KR20090022840A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
KR20090022840A
KR20090022840A KR1020070088489A KR20070088489A KR20090022840A KR 20090022840 A KR20090022840 A KR 20090022840A KR 1020070088489 A KR1020070088489 A KR 1020070088489A KR 20070088489 A KR20070088489 A KR 20070088489A KR 20090022840 A KR20090022840 A KR 20090022840A
Authority
KR
South Korea
Prior art keywords
refrigerant
heat transfer
refrigerant tube
heat exchanger
heat
Prior art date
Application number
KR1020070088489A
Other languages
Korean (ko)
Inventor
김동휘
사용철
이한춘
이상열
김주혁
김홍성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020070088489A priority Critical patent/KR20090022840A/en
Priority to EP08163152A priority patent/EP2031335A3/en
Priority to US12/201,857 priority patent/US20090084129A1/en
Priority to CNA2008102153044A priority patent/CN101377368A/en
Publication of KR20090022840A publication Critical patent/KR20090022840A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger of a freezing apparatus is provided to improve heat transfer performance by lowering thickness of the heat exchanger and minimizing pressure loss to minimize dead volume in which air and refrigerant are not heat-conducted. A heat exchanger of a freezing apparatus comprises a refrigerant tube arranged in a plurality of rows. A refrigerant tube(2) of a previous row and a refrigerant tube(4) of a following row are apart from each other. The diameter of the refrigerant tube of the previous row is smaller than the diameter of the refrigerant tube of the following row. The refrigerant tube of the previous row is connected to the refrigerant tube of the following row. The liquid refrigerant passes through the refrigerant tube of the previous row. The vapor refrigerant passes through the refrigerant tube of the following row. The heat exchanger of the freezing apparatus comprises a fin combined with the refrigerant tube of the multiple rows.

Description

냉동장치의 열교환기{Heat Exchanger}Heat exchanger in refrigeration unit

본 발명은 공기조화기나 냉장고 등의 냉동장치의 열교환기에 관한 것으로서, 특히 냉매가 통과하는 냉매 튜브의 복수 열이 전,후 배치된 냉동장치의 열교환기에 관한 것이다.The present invention relates to a heat exchanger of a refrigerating device such as an air conditioner or a refrigerator, and more particularly, to a heat exchanger of a refrigerating device in which a plurality of rows of a refrigerant tube through which a refrigerant passes are placed before and after.

일반적으로 공기조화기나 냉장고 등의 냉동장치는 압축기와 응축기와 팽창기와 증발기로 이루어진 냉동 사이클을 이용하여 실내 혹은 고내를 냉각/가열하는 장치로서, 응축기와 증발기인 열교환기는 냉매가 통과하는 냉매 유로를 갖는다.Generally, a refrigerating device such as an air conditioner or a refrigerator is a device for cooling / heating a room or an interior using a refrigeration cycle consisting of a compressor, a condenser, an expander, and an evaporator, and a heat exchanger, which is a condenser and an evaporator, has a refrigerant passage through which a refrigerant passes. .

상기 냉동장치의 열교환기는 냉매 유로가 형성된 냉매 튜브에 전열 면적을 넓히는 핀이 결합되고, 핀에는 전열 면적을 보다 넓히기 위한 슬릿, 루버, 코러게이트 등이 형성된다.The heat exchanger of the refrigerating device is coupled to a fin that extends the heat transfer area to the refrigerant tube in which the coolant flow path is formed, and the fins are formed with slits, louvers, corrugates, and the like, to widen the heat transfer area.

도 1은 종래 기술에 따른 냉동장치의 열교환기의 일부가 확대 도시된 측면도이다.1 is an enlarged side view of a portion of a heat exchanger of a refrigerating apparatus according to the prior art.

종래 기술의 냉동장치의 열교환기는, 복수열의 냉매 튜브(102)(104)의 내측에 냉매가 흐르고, 냉매 튜브 외측에 접속된 확대 표면인 핀(106)의 표면으로 공기 가 흐르는 구조로 이루어지고, 냉매와 공기가 서로 열교환하기 위해서는 냉매와 공기 특성에 맞는 최적의 전열면적을 갖도록 설계될 필요성이 있다. The heat exchanger of the refrigerating apparatus of the prior art has a structure in which a refrigerant flows inside a plurality of rows of refrigerant tubes 102 and 104 and air flows to a surface of the fin 106 which is an enlarged surface connected to the refrigerant tube outside. In order to exchange heat between the refrigerant and the air, it is necessary to be designed to have an optimal heat transfer area suitable for the refrigerant and the air characteristics.

복수열의 냉매 튜브(102)(104)는 동일 직경의 냉매 튜브가 공기 유동 방향에 대해 전,후 위치되되, 전열의 냉매 튜브 사이의 후방에 후열의 냉매 튜브가 위치되게 배치된다.The plurality of rows of coolant tubes 102 and 104 are arranged such that coolant tubes of the same diameter are positioned before and after the air flow direction, and rear coolant tubes are located behind the front row of coolant tubes.

냉매의 경우, 냉매 튜브(102)(104)의 직경에 따라 열전달계수가 상위하므로 냉매 튜브 외측의 온도가 달라지게 되고, 이에 따라서 냉매와 공기와의 교환 열량이 차이가 나게된다.In the case of the coolant, since the heat transfer coefficient is different depending on the diameter of the coolant tubes 102 and 104, the temperature outside the coolant tube is changed, and thus the amount of heat exchanged between the coolant and the air is different.

또한, 공기의 경우, 충분한 전열면적을 갖도록 냉매 튜브(102)(104)의 로우 피치(Row Pitch)를 선정하고, 공기의 전열면적은 튜브 직경에 따라 최적 전열면적이 달라지게 된다.In addition, in the case of air, the low pitch of the refrigerant tubes 102 and 104 is selected to have a sufficient heat transfer area, and the heat transfer area of the air varies depending on the tube diameter.

그러나, 상기와 같이 구성된 종래의 냉동장치의 열교환기는, 냉매 튜브(102)(104)의 직경과 핀(106)의 폭에 따라 전체 용적이 결정되고, 최근에는 열교환기를 박형화하는 추세이며, 특히 공기조화기의 실내기에 설치되는 열교환기는 최대한 얇게 제작할 필요가 있는데, 상기와 같이 구성된 열교환기는 냉매 튜브(102)(104)의 직경이 동일하므로, 박형화가 어려운 문제점이 있다.However, the heat exchanger of the conventional refrigeration apparatus configured as described above, the total volume is determined according to the diameter of the refrigerant tubes 102, 104 and the width of the fin 106, and in recent years, the heat exchanger has become thinner, and in particular, air The heat exchanger installed in the indoor unit of the conditioner needs to be made as thin as possible. The heat exchanger configured as described above has the same diameter as the refrigerant tubes 102 and 104, so that the thinning is difficult.

한편, 상기와 같이 구성된 종래의 냉동장치의 열교환기는 냉매 튜브(102)(104) 중 일부인 후방부에 공기가 직접 열전달되지 않는 사체적(108,Dead Zone)이 존재하여, 실질 열전달 면적이 작게 되는 문제점이 있다.On the other hand, the heat exchanger of the conventional refrigerating device configured as described above has a dead zone (108, Dead Zone) in which air is not directly transferred to the rear portion of the refrigerant tubes (102, 104), so that the actual heat transfer area is reduced. There is a problem.

본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 복수열 냉매 튜브의 직경을 상위하게 하여, 박형화가 가능하고, 압력 손실을 최소화한 냉동장치의 열교환기를 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems of the prior art, and the object of the present invention is to provide a heat exchanger of a refrigerating apparatus that can be made thinner by increasing the diameter of a plurality of rows of refrigerant tubes, and minimizes pressure loss.

본 발명의 다른 목적은 공기와 냉매가 열전달되지 않는 사체적을 최소화하여 열전달 성능을 높인 냉동장치의 열교환기를 제공하는데 있다. It is another object of the present invention to provide a heat exchanger of a refrigerating apparatus which has improved heat transfer performance by minimizing dead volume in which air and refrigerant are not heat transferred.

상기한 과제를 해결하기 위한 본 발명에 따른 냉동장치의 열교환기는 전열의 냉매 튜브와 후열의 냉매 튜브가 이격되게 배치된 냉동장치의 열교환기에 있어서, 상기 전열의 냉매 튜브 직경이 상기 후열의 냉매 튜브 직경 보다 작게 형성된다.The heat exchanger of the refrigerating device according to the present invention for solving the above problems is a heat exchanger of the refrigerating device in which the refrigerant tube of the heat transfer and the refrigerant tube of the after heat is arranged, wherein the refrigerant tube diameter of the heat transfer is the refrigerant tube diameter of the after heat It is formed smaller.

상기 냉동장치의 열교환기는, 상기 전열의 냉매 튜브로 액상 냉매가 통과하고 상기 후열의 냉매 튜브로 기상 냉매가 통과하도록 상기 전열의 냉매 튜브와 후열의 냉매 튜브가 연결된다.The heat exchanger of the refrigerating device is connected to the refrigerant tube of the heat transfer and the refrigerant tube of the post-heat so that the liquid refrigerant passes through the heat transfer refrigerant tube and the gaseous refrigerant passes through the heat transfer refrigerant tube.

상기 냉동장치의 열교환기는 상기 복수 열의 냉매 튜브가 결합되는 핀을 포함하고, 상기 핀은 상기 전열의 냉매 튜브가 접하는 전열측 칼라의 크기가, 상기 후열의 냉매 튜브와 접하는 후열측 칼라의 크기 보다 작게 이루어진다.The heat exchanger of the refrigerating device includes a fin to which the plurality of rows of refrigerant tubes are coupled, and the fin has a smaller size of the heat transfer side collar in contact with the heat transfer refrigerant tube than a size of the post heat side collar in contact with the heat transfer refrigerant tube. Is done.

상기 전열의 냉매 튜브 직경과 상기 후열의 냉매 튜브 직경의 비는 0.3~0.92로 이루어진다.The ratio of the diameter of the refrigerant tube of the heat transfer and the diameter of the refrigerant tube of the after heat is 0.3 to 0.92.

상기 냉동장치의 열교환기는 공기조화기의 실내기에 설치되어 실내 공기와 냉매를 열교환시키도록 공기조화기의 냉매 유로와 연결된 공기조화기의 실내 열교환기로 이루어진다.The heat exchanger of the refrigerating device is installed in the indoor unit of the air conditioner and consists of an indoor heat exchanger of the air conditioner connected to the refrigerant passage of the air conditioner to exchange heat between the indoor air and the refrigerant.

상기와 같이 구성되는 본 발명에 따른 냉동장치의 열교환기는 복수열의 냉매 튜브 중 공기 유동 방향에 대해 전열의 냉매 튜브의 직경이 후열의 냉매 튜브의 직경 보다 작게 형성되어, 박형화가 가능하고, 압력 손실을 최소화한 이점이 있다. The heat exchanger of the refrigerating device according to the present invention configured as described above is formed with a diameter of the refrigerant tube of the heat transfer smaller than the diameter of the refrigerant tube of the post heat with respect to the air flow direction of the plurality of rows of refrigerant tubes, it is possible to reduce the thickness, the pressure loss There is a minimal advantage.

이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 냉동장치의 열교환기 일실시예의 개략도이고, 도 3은 본 발명에 따른 냉동장치의 열교환기 일실시예의 일부가 확대 도시된 측면도이며, 도 4는 도 3에 도시된 핀의 일부 확대 사시도이다.Figure 2 is a schematic diagram of one embodiment of a heat exchanger of the refrigerating apparatus according to the present invention, Figure 3 is an enlarged side view of a portion of one embodiment of a heat exchanger of the refrigerating apparatus according to the present invention, Figure 4 is a fin shown in FIG. Part of is an enlarged perspective view.

본 실시예에 따른 냉동장치의 열교환기는, 냉매가 통과하는 복수열의 냉매 튜브(2)(4)와, 복수열의 냉매 튜브(2)(4)가 함께 결합되는 핀(10)을 포함하며, 복수개의 핀(10)이 냉매 튜브(2)(4)에 일정 간격으로 배치된다.The heat exchanger of the refrigerating device according to the present embodiment includes a plurality of rows of refrigerant tubes 2 and 4 through which refrigerant passes, and a fin 10 in which a plurality of rows of refrigerant tubes 2 and 4 are coupled together. Fins 10 are arranged in the refrigerant tubes 2 and 4 at regular intervals.

상기와 같은 냉동장치의 열교환기는, 냉장고나 공기조화기의 증발기나 응축기 등의 열교환기로 이루어지고, 특히 공기조화기의 실내 열교환기는 박형화되게 설계되는 것이 중요하며, 이하 공기조화기의 실내기에 설치되어 실내 공기와 냉매 를 열교환시키도록 공기조화기의 냉매 유로와 연결된 공기조화기의 실내 열교환기(냉방 운전시 증발기)로 이루어지거나, 공기조화기의 실외기에 설치되어 실외 공기와 냉매를 열교환시키도록 공기조화기의 냉매 유로와 연결된 공기조화기의 실외 열교환기(냉방 운전시 응축기)로 이루어지는 것으로 설명한다. The heat exchanger of the refrigerating device is composed of a heat exchanger such as an evaporator or a condenser of a refrigerator or an air conditioner, and in particular, an indoor heat exchanger of the air conditioner is designed to be thin, and is installed in an indoor unit of an air conditioner. It consists of an indoor heat exchanger (evaporator during cooling operation) of an air conditioner connected to a refrigerant path of an air conditioner to exchange heat between the indoor air and the refrigerant, or is installed in an outdoor unit of the air conditioner to exchange heat between the outdoor air and the refrigerant. It will be described as consisting of an outdoor heat exchanger (condenser during cooling operation) of the air conditioner connected to the refrigerant passage of the conditioner.

냉매 튜브(2)(4)는 공기(A)의 유동 방향과 직교한 방향으로 길게 배치되고, 핀(10)은 공기(A)의 유동 방향과 나란한 방향으로 길게 배치된다.The coolant tubes 2 and 4 are arranged long in the direction orthogonal to the flow direction of the air A, and the fins 10 are arranged long in the direction parallel to the flow direction of the air A. As shown in FIG.

냉매 튜브(2)(4)는 공기 유동 방향에 따라, 전방에 위치하는 전열의 냉매 튜브(2)와, 후방에 위치되는 후열의 냉매 튜브(4)를 포함하고, 전열의 냉매 튜브(2)와 후열의 냉매 튜브(4)는 둘 중 어느 하나를 통과한 냉매가 다른 하나를 통과하도록 일체로 연결된다.Refrigerant tube (2) (4) comprises a heat transfer refrigerant tube (2) located in the front, and a heat transfer refrigerant tube (4) located in the rear, in accordance with the air flow direction, the heat transfer refrigerant tube (2) The refrigerant tube 4 and the rear row are integrally connected so that the refrigerant passing through either one passes through the other.

냉매 튜브(2)(4)는 전열의 냉매 튜브(2) 직경(D1)이 후열의 냉매 튜브(4) 직경(D2) 보다 작게 형성된다.The coolant tubes 2 and 4 are formed such that the diameter D1 of the heat transfer refrigerant tube 2 is smaller than the diameter D2 of the heat transfer refrigerant tube 4.

즉, 본 실시예에 따른 냉동 장치의 열교환기는, 열교환기의 박형화를 위해 전열의 냉매 튜브(2)와 후열의 냉매 튜부(4)의 직경이 상위하게 구성되고, 특히, 전열에 소구경의 냉매 튜브(2)를 사용하여 튜브의 단면적에 영향을 받는 냉매 유속을 상대적으로 빠르게 함으로써, 냉매 튜브 특히 전열의 냉매 튜브(2) 내측의 열전달계수를 높인다.That is, the heat exchanger of the refrigerating device according to the present embodiment is configured such that the diameters of the refrigerant tube 2 of the heat transfer and the refrigerant tubing 4 of the heat transfer differ from each other in order to reduce the heat exchanger. By using the tube 2 to relatively fast the refrigerant flow rate affected by the cross-sectional area of the tube, the heat transfer coefficient inside the refrigerant tube 2, especially the heat transfer refrigerant tube 2, is increased.

통상적으로 소구경의 냉매 튜브를 사용할 경우, 냉매 유속 증가에 따른 열전달 계수가 상승되는 장점이 있으나, 소구경의 냉매 튜브 내측의 전열면적이 감소하므로, 열교환기의 전,후열 냉매 튜브 모두를 소구경 냉매 튜브로 채용하게 되면, 총 전열량이 감소하게 되어 냉동장치의 전체의 압력손실이 크게 된다. 그러나, 전, 후열의 냉매 튜브(2)(4)를 소구경의 냉매 튜브와 대구경의 냉매 튜브를 혼용하여 채용하면, 냉매 유속 증가로 인한 열전달 계수의 증가와 압력 손실 증가가 상충되어, 전체적으로 전열량을 증대시킬 수 있게 된다.In general, when a small diameter refrigerant tube is used, the heat transfer coefficient increases with increasing refrigerant flow rate. However, since the heat transfer area inside the small diameter refrigerant tube decreases, both the front and rear heat refrigerant tubes of the heat exchanger are reduced in diameter. When employed as a refrigerant tube, the total heat transfer amount is reduced, so that the pressure loss of the entire refrigerating device is large. However, when the front and rear rows of refrigerant tubes 2 and 4 are used in combination with a small diameter refrigerant tube and a large diameter refrigerant tube, an increase in the heat transfer coefficient due to an increase in the refrigerant flow rate and an increase in pressure loss are conflicted. It is possible to increase calories.

또한, 본 실시예에 따른 냉동장치의 열교환기는, 전열의 냉매 튜브(2)로 액상 냉매가 통과하고 후열의 냉매 튜브(4)로 기상 냉매가 통과하게 전열의 냉매 튜브(2)와 후열의 냉매 튜브(4)가 연결되면, 상기와 같은 냉매의 압력 손실은 최소화된다.In the heat exchanger of the refrigerating device according to the present embodiment, the liquid refrigerant passes through the refrigerant tube 2 of the heat transfer and the gaseous refrigerant passes through the refrigerant tube 4 of the heat transfer. When the tube 4 is connected, such pressure loss of the refrigerant is minimized.

즉, 상기와 같은 열교환기가 공기조화기의 증발기인 경우, 전열의 냉매 튜브(2)는 공기조화기의 팽창기구측와 증발기를 연결하는 냉매 배관과 연결되고, 후열의 냉매 튜브(4)는 공기조화기의 압축기측와 증발기를 연결하는 냉매 배관과 연결되고, 상기와 같은 열교환기가 공기조화기의 응축기인 경우, 전열의 냉매 튜브(2)는 공기조화기의 압축기측와 응축기를 연결하는 냉매 배관과 연결되고, 후열의 냉매 튜브(4)는 공기조화기의 팽창기구측와 증발기를 연결하는 냉매 배관과 연결된다.That is, when the heat exchanger as described above is the evaporator of the air conditioner, the heat transfer refrigerant tube 2 is connected to the refrigerant pipe connecting the expansion mechanism side of the air conditioner and the evaporator, and the heat transfer refrigerant tube 4 is air conditioner. Connected to the refrigerant pipe connecting the compressor side and the evaporator, and when the heat exchanger is the condenser of the air conditioner, the refrigerant tube 2 of the heat transfer is connected to the refrigerant pipe connecting the condenser and the compressor side of the air conditioner. The coolant tube 4 of the rear row is connected to the refrigerant pipe connecting the expansion mechanism side of the air conditioner to the evaporator.

한편, 상기와 같은 냉동장치의 열교환기와 열교환되는 공기는, 전,후열의 냉매 튜브(2)(4) 모두가 대구경의 튜브로 이루어질 경우 보다 압력 손실이 감소되고, 전,후열의 냉매 튜브(2)(4) 사이의 간격을 작게 해도 공기흡 압력 손실은 증가하지 않고, 전,후열의 냉매 튜브(2)(4) 사이의 간격이 감소되는 것에 의해 핀 효율도 증가되게 된다. 그리고, 공기측 압력 손실의 감소로 소음은 최소화되고, 냉동장치 의 열교환기로 공기가 유동되게 하는 팬의 소비 전력도 감소되게 된다.On the other hand, the air that is heat-exchanged with the heat exchanger of the refrigerating device as described above, the pressure loss is reduced than when the refrigerant tube (2) (4) of the front, rear row is made of a large diameter tube, the refrigerant tube (2) Even if the gap between the two and the four is reduced, the air intake pressure loss does not increase, and the fin efficiency is also increased by reducing the interval between the refrigerant tubes 2 and 4 in the front and rear rows. In addition, the noise is minimized by reducing the air pressure loss, and the power consumption of the fan that causes air to flow to the heat exchanger of the refrigerating device is also reduced.

그리고, 핀(10)은 전열의 냉매 튜브(2)가 접하는 전열측 칼라(12)의 크기가, 후열의 냉매 튜브(4)와 접하는 후열측 칼라(14)의 크기 보다 작게 형성된다.The fin 10 is formed such that the size of the heat transfer side collar 12 in contact with the heat transfer refrigerant tube 2 is smaller than the size of the post heat transfer side collar 14 in contact with the heat transfer refrigerant tube 4.

한편, 본 실시예에 따른 냉동 장치의 열교환기는, 도 3 및 도 4에 도시된 바와 같이, 핀(10)을 공기의 유동 방향으로 전열 냉매 튜브(2) 주변의 전방측 핀부(16)와 후열 냉매 튜브(4) 주변의 후방측 핀부(18)로 전,후 구획할 경우, 전방측 핀부(16)의 폭(RP1)과 후방측 핀부(18)의 폭(RP2)의 합은 대략 10~30mm로 이루어진다.  On the other hand, the heat exchanger of the refrigerating device according to the present embodiment, as shown in Figure 3 and 4, the fin 10 in the direction of the flow of air, the front fin portion 16 and the rear heat around the heat transfer refrigerant tube (2) In the case of front and rear partitions with the rear fins 18 around the refrigerant tube 4, the sum of the width RP1 of the front fins 16 and the width RP2 of the rear fins 18 is approximately 10-. Made of 30mm.

그리고, 전열 냉매 튜브(2)와 후열 냉매 튜브(4)는 공기의 유동 방향과 수직한 방향으로 튜브 간격(SP)이 15~25mm로 이루어진다.In addition, the heat transfer refrigerant tubes 2 and the post heat transfer refrigerant tubes 4 have a tube spacing SP of 15 to 25 mm in a direction perpendicular to the flow direction of air.

한편, 전열 냉매 튜브(2)의 직경(D1)과 후열 냉매 튜브(4)의 직경(D2)의 비(D1/D2)는 0.3~0.92로 이루어진다.On the other hand, the ratio D1 / D2 of the diameter D1 of the heat transfer refrigerant tube 2 and the diameter D2 of the afterheat refrigerant tube 4 is 0.3-0.92.

특히, 후열 냉매 튜브(4)의 직경은 3mm 이상이고, 12mm 미만으로 설정되고, 전열 냉매 튜브(2)의 직경은 후열 냉매 튜브(4) 직경의 0.3~0.92배인 0.9~ 11.04mm로 이루어진다.In particular, the diameter of the afterheated refrigerant tube 4 is 3 mm or more and is set to less than 12 mm, and the diameter of the heat transfer refrigerant tube 2 is 0.9 to 11.04 mm, which is 0.3 to 0.92 times the diameter of the afterheater refrigerant tube 4.

한편, 핀(10)에는 전열 면적을 ??히고 공기가 통과하는 슬릿(20)(22)이 형성되는 바, 전방측 핀부(16)에 형성된 전방측 슬릿(20)은 슬릿 열 수가 3열 이상이고, 후방측 핀부(18)에 형성된 후방측 슬릿(22)은 슬릿 열 수가 3열 이상으로 이루어진다.On the other hand, the fins 10 are formed with the slits 20 and 22 through which the heat transfer area is reduced and air passes through, and the number of rows of slits in the front slits 20 formed in the front fin parts 16 is three or more rows. The rear side slit 22 formed in the rear side fin part 18 consists of three or more rows of slit rows.

전방측 슬릿(20)의 길이(SL1)는 0.3~1.5mm이고, 후방측 슬릿(22)은 길이(SL2)는 0.3~1.5mm로 이루어지되, 전방측 슬릿(20)과 후방측 슬릿(22)의 슬릿 길이는 비대칭으로 형성되어 각각 전열 성능을 최대로 향상시키도록 형성된다. 즉, 전방측 슬릿(20)의 길이(SL1)가 후방측 슬릿(22)의 길이(SL2)보다 더 길게 형성되는 것이 바람직하다.The length SL1 of the front side slit 20 is 0.3 to 1.5 mm, and the rear side slit 22 has a length SL2 of 0.3 to 1.5 mm, but the front side slit 20 and the rear side slit 22. The slit length of) is formed asymmetrically to each other to maximize the heat transfer performance. That is, it is preferable that the length SL1 of the front side slit 20 is formed longer than the length SL2 of the rear side slit 22.

전방측 슬릿(20)의 폭(d1) 및 후방측 슬릿(22)의 폭(d2)은 0.5~2mm로 이루어진다.The width d1 of the front side slit 20 and the width d2 of the rear side slit 22 are 0.5 to 2 mm.

상기와 같은 슬릿(20)(22)은 칼라(12)(14)의 돌출 방향과 동일 방향 혹은 반대 방향으로 형성되고, 인접하는 다른 슬릿과의 최소 간격은 0.5mm로 이루어진다.The slits 20 and 22 as described above are formed in the same direction or in the opposite direction to the protruding direction of the collars 12 and 14, and the minimum distance from other adjacent slits is 0.5 mm.

한편, 상기와 같은 슬릿(20)(22)은, 전열 슬릿(20)의 길이(SL1) 및 폭(d1), 개수를 후열 슬릿(22) 및 슬릿(20)(22) 이외의 면적에 맞춰 최적의 사양으로 설계함으로써, 열전달성능을 최대한 확보할 수 있고, 슬릿 간의 간격도 응축수의 배출이 최대한 용이하도록 설계함으로써, 활발한 현열 및 잠열 전달을 도모하며, 후열 또한 전열과 상위한 핀 면적에 맞춰서 슬릿 길이(SL2) 및 폭(d2), 개수에 있어서, 최대의 현열 및 잠열 전달을 도모할 수 있게 된다.On the other hand, the slits 20 and 22 as described above, the length SL1 and the width d1, the number of the heat transfer slit 20 to match the area other than the rear heat slit 22 and the slits 20, 22. Designed to the optimum specifications, the heat transfer performance can be ensured to the maximum, and the gap between the slits is designed to facilitate the discharge of condensate as much as possible, which enables active sensible heat and latent heat transfer. In the length SL2, the width d2, and the number, the maximum sensible heat and latent heat transfer can be achieved.

그리고, 전방측 핀부(16)와 후방측 핀부(18)의 각각에는 슬릿들의 사이에 평탄부(17)(19)가 각각 형성되고, 평탄부(17)(19)의 폭(d3)(d4)을 크게 하여 응축수 배출이 용이하게 된다.In each of the front fin 16 and the rear fin 18, flat portions 17 and 19 are formed between the slits, respectively, and the widths d3 and d4 of the flat portions 17 and 19 are respectively. ), The condensate can be easily discharged.

도 5는 본 발명에 따른 냉동 장치의 열교환기 일실시예의 전열 성능을 종래 의 복수열 냉매 튜브 직경이 동일한 경우의 전열 성능을 개략적으로 비교한 그래프이다.5 is a graph schematically comparing the heat transfer performance of the heat exchanger of one embodiment of the heat exchanger of the refrigerating device according to the present invention when the diameter of the conventional multi-row refrigerant tube is the same.

도 5는 전열 냉매 튜브(2)의 직경과 후열 냉매 튜브(4)의 직경 모두를 7mm로 하고, 전방측 핀부(16)의 폭(RP1)과 후방측 핀부(18)의 폭(RP2)의 합은 대략 25.4mm로 하며, 전열 냉매 튜브(2)와 후열 냉매 튜브(4)의 공기 유동 방향과 직교한 방향의 길이를 10.5mm로 하고, 증발기 및 응축기로 각각 사용할 때의 전열 성능을 기준으로 본 발명 일실시예와 같이, 전열 냉매 튜브(2)의 직경을 5mm이고, 후열 냉매 튜브(4)의 직경을 7mm로 하고, 전방측 핀부(16)의 폭(RP1)과 후방측 핀부(18)의 폭(RP2)의 합은 대략 20mm로 하며, 전열 냉매 튜브(2)와 후열 냉매 튜브(4)의 공기 유동 방향과 직교한 방향의 길이를 9.5mm로 하고, 증발기 및 응축기로 각각 사용할 때의 전열 성능을 비교한 그래프이다.FIG. 5 shows that both the diameter of the heat transfer refrigerant tube 2 and the diameter of the post heat transfer refrigerant tube 4 are 7 mm, and the width RP1 of the front fin portion 16 and the width RP2 of the rear fin portion 18 are shown in FIG. The sum is approximately 25.4 mm, the length of the heat transfer refrigerant tube 2 and the heat transfer refrigerant tube 4 in the direction orthogonal to the air flow direction is 10.5 mm, based on the heat transfer performance when used as an evaporator and a condenser, respectively. As in the embodiment of the present invention, the diameter of the heat transfer refrigerant tube 2 is 5 mm, the diameter of the after heat refrigerant tube 4 is 7 mm, the width RP1 of the front fin 16 and the rear fin 18 The sum of widths (RP2)) is approximately 20 mm, and the length in the direction orthogonal to the air flow direction of the heat transfer refrigerant tube 2 and the after heat refrigerant tube 4 is 9.5 mm, and when used as an evaporator and a condenser, respectively. This is a graph comparing heat transfer performance of.

본 실시예에 따른 냉동 장치의 열교환기는 도 5에 도시된 바와 같이, 핀(10)의 전방측 핀부(16)의 폭(RP1)과 후방측 핀부(18)의 폭(RP2)이 더 작음에도 불구하고, 증발기와 응축기 각각일 때 전열 냉매 튜브(2)의 직경과 후열 냉매 튜브(4)의 직경 모두가 7mm인 경우 보다 전열 성능이 높게 된다. As shown in FIG. 5, the heat exchanger of the refrigerating device according to the present embodiment has a smaller width RP1 of the front fin 16 of the fin 10 and a smaller width RP2 of the rear fin 18 of the fin 10. Nevertheless, the heat transfer performance is higher than when the diameters of the heat transfer refrigerant tubes 2 and the diameters of the heat transfer refrigerant tubes 4 are 7 mm when the evaporator and the condenser are respectively.

본 발명은, 열교환기가 복수열의 냉매 튜브를 포함하고, 공기 유동 방향에 대해 전열의 냉매 튜브의 직경이 후열의 냉매 튜브의 직경 보다 작게 이루어져, 열교환기의 박형화가 가능하고 압력손실을 최소화할 수 있는 공기조화기나 냉장고 등 의 냉동 장치에 이용될 수 있다.According to the present invention, the heat exchanger includes a plurality of rows of refrigerant tubes, and the diameter of the refrigerant tube in the front row is smaller than the diameter of the refrigerant tube in the row row in the air flow direction, so that the heat exchanger can be thinned and the pressure loss can be minimized. It can be used in refrigeration apparatus such as an air conditioner or a refrigerator.

도 1은 종래 기술에 따른 냉동장치의 열교환기의 일부가 확대 도시된 측면도,1 is an enlarged side view of a part of a heat exchanger of a refrigerating apparatus according to the prior art;

도 2는 본 발명에 따른 냉동장치의 열교환기 일실시예의 개략도.Figure 2 is a schematic diagram of one embodiment of a heat exchanger of a refrigerating device according to the present invention.

도 3은 본 발명에 따른 냉동장치의 열교환기 일실시예의 일부가 확대 도시된 측면도,Figure 3 is an enlarged side view showing a part of one embodiment of a heat exchanger of the refrigerating device according to the present invention;

도 4는 도 3에 도시된 핀의 일부 확대 사시도,4 is a partially enlarged perspective view of the pin shown in FIG. 3, FIG.

도 5는 본 발명에 따른 냉동장치의 열교환기 일실시예의 전열 성능을 종래의 복수열 냉매 튜브 직경이 동일한 경우의 전열 성능을 개략적으로 비교한 그래프이다.5 is a graph schematically comparing the heat transfer performance of the heat exchanger of one embodiment of the heat exchanger of the refrigerating device according to the present invention with the same diameter of a conventional multi-row refrigerant tube.

<도면의 주요 부분에 대한 설명>Description of the main parts of the drawing

2: 전열 냉매 튜브 4: 후열 냉매 튜브2: heat transfer refrigerant tube 4: heat transfer refrigerant tube

10: 핀 12: 전열측 칼라10: pin 12: heat transfer collar

14: 후열측 칼라 16: 전방측 핀부14: Rear side collar 16: Front side pin part

17: 평판부 18: 후방측 핀부17: flat plate portion 18: rear pin portion

19: 평판부 20: 전방측 슬릿19: plate part 20: front side slit

22: 후방측 슬릿 22: rear side slit

Claims (5)

전열의 냉매 튜브와 후열의 냉매 튜브가 이격되게 배치된 냉동 장치의 열교환기에 있어서,In the heat exchanger of the refrigerating device in which the heat transfer tube and the heat transfer refrigerant tube are spaced apart from each other, 상기 전열의 냉매 튜브 직경은 상기 후열의 냉매 튜브 직경 보다 작은 냉동 장치의 열교환기.And the heat transfer refrigerant tube diameter is smaller than the heat transfer refrigerant tube diameter. 제 1 항에 있어서,The method of claim 1, 상기 냉동 장치의 열교환기는, 상기 전열의 냉매 튜브로 액상 냉매가 통과하고 상기 후열의 냉매 튜브로 기상 냉매가 통과하게 상기 전열의 냉매 튜브와 후열의 냉매 튜브가 연결된 냉동 장치의 열교환기.The heat exchanger of the refrigerating device is a heat exchanger of the refrigerating device is connected to the refrigerant tube of the heat transfer and the refrigerant tube of the after heat is connected so that the liquid phase refrigerant passes through the heat transfer refrigerant tube and the gaseous refrigerant passes through the heat transfer refrigerant tube. 제 1 항에 있어서,The method of claim 1, 상기 냉동 장치의 열교환기는 상기 복수 열의 냉매 튜브가 결합되는 핀을 포함하고,The heat exchanger of the refrigerating device includes a fin to which the plurality of rows of refrigerant tubes are coupled, 상기 핀은 상기 전열의 냉매 튜브가 접하는 전열측 칼라의 크기가, 상기 후열의 냉매 튜브와 접하는 후열측 칼라의 크기 보다 작은 냉동 장치의 열교환기.The fin is a heat exchanger of the refrigerating device, the size of the heat transfer side collar contacting the heat transfer refrigerant tube is smaller than the size of the heat transfer side collar contacting the heat transfer refrigerant tube. 제 1 항에 있어서,The method of claim 1, 상기 전열의 냉매 튜브 직경과 상기 후열의 냉매 튜브 직경의 비는 0.3~0.92 인 것을 특징으로 하는 냉동 장치의 열교환기.The ratio of the refrigerant tube diameter of the heat transfer and the refrigerant tube diameter of the heat transfer is 0.3 ~ 0.92, the heat exchanger of the refrigeration apparatus. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 냉동 장치의 열교환기는 공기조화기의 실내기에 설치되고, 실내 공기와 냉매를 열교환시키도록 공기조화기의 냉매 유로와 연결된 공기조화기의 실내 열교환기인 것을 특징으로 하는 냉동 장치의 열교환기.The heat exchanger of the refrigerating device is installed in the indoor unit of the air conditioner, the heat exchanger of the refrigerating device, characterized in that the indoor heat exchanger of the air conditioner connected to the refrigerant passage of the air conditioner to heat exchange the indoor air and the refrigerant.
KR1020070088489A 2007-08-31 2007-08-31 Heat exchanger KR20090022840A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070088489A KR20090022840A (en) 2007-08-31 2007-08-31 Heat exchanger
EP08163152A EP2031335A3 (en) 2007-08-31 2008-08-28 Heat Exchanger and Refrigeration Cycle Apparatus Having the Same
US12/201,857 US20090084129A1 (en) 2007-08-31 2008-08-29 Heat exchanger and refrigeration cycle apparatus having the same
CNA2008102153044A CN101377368A (en) 2007-08-31 2008-09-01 Heat exchanger and refrigeration cycle apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070088489A KR20090022840A (en) 2007-08-31 2007-08-31 Heat exchanger

Publications (1)

Publication Number Publication Date
KR20090022840A true KR20090022840A (en) 2009-03-04

Family

ID=40149550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070088489A KR20090022840A (en) 2007-08-31 2007-08-31 Heat exchanger

Country Status (4)

Country Link
US (1) US20090084129A1 (en)
EP (1) EP2031335A3 (en)
KR (1) KR20090022840A (en)
CN (1) CN101377368A (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974717B1 (en) * 2007-12-04 2010-08-06 현대자동차주식회사 Heater with Cathode Oxygen Depletion fuction for fuel cell vehicle
KR101520484B1 (en) * 2008-07-04 2015-05-14 엘지전자 주식회사 Heat exchanger
DE102008049896A1 (en) * 2008-10-03 2010-04-08 Solarhybrid Ag Lamella air heat exchanger for use in air heat pump for receiving heat energy from ambient air, comprises multiple lamellae and pipeline, where another pipeline runs separately from former pipeline which is guided through lamellae
JP4715971B2 (en) * 2009-11-04 2011-07-06 ダイキン工業株式会社 Heat exchanger and indoor unit equipped with the same
DE102009047005A1 (en) * 2009-11-23 2011-08-04 BSH Bosch und Siemens Hausgeräte GmbH, 81739 Heat exchanger with a refrigerant channel
JP5409544B2 (en) * 2010-08-04 2014-02-05 三菱電機株式会社 Air conditioner indoor unit and air conditioner
CN103063059A (en) * 2011-10-21 2013-04-24 珠海格力电器股份有限公司 Finned tube type heat exchanger
CN102445100A (en) * 2011-12-21 2012-05-09 天津商业大学 Heat exchange tube unit, finned tube air-cooled condenser and cooling air evaporator
KR20140017835A (en) * 2012-08-01 2014-02-12 엘지전자 주식회사 A heat exchanger
KR101882020B1 (en) * 2012-08-01 2018-07-25 엘지전자 주식회사 A heat exchanger
JP6040633B2 (en) * 2012-08-23 2016-12-07 ダイキン工業株式会社 Air conditioner heat exchanger
JP6214670B2 (en) * 2013-10-25 2017-10-18 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
KR102174510B1 (en) * 2013-11-05 2020-11-04 엘지전자 주식회사 Refrigeration cycle of refrigerator
US20150323230A1 (en) * 2014-03-11 2015-11-12 Brazeway, Inc. Tube pattern for a refrigerator evaporator
CN105240936B (en) * 2015-09-30 2018-03-13 邵思涛 Indoor set, air-conditioning and refrigerating method
JP2017166757A (en) * 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
CA3053372A1 (en) * 2017-02-13 2018-08-16 Evapco, Inc. Multi-cross sectional fluid path condenser
USD858466S1 (en) * 2017-08-29 2019-09-03 Coil Master Corporation Heat exchanger fin
SG11202002894YA (en) * 2017-10-20 2020-05-28 Mitsubishi Electric Corp Air conditioner
IL255877B (en) * 2017-11-23 2019-12-31 Dulberg Sharon Device for extraction of water from air, and dehumidifying with high energy efficiency and methods for manufacturing thereof
JP2019143874A (en) * 2018-02-21 2019-08-29 富士電機株式会社 Fin tube heat exchanger
KR102137462B1 (en) * 2018-06-20 2020-07-24 엘지전자 주식회사 Outdoor unit of air conditioner
WO2020112426A1 (en) * 2018-11-29 2020-06-04 Brazeway, Inc. Tube pattern for a refrigerator evaporator
CN109780896B (en) * 2019-02-18 2019-10-11 中国空气动力研究与发展中心超高速空气动力研究所 A kind of high-temperature cooler Pipe bundle structure and high-temperature cooler
US20210285727A1 (en) * 2020-03-10 2021-09-16 University Of Maryland, College Park Cross-flow heat exchanger systems and methods for fabrication thereof
US12013135B2 (en) 2020-08-06 2024-06-18 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a flame sensor
US11035620B1 (en) * 2020-11-19 2021-06-15 Richard W. Trent Loop heat pipe transfer system with manifold

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108394A (en) * 1981-12-21 1983-06-28 Hitachi Ltd Heat exchanger
KR960031959A (en) * 1995-02-22 1996-09-17 구자홍 Fin of heat exchanger
JP3361405B2 (en) * 1995-04-03 2003-01-07 東芝キヤリア株式会社 Outdoor unit of air conditioner
JPH10132480A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Heat exchanger for air conditioner
WO1999031444A1 (en) * 1997-12-16 1999-06-24 Matsushita Electric Industrial Co., Ltd. Airconditioner using inflammable refrigerant
JP2001194084A (en) * 1999-12-15 2001-07-17 Lg Electronics Inc Fin tube type heat exchanger
US20070151716A1 (en) * 2005-12-30 2007-07-05 Lg Electronics Inc. Heat exchanger and fin of the same
US20070151713A1 (en) * 2005-12-31 2007-07-05 Lg Electronics Inc. Heat exchanger
JP2008111622A (en) * 2006-10-31 2008-05-15 Toshiba Kyaria Kk Heat exchanger and outdoor unit of air conditioner using the same

Also Published As

Publication number Publication date
EP2031335A3 (en) 2011-04-13
US20090084129A1 (en) 2009-04-02
CN101377368A (en) 2009-03-04
EP2031335A2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
KR20090022840A (en) Heat exchanger
US20180100659A1 (en) Heat exchanger and air-conditioning apparatus
US7182127B2 (en) Heat exchanger
CN108885015A (en) indoor heat exchanger
US7065982B2 (en) Evaporator for refrigeration systems
EP2980516B1 (en) Heat exchanger and refrigeration cycle air conditioner using same
US20230101157A1 (en) Heat exchanger and air-conditioning apparatus
US7571760B2 (en) Condenser of refrigerator
JP2006234264A (en) Fin and tube-type heat exchanger
JP5627635B2 (en) Air conditioner
CN216159166U (en) Heat exchanger and air conditioner indoor unit
JP2002243383A (en) Heat exchanger and air conditioner using the same
KR20090033743A (en) Fin-tube type heat exchanger
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
WO2018040037A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
KR101890826B1 (en) Outdoor heat exchanger
CN216159159U (en) Indoor unit of air conditioner
JP5020159B2 (en) Heat exchanger, refrigerator and air conditioner
JP5664272B2 (en) Heat exchanger and air conditioner
WO2018040034A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP2002235994A (en) Heat transfer tube for heat exchanger, its manufacturing method, heat exchanger and refrigeration air conditioning device using it
CN216159168U (en) Indoor unit of air conditioner
CN216159167U (en) Indoor unit of air conditioner
CN209877415U (en) Finned evaporator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application