밝혀두고자 한다.In addition, the terminology used in the present invention was selected as a general term widely used as possible now, in a specific case will be described using terms arbitrarily selected by the applicant. In such a case, since the meaning is clearly described in the detailed description of the part, it should not be interpreted simply by the name of the term used in the description of the present invention, and it should be understood that the meaning of the term should be understood and interpreted. .

자연계의 여러 가지 신호는 대부분 시간에 따라 연속적으로 변화한다. 우리는 이러한 신호를 컴퓨터에서 처리할 수 있도록 디지털 값으로 변환해줄 필요가 있다. 이러한 기능을 수행하는 장치를 아날로그-디지털 변환기라고 한다. 상기 아날 로그-디지털 변환기에는 병렬 비교기형, 단경사형, 쌍경사형, 축차근사형 등 여러 가지 종류가 있다. 이 중 병렬 비교기형 아날로그-디지털 변환기를 플래쉬(flash)형 아날로그-디지털 변환기라 부르기도 한다. 상기 플래쉬형 아날로그-디지털 변환기는 고속 변환이 가능하기 때문에 향후 여러 분야의 고급 기술에서 사용될 수 있다. 따라서, 본 발명은 보다 효율적인 아날로그-디지털 변환기의 여러 가지 실시예들을 제공하고자 한다. Many of the signals in nature change continuously over time. We need to convert these signals into digital values for computer processing. Devices that perform these functions are called analog-to-digital converters. There are various types of analog-to-digital converters such as a parallel comparator type, a short slope type, a twin slope type, and a sequential approximation type. Among them, a parallel comparator analog-to-digital converter is also called a flash analog-to-digital converter. Since the flash-type analog-to-digital converter is capable of high speed conversion, the flash-type analog-to-digital converter may be used in advanced technologies in various fields in the future. Accordingly, the present invention seeks to provide several embodiments of more efficient analog-to-digital converters.

도 1은 본 발명이 적용되는 실시예로서, 아날로그-디지털 변환기의 블록도를 나타낸다.1 is a block diagram of an analog-to-digital converter as an embodiment to which the present invention is applied.

상기 아날로그-디지털 변환기는 샘플홀더부(sample holder unit)(110), 기준전압 발생부(reference voltage generating unit)(120), 프리앰프부(pre-amplifier unit)(130), 비교부(comparator unit)(140), 인코딩부(encoding unit)(150)를 포함할 수 있다. The analog-to-digital converter includes a sample holder unit 110, a reference voltage generating unit 120, a pre-amplifier unit 130, and a comparator unit. 140 may include an encoding unit 150.

먼저, 샘플홀더부(120)는 빠르게 들어오는 입력을 비교부(140)에서 쉽게 비교할 수 있도록, 클록(clock)의 한 페이즈에서는 입력값을 따라가고, 반대 페이즈에서는 상기 따라간 입력값을 일정한 전압값으로 유지시켜 주는 역할을 한다. 그리고, 상기 입력값을 일정한 전압값으로 유지시킴으로써, 비교부(140)에서는 오차를 최대한 줄여서 보다 명확한 비교를 수행할 수있게 된다. 기준전압 발생부(120) 에서는 저항열을 통해 서로 다른 레벨을 갖는 다수의 기준 전압을 발생시킬 수 있다. 예를 들어, 상기 기준전압 발생부(120)에서는 프리앰프부(130)를 거쳐 비교부(140) 로 들어가는 입력값과 비교될 수 있는 일정한 기준 전압을 생성할 수 있다. First, the sample holder 120 follows an input value in one phase of a clock so that the comparator 140 easily compares an incoming signal quickly. In the opposite phase, the sample holder 120 uses a constant voltage value. It plays a role. In addition, by maintaining the input value at a constant voltage value, the comparison unit 140 can perform a more clear comparison by reducing the error as much as possible. The reference voltage generator 120 may generate a plurality of reference voltages having different levels through the resistor string. For example, the reference voltage generator 120 may generate a constant reference voltage that can be compared with an input value that enters the comparator 140 through the preamplifier 130.

그리고, 프리앰프부(130)는 입력되는 신호의 증폭 효과를 제공할 수 있다. 예를 들어, 비교부(140)로 하여금 입력값과 기준 전압값을 보다 정확하게 비교할 수 있도록 상기 입력값과 상기 기준 전압값과의 차이값을 증폭시켜주는 역할을 한다. 비교부(140)는 상기 프리앰프부(130)를 통해 증폭된 상기 입력값과 상기 기준 전압값과의 차이값을 비교하여 1과 0의 디지털 값으로 출력하게 된다. 예를 들어, 비교부(140)의 출력은 기준 전압보다 입력 전압이 높을 경우 논리 1의 전압을 출력하게 된다. 이때, 상기 비교부(140)의 출력은 이상적인 경우 연속되는 1과 0의 경계가 뚜렷하여 소위 온도계 코드(Thermometer Code)라 부르기도 한다. 예를 들어, 6bit의 해상도를 가지는 아날로그-디지털 변환기는 63개의 디지털 코드(온도계 코드)를 출력하게 된다. 그리고 인코딩부(150)를 거쳐 최종적으로 6bit의 디지털 출력을 얻을 수 있다. 상기 인코딩부(150)로서, 예를 들어, 팻-트리(Fat-Tree) 인코더를 이용할 수 있다.The preamplifier 130 may provide an amplification effect of the input signal. For example, the comparator 140 may amplify a difference value between the input value and the reference voltage value so that the comparison unit 140 may compare the input value with the reference voltage value more accurately. The comparator 140 compares the difference between the input value amplified by the preamplifier 130 and the reference voltage value and outputs the digital value of 1 and 0. FIG. For example, the output of the comparator 140 outputs a voltage of logic 1 when the input voltage is higher than the reference voltage. In this case, the output of the comparator 140 may be called a thermometer code because the boundary between successive 1s and 0s is clear in an ideal case. For example, a 6-bit resolution analog-to-digital converter will output 63 digital codes (thermometer codes). Finally, the 6-bit digital output can be obtained through the encoding unit 150. As the encoding unit 150, for example, a fat-tree encoder may be used.

상기 프리앰프부(130)와 상기 비교부(140)에서는 아날로그-디지털 변환기의 해상도(resolution)에 따라 일정한 수의 프리앰프와 비교기가 필요하게 된다. 상기 프리앰프와 상기 비교기 숫자를 최소화할수록 전력 소모를 줄일 수 있을 뿐만 아니라 집적 회로 구성을 용이하게 할 수 있게 된다. 상기 프리앰프와 상기 비교기 숫자를 최소화하기 위해서는 여러 가지 방법들이 이용될 수 있다. 예를 들어, 상기 비교부(140)에서 비교하게 되는 전압의 범위를 낮출수록 상기 프리앰프와 상기 비교기 숫자를 줄일 수 있다. 따라서, 본 발명의 일실시예들로서, 상기 비교부(140) 의 비교 범위를 낮추기 위한 다양한 실시예들을 살펴보도록 한다. The preamplifier 130 and the comparator 140 require a predetermined number of preamplifiers and comparators according to the resolution of the analog-to-digital converter. Minimizing the number of the preamplifier and the comparator may not only reduce power consumption but also facilitate an integrated circuit configuration. Various methods may be used to minimize the number of the preamplifier and the comparator. For example, the lower the range of the voltage to be compared in the comparator 140 can reduce the number of the preamplifier and the comparator. Therefore, as an embodiment of the present invention, look at various embodiments for reducing the comparison range of the comparison unit 140.

도 2는 본 발명이 적용되는 실시예로서, 아날로그-디지털 변환기의 블록도를 나타낸다.2 is a block diagram of an analog-to-digital converter as an embodiment to which the present invention is applied.

상기 도 2에 도시된 아날로그-디지털 변환기는 전처리부(210), 기준전압 발생부(220), 제 1 비교부(230), 제 2 비교부(240), 비교기 출력 보정부(250), 인코딩부(260)를 포함할 수 있다.The analog-to-digital converter illustrated in FIG. 2 includes a preprocessor 210, a reference voltage generator 220, a first comparator 230, a second comparator 240, a comparator output corrector 250, and an encoding. It may include a portion 260.

전처리부(210)에서는 입력값으로 INP(Input Positive)와 INN(Input Negative)의 아날로그 차동 신호를 받아, 비교부에서의 비교 범위를 낮추기 위한 전처리 과정을 수행한다. 예를 들어, 상기 전처리부(210)를 통과하게 되면 1V의 비교 범위가 0.5V로 줄어들 수 있다. 비교 범위를 낮추기 위한 원리에 대해서는 도 3 및 도 4에서 구체적으로 설명하도록 한다. 이처럼, 상기 비교 범위가 줄어듬에 따라 제 1 비교부(230)는 프리앰프의 개수와 비교기의 개수를 줄일 수 있게 된다. 예를 들어, nbit 플래쉬 아날로그-디지털 변환기는 2n ?? 1 개의 비교기가 필요할 수 있다. 이에 따라 6bit 플래쉬 아날로그-디지털 변환기의 경우에는, 63개의 비교기가 필요하다. 그러나, 상기 전처리부(210)를 통과하게 되면 비교기의 개수를 그 절반인 33개(더미영역 제외)로 줄일 수 있게 된다. 이에 대해서는 도 3에서 상세히 설명하도록 한다.The preprocessor 210 receives an analog differential signal of INP (Input Positive) and INN (Input Negative) as an input value, and performs a preprocessing process to lower the comparison range in the comparator. For example, when passing through the preprocessor 210, the comparison range of 1V may be reduced to 0.5V. The principle for lowering the comparison range will be described in detail with reference to FIGS. 3 and 4. As such, as the comparison range is reduced, the first comparator 230 may reduce the number of preamplifiers and the number of comparators. For example, an nbit flash analog-to-digital converter would be 2n ?? One comparator may be required. Thus, for a 6-bit flash analog-to-digital converter, 63 comparators are needed. However, when passing through the preprocessor 210, the number of comparators can be reduced to 33 (excluding the dummy area), which is half of the number of comparators. This will be described in detail with reference to FIG. 3.

상기 전처리부(210)를 통해서 비교기의 개수를 줄였을 경우, 상기 전처리부(210)의 출력값이 가운데 전압(CM) 주변에서 불안정해질 수 있다. 따라서, 이러 한 현상을 최소화시키기 위한 방법이 필요할 수 있다. 예를 들어, 상기 가운데 전압(CM) 주변 범위 내에서 추가적으로 비교 과정을 수행함으로써 불안정해지는 것을 보정할 수 있다. 즉, 상기 가운데 전압 주변 범위에 있는, 상기 제 1 비교부(230)와 겹치는 범위에 대해서, 추가적인 비교기(제 2 비교부(240))를 통해 비교함으로써 보다 정확한 비교를 할 수 있게 된다. When the number of comparators is reduced through the preprocessor 210, the output value of the preprocessor 210 may become unstable around the center voltage CM. Therefore, there may be a need for a method to minimize this phenomenon. For example, instability can be corrected by additionally performing a comparison process within a range around the center voltage CM. That is, a comparison between the first comparator 230 and the overlapping range of the center comparator 230 through an additional comparator (second comparator 240) enables a more accurate comparison.

구체적 예로, 상기 도 2에서 살펴볼 때, 불안정한 범위를 상기 가운데 전압(CM) 주변의 REFDN에서 REFUP 까지라고 가정하면, 제 2 비교부(240)에서는 상기 REFDN에서 REFUP 까지의 범위에 대해서 새롭게 비교 과정을 수행하게 된다. 새로운 비교 과정을 수행하기 위해서 일정한 수의 프리앰프와 비교기가 추가적으로 필요할 수 있다. 여기서, 상기 REFUP는 불안정해지는 영역의 최대값을 의미하고, REFDN은 불안정해지는 영역의 최소값을 의미할 수 있다. 상기 불안정해지는 영역은 실험에 의해서 결정될 수 있으며, 또는 미리 주어진 정보에 의해 결정될 수도 있다. 예를 들어, 가운데 전압(CM)부터 가장 높은 기준 전압값(REFerence voltage Positive, 이하 REFP라고 한다.)까지의 범위의 10%에 해당되는 범위를 REFUP 값으로 설정할 수 있다. 그리고, 가운데 전압(CM)부터 가장 낮은 기준 전압값(REFerence voltage Negative 이하, REFN이라고 한다.)까지의 범위의 10%에 해당되는 범위를 REFDN 값으로 설정할 수 있다. 또한, 상기 불안정해지는 영역의 최대값과 최소값을 가운데 전압의 상위 영역과 하위 영역에 대해서 각각 다르게 설정할 수도 있다.Specifically, referring to FIG. 2, assuming that the unstable range is from REFDN to REFUP around the center voltage CM, the second comparator 240 newly performs a comparison process with respect to the range from REFDN to REFUP. Will be performed. A certain number of preamps and comparators may be additionally needed to perform the new comparison process. Here, REFUP may mean a maximum value of an unstable region, and REFDN may mean a minimum value of an unstable region. The unstable region may be determined by experiment or may be determined by predetermined information. For example, a range corresponding to 10% of the range from the center voltage CM to the highest reference voltage positive (hereinafter referred to as REFP) may be set as the REFUP value. The range corresponding to 10% of the range from the center voltage CM to the lowest reference voltage value (hereinafter, referred to as REFN) may be set as the REFDN value. In addition, the maximum value and the minimum value of the unstable region may be set differently for the upper region and the lower region of the center voltage.

따라서, 상기 REFDN에서 REFUP 까지의 범위에 대해서는 상기 제 1 비교부(230)와 상기 제 2 비교부(240)에서 중복적으로 비교 과정을 수행함으로써 보다 정확한 비교를 할 수 있게 된다.Therefore, the comparison between the first comparison unit 230 and the second comparison unit 240 may be performed more accurately with respect to the range from REFDN to REFUP.

상기 기준전압 발생부(220)에서는 저항열을 통해 서로 다른 레벨을 갖는 다수의 기준 전압을 발생시킬 수 있다. 이 때, 기능은 하지 않으나 형식상 필요한 영역이 필요할 수 있는데, 이를 더미 영역(dummy region)이라고 한다. 예를 들어, 상기 도 2를 살펴보면, REFP와 REFP_D(REFerence voltage Positive Dummy) 사이의 영역과, REFN과 REFN_D(REFerence voltage Negative Dummy) 사이의 영역을 더미 영역으로 볼 수 있다.The reference voltage generator 220 may generate a plurality of reference voltages having different levels through a resistor string. At this time, it may not function but may require a formally form, which is called a dummy region. For example, referring to FIG. 2, a region between REFP and REFP_D (REFerence voltage positive dummy) and a region between REFN and REFN_D (REFerence voltage negative dummy) may be viewed as a dummy region.

상기 제 1 비교부(230)와 상기 제 2 비교부(240)를 통해 나온 출력값은 비교기 출력 보정부(250)를 통해 원래의 개수만큼 디지털 코드(온도계 코드)로 변환된다. 예를 들어, 6bit 플래쉬 아날로그-디지털 변환기의 경우, 상기 제 1 비교부(230)에서 33개의 비교기가 이용되고, 상기 제 2 비교부(240)에서 9개의 비교기가 이용되었다면, 42개의 출력값이 나올 수 있다. 상기 42개의 출력값은 상기 비교기 출력 보정부(250)를 통해서 다시 63개의 디지털 코드로 변환될 수 있다. 이 때, 상기 비교기 출력 보정부(250)는, 예를 들어, 버블 에러 보정부를 이용할 수 있다. Output values output through the first comparator 230 and the second comparator 240 are converted into digital codes (thermometer codes) by the original number through the comparator output corrector 250. For example, in the case of a 6-bit flash analog-to-digital converter, if 33 comparators are used in the first comparator 230 and 9 comparators are used in the second comparator 240, 42 output values are output. Can be. The 42 output values may be converted into 63 digital codes through the comparator output corrector 250. In this case, the comparator output corrector 250 may use, for example, a bubble error corrector.

상기 인코딩부(260)는 상기 변환된 디지털 코드를 입력받아, 최종적으로 원하는 nbit 해상도의 디지털 출력을 하게 된다. 상기 인코딩부(260)는 상기 디지털 코드의 1과 0이 교차되는 경계 지점의 위치를 파악하여 그 위치에 해당하는 유일한 코드 값을 출력할 수 있다. 이 때, 상기 디지털 코드의 경계 지점 부근에서 1과 0이 불규칙하게 섞여 있는 것을 버블 에러라고 한다. 따라서, 상기 비교기 출력 보정부(250)에서는 상기 버블 에러 등을 보정할 수 있다.The encoder 260 receives the converted digital code and finally outputs a digital output of a desired nbit resolution. The encoder 260 may detect a position of a boundary point where 1 and 0 of the digital code intersect, and output a unique code value corresponding to the position. At this time, the irregular mixing of 1 and 0 near the boundary point of the digital code is called bubble error. Therefore, the comparator output corrector 250 may correct the bubble error.

도 3은 본 발명이 적용되는 실시예로서, 전처리부(210)의 내부 회로도를 나타낸다.3 is an embodiment to which the present invention is applied and shows an internal circuit diagram of the preprocessor 210.

상기 전처리부(210)는 비교기(comparator)(211), 플립플롭(Flipflop)(212), 샘플홀더(213) 및 스위치(214,215,216,217)를 포함할 수 있다. 상기 전처리부(210)를 통하여 상기 비교부(140,230,240)의 비교 범위를 줄일 수 있고, 상기 비교 범위를 줄임으로써 프리앰프와 비교기의 숫자를 줄일 수 있게 된다.The preprocessor 210 may include a comparator 211, a flipflop 212, a sample holder 213, and a switch 214, 215, 216, 217. The comparison range of the comparators 140, 230, and 240 may be reduced through the preprocessor 210, and the number of preamplifiers and comparators may be reduced by reducing the comparison range.

먼저 INP와 INN의 차동 입력이 상기 비교기(211)와 상기 샘플홀더(213)로 동시에 인가될 수 있다. 상기 샘플홀더(213)에서 입력을 샘플링하는 동안 상기 비교기(211)는 상기 INP와 상기 INN의 차이값을 비교하게 된다. 예를 들어, INP > INN 인 경우, 상기 비교기(211)의 출력값인 COMP에 1을 출력할 수 있다. INP < INN 인 경우에는 상기 비교기(211)의 출력값인 COMP에 0을 출력할 수 있다. 상기 샘플홀더(213)는 홀드 모드일 때, 빠른 입력의 주파수를 변화가 적은 일정한 값으로 출력해주는 역할을 한다. 따라서, 상기 샘플홀더(213)가 홀드 모드일 때, SH_P와 SH_N 출력값이 나오게 되고, 이 값은 각각 복수개의 스위치로 인가될 수 있다. 예를 들어, 도 3에서는 상기 스위치(214,215,216,217)는 총 4개로 이루어질 수 있고, 상기 SH_P와 SH_N 출력값은 각각 2개의 스위치로 인가될 수 있다. 상기 복수개의 스위치들 중 첫번째 스위치(214)와 네번째 스위치(217)가 동시에 켜지고, 두번째 스위치(215)와 세번째 스위치(216)가 동시에 켜지는 구조로 이루어질 수 있다. 상기 스위치들은 상기 플립플롭(212)을 거쳐서 나온 Q와 반대 신호인 Q bar 신호를 통해 켜지거나 꺼지게 된다. 이하 도 4에서는 상기 전처리부(210)의 내부 회로가 어떤 방식으로 동작되는지 구체적으로 알아보도록 한다.First, differential inputs of INP and INN may be simultaneously applied to the comparator 211 and the sample holder 213. The comparator 211 compares the difference between the INP and the INN while sampling the input from the sample holder 213. For example, when INP> INN, 1 may be output to COMP, which is an output value of the comparator 211. When INP <INN, 0 may be output to COMP, which is an output value of the comparator 211. In the hold mode, the sample holder 213 outputs a frequency of a fast input to a constant value with little change. Therefore, when the sample holder 213 is in the hold mode, the SH_P and SH_N output values are output, and these values may be applied to a plurality of switches, respectively. For example, in FIG. 3, a total of four switches 214, 215, 216, 217 may be formed, and the SH_P and SH_N output values may be applied to two switches, respectively. Among the plurality of switches, the first switch 214 and the fourth switch 217 may be turned on at the same time, and the second switch 215 and the third switch 216 may be turned on at the same time. The switches are turned on or off via a Q bar signal that is the opposite of Q exiting the flip-flop 212. In FIG. 4, the internal circuit of the preprocessor 210 is described in detail.

도 4는 본 발명의 실시예로서, 상기 전처리부(210)에서의 동작을 설명하기 위한 입,출력 파형을 나타낸다.4 illustrates an input and output waveform for explaining the operation of the preprocessor 210 as an embodiment of the present invention.

상기 도 4의 동작 파형을 살펴보면, INP > INN (구간1)일 경우 상기 비교기(211)의 출력값인 COMP가 1을 가지고 상기 플립플롭(212)을 거쳐 최종적으로 Q가 1, Q bar가 0을 가지게 된다. Q가 1이 되면 첫번째 스위치(214)와 네번째 스위치(217)가 켜지고, 두번째 스위치(215)와 세번째 스위치(216)가 꺼지게 된다. 따라서, 상기 샘플홀더(213)의 출력값 SH_P와 SH_N 이 변화없이 각각 상기 전처리부(210)의 출력값인OUTP와 OUTN으로 나오게 된다.Referring to the operation waveform of FIG. 4, when INP> INN (section 1), COMP, which is an output value of the comparator 211, has 1, and finally Q is 1 and Q bar is 0 through the flip-flop 212. Have. When Q is 1, the first switch 214 and the fourth switch 217 are turned on, and the second switch 215 and the third switch 216 are turned off. Accordingly, the output values SH_P and SH_N of the sample holder 213 come out as OUTP and OUTN, which are output values of the preprocessing unit 210, without change.

반대로 INP < INN (구간2)인 경우, 상기 비교기(211)의 출력값인 COMP가 0을 가지고 상기 플립플롭(212)의 출력 Q는 0, Q bar는 1을 가지게 된다. Q가 0이므로, 두번째 스위치(215)와 세번째 스위치(216)가 켜지고, 반대로 첫번째 스위치(214)와 네번째 스위치(217)가 꺼지게 된다. 이 경우, 상기 샘플홀더(213)의 출력값인SH_P와 SH_N이 각각 상기 전처리부(210)의 출력값인 OUTN과 OUTP로 연결되어 원하는 신호의 반대 위상을 가진 출력이 나오게 된다.On the contrary, when INP < INN (section 2), COMP, which is an output value of the comparator 211, has 0, and output Q of the flip-flop 212 has 0 and Q bar has 1. Since Q is 0, the second switch 215 and the third switch 216 are turned on, and conversely, the first switch 214 and the fourth switch 217 are turned off. In this case, SH_P and SH_N, which are output values of the sample holder 213, are connected to OUTN and OUTP, which are output values of the preprocessing unit 210, respectively, so that an output having an opposite phase of a desired signal is output.

상기 도 4의 마지막 출력 파형인 OUTP ?? OUTN 파형에서 점선 사이에 있는 영역(구간2)은INP < INN인 영역으로 실제 신호 위상과 반대되는 위상을 가짐을 알 수 있다. 이는 상기 도 4의 두번째 파형인 INP ?? INN 파형에서 변환기 원래 비교 범위가 1V인 반면, 마지막 파형인 OUTP ?? OUTN 의 파형은 항상 가운데 전압(CM)보다 크므로, 비교 범위가 0.5V의 절반으로 줄어들게 된다. 따라서, 절반으로 줄어든 비교 범위에 의해 프리앰프부(130)와 비교부(140)에서 쓰이는 프리앰프와 비교기의 숫자를 절반을 줄일 수 있게 된다. 다만, 불안정한 영역에 대해서 비교기를 추가하여 보다 정확한 비교를 수행하게 되는 경우에는 비교기의 숫자가 추가한 만큼 늘어날 수 있다.OUTP ?? which is the last output waveform of FIG. In the OUTN waveform, the region (section 2) between the dashed lines is the region where INP <INN and has a phase opposite to the actual signal phase. This is the second waveform of FIG. In the INN waveform, the transducer's original comparison range is 1 V, while the last waveform, OUTP ?? The waveform of OUTN is always greater than the center voltage (CM), so the comparison range is reduced to half of 0.5V. Therefore, the number of preamplifiers and comparators used in the preamplifier 130 and the comparator 140 can be reduced by half by the comparison range reduced by half. However, when a more accurate comparison is performed by adding a comparator to an unstable region, the number of comparators may be increased by an additional amount.

이상, 전술한 본 발명의 바람직한 실시예는, 예시의 목적을 위해 개시된 것으로, 당업자라면, 이하 첨부된 특허청구범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 또 다른 다양한 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다. As mentioned above, preferred embodiments of the present invention described above are disclosed for the purpose of illustration, and those skilled in the art can improve other various embodiments within the spirit and technical scope of the present invention disclosed in the appended claims below. Changes, substitutions or additions will be possible.

도 1은 본 발명이 적용되는 실시예로서, 아날로그-디지털 변환기의 블록도를 나타낸다.1 is a block diagram of an analog-to-digital converter as an embodiment to which the present invention is applied.

도 2는 본 발명이 적용되는 실시예로서, 아날로그-디지털 변환기의 블록도를 나타낸다.2 is a block diagram of an analog-to-digital converter as an embodiment to which the present invention is applied.

도 3은 본 발명이 적용되는 실시예로서, 전처리부(210)의 내부 회로도를 나타낸다.3 is an embodiment to which the present invention is applied and shows an internal circuit diagram of the preprocessor 210.

도 4는 본 발명의 실시예로서, 상기 전처리부(210)에서의 동작을 설명하기 위한 입,출력 파형을 나타낸다.4 illustrates an input and output waveform for explaining the operation of the preprocessor 210 as an embodiment of the present invention.

Claims (9)

아날로그 신호를 디지털 신호로 변환하는 장치에 있어서,In the device for converting an analog signal into a digital signal, 스위치를 이용하여 비교기의 비교 범위를 조절하는 전처리부;A preprocessor adjusting a comparison range of the comparator by using a switch; 상기 조절된 비교 범위에 기초하여 입력 전압과 기준 전압을 비교하는 제 1 비교부; 및A first comparing unit comparing an input voltage and a reference voltage based on the adjusted comparison range; And 상기 제 1 비교부로부터 출력된 디지털 코드를 인코딩하는 인코딩부An encoding unit for encoding the digital code output from the first comparing unit 를 포함하는 것을 특징으로 하는 아날로그-디지털 변환기.Analog-to-digital converter comprising a. 제 1항에 있어서, 상기 전처리부는,The method of claim 1, wherein the preprocessing unit, 차동 입력 신호를 비교하는 비교기Comparators Comparing Differential Input Signals 클록 신호에 따라, 상기 비교기의 출력값을 일정한 값으로 유지시켜주는 플립플롭 및A flip-flop for keeping the output value of the comparator constant according to a clock signal; 상기 차동 입력 신호를 일정한 값으로 출력하는 샘플홀더Sample holder for outputting the differential input signal to a constant value 를 포함하는 것을 특징으로 하는 아날로그-디지털 변환기.Analog-to-digital converter comprising a. 제 2항에 있어서,The method of claim 2, 상기 플립플롭의 출력값에 기초하여 상기 스위치가 조절되는 것을 특징으로 하는 아날로그-디지털 변환기.And the switch is adjusted based on the output value of the flip-flop. 제 2항에 있어서,The method of claim 2, 상기 스위치를 이용하여, 상기 샘플홀더의 출력값을 반대 위상이 되도록 하는 것을 특징으로 하는 아날로그-디지털 변환기. And using the switch, output value of the sample holder to be out of phase. 제 1항에 있어서,The method of claim 1, 상기 비교 범위는 중간 전압을 기준으로 상위 영역과 하위 영역으로 나뉘는 것을 특징으로 하는 아날로그-디지털 변환기.The comparison range is divided into an upper region and a lower region based on the intermediate voltage. 제 1항에 있어서,The method of claim 1, 상기 입력 전압이 일정 범위에 해당되는 경우, 추가적인 비교 과정을 수행하는 제 2 비교부를 더 포함하는 것을 특징으로 하는 아날로그-디지털 변환기.If the input voltage falls within a predetermined range, the analog-to-digital converter further comprises a second comparison unit for performing an additional comparison process. 아날로그 신호를 디지털 신호로 변환하는 방법에 있어서,In the method for converting an analog signal into a digital signal, 스위치를 이용하여 비교기의 비교 범위를 조절하는 단계;Adjusting a comparison range of the comparator using a switch; 상기 조절된 비교 범위에 기초하여 입력 전압과 기준 전압을 비교하는 단계; 및Comparing an input voltage and a reference voltage based on the adjusted comparison range; And 상기 비교 범위에 기초하여 출력된 디지털 코드를 인코딩하는 단계Encoding the output digital code based on the comparison range 를 포함하는 것을 특징으로 하는 아날로그-디지털 변환 방법.Analog-digital conversion method comprising a. 제 7항에 있어서,The method of claim 7, wherein 상기 비교 범위는 중간 전압을 기준으로 상위 영역과 하위 영역으로 나뉘는 것을 특징으로 하는 아날로그-디지털 변환 방법.The comparison range is divided into upper region and lower region based on the intermediate voltage. 제 7항에 있어서,The method of claim 7, wherein 상기 입력 전압이 일정 범위에 해당되는 경우, 비교 과정을 추가적으로 수행하는 것을 특징으로 하는 아날로그-디지털 변환 방법.If the input voltage falls within a predetermined range, the analog-to-digital conversion method characterized in that for performing additional comparison process.
KR1020070100042A 2007-10-04 2007-10-04 A method and apparatus for converting an analog signal to a digital signal KR100950010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070100042A KR100950010B1 (en) 2007-10-04 2007-10-04 A method and apparatus for converting an analog signal to a digital signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070100042A KR100950010B1 (en) 2007-10-04 2007-10-04 A method and apparatus for converting an analog signal to a digital signal

Publications (2)

Publication Number Publication Date
KR20090034669A true KR20090034669A (en) 2009-04-08
KR100950010B1 KR100950010B1 (en) 2010-03-29

Family

ID=40760503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070100042A KR100950010B1 (en) 2007-10-04 2007-10-04 A method and apparatus for converting an analog signal to a digital signal

Country Status (1)

Country Link
KR (1) KR100950010B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130109281A (en) * 2012-03-27 2013-10-08 삼성전자주식회사 Anlaog-to-digital converting circuit and accumulation circuit including the same
KR101352767B1 (en) * 2010-03-29 2014-02-17 서강대학교산학협력단 Pipeline ADC using a gate-bootstrapping circuit and sub-ranging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326609A (en) * 1993-05-11 1994-11-25 Hitachi Ltd A/d converter and digital signal reproduction processor
JP2004289759A (en) * 2003-03-25 2004-10-14 Rohm Co Ltd A/d converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352767B1 (en) * 2010-03-29 2014-02-17 서강대학교산학협력단 Pipeline ADC using a gate-bootstrapping circuit and sub-ranging
KR20130109281A (en) * 2012-03-27 2013-10-08 삼성전자주식회사 Anlaog-to-digital converting circuit and accumulation circuit including the same

Also Published As

Publication number Publication date
KR100950010B1 (en) 2010-03-29

Similar Documents

Publication Publication Date Title
US8120520B2 (en) Successive approximation analog/digital converter and time-interleaved successive approximation analog/digital converter
JP5189828B2 (en) Analog-digital converter chip and RF-IC chip using the same
US8779955B1 (en) Optical analog-to-digital conversion system and method with enhanced quantization
CN110311677B (en) SAR ADC based on novel capacitance switch switching algorithm
CN106817131B (en) High-speed assembly line-successive approximation type ADC based on dynamic ringing operational amplifier
US7362246B2 (en) High speed comparator offset correction
WO2017091928A1 (en) High-speed pipelined successive approximation adc based on dynamic ringing-based operational amplifier
KR20130026627A (en) Analog-digital converter and converting method using clock delay
KR20130045217A (en) Semiconductor device
JP2014236225A (en) Semiconductor device and method of operating semiconductor device
US20160329905A1 (en) A/d converter including multiple sub-a/d converters
US9608657B1 (en) A/D converter circuit, pipeline A/D converter, and wireless communication device
KR100950010B1 (en) A method and apparatus for converting an analog signal to a digital signal
CN113364460A (en) Fast convergence clock deviation calibration method for ultra-high-speed time domain interleaved ADC (analog to digital converter)
KR20170109491A (en) Analog to digital converter including differential VCO
Tiwari et al. Reconfigurable Flash ADC using TIQ technique
Bindra et al. Range pre-selection sampling technique to reduce input drive energy for SAR ADCs
KR100945740B1 (en) A method and apparatus for converting an analog signal to a digital signal
Kościelnik et al. Optimized design of successive approximation time-to-digital converter with single set of delay lines
KR101498874B1 (en) Multi-gigabit analog to digital converter
Wang et al. A 3.8 mW sub-sampling direct RF-to-digital converter for polar receiver achieving 1.94 Gb/s data rate with 1024-APSK modulation
Wu et al. A 10-GS/s 8-bit SiGe ADC with Isolated 4× 4 Analog Input Multiplexer
CN106130552A (en) A kind of pipelined analog-digital converter
Liu et al. A Design of 16-bit High Speed DAC with Segmented R2R Load
EP3949125A1 (en) Sar adc with alternating low and high precision comparators and uneven allocation of redundancy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140120

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee