KR20090021178A - 통신 수신기 역확산 자원관리를 위한 방법 및 장치 - Google Patents
통신 수신기 역확산 자원관리를 위한 방법 및 장치 Download PDFInfo
- Publication number
- KR20090021178A KR20090021178A KR1020087031139A KR20087031139A KR20090021178A KR 20090021178 A KR20090021178 A KR 20090021178A KR 1020087031139 A KR1020087031139 A KR 1020087031139A KR 20087031139 A KR20087031139 A KR 20087031139A KR 20090021178 A KR20090021178 A KR 20090021178A
- Authority
- KR
- South Korea
- Prior art keywords
- branch
- receiver
- mode
- communication
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
- H04B1/712—Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
- H04B1/7117—Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/7097—Direct sequence modulation interference
- H04B2201/709727—GRAKE type RAKE receivers
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
전술한 방법에 따르면, 하나의 다중-가지 통신 수신기는 만약 역확산기 자원이 충분하다면, 관심 있는 모든 채널화 코드에 대한 개별 수신기 가지 신호들을 역확산하는 제1 모드를 수행한다. 만약 이용가능한 역확산기 자원들이 충분하지 않다고 추정되면, 2개 이상의 수신기 가지 신호들로부터 형성되는 하나의 가지 결합 신호로부터 하나 이상의 채널화 코드들을 역확산하는 제2 모드를 수행한다. 상기 수신기는 상기 가지 결합 신호의 하나의 신호 품질을 최대화하는 하나의 알고리즘을 사용하는 이상적인 가지 결합 가중치를 계산할 수 있다. 하나의 일반화된 레이크(GRAKE) 수신기의 구체예는 만약 역확산기 자원들이 충분하다면, 관심있는 모든 채널화 코드들에 관한 개별 수신기 가지 신호들에 대한 GRAKE 디텍션에 응용되고 만약 역확산기 자원들이 충분하지 않다면 하나 이상의 그와 같은 코드들에 관한 상기 가지 결합 신호에 대한 GRAKE 디텍션에 응용된다.
Description
발명의 분야
본 발명은 일반적으로 통신시스템과 신호에 관한 것으로, 특히 통신 수신기들에서 신호 역확산(despreading) 자원들의 관리에 관한 것이다.
발명의 배경
직접 시퀀스 코드 분할 다중 접속(DS-CDMA) 무선통신 네트워크에서 사용되는 것과 같은 코드기반 다중화(multiplexing)는 같은 주파수에서 서로 다른 다양한 신호들을 전달할 가능성이 있다. 그와 같은 상황에서 수신기들은 관심있는 그러한 신호들을 위한 송신기에 의해 사용되는 개별 확산 코드와 함께 결합 신호를 연관시켜 상기 결합 수신 신호(composite received signal)로부터 관심있는 개별 신호를 추출한다. 예를 들면 하나의 개인 수신기는 제어(control), 파일럿(pilot), 및 데이터 채널 확산 코드들을 이용한 결합 신호의 역확산에 기초한 수신 결합 신호로부터 제어, 파일럿, 및 데이터 채널 신호를 복구한다.
동일한 시간에 서로 다른 채널들을 역확산하는 것은 각자 디코딩한 자원을 각각의 채널에 할당하는 것이 필요로 한다. 단순하게 말하자면 하나의 수신 결합 신호로부터 3개의 다른 코드 채널을 회복하기 위해서는 3개의 서로 다른 역확산기(despreader)들이 필요하다. 실제로 현대의 대부분의 수신기들은 신호 수신 동작의 다중 경로(multipath)의 한 부분으로 각 코드 채널에 대한 하나이상의 역확산기를 할당한다. 예를 들어 상기 수신 결합 신호에 대한 3개의 주요한 전파방향(propagation) 경로들을 가정해보면 하나의 주어진 레이크(RAKE)-형 수신기는 하나의 데이터 코드 채널에 대한 3개의 역확산 핑거(finger)들을 각각의 경로 지연에 대한 데이터 수신에 할당하고 동시에 다른 3개의 역확산 핑거들을 파일럿 채널을 디코딩 하기위해 같은 3개의 경로 지연에 할당한다. 위에서 언급한 2번째(후자) 할당은 수신기가 각각의 상기 주요한 지연 경로에 대한 전파방향 채널 추정을 하도록 한다.
전술한 간단한 예가 자원 역확산에 대한 잠재적인 필요성을 보여주고 있지만 좀더 구체적인 예를 통해 이점을 설명한다. 예를 들어 이동 통신 네트워크에 사용되는 모바일 단말기들이나 기지국들 같은 무선 통신 수신기들은 광범위한 보이스, 데이터, 및 엔터테인먼트 서비스를 사용자에게 제공하면서 멀티미디어 서비스 단말기가 되고 있다. 3GPP 광대역 코드 분할 다중 접속(WCDMA) 표준 같은 무선 통신 표준이 현존하고 발전하는 것에 의해 상기 유형의 서비스는 제공된다. 특히 WCDMA 표준의 발전은 비디오 및 중간전송속도(medium-rate)의 데이터(300kb) (Release 99에 정의), 고속 패킷 액세스(High Speed Packet Access, HSPA) 서비스(Release 5/6에 정의)의 빠른 전송 속도(업링크에 4Mbs, 다운링크에 14Mbs에 이르는)를 제공한다. 다른 다양한 예들, 멀티미디어 서비스 송출 계획은 3GPP 표준(standard)의 Release 6에 정의된 Multi-cast/Broadcast Multimedia Services(MBMS)와 관련 있는 것들을 포함한다.
전형적으로 각 서비스의 형태는 적어도 하나의 채널화(channelization) 코드를 필요로 한다. 이것은 그 코드에 하나 이상의 역확산기(despreader)들이 할당되어야 함을 말한다. 관련된 컨트롤과 시그날링 오버헤드(signaling overhead)와 함께 다중 경로 전파방향 채널들에서 수신되는 동시 서비스(simultaneous services)들은 그러므로 수신기에서 잠재적으로 역확산 자원들(despreading resources)이 크게 요구된다고 하겠다. 예를 들어 각 코드는 관심있는 각각의 신호 전파방향 경로마다 지정된 역확산기(despreader)를 요구한다. 대량의 잠재적이고 개별 할당 가능한 역확산기들에 대한 요구는 일반화된 레이크(generalized Rake GRAKE)의 상황에 특히 부합한다. 이 레이크는 간섭 특성화를 위한 프로빙(probing) 핑거들로서 작동한 레이크 핑거들을 포함하고 나아가 그러한 레이크 핑거들은 관심있는 상기 코드 채널을 역확산하게 된다.
HSPA 경우 하나의 주어진 수신기가 역확산 하는 채널화 코드들은 공통 파일럿 채널(Common Pilot Channel, CPICH), 방송 채널(Broadcast Channel ,BCH), 전용 물리 채널들(Dedicated Physical Channels ,DPCHs)에 대해 6개의 셀(cell)까지 로부터, 고속 패킷 데이터 공유 채널들(High Speed Packet Data Shared Channels ,HS-PDSCHs) 15개 까지, 및 고속 공유 제어 채널(High Speed Shared Control Channels, HS-SCCH) 4개까지에 대한 코드들을 포함할 수 있다. 나아가 E-AGCH 및 E-HICH/E-RGCH와 같은 업링크를 위한 많은 수의 다운링크 제어 채널화 코 드들이 필요할 수도 있다. 관심있는 무선통신 경로의 숫자를 포함하는 코드 채널들의 전체 수를 증가시키는 것은 많은 수의 역확산기를 요구한다. 예컨대, 수신기 가지마다 100개가 넘는 역확산기 자원들이 있어야 좋은 작동을 보인다.
역확산기 자원 요구들은 다이버시티(diversity) 수신 개선 같은 것을 위한 추가적인 수신 안테나와 수신기 프론트-앤드(front-ends)가 더해지면서 기하급수적으로 증가한다. 예를 들어 하나의 수신기 가지(branch)에 대해 100개의 역확산기가 관심있는 상기 전파방향 경로 지연들에 관심있는 모든 채널 코드를 역확산하기 위해 필요하다고 하면 2개의 수신기 가지를 위해서는 그 2배의 숫자(즉 200개의 역확산기)가 필요할 것이다.
필요한 개별 역확산기들을 줄이기 위한 하나의 접근은 역확산기들이 그 역할을 좀더 하는 것이다. 예를 들어 역확산 처리에 있어서 속도를 높이는 것은 절반의 속도로 2개의 역확산기가 신호에 병렬로 작동하는 시간에 하나의 역확산기에 의해 버퍼된 하나의 수신 신호로부터 2개의 코드 채널이 복구될 수 있다는 것을 의미한다. 그러나, 더 높은 처리 속도는 일반적으로 전력소비 증가, 복잡성 증가, 및 비용 증가를 가져온다.
물론, 어떤 주어진 시간에 필요한 역확산기들의 실제 숫자는 사용되어지는 특별한 통신 서비스와 보급된 무선통신 상태에 달려있다. 그러나, 역확산기 자원들은 일반적으로 수신기에서 고정된 자산을 대표하기 때문에 최악의 환경에 필요한 최대 숫자보다 작은 수의 자원을 갖도록 수신기를 디자인하고 생산하는 것은 최악의 환경에서 수신기의 성능을 떨어뜨린다.
발명의 요약
이곳에 기술하는 방법과 장치들에 따르면 장치들과 상응하는 방법들은 하나의 다중-가지(multi-branch) 통신 수신기에서 역확산기 자원이 부족할 수 있는 가능성에 대해 효과적으로 수신기 성능을 최적화하는 방법으로 역확산기 자원들의 관리를 제공한다. 하나의 통신 수신기에서 2개 이상의 수신기 가지 신호를 역확산하는 하나의 방법에 대한 구체예에 의하면 하나 이상의 처리 회로들이 제1 또는 제2 모드에서 작동하도록 구성된다.
제1 작동 모드에서 상기 동작 회로들은 2개 이상의 수신기 가지 신호들(예컨대, 서로 다른 안테나 신호들에 대응하는 것)의 각각으로부터 관심있는 모든 채널화 코드들을 역확산한다. 제2 작동 모드에서 하나 이상의 처리회로들은 각각의 수신기 가지 신호 보다는 2개 이상의 수신기 가지 신호들의 하나의 조합으로부터 형성된 하나의 가지 결합 신호(branch combination signal)로부터 하나 이상의 관심있는 채널화 코드들을 역확산한다. 상기 각각의 수신기 가지 신호들로부터가 아닌 상기 가지 결합 신호로부터 하나 이상의 채널화 코드들을 역확산 하는 것이 역확산기 자원 요구들을 줄여준다. 따라서 상기 방법은 통신 수신기에서 이용 가능한 역확산기 자원들이 제1 모드에서 작동하기에 충분한지 추정하여 제1 또는 제2 모드에서 작동할 것인지를 결정해야 할 것이다.
하나 이상의 구체예들에서, 상기 하나 이상의 작동 회로들은 상기 가지 결합 신호를 형성하도록 구성된다. 여기서 가지 결합 신호는 모든 수신기 가지 신호들보 다 작거나 작지 않은 상기 개별 수신기 가지 신호들의 하나의 가중 조합이다. 나아가 적어도 하나의 구체예에서 하나 이상의 처리 회로들은 상기 가지 결합 신호의 하나의 신호 품질을 최대화시키는 알고리즘에 따라 상기 가지 가중치(branch weighting value)들을 결정하도록 구성된다. 예컨대, 상기 수신기 가지 신호들의 역확산 값들은 결합 가중치들에 따라 조합될 수 있다. 여기서 상기 진폭들 및/또는 상기 결합 가중치들의 위상들이 상기 가지 결합 신호의 하나의 신호 대비 잡음비(SNR)를 최대화하는 하나의 알고리즘에 따라 결정된다. 상기 진폭들 및 상기 결합 가중치들의 위상의 범위 양자화(quantized, 축소)는 상기 최대화 알고리즘을 단순화하는데 사용될 수 있다.
상기 방법 및 장치의 하나 이상의 다른 형태들은 일반화된 레이크 (GRAKE) 수신기에서 실행될 수 있다. 예컨대, 하나의 GRAKE 수신기 회로의 하나의 구체예를 들어본다. 제1 작동모드에서 대다수의 관심있는 채널화 코드들에서 관심있는 채널화 코드 각각에 대해 개별 수신기 가지 신호들에 대한 GRAKE 디텍션을 수행함으로써 하나의 다중-가지 통신 수신기에서의 GRAKE 디텍션(detection)을 수행한다.
제2 작동 모드에서는 상기 GRAKE 수신기 회로가 관심있는 하나 이상의 채널화 코드들에 대한 하나의 결합 가지 신호(개별 수신기 가지 신호들의 하나의 가중치 합으로 형성)에 대한 GRAKE 디텍션을 수행한다. 하나 이상의 구체예들에서 상기 GRAKE 수신기 회로는 제1 모드의 작동을 지원하는 상기 다중-가지 통신 수신기내에서 이용 가능한 역확산기 자원들이 충분한지 추정함으로써 제1 또는 제2 작동 모드를 선택하도록 구성된다.
물론, 본 발명은 상기 전술한 목적 및 장점들에 제한되는 것은 아니다. 추가적인 목적 및 장점들에 대해서는 후술하는 구체예에 대한 구체적인 설명을 읽고 첨부한 도면들을 본 후에는 당해 기술 분야의 통상의 기술력을 가진 자들에게 명백하게 될 것이다.
도면의 간단한 설명
제1도는 하나의 통신 수신기 및 하나의 지원 통신 네트워크의 하나의 구체예를 도해한 블록 다이어그램이다.
제2도는 제1 및 제2 작동모드에 따른 하나의 통신 수신기에서의 역확산기 자원들을 관리하기위한 하나의 구체예를 도해한 논리(logic) 플로우 다이어그램이다.
제3도는 역확산기 자원 모드 제어를 지원하는 처리 논리의 구체예를 도해한 논리 플로우 다이어그램이다.
제4도 및 제5도는 각각의 주어진 하나의 채널화 코드에 대한 제1 및 제2 작동 모드에서의 역확산기 자원들의 하나의 구체예를 도해한 논리 플로우 다이어그램이다.
제6도는 전술한 하나 이상의 구체예에 따른 수신 신호 역확산을 위한 하나 이상의 처리 회로들의 하나의 구체예를 도해한 블록 다이어그램이다.
제7도는 (예컨대) 제1도에 도해한 통신 수신기의 GRAKE 수신기에서 제1 및 제2 모드에 따른 역확산기 자원들의 관리를 위한 하나의 구체예를 도해한 논리 플로우 다이어그램이다.
발명의 구체예에 대한 상세한 설명
제1도는 적어도 부분적으로 하나의 지원 통신 네트워크(12)와의 통신에서 보인 하나의 통신 수신기(10)의 하나의 구체예를 설명한다. 상기 통신 수신기(10)는 그자신의 역확산기 자원들(자세하게 후술함)을 관리하도록 구성된다. 이때 발생 가능한 역확산기 자원들의 부족에 대비해 효과적으로 수신기 성능을 최적화하는 방법을 사용한다.
설명했듯이 상기 통신 수신기(10)는 2개 이상의 수신 안테나들(14. 즉, 14-1에서 14-n), 2개 이상의 수신기 프론트-앤드들(16. 즉, 16-1에서 16-n), 하나 이상의 동작 회로들(18), 및 상기 통신 수신기(10)의 의도된 목적 및 희망했던 기능에 의존하여 필요하거나 희망했던 추가적인 수신기들(20)로 구성된다. 본 발명의 예로써 상기 통신 수신기(10)는 휴대폰이나 다른 모바일 기지국과 같은 하나의 무선통신기기로 구성될 수 있고 하나의 무선통신 네트워크에서 작동하도록 구성될 수 있다. 실제 하나 이상의 구체예들에서 상기 통신 네트워크(12)는 WCDMA 표준들에 부합하여 작동하고 상기 통신 수신기(10)는 WCDMA 작동을 위해 구성된 하나의 모바일 기지국으로 구성된다.
상기 통신 수신기(10)는 WCDMA 작동을 위해 구성되는지 여부에 관계없이 채널화 코드들을 거친 상기 결합 신호로부터 복구되는 관심있는 개별 신호들을 포함하는 하나 이상의 결합(composite) 통신 신호들을 받는다고 가정한다. 예컨대, 하나 이상의 구체예에서 상기 통신 네트워크(12)는 상기 다운링크(DL)에서 상기 통신 수신기(10)까지 하나 이상의 CDMA(Code Division Multiple Access) 신호들을 송신한다. 관심있는 제어(control), 데이터, 및 파일럿 시그널들의 숫자는 송신 신호 처리의 일부분으로써 하나의 특별한 채널화 코드를 사용하여 관심있는 각각의 신호를 확산시킴으로써 상기 다운링크 신호에서 인코드(encode)될 수 있다. 따라서 상기 통신 수신기(10)는 상응하는 채널화 코드들을 사용하여 상기 수신된 결합 신호를 역확산 함으로써 상기 결합 신호로부터 관심있는 각각의 신호를 복구한다. (즉, 관심있는 각각의 채널화 코드에 대한 상기 결합 수신 신호를 대비하는 방법에 의한 것이다.)
더욱 특별하게 상기 통신 수신기(10)는 2개 이상의 수신 안테나들(14)의 각각에 대한 상기 다운링크 신호를 받고 상기 상응하는 수신기 프론트-앤드들(16)은 2개 이상의 수신기 가지 신호들(예를 들어 Y1에서 Yn을 통과하는 베이스밴드 신호들) 을 제공한다. 상기 발명에서 각각의 수신기 가지 신호는 일반적으로 상기 수신된 결합 신호의 다른 버전을 말하고 결국 서로 다른 다중 경로 페이딩(fading) 특성을 나타내다. 다중 수신기 가지 신호들(때로는 스페이셜 다이버시티(spatial diversity) 신호라고 언급)의 가능성은 상기 수신기 가지 신호들에 담겨진 여분의 정보를 이용하여 상기 통신 수신기(10)의 수신 성능을 향상시킬 가능성을 제공한다. 말하자면, 상기 통신 수신기(10)는 관심있는 모든 채널화 코드들에 관한 각각의 수신기 가지 신호를 역확산 할 수 있다. 상기 동일한 채널화 코드에 대응하는 역확산 값은 다중 수신기 가지들을 거쳐 결합되거나 비교될 수 있다.
그러나, 특별한 시간에서 관심있는 채널화 코드들의 숫자는 중요할 수 있고 일반적으로 수신기 가지 신호마다 다중 경로 지연들에서 각각의 수신기 가지 신호로부터 그와 같은 모든 신호를 역확산하는 것은 빠르게 주요한 역확산기 자원들을 소모할 수 있다. 그 때문에 제1도에 도해된 회로의 구체예들에 의하면 상기 처리 회로(18)는 제한된 수 또는 양의 역확산 자원들(22), 다수의 지원 회로(24) (예컨대, 채널추정기들 등), 및 상기 역확산기 자원들(22)을 관리하도록 구성된 하나의 코드 조정 회로(26)로 구성된다. 더욱 특별하게, 하나 이상의 구체예들에서 상기 모드 조절 회로(26)는 각각의 수신기 가지 신호로부터 관심있는 모든 채널화 코드들을 역확산하기에 충분한 역확산기 자원(22)이 있는지 결정하고 역확산기가 상응하게 작동하도록 구성되어 있다.
제2도는 역확산기 자원 관리의 하나의 구체예에 대한 처리 논리를 설명한다. 그와 같은 논리는 하드웨어, 소프트웨어, 또는 이들의 어떠한 조합에 대해서도 실행될 수 있을 것이다. 예컨대, 설명된 논리는 전체 또는 부분적으로 컴퓨터 프로그램 설명서를 구성할 수 있다. 상기 처리회로(18)는 예를 들어 하나의 디지털 신호 처리기(digital signal processor, DSP), 마이크로프로세서, ASIC, FPGA 또는 하나 이상의 다른 디지털 처리회로들로 구성될 수 있다. 따라서, 소프트웨서 또는 펌웨어 설명서는 상기 처리회로(18)가 제2도의 프로그램 논리를 실행하도록 구성되는데 사용될 수 있다.
제2도에서 처리과정은 상기 통신 수신기(10)가 제1 작동 모드를 지원하는데 충분한 역확산기 자원들(22)이 있는지를 추정하는 것으로 시작한다.(단계 100) 상 기 발명에서 처리 회로들(18)은 각각의 수신기 가지 신호들로부터 관심있는 모든 채널화 코드들을 역확산하도록 구성된다. 제1 작동 모드에서는 적어도 하나의 품질 전망에 따라 성능을 극대화하도록 한다. 이는 다중 수신기 안테나들(14) 및 프론트-앤드들(16)을 갖는 것으로 여유 있는 상기 다이버시티 수신의 철저한 활용 및 수신기 가지 신호들에 대한 다중 대응에 의해 가능하다.
상기 처리회로들(18)들은 역확산기 자원들이 충분한지 추정하여 제1 모드로 작동할 것인지 결정한다.(단계 102) 만약 이용가능한 역확산기 자원들이 충분하다면 처리회로(18)들은 제1 모드로 작용한다. 전술한대로, 제1 모드로 작동한다는 것은 상기 처리회로(18)들이 각각의 수신기 가지 신호들로부터 관심있는 모든 채널화 코드들을 역확산하도록 구성된다는 것을 의미한다.(단계 104) 그러나, 만약 상기 통신 수신기(10)내에서 이용가능한 상기 역확산기 자원들(22)이 제1 모드로 동작하기에 충분하지 않다고 간주되면 상기 처리회로(18)는 제2 모드가 수행되도록 구성된다. (단계 106)
제2 작동모드에서 상기 처리회로(18)는 개별 수신기 가지 신호들로부터가 아닌 하나의 가지 결합 신호로부터 하나 이상의 관심있는 채널화 코드를 역확산한다. 실제, 적어도 하나의 구체예에서 상기 처리회로들(18)은 상기 개별 가지 신호들이 아닌 가지 결합 신호로부터 관심있는 모든 채널화 코드들을 역확산한다. 결국 수신된 신호 역확산에 있어 필요한 역확산기 자원들의 숫자 또는 양이 현저하게 줄어드는 결과를 가져온다.
그러나, 다른 구체예들은 더욱 전략적이다. 즉, 상기 수신된 결합 신호에 포 함되는 어떤 제어 및 시그널링 채널들이 다른 것에 비해 더욱 왕성한지 및/또는 덜 중요한지를 인식하는 방법을 따른다. 예컨대, 상기 변조 및 코딩 설계(modulation and coding schemes, MCS) 및/또는 대응하는 송출 전력은 그와 같은 채널들을 상기 가지 결합 신호로부터 역확산하는데 이상적인 후보자들로 만든다. 다른 말로 하자면, 상기 통신 수신기(10)는 상기 가지 결합 신호를 경유한 채널들에 대한 수긍할 만한 수신 수행을 달성할 수 있다. 그리고 각각의 상기 수신기 가지 신호들로부터 그와 같은 채널들을 역확산하는 것으로 얻어지는 상기 다이버시티 수신 이득(diversity reception gain)은 필요하지 않다.
반대로 말하면, 상기 수신된 결합 신호에서 고속패킷데이터 채널들(전용 또는 공용)과 같은 어떤 채널들은 더 고속의 비트 속도를 위하여 튼튼함을 교환하는 하나의 MCS에 기초할 수 있다. 그런 형태의 채널들은 다중 수신기 가지 신호들을 거쳐 상기 같은 채널화 코드를 역확산함으로써 얻어지는 상기 다이버시티 이득을 얻을 수 있다.(심지어 요구하기도 한다.) 그러므로, 기술된 적어도 하나의 구체예에서 제2 작동모드는 상기 가지 결합 신호로부터 관심있는 하나 이상의 채널화 코드들의 역확산 및 각각의 상기 수신기 가지 신호들로부터 관심있는 채널화 코드들의 잔존하는 것의 역확산으로 구성된다.
따라서, 상기 통신 수신기의 작동의 하나의 양상은 제1 모드 또는 제2 모드로 작동할지를 결정하는 것이다. 제3도에서 그와 같은 결정에 대한 모드 제어 회로(26)에서(또는 의해서) 구체화될 수 있는 처리 논리를 보여준다. 처리과정에서 상기 모드 제어 회로(26)는 필요나 희망했던 것에 따라 제1과 제2 모드사이에서 처 리회로(18)의 작동을 역동적으로 개폐할 수 있다. 설명된 처리 논리에 따르면, 상기 모드 제어 회로(26)는 현재 또는 희망했던 통신 서비스 요구들을 평가하고 그러한 요구들에 비추어 역확산기 자원들에 대한 잠재적인 필요 및 상기 현재의 다중 경로 수신 환경의 관점에서 추정한 것에 기초한 결정을 한다.
전술한 내용에 의해 당해 기술분야에 속하는 숙련된 기술자들은 현재 또는 희망했던 통신 서비스가 필요한 역확산기 자원들의 숫자에 직접적으로 의존한다는 것을 인지할 것이다. 즉, 더 많은 통신 서비스들이 동시에 서비스 되거나 다중 코드 고속 공유 채널(multi-coded high-rate shared channels)들과 같이 많은 채널 숫자를 포함하는 통신 서비스는 다수의 채널화 코드들을 역확산하는 상기 통신 수신기(10)를 요구한다. 그러나, 현재의 통신 서비스 요구들은 단지 필요한 역확산기 자원들의 숫자에 대해 고려되는 기준선을 성립하고 있을 뿐이다. 다른 요소들 (예컨대, 멀티플리커티브 인자들(multiplicative factors)) 또한 활동하기 시작한다.
예를들면, 상기 통신 수신기(10)가 2개 이상의 네트워크 기지국들로부터 같은 채널화 코드들에 대한 같은 다운링크 신호를 받는 소프트 핸드오프(soft handoff)를 지원할 필요가 있다. 다른 예를 살펴보면, 상기 개별 수신기 가지 신호들을 역확산할 때 관심있는 각각의 코드 채널에 대한 서로 다른 역확산기 자원은 전형적으로 상기 수신기 가지 신호에서 관심있는 다중 경로 요소에 각각 할당된다. 나아가, 상기 통신 수신기(10)는 소프트 핸드오프의 가능성을 고려한다. 이것은 2개 이상의 네트워크 기지국들로부터 같은 코드들을 역확산 하도록 강제하는 것이다.
상기 다중 경로 수신 환경들은 이동통신 환경에서 변경될 수 있고 변경되기 때문에 하나 이상의 모드 결정 처리의 구체예들은 다중 경로 수신 환경의 수신기의 특성이 업데이트 되는 정도에 따라 같은 비율로 하나의 새로운 작동 모드 결정을 수행한다. 그 때문에, 상기 통신 수신기(10)은 일반적으로 적어도 각각의 수신기 가지 신호의 상기 주요한 다중 경로 요소들을 식별하기위해 구성된 채널 추정 회로소자(circuitry)를(아직 설명되지 않았다.) 포함한다. 예컨대, 상기 통신 수신기(10)는 각각의 안테나-수신 신호(즉, 각각의 수신기 가지 신호)를 찾는 경로를 수행할 수 있고 하나의 상응하는 전력 지연 프로파일(Power Delay Profile, PDP)을 생성할 수 있다. PDP는 상기 주요한 다중 경로 지연들을 식별한다. 예컨대, PDP는 초당 10에서 20회로 업데이트 될 수 있고 상기 작동 모드 결정은 같거나 더 작은 속도로 수행되어질 수 있다.
대체로, 상기 통신 수신기(10)는 제1 모드에서의 작동에 잠재적으로 필요한 역확산기 자원 요구들을 추정하여 제1 또는 제2 모드를 실행할 것인가를 결정하도록 구성될 수 있다. 하나의 특별한 구체예에서 상기 모드 제어 회로(26)는 잠재적인 역확산기 자원 요구들을 추정하기 위해 현재 또는 희망했던 통신 서비스 요구(관심있는 채널화 코드의 숫자에 의존함)및 다중 경로 수신 환경을 평가한다. 또 다른 구체예에서 상기 모드 제어 회로(26)는 제1 모드 수행에 필요한 역확산기 자원들(22)의 숫자 또는 양을 역동적으로 추정한다. 이와 같은 추정은 관심있는 채널화 코드들의 숫자에 따라 필요한 현재 또는 희망했던 통신 서비스 요구들의 평가와 함께 하나 이상의 수신기 가지 신호들에 따라 결정된 PDP들을 평가하는 것에 기초 한다.
따라서, 역확산기 자원들의 잠재적인 필요 추정은 지원되는 상기 통신 서비스 형태들에 포함되어 변경되는 또는 최대의 코드 채널 숫자, 지원될 필요가 있을 수 있는 소프트 핸드오프 링크들의 숫자, 및 특성화된 다중 경로 수신 환경을 고려할 수 있다. 물론, 상기 통신 수신기(10)는 그와 같은 추정에 한계를 갖도록 구성될 수 있다. 그 때문에 제1 모드에서 역확산기 자원들(22)이 고갈되는 위험이 발생하는 시간동안에 제2 모드로 전환되는 동작이 중요하다.
그러나, 당해 기술 분야의 통상의 기술을 가진 자들은 또한 제1/ 제2 모드 결정하는 동조의 기회를 다르게 인식할 것이다. 왜냐하면 통신 네트워크들의 다른 형태들 또는 심지어 역동적으로 그것은 충분한/불충분한 결정 시점(threshold)을 변경하거나 작동 중 변경하여 잠재적인 역확산기 자원 요구들의 추정을 줄잡아 수행하기 위한 상기 통신 수신기(10)구성 때문이다. 이것의 하나의 예를 들어보면, 상기 통신 수신기(10)는 지원되는데 필요할 수 있는 소프트 핸드오프 링크의 수를 추정 및/또는 지원되는 통신 서비스들과 함께 사용될 수 있는 채널화 코드의 수를 추정하는데 있어 평균, 아주적은, 및 최악의 값들 사이에서 변경될 수 있을 것이다.
언급한 방법들과 장치들의 측면을 살펴보면, 하나 이상의 구체예들에서 상기 통신 수신기(10)는 무선 통신 네트워크에서 작동하도록 구성된 하나의 무선 통신 기기를 포함하거나 그와 같은 하나의 기기에 포함된다. 하나 이상의 구체예에서 상기 통신 수신기(10)는 WCDMA(Wideband Code Division Multiple Access) 내에서 작 동하도록 구성된다. 그와 같은 구체예들에서 상기 통신 수신기(10)는 하나의 다중-가지 일반화된 레이크(multi-branch GRAKE) 수신기로서 특별히 구성될 수 있다. (그러나, 당해 기술 분야의 통상의 지식을 가진 자들은 GRAKE 구체예들이 본 발명의 예들임을 인식할 것이다.)
GRAKE 수신기 동작의 다양하고 폭넓은 설명들은 여기서 언급한 역확신기 자원들의 관리를 이해하는데 필요하지는 않다. 나아가 관심있는 사람은 미국특허 제6,975,672에서 상세한 GRAKE 예들을 찾을 수 있다. 넓은 의미에서 GRAKE 수신기들은 주어진 레이크 핑거들의 세트를 거치는 장애 상관(impairment correlation)들의 지식을 상기 핑거들의 세트로부터 역확산기 값들을 조합하는데 이용되는 결합 가중치들에 통합한다. 다른 말로하면, GRAKE 수신기들은 상기 역확산기 값에서 수신된 신호 장애들의 상관(correlation)을 추정하는 것으로 유색 간섭(colored interference)을 억제하거나 최소한 줄인다. 그 때문에, GRAKE 수신기들은 통상적으로 직접적으로 또는 매개변수로 결정되는 하나의 장애 공분산 매트릭스(covariance matrix)의 형태로 수신된 신호 장애 상관들의 추정을 유지한다.
적어도 하나의 상기 통신 수신기(10)의 GRAKE 수신기 구체예에서 제1 모드로 작동하는 것은 GRAKE 디텍션을 사용한 각각의 가지 신호로부터 관심있는 채널화 코드 각각을 역확산하는 것을 포함한다. 그와 같은 작동은 본 발명의 예로써 제 4도에 부분적으로 설명되어 있다. 상기 발명은 역확산기 핑거들의 하나의 세트(30)가 수신기 안테나들(14, 예를 들어 안테나 1)의 하나의 첫째 신호의 뒤를 있는 수신된 결합 신호에 상응하는 수신기 가지 신호 Y1 으로부터 관심있는 채널화 코드들(코드 i) 중 주어진 하나를 역확산 하도록 할당된다. 핑거 결합 회로(32)는 채널화 코드 i 를 위해 획득된 역확산기 값들을 결합한다. 마찬가지로, 다른 역확산기 핑거들의 세트(34)는 제2 수신기 가지 신호 Y2로부터 같은 채널화 코드 i 를 역확산 하는데 할당되고 추가적인 결합 회로들(36)은 상응하는 역확산 값들을 결합한다.
반대로, 제 5도는 제2 작동 모드에서 채널화 코드 i 의 처리를 설명한다. 하나의 가지 결합 신호가 상기 수신기 가지 신호들(Y1 과 Y2)의 하나의 가중된 합으로 형성되고 상기 가지 결합 신호는 역확산 핑거들의 하나의 세트(38)와 결합 회로(40)을 사용하여 채널화 코드 i 에 관하여 역확산 된다. 더욱 일반적으로, 제2 모드에서의 작동은 각각의 개별 수신기 가지 신호들이 아닌 GRAKE 디텍션을 이용한 가지 결합 신호로부터 관심있는 하나 이상의 관심있는 채널화 코드를 역확산하는 것을 포함한다.
이러한 간략한 설명으로부터 개별 수신기 가지 신호들 보다는 가지 결합 신호로부터 관심있는 하나의 주어진 채널화 코드를 역확산하는 것이 역확산기 자원들을 절약한다는 것을 알 수 있다. 또한, 이러한 예들을 인식하는 독자는 핑거 역확산기 세트들(30, 34 및 38), 및 핑거 결합 회로들(32, 36 및 40) 모두가 호환성 있는 수신기 자원들을 나타냄을 주목해야한다. 이것은 서로 다른 참조 번호의 사용이 서로 다른 코드/신호 할당임을 의미한다. 나아가, 독자는 파일럿 채널 역확산, 핑거 작동들 프로빙(probing), 핑거 결합 가중 발생, 및 실제 실행에 있어서 수행되 는 GRAKE 수신기 작동의 다양한 양상들에 대한 설명을 하지 않았음을 주목해야 한다.
제4도 및 제5도에서 역확산기 자원 할당의 다양함 들을 염두 해두고 제6도는 통신 수신기(10)의 하나의 GRAKE 수신기 회로 구체예를 설명한다. 더욱 특별하게, 제 6도는 하나 이상의 처리 회로들(18)의 하나의 GRAKE 수신기 회로를 설명한다. 상기 처리 회로들은 GRAKE 회로들(50) (예컨대, 역확산기 핑거들, 핑거 결합 회로들, 핑거 가중 발생기 등), 하나의 가지 신호 결합 회로(52), 경로(path) 탐색기 (54), 하나의 채널 추정/장애 상관 추정 회로(56), 하나의 역확산기 자원 요구 추정 회로(58), 및 하나의 가지 신호 결합 가중 발생 회로(60)로 구성된다.
상기 가지 신호 결합 회로(52), 경로 탐색기(54), 추정 회로(56), 상기 GRAKE 회로들(50) 내에서 다양한 요소들과 함께 전술한 지원 회로(24)의 전체 또는 일부분으로 구성되는 것으로 여겨지는 반면, 이러한 2개의 회로(58 및 60)는 논리적으로 상기 모드 제어 회로(26)의 전체 또는 일부로 구성되는 것으로 생각될 수 있다. 전술했던 설명을(예컨대, 제1도)를 염두에 두면 GRAKE 회로(50)내에 포함된 상기 역확산 핑거들은 논리적으로 역확산기 자원들(22)의 전체나 일부로 구성되는 것으로 생각될 수 있다. 또한 독자는 상기 GRAKE 회로(50)가 채널 추정들과 장애 상관 추정들에 기초한 핑거 결합 가중치를 계산하는 결합 가중 생성기(combining weight generator)들을 포함한다는 것을 숙지해야 한다. 그러나, 그와 같은 결합 회로들과 상응하는 결합 가중치들을 상기 가지 신호 결합 회로(52) 및 이 회로에서 사용되는 상응하는 가지 결합 가중치와 혼동해서는 안 될 것이다. 언급했듯이, 상 기 가지 결합 가중치들은 개별 수신기 가지 신호들의 하나의 가중치 합으로써 상기 가지 신호를 형성하는데 사용된다.
제6도에 도해된 적절한 신호 처리의 자세한 설명에 의해 2개의 안테나 가지들(수신기 가지 신호들 Y1 및 Y2)은 상기 경로 탐색기(54)로 입력되는 베이스밴드 수신기 가지 신호들을 제공하는데 필요하도록 필터링되고 증폭되고 다운컨버팅 된다. 차례대로, 상기 경로 탐색기(54)는 각각의 수신기 가지 신호들의 PDP를 측정한다. 이 측정은 정기적으로(초당 10 내지 20회)로 수행될 수 있다. 상기 경로 탐색기(54)는 각각의 수신기 가지 신호에 대한 다중 경로 수신에 필요한 역확산 핑거들(nf)의 숫자를 결정하는 PDP 정보를 사용한다. 다중 경로 처리에 필요한 역확산 핑거들의 숫자는 관심있는 다중 경로 지연들의 숫자보다 일반적으로 더 크다. 왜냐하면 장애 상관 추정을 위한 관심있는 지연 패스들내 또는 주변에 위치할 오프-패스(off-path) 프로빙 핑거들의 사용 때문이다.
결과적으로, 상기 모드 제어 회로(26)는 각각의 수신기 가지 신호 또는 각각의 그와 같은 신호에 대한 다중 경로 지연 정보는 받는다. 그렇지 않다면, 주어진 현재 다중 경로 상황에서 하나 이상의 관심있는 채널화 코드에 대해 GRAKE 디텍션을 수행하는데 필요한 실제 또는 추정된 역확산 핑거들의 숫자를 나타내는 하나의 수치 값을 받는다. 게다가, 상기 모드 제어 회로(26)는 현재 또는 희망했던 통신 서비스들에 대한 통신 서비스 요구 정보를 받는다. 그와 같은 정보는 진행중인 통신 서비스들의 특성 및 범위 및 그와 같은 서비스에 포함된 특정한 제어 및 데이터 채널들의 숫자가 주어진다면 상기 통신 수신기(10)에 의해 지원되고 있는 통신 서비스들의 형태 또는 숫자를 식별하거나 상기 통신 수신기(10)에 대한 실제 또는 잠재적인 관심있는 채널화 코드들의 전체 숫자를 식별한다. 하나의 평가 회로(예컨대, 전술한 상기 역확산기 자원 요구 추정 회로(58))는 기능적으로 상기 모드 제어 회로(26)을 포함하고 그와 같은 정보를 제1 작동 모드에 필요한 역확산기 자원들(22)의 잠재적인 양이나 숫자 - 즉, 각각의 수신기 가지 신호들에서 관심있는 모든 채널화 코드들에 대해 GRAKE 디텍션 수행하는데 필요한 양이나 숫자 - 에 대한 추정을 생성 (그리고 유지/업데이트)하는데 사용한다.
상기 PDP 정보는 각각의 수신기 가지 신호에 대한 채널 추정을 수행하는 상기 추정 회로(56)에 제공된다. 이 회로는 일반적으로 각각의 그러한 신호에 포함된 하나의 공통 파일럿 채널(Common Pilot Channel, CPICH)을 통해 수신되는 역확산 파일럿 심볼들을 이용한다. 따라서 , 상기 추정 회로 (56)는 수신기 가지 신호들 Y1과 Y2 각각에 상응하는 H1과 H2 채널 추정을 생성한다. 그와 같은 각각의 채널 추정은 디멘젼들 (nf X 1)의 하나의 백터로 이루어 질 수 있다.
나아가, 상기 추정 회로(56)는 각각의 수신기 가지 신호에 대한 장애 상관 추정을 생성한다. 그와 같은 추정은 각각 수신기 가지 신호들 Y1과 Y2에 대응하고 각각의 디멘젼이 2nf X 2nf인 장애 공분수 매트릭스들(R1 과 R2)로서 생성 될 수 있다. 전술했듯이, 그와 같은 장애 상관 추정은 그와 같은 역확산 파일럿 수치들에 대한 장애 상관 추정 및/또는 베이스밴드 수신기 가지 신호들의 칩-공간(chip- spaced) 샘플들로부터 장애 상관 추정하여 직접적으로 만들어진다. 양자택일적으로, 상기 장애들은 상기 모델 텀(term)과 진행 중인 수신된 신호 추정들에 기초한 상기 통신 수신기(10)에서 만들어질 수 있고 변수적으로 생성될 수 있다.
그럼에도 불구하고 상기 모드 제어 회로(26)는 상기 다중 경로 정보 및 관심있는 모든 채널화 코드들에 관한 제1 모드 또는 적어도 하나의 관심있는 그러한 채널화 코드 중 적어도 하나에 관한 제2 모드에서 상기 GRAKE 회로들(50) 및 포함되는 어떠한 지원 회로들을 수행할지 결정하기위한 근거가 되는 상기 통신 서비스 요구 정보를 사용한다. 하나 이상의 구체예들에서는 상기 제2 모드에서 하나의 작동의 양상은 상기 가지 결합 신호의 신호 품질을 극대화 시키고 있다. 이것은 하기식으로 나타낼 수 있다.
전술한 바와 같이 Y1과 Y2는 디지털 베이스밴드 폼(baseband form)에서 상기 수신기 가지 신호들에 존재하는 상기 수신기 가지 신호들이고 r opt 과 ejθopt 는 상기 수신기 가지 신호들의 하나의 가중된 합으로써의 상기 가지 결합 신호(Ycomb)를 형성하는 부분으로써 상기 신호 Y2에 적용되는 하나의 복합 가중(complex weighting)의 상기 진폭 및 위상 요소이다.
즉, 처리 회로들(18)의 하나 이상의 구체예들은 상기 가지 결합 신호의 하나의 신호 품질을 최대화하는 복합 가중 값들로써 하나 이상의 가지 가중 값들을 결정하도록 구성된다. 이렇게 하면, 상기 모드 제어 회로(26)내에 있는 상기 가지 가중 생성 회로(60)는 가지 결합 신호의 상기 신호 품질을 최대화하는 하나의 알고리즘에 따라 하나 이상의 가지 가중 값들의 상기 진폭 및 위상 요소를 결정하도록 구성 될 수 있다.
제1 모드와 제2 모드 동작 간에 신호 처리 차이점을 설명하자면, 안테나 i 와 심볼 k 에 대한 시간상의 차이(time lag)에서 채널화 코드마다 수신된, 역확산 신호를 정의하는 것이 도움이 된다.
sk 는 상기 k 번째 심볼에 대한 명목상의(아주작은) 신호이고 상기 채널 백터 , 상기 수신된 신호 벡터 및 그리고 상기 잡음 백터 그리고 (위 첨자 "H"는 헤르미트 이항(Hermitian transpose)을 지시함에 유의하라) 물론, 당해 분야의 통상의 지식을 가진 자는 인덱스 i 의 범위를 포함된 수신기 가지 신호들의 숫자를 대치한다는 것을 인식할 것이다.
상기 표시법과 대응하는 신호들을 염두에 두고, 상기 수신기 가지 신호들에대한 상기 GRAKE 디텍션 통계치는 (식3) 으로 나타낼 수 있다. 여기서 GRAKE 장애 공분수 매트릭스(impairment covariance matrix) 주어진 하나의 기대된 값 계산에 따라 결정될 수 있다. 나아가, 신호 대비 잡음 비율(SNR)의 용어로 신호 품질은 (식4) 로 표현될 수 있다.
상기 가지 결합 신호의 내용에 있는 상기 항을 다시 고쳐 쓰면 다음과 같은 항으로 이해될 수 있다.
용어 는 예컨대 하나의 SNR을 최적화하는 하나의 방법을 결정할 수 있는 하나의 가지 결합 가중로써 작동한다. 상기 식으로부터 계속되는 하나의 상응하는 장애 공분수 매트릭스는 에 대해 다음 식으로 표현할 수 있다.
이러한 방정식을 고려하면, 상기 복합 가지 가중치값의 진폭과 위상 요소로써 상기 가지 결합 신호에 대한 상기 가지 결합 신호 GRAKE 디텍터 통계치를 표현할 수 있다.
방정식 (9)는 하나의 SNR에 대해 상기 가지 결합 신호를 다음과 같이 산출한다.
구현의 단순화에 대한 관심 및/또는 상기 SNR을 최대화하기위한 이상적인 가지 가중치값 결정의 계산을 요구하는 효율에서 상기 모드 제어 회로(26)은 양자화(작은 범위)되거나 범위가 강요되는 값들을 사용하도록 구성된다. 예컨대, 하나의 구체예에서 상기 가지 가중 생성 회로(60)는 가중치 값들의 위상 및 진폭 요소()에 대한 양자화 된 값들을 사용하도록 구성된다. 이에 따라, 상기 가지 결합 신호의 신호 품질을 최대화하는 가중치들을 결정하는데 이용되는 하나의 최대화 알고리즘을 단순화하는 것이다.
하나의 구체예에서 상기 가지 가중치 생성 회로(60)은 인 Ycomb를 형성하는 상기 가지 결합 신호(52)에의해 사용되는 와 θ 값을 최적화하도록 구성된다. 그와 같은 최적화는 신호 품질을 최대화 하는 하나의 최대화 알고리즘에 기초할 수 있고 식은 다음과 같다.
다른 말로 환원하면, 상기 가지 결합 신호의 SNR을 최대화하는 상기 가시 가중치의 진폭과 위상값이 결정된다. 최적화에서의 양자화 값들의 사용에 대한 하나의 예로써 상기 진폭 요소는 양자화된 형태인 (0.1 ,1 ,10)으로 나타낼 수 있고 상기 위상 요소는 양자화된 형태인 (0, 90, 180, 270) 각도(degree)로 나타낼 수 있다.
하나 이상의 구체예들에서, 상기 모드 제어 회로(26)는 상기 신호 품질 계산 및 최적 가중치 계산을 수행하는 하나의 시간의 주기를 사용하고 이어지는 다음 시간의 주기(period)에서 결정된 가지 가중치를 적용하도록 구성된다. 그와 같은 시간 주기들은 프레임들 또는 다른 수신된 신호 간격들과 함께 동기화되는 슬 롯(slot)들을 정기적으로 반복할 수 있다. 따라서 , 상기 모드 제어 회로(26)가 하나 이상의 관심있는 채널화 코드들에 다한 제2 작동 모드를 사용해야 하도록 결정한다면 다중 경로 환경을 변경 및/또는 통신 요구를 변경하는 기능으로써 제2 모드에서 작동하는 결정을 재방문(revisiting)할 뿐만 아니라 업데이트된 가지 결합 가중치를 역동적으로 유지할 수 있다.
실제, 제7도는 상기 GRAKE 환경에서 전체 신호 처리의 하나의 구체예에 대한 처리 논리를 설명한다. 여기서는 정규적인 또는 필요에 따른 베이시스에 대한 상기 수신기 가지 신호들을 위해 PDPs를 결정하는 상기 경로 탐색기(54)로부터 처리가 시작된다.(단계 120) 상기 경로 탐색기(54)는 레이크 핑거 배치들을 결정하는 하나의 핑거 배치 프로세서를 포함할 수 있다. 즉, 상기 PDP 정보에 기초한 상기 역확산기 지연 조정 (단계 122) 및 상기 모드 제어 회로(26)는 잠재적인 채널화 코드들의 숫자를 추정하여 경로 탐색기(54)로부터의 다중 경로 정보 및 제1도에 도해된 추가적인 수신 회로들(20)로부터 통신 서비스 요구에 기초한 상기 통신 수신기(10)는 반드시 역확산 가능해야한다.(단계 124) 그와 같은 회로들은 디코더들, 유저 인터페이스 요소들, 및 그와 같은 것들로 구성될 수 있고 특별히 상기 통신 서비스 요구들을 결정하거나 식별하는 시스템-수준 제어기를 포함할 수 있다.
어떤 경우든지, 잠재적인 역확산기 요구의 추정에 비추어 상기 GRAKE 회로들(50) 내에서 이용 가능한 역확산기 자원들(22)이 충분한지 결정하는 상기 모드 제어 회로(26)와 함께 처리가 계속된다.(단계 126) 만일 그렇다면, 상기 모드 제어 회로(26)는 관심있는 모든 채널화 코드들에 관해 각각의 수신기 가지 신호를 역확 산하는 상기 GRAKE 회로들(50)을(단계 128) 각각의 수신기 가지 신호에 대한 관심있는 모든 채널화 코드에 대한 GRAKE 디텍션 수행하고 상응하게 결과적인 역확산 신호들을 처리하도록(단계 130) 구성한다. 다른 처리 과제는 필요나 희망했던 것에 따라 그 후나 또는 병행하여 수행하게 될 것이다.
반대로, 이용 가능한 상기 역확산기 자원들(22)이 제1 작동 모드에 필요한 잠재적인 역확산기 자원들의 숫자나 양을 지원하도록 충분하지 않다면 처리는 계산된 가지 결합 가중에 따라 계속된다. (단계 132) 설명했듯이, 상기 가지 결합 가중치는 2개 이상의 상기 수신기 가지 신호들의 하나의 가중된 합으로써 상기 가지 결합 신호를 형성하도록 지원한다. 그러나, 그와 같은 모든 가지 신호들이 상기 통신 수신기(10)내에 위치할 필요는 없다.
물론, 상기 가지 결합 가중치는 이전의 계산의 막간(간격)에 계산되어 질 수 있다. 그러므로, 단계 132의 처리과정은 현재의 간격 또는 다음번의 간격에 대한 계산된 가지 결합 가중치로써 이해될 수 있다. 어느 경우든지, 하나 이상의 구체예들에서 상기 가지 결합 가중치들은 상기 가지 신호의 신호 품질을 최대화하는 방법으로 계산된다.
그럼에도 불구하고, 현재 또는 이전에 계산된 이용가능한 가지 결합 가중치와 함께 관련 있는 수신기 가지 신호들의 하나의 가중치 합산으로써 상기 가지 결합 신호를 형성하는 처리가 계속된다. 이로써, 상기 모드 계산 회로(26)는 상기 가지 결합 가중치를 계산하고 그들을 제6도에 도해된 상기 가지 결합 회로(52) (예컨대, 가지 신호 결합에 사용)로 제공하도록 구성될 수 있다. 상기 가지 결합 회 로(52)는 스케일링 요소들로써 상기 가중치를 적용하기위한 하나의 멀티플라이어 및 가중된 가지 신호들을 결합하기 위한 하나의 합산 회로를 포함할 수 있다.
하나 이상의 관심있는 채널화 코드들에 대한 상기 가지 결합 신호를 역확산하는 것으로 처리가 계속된다.(단계 136) 그리고 얻어진 상기 역확산 값들은 상기 GRAKE 회로들(50)에서 처리가 된다.(단계 138) 하나의 다중 통신용 장치 및/또는 스위치 회로(이하 mux/switch로 표기함.(62))는 몇몇 구체예들에서 상기 GRAKE 회로들(50)에서 처리될 수 있음에 유의하라. 관심있는 모든 채널화 코드들에 대한 제1 또는 제2 모드에서 동작하는 상기 GRAKE 회로들(50)의 하나의 구체예에서 상기 다중 mux/switch(62)는 상기 GRAKE 회로들(50)에 상기 개별 수신기 가지 신호들을 제공하거나 또는 상기 가지 결합 신호들을 상기 GRAKE 회로들(50)에 제공한다. 상기 mux/switch(62)는 상기 모드 제어 회로(26)로부터 하나의 모드 제어 신호에 반응하도록 작동할 수 있다. 물론 몇몇 구체예들에서는 하나 이상의 관심있는 채널화 코드들이 제1 작동 모드에 따라 개별 수신기 가지 신호들로부터 역확산된다. 그리고 하나 이상의 관심있는 채널화 코드들은 제2 작동 모드에 따라 상기 가지 결합 신호로부터 역확산된다. 그와 같은 구체예들에서는 상기 GRAKE 회로들(50)은 개별 수신기 가지 신호들과 상기 가지 결합 신호를 받는다. 그리고 역확산기 자원들은 내부적으로 상기 GRAKE 회로들(50)내에서 타당하게 할당된다.
물론, 본 발명은 상기 기술에 한정되지 않고 첨부된 도면의 설명에 한정되지도 않는다. 실제, 본 발명은 청구항 및 그들과 법적으로 균등물인 경우에만 한정된다.
Claims (25)
- 제1 작동 모드(operation mode)에서는 2개 이상의 수신기 가지 신호들 각각으로부터 모든 채널화 코드들을 역확산하고;제2 작동 모드에서는 각각의 개별 가지 신호로부터라기 보다는 2개 이상의 수신기 가지 신호들의 하나의 결합으로부터 형성된 하나의 가지 결합 신호로부터 하나 이상의 관심있는 채널화 코드들을 역확산하고; 그리고상기 통신 수신기에서 이용 가능한 역확산기 자원들이 제1 모드로 동작하기에 충분한지 추정하는 것에 기초하여 제1 또는 제2 모드로 동작할지 결정하는;단계를 포함하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제1항에 있어서, 상기 제1 작동 모드에서 상기 통신 수신기에서의 이용 가능한 역확산기 자원들이 제1 작동 모드를 지원하기에 충분한지 추정하는 것에 기초하여 제1 또는 2 번째 모드로 동작할지를 결정하는 단계가 제1 작동 모드를 지원하기에 필요한 잠재적인 역확산기 자원 요구들을 추정하는 단계를 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제2항에 있어서, 상기 제1 작동 모드에 필요한 잠재적인 역확산기 자원 요구들을 추정하는 것이 관심있는 채널화 코드들의 숫자에 의존한 현재 또는 희망했던 통신 서비스 요구들 추정 및 다중 경로(multipath) 수신 환경 추정을 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제1항에 있어서, 상기 통신 수신기에서 이용 가능한 역확산기 자원들이 제1 작동 모드를 지원하기에 충분한지 추정하는 것에 기초하여 제1 또는 제2 모드 수행을 결정하는 단계가 관심있는 채널화 코드들의 숫자에 의존한 현재 또는 희망했던 통신 서비스 요구들을 평가하는 것과 함께 하나 이상의 상기 수신기 가지 신호들에 대해 결정된 전력 지연 프로파일(Power Delay Profiles, PDP)들을 평가하는 것에 기초한 제1 모드에서 작동하기에 필요한 잠재적인 역확산기 자원들의 숫자 또는 양을 역동적으로 추정하는 것을 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제1항에 있어서, 상기 통신 수신기가 하나의 광대역 코드 분할 다중 접속(WCDMA) 네트워크에서 작동하도록 구성된 하나의 무선 통신 기기 내부에 포함되 는 하나의 다중-가지(multi-branch) 통신 수신기를 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제1항에 있어서, 상기 통신 수신기가 하나의 다중-가지 일반화된 레이크(Generalized RAKE) 수신기를 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제6항에 있어서, 상기 제1 작동 모드가 GRAKE 디텍션을 이용하는 각각의 수신기 가지 신호로부터 관심있는 각각의 채널화 코드를 역확산하는 것을 포함하고; 그리고상기 제2 작동 모드가 각각의 상기 개별 수신기 가지 신호들로부터 라기 보다는 GRAKE 디텍션을 이용하는 상기 가지 결합 신호로부터 관심있는 하나 이상의 채널화 코드들을 역확산 하는 것을 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제1항에 있어서, 2개 이상의 수신기 가지 신호들의 하나의 가중된 합인 상기 가지 결합 신호를 형성하는 단계를 더 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제8항에 있어서, 상기 2개 이상의 수신기 가지 신호들의 하나의 가중된 합인 상기 가지 결합 신호를 형성하는 단계가 하나 이상의 가중치에 따라 상기 가지 결합 신호에 포함된 상기 수신기 가지 신호들을 결합하는 단계를 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제9항에 있어서, 상기 가지 결합 신호의 하나의 신호 품질을 최대화하는 알고리즘에 따라 하나 이상의 가중치들을 결정하는 단계를 더 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제8항에 있어서, 상기 2개 이상의 수신기 가지 신호들의 하나의 가중된 합으로써의 상기 가지 결합 신호를 형성하는 단계가 가중치 각각이 위상과 진폭 요소들을 갖고 상기 가지 결합 신호의 하나의 신호 품질을 최대화하는 하나 이상의 복합 가중치들을 결정하는 단계를 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제11항에 있어서, 상기 가지 결합 신호의 신호 품질을 최대화하는 상기 가중치들 결정에 사용되는 최대화 알고리즘을 단순화를 위해 가중치들의 위상과 진폭 요소들에 대해 양자화된 값을 사용하는 단계를 더 포함하는 것을 특징으로 하는 하나의 통신 수신기에서 2 개 이상의 수신기 가지 신호들을 역확산하는 방법.
- 제1 작동 모드에서 2개 이상의 수신기 가지 신호들의 각각으로부터 관심있는 모든 채널화 코드들을 역확산하고, 제2 작동 모드에서 각각의 수신기 가지 신호로부터 라기 보다는 2개 이상의 수신기 가지 신호들의 하나의 조합으로부터 형성된 하나의 가지 결합 신호로부터 하나 이상의 관심있는 채널화 코드들을 역확산하고, 제1 작동 모드 작동을 지원하는데 충분한 상기 통신 수신기에서의 이용 가능한 역확산기 자원들이 있는지 추정하는 것에 기초하여 제1 또는 제2 모드로 수행할지 결정하도록 구성하는 하나 이상의 처리 회로들을 포함하는 하나의 다중-가지(multi-branch) 통신 수신기.
- 제13항에 있어서, 상기 하나 이상의 처리 회로들이 제1 모드 수행을 지원하 는데 잠재적으로 필요한 역확산기 자원 요구들을 추정하는 것에 기초하여 상기 통신 수신기에서 제1 모드 작동을 지원하는데 충분한 역확산기 자원들이 이용가능한지 추정하도록 구성된 하나의 제어 회로를 포함하는 것을 특징으로 하는 하나 이상의 처리회로들을 갖는 다중-가지 통신 수신기.
- 제14항에 있어서, 상기 제어 회로가 관심있는 채널화 코드들의 숫자에 의존하는 현재 또는 희망했던 통신 서비스 요구들 및 다중 경로 수신 환경을 평가함으로써 제1 모드 수행에 잠재적으로 필요한 상기 역확산기 자원 요구들을 추정하도록 구성되는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제13항에 있어서, 상기 하나 이상의 처리 회로들이 관심있는 채널화 코드의 숫자에 의존하는 현재 또는 희망했던 통신 서비스 요구들 및 하나 이상의 상기 수신기 가지 신호들을 위해 결정된 하나 이상의 전력 지연 프로파일들(PDPs)의 결과 보급된 다중 경로 수신 환경을 고려하여 제1 모드 수행을 지원하는 잠재적인 역확산기 자원 요구들을 평가한 것에 기초하여 제1 모드 또는 제2 모드를 선택하도록 구성된 하나의 제어회로를 포함하는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제13항에 있어서, 상기 통신 수신기가 하나의 광대역 코드 분할 다중 접근(WCDMA) 네트워크에서 작동하도록 설계된 하나의 무선 통신 기기내에 포함되는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제13항에 있어서 상기 통신 수신기가 하나의 다중-가지 일반화된 레이크 수신기를 포함하는 것을 특징으로 하고, 상기 하나 이상의 처리회로들이 하나의 모드 제어 회로와 일반화된 레이크 수신기 회로들을 포함하는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제18항에 있어서, 상기 모드 제어 회로가 일반화된 레이크 디텍션을 이용하는 각각의 수신기 가지 신호로부터 관심있는 각각의 채널화 코드를 역확산 함으로써 제1 모드에서 상기 일반화된 레이크 수신기 회로들을 작동하도록 구성되는 것을 특징으로 하고, 각각의 상기 수신기 가지 신호들로부터 라기 보다는 일반화된 레이크 디텍션을 이용하는 상기 가지 결합 신호로부터 관심있는 하나 이상의 채널화 코드들을 역확산 함으로써 2 번째 모드에서 상기 일반화된 레이크 회로들의 전체 또는 일부분을 수행하도록 더 구성된는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제13항에 있어서, 상기 하나 이상의 처리 회로들이 2개 이상의 수신기 가지 신호들의 하나의 가중된 합인 상기 가지 결합 신호를 형성하도록 구성된 하나의 가지 신호 결합 회로를 포함하는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제20항에 있어서, 상기 가지 결합 회로가 하나 이상의 가중치들에 따라 상기 가지 결합 신호에 포함된 상기 수신기 가지 신호들을 결합함으로써 상기 가지 결합 신호들을 형성하도록 구성된 것을 특징으로 하는 다중-가지 통신 수신기.
- 제21항에 있어서, 상기 하나 이상의 처리 회로들이 상기 가지 결합 신호의 하나의 신호 품질을 최대화하는 하나의 알고리즘에 따라서 하나 이상의 가중치를 결정하도록 구성된 하나의 가지 가중 생성 회로(branch weight generation circuit)를 더 포함하는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제20항에 있어서, 상기 가지 결합 회로가 상기 가지 결합 신호의 하나의 품질을 최대화하는 상기 가중된 합을 형성하는데 필요하고 가중치 각각이 위상과 진폭 요소들을 갖는 하나 이상의 복합 가중치들을 결정하도록 구성되는 것을 특징으로 하는 다중-가지 통신 수신기.
- 제23항에 있어서, 하나 이상의 처리 회로들이 상기 가지 결합 신호의 신호 품질을 최대화하는 가중치들을 결정하는데 사용되는 하나의 최대화 알고리즘을 단순화하기 위해 가중치들의 위상(phase)과 진폭(amplitude) 요소에 대한 양자화된 값을 사용하도록 구성되는 것을 특징으로 하는 다중-가지 통신 수신기.
- 2개 이상의 안테나와 제13항의 상기 다중-가지 통신 수신기를 포함하는 것을 특징으로 하는 하나의 무선 통신 기기.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/472,770 | 2006-06-22 | ||
US11/472,770 US7933314B2 (en) | 2006-06-22 | 2006-06-22 | Method and apparatus for communication receiver despreading resource management |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090021178A true KR20090021178A (ko) | 2009-02-27 |
Family
ID=36956030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087031139A KR20090021178A (ko) | 2006-06-22 | 2007-06-12 | 통신 수신기 역확산 자원관리를 위한 방법 및 장치 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7933314B2 (ko) |
EP (1) | EP2030334B1 (ko) |
KR (1) | KR20090021178A (ko) |
AT (1) | ATE463090T1 (ko) |
DE (1) | DE602007005636D1 (ko) |
TW (1) | TW200814562A (ko) |
WO (1) | WO2007147506A1 (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8170087B2 (en) * | 2007-05-10 | 2012-05-01 | Texas Instruments Incorporated | Correlation coprocessor |
US8498325B2 (en) * | 2008-01-18 | 2013-07-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Differentiated linear equalization at communication base stations |
KR101522639B1 (ko) * | 2008-10-28 | 2015-06-05 | 삼성전자주식회사 | 다중 입력 다중 출력 시스템에서 압축 모드를 위한 자동 이득 조절 장치 및 방법 |
EP2211512B1 (en) * | 2009-01-23 | 2017-12-27 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement of delay spread compensation |
US8644436B2 (en) * | 2012-02-17 | 2014-02-04 | Alcatel Lucent | Method and apparatus for enhanced uplink general rake channel estimation |
WO2014158086A1 (en) * | 2013-03-27 | 2014-10-02 | Telefonaktiebolaget L M Ericsson (Publ) | A method performed in user equipment in a radio network of managing ovsf codes, a method performed in a network node of managing ovsf codes, user equipment for a radio network and a network node for a radio network |
US8995499B2 (en) * | 2013-06-28 | 2015-03-31 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for signal quality reporting for interference-cancellation receivers |
US9769835B2 (en) | 2013-10-31 | 2017-09-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for communication link adaptation for interference-canceling receivers |
US9264081B1 (en) | 2014-10-24 | 2016-02-16 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for interference cancellation efficiency estimation and control |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9812816A (pt) * | 1997-09-15 | 2000-08-08 | Adaptive Telecom Inc | Processos para comunicação sem fio, e para eficientemente determinar na estação base um canal espacial da unidade móvel em um sistema de comunicação sem fio, e, estação base de cdma |
US7082174B1 (en) * | 2000-07-24 | 2006-07-25 | Qualcomm, Incorporated | Method and apparatus for processing a modulated signal using an equalizer and a rake receiver |
US7133467B2 (en) * | 2000-09-29 | 2006-11-07 | Matsushita Electric Industrial Co., Ltd. | Demodulation apparatus and demodulation method |
JP3421314B2 (ja) * | 2000-10-04 | 2003-06-30 | 松下電器産業株式会社 | パス選択装置及びパス選択方法 |
US6990137B2 (en) * | 2001-05-17 | 2006-01-24 | Qualcomm, Incorporated | System and method for received signal prediction in wireless communications systems |
US7142586B2 (en) * | 2002-09-18 | 2006-11-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Robust delay estimation architecture |
WO2004084431A1 (en) | 2003-03-17 | 2004-09-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Receiver performance control |
US7929985B2 (en) * | 2003-05-01 | 2011-04-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Multiple antenna receiver |
TWI231719B (en) * | 2003-05-06 | 2005-04-21 | Benq Corp | Flexible distribution algorithm and method for rake receive |
US7269205B2 (en) * | 2003-09-26 | 2007-09-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for signal demodulation |
US7339980B2 (en) * | 2004-03-05 | 2008-03-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Successive interference cancellation in a generalized RAKE receiver architecture |
US7539240B2 (en) * | 2004-03-12 | 2009-05-26 | Telefonaftiebolaget Lm Ericsson (Publ) | Method and apparatus for parameter estimation in a generalized rake receiver |
US7586974B2 (en) * | 2004-10-19 | 2009-09-08 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for rake finger allocation in a DS-CDMA receiver |
US7508863B2 (en) * | 2004-12-13 | 2009-03-24 | Alcatel-Lucent Usa Inc. | Method of processing multi-path signals |
-
2006
- 2006-06-22 US US11/472,770 patent/US7933314B2/en not_active Expired - Fee Related
-
2007
- 2007-06-12 WO PCT/EP2007/005166 patent/WO2007147506A1/en active Application Filing
- 2007-06-12 KR KR1020087031139A patent/KR20090021178A/ko not_active Application Discontinuation
- 2007-06-12 DE DE602007005636T patent/DE602007005636D1/de active Active
- 2007-06-12 EP EP07725979A patent/EP2030334B1/en not_active Not-in-force
- 2007-06-12 AT AT07725979T patent/ATE463090T1/de not_active IP Right Cessation
- 2007-06-21 TW TW096122316A patent/TW200814562A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
ATE463090T1 (de) | 2010-04-15 |
US20070297494A1 (en) | 2007-12-27 |
EP2030334B1 (en) | 2010-03-31 |
WO2007147506A1 (en) | 2007-12-27 |
EP2030334A1 (en) | 2009-03-04 |
TW200814562A (en) | 2008-03-16 |
US7933314B2 (en) | 2011-04-26 |
DE602007005636D1 (de) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2030334B1 (en) | Method and apparatus for communication receiver despreading resource management | |
EP1894312B1 (en) | A method and apparatus for impairment correlation estimation in a wireless communication receiver | |
KR100913450B1 (ko) | 무선 통신 시스템에서 적응형 알고리즘을 사용하여 결합기가중치를 조절하는 방법 및 장치 | |
TWI389485B (zh) | 無線通信系統內實現空時分集增益的方法和系統 | |
US7324583B2 (en) | Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations | |
EP1569355A2 (en) | Interference cancellation in a CDMA receiver | |
US8428106B2 (en) | Efficient method for forming and sharing impairment covariance matrix | |
KR20040002968A (ko) | 무선 통신 시스템에서 수신된 신호를 예측하는 시스템 및방법 | |
CN1311924A (zh) | 使用周期性插入导频符号的多径传播延迟确定装置 | |
JP2012507903A (ja) | Hsdpaについてのルート拡散符号での割当て | |
KR20080063292A (ko) | 다중-경로 신호-구성 요소 결합 방법 및 장치 | |
US20080089403A1 (en) | Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations | |
RU2407147C2 (ru) | Способ оценки корреляций искажений в приемнике беспроводной связи и устройство для его осуществления | |
KR100681760B1 (ko) | 복수의 등화기를 구비한 수신기 | |
AU2008348208B2 (en) | Differentiated linear equalization at communication base stations | |
US20040125865A1 (en) | Maximum signal-to-interference-and-noise spread spectrum rake receiver and method | |
KR100475384B1 (ko) | 레이크 수신기 및 그 신호 처리 방법 | |
KR20010095459A (ko) | 다중 경로 간섭 제거기 | |
Krikidis | Approche multicouches pour la reconfigurabilité de systèmes de communications de 3ème génération | |
JP2002237765A (ja) | 受信回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |