KR20090016400A - Silicon compound, ultraviolet absorbent, method for manufacturing multilayer wiring device and multilayer wiring device - Google Patents

Silicon compound, ultraviolet absorbent, method for manufacturing multilayer wiring device and multilayer wiring device Download PDF

Info

Publication number
KR20090016400A
KR20090016400A KR1020080076965A KR20080076965A KR20090016400A KR 20090016400 A KR20090016400 A KR 20090016400A KR 1020080076965 A KR1020080076965 A KR 1020080076965A KR 20080076965 A KR20080076965 A KR 20080076965A KR 20090016400 A KR20090016400 A KR 20090016400A
Authority
KR
South Korea
Prior art keywords
ultraviolet
insulating film
group
multilayer wiring
film
Prior art date
Application number
KR1020080076965A
Other languages
Korean (ko)
Other versions
KR101053960B1 (en
Inventor
시로우 오자키
요시히로 나카타
에이 야노
Original Assignee
후지쯔 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지쯔 가부시끼가이샤 filed Critical 후지쯔 가부시끼가이샤
Publication of KR20090016400A publication Critical patent/KR20090016400A/en
Application granted granted Critical
Publication of KR101053960B1 publication Critical patent/KR101053960B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3125Layers comprising organo-silicon compounds layers comprising silazane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane

Abstract

A silicone compound is provided to obtain a laminated insulating film structure with high reliability due to low dielectric constant and a multilayer wiring, and to contribute to high response speed of a semiconductor device. A silicone compound has a structure that at least a part of R^1~R^3 of a silicon compound is substituted with the other group, wherein the silicon compound consists of polycarbosilane represented by the chemical formula (1) or polysilazane represented by the chemical formula (2) or their mixture. The silicon compound has high absorption rate for ultraviolet rays less than 210 nm compared with an unsubstituted silicone compound.

Description

실리콘 화합물, 자외선 흡수체, 다층 배선 장치의 제조 방법 및 다층 배선 장치{SILICON COMPOUND, ULTRAVIOLET ABSORBENT, METHOD FOR MANUFACTURING MULTILAYER WIRING DEVICE AND MULTILAYER WIRING DEVICE}Silicon compound, ultraviolet absorber, manufacturing method of multilayer wiring device and multilayer wiring device {SILICON COMPOUND, ULTRAVIOLET ABSORBENT, METHOD FOR MANUFACTURING MULTILAYER WIRING DEVICE AND MULTILAYER WIRING DEVICE}

본 발명은 다층 배선 장치 및 그 절연막 구조에 관한 것이다. The present invention relates to a multilayer wiring apparatus and an insulating film structure thereof.

종래부터 절연막의 기생 용량 증대에 의한 신호 전파 속도의 저하가 알려져 있었지만, 반도체 디바이스의 배선 간격이 1 ㎛을 넘는 세대에서는 배선 지연의 디바이스 전체에 대한 영향은 적었다. 그러나, 배선 간격이 1 ㎛ 이하인 경우 디바이스 속도에 대한 영향이 커지고, 특히 금후 O.1 ㎛ 이하의 배선 간격으로 회로를 형성하면, 배선 간의 기생 용량이 디바이스 속도에 크게 영향을 미치게 된다. Background Art Conventionally, a decrease in signal propagation speed due to an increase in parasitic capacitance of an insulating film has been known. However, in a generation in which wiring intervals of semiconductor devices exceed 1 µm, the influence of the wiring delay on the entire device is small. However, when the wiring spacing is 1 mu m or less, the influence on the device speed becomes large, and in particular, when a circuit is formed at a wiring spacing of 0.1 mu m or less in the future, parasitic capacitance between wirings greatly affects the device speed.

구체적으로는, 반도체 집적 회로의 집적도 증가 및 소자 밀도의 향상에 따라, 특히 반도체 소자의 다층화에 대한 요구가 높아짐에 따라, 고집적화에 수반하여 배선 간격은 좁아져 배선 간의 용량 증대에 의한 배선 지연이 문제가 되고 있다. 배선 지연(T)은, 배선 저항(R)과 배선 간의 용량(C)에 의해 영향을 받으며, 하기의 식(3)으로 나타난다. Specifically, as the integration of semiconductor integrated circuits increases and the device density increases, in particular, as the demand for multilayering of semiconductor devices increases, wiring intervals become narrower with high integration, resulting in a problem of wiring delay due to an increase in capacitance between wirings. It is becoming. The wiring delay T is affected by the wiring resistance R and the capacitance C between the wirings, and is represented by the following equation (3).

T∝CR········(3)T∝CR ······ (3)

또, ε(유전률)과 C의 관계를 식(4)에 나타낸다. The relationship between ε (dielectric constant) and C is shown in equation (4).

C= ε0εrS/d········(4)C = ε0εrS / d ... (4)

(S는 전극 면적, ε0는 진공에서의 유전률, εr은 절연막의 유전률, d는 배선 간격)(S is the electrode area, ε 0 is the dielectric constant in vacuum, ε r is the dielectric constant of the insulating film, and d is the wiring spacing)

따라서, 배선 지연을 작게 하기 위해는 절연막의 저유전률화가 유효한 수단이 된다.Therefore, in order to reduce wiring delay, the low dielectric constant of an insulating film becomes an effective means.

현재, 반도체 장치 등의 다층 배선 장치의 다층 배선 구조에 있어서의 절연막으로서는, 저유전률 도포형 절연막, 플라즈마 CVD에 의해 형성된 에칭 스토퍼층 및 확산 배리어 절연막이 주요한 것이다. Currently, as an insulating film in a multilayer wiring structure of a multilayer wiring device such as a semiconductor device, a low dielectric constant coating type insulating film, an etching stopper layer formed by plasma CVD, and a diffusion barrier insulating film are the main ones.

종래, 이들의 절연 재료로서는, 이산화규소(SiO2), 질화규소(SiN), 인규산 유리(PSG) 등의 무기 막 또는 폴리이미드 등의 유기계 고분자가 이용되어 왔다. 그러나, 반도체 디바이스에서 가장 빈번히 이용되고 있는 CVD-SiO2막에서는 비유전률이 약 4 정도로 높다. 또한, 저유전률 CVD막으로서 검토되어 있는 SiOF막은 비유전률이 약 3.3∼3.5이지만, 흡습성이 높아 유전률이 상승한다고 하는 문제가 있다. 또한, 최근 저유전률 피막으로서 가열에 의해 증발 또는 분해되는 유기 수지 등을 저유전률 피막 형성용 재료에 첨가하여, 성막시의 가열에 의해 다공질화하는 다공질 피막이 있지만, 다공질이기 때문에 일반적으로 기계적 강도가 작다. 또한, 현재의 상태에서는 구멍 사이즈가 10 ㎚ 이상으로 크기 때문에, 유전률을 저감하기 위해 공극률을 높게 하면, 흡습에 의한 유전률 상승이나 막 강도의 저하가 쉽게 발생 한다. Conventionally, it has been as those of the insulating material, an organic polymer, such as silicon dioxide (SiO 2), silicon nitride (SiN), acid phosphorus glass (PSG), or the inorganic film, such as polyimide used. However, in the CVD-SiO 2 film which is most frequently used in semiconductor devices, the relative dielectric constant is as high as about four. Moreover, although the SiOF film | membrane examined as a low dielectric constant CVD film has a dielectric constant of about 3.3-3.5, there exists a problem that dielectric constant rises because of high hygroscopicity. In addition, recently, a low dielectric constant film, such as an organic resin which is evaporated or decomposed by heating, is added to a low dielectric constant film forming material, and a porous coating is made porous by heating at the time of film formation. However, since it is porous, mechanical strength is generally small. . In addition, since the pore size is larger than 10 nm in the present state, when the porosity is increased to reduce the dielectric constant, the dielectric constant increase and the film strength decrease due to moisture absorption easily occur.

이 과제에 대하여, 성막 후에 자외선이나 플라즈마, 전자선에 의해 절연막을 경화하여 고강도화하는 수법이 검토되고 있지만, 어떤 수법에 있어서도 유기기(주로 CH3기)의 이탈로서 관찰되는 Si-C 결합의 절단에 의한 절연막의 유전률 상승 및 막 두께의 감소가 발생하기 때문에, 충분한 과제의 해결에는 이르고 있지 않다. 다공질 절연막에서는 유전률을 저감하기 위해 공극률을 높게 하면 흡습성이 올라가, Si-C 결합의 절단에 의한 절연막의 유전률 상승이 보다 눈에 띄게 되는 경향이 발생한다. For this problem, after film formation in the cutting of the Si-C bond is observed as the separation of the ultraviolet rays or plasma, although this has been studied a technique for increasing the strength by curing the insulating film by the electron beam, also in the organic group in which method (mostly CH 3 groups) Due to this, an increase in the dielectric constant and a decrease in the film thickness of the insulating film occur, which has not solved a sufficient problem. In the porous insulating film, if the porosity is increased in order to reduce the dielectric constant, the hygroscopicity increases, and the dielectric constant rise of the insulating film due to the cleavage of the Si-C bond is more prominent.

또한, 이들 손상을 억제하여 저유전률을 유지한 채로 막 강도를 향상시키는 시도(특허문헌 1, 2 참조)로서 다공질 절연막 상에 고밀도 절연막을 형성하고, 그 위에서 자외선, 플라즈마, 전자선을 조사하는 수법도 검토되어 효과가 확인되어 있지만, 디바이스 적용을 위해서는 한층 더 고강도화가 요망된다. In addition, as an attempt to improve the film strength while suppressing these damages and maintaining a low dielectric constant (see Patent Documents 1 and 2), a method of forming a high-density insulating film on the porous insulating film and irradiating ultraviolet rays, plasma, and electron beams thereon is also available. Although the examination and the effect have been confirmed, further high strength is desired for device application.

[특허문헌 1] 일본 특허 출원 제2004-356618호(청구 범위)[Patent Document 1] Japanese Patent Application No. 2004-356618 (claim)

[특허문헌 2] 일본 특허 출원 제2005-235850호(청구 범위)[Patent Document 2] Japanese Patent Application No. 2005-235850 (claim)

본 발명은, 상기에 나타낸 여러 문제점을 해소하여 저유전률로 신뢰성이 높은 적층 절연막 구조체를 형성하는 것을 목적으로 하고 있다. 더 구체적으로는, 종래의 다공질 절연막 형성 방법에 비해 반도체 장치 등의 다층 배선 장치의 신뢰성이나 유전률에 영향을 미치지 않고 고강도화가 가능하며, 고속으로 신뢰성이 높은 반도체 장치 등을 제공하는 것을 목적으로 하고 있다. 본 발명의 또 다른 목적 및 이점은, 이하의 설명으로부터 명백해질 것이다. An object of the present invention is to solve the above-described problems and to form a highly reliable laminated insulating film structure with a low dielectric constant. More specifically, it is an object of the present invention to provide a semiconductor device with high reliability that can be increased in strength without affecting the reliability and dielectric constant of a multilayer wiring device such as a semiconductor device as compared to the conventional porous insulating film formation method. . Still other objects and advantages of the present invention will become apparent from the following description.

본 발명의 일 형태에 의하면, 하기 식(1)에서 나타나는 폴리카르보실란 또는 하기 식(2)에서 나타나는 폴리실라잔 또는 이들의 혼합물로 이루어지는 실리콘 화합물의 R1∼R3 중 적어도 일부가 다른 기로 치환된 구조를 갖고, 해당 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물이 제공된다. According to one aspect of the present invention, the following formula (1) polycarbosilane or the following formula (2), polysilazane, or substituted with at least some of R 1 ~R 3 of the silicon compound composed of a mixture thereof is a group other appearing in appearing in There is provided a silicone compound having a structure having a high absorption rate of ultraviolet rays of 210 nm or less as compared with the unsubstituted silicone compound.

Figure 112008056487765-PAT00001
-(1)
Figure 112008056487765-PAT00001
-(One)

Figure 112008056487765-PAT00002
-(2)
Figure 112008056487765-PAT00002
-(2)

(식(1)에서, R1, R2는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, n은 10∼1000이다. 또한, 식(2)에서, R1, R2 및 R3는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, 단, 치환기 R1, R2 및 R3 중 적어도 1개는 수소 원자이고, n은 해당 실라잔형 중합체가 100∼50,000의 수 평균 분자량을 갖기 위해 필요한 반복 단위의 수이다. 또, 식(1)과 식(2)의 기호는 서로 독립하고 있다.)(In formula (1), R <1> , R <2> may mutually be same or different, and respectively represents a hydrogen atom or represents a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group, or aryl group, n is 10-1000. In addition, in Formula (2), R <1> , R <2> and R <3> may mutually be same or different, respectively, represent a hydrogen atom, or represent a substituted or unsubstituted alkyl group, an alkenyl group, a cycloalkyl group, or an aryl group, provided And at least one of the substituents R 1 , R 2 and R 3 is a hydrogen atom, and n is the number of repeating units required for the silazane-type polymer to have a number average molecular weight of 100 to 50,000. The symbols in equation (2) are independent of each other.)

비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 이 특정한 실리콘 화합물은, 180∼210 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(1)과, 210∼350 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(2)의 비가 (자외선 흡수율(1))/(자외선 흡수율(2))≥2.5인 것이 바람직하다. This particular silicone compound, which has a higher absorption of ultraviolet light of 210 nm or less than an unsubstituted silicone compound, has an ultraviolet absorption rate (1) of the silicon compound with respect to an ultraviolet peak between 180 and 210 nm, and is between 210 and 350 nm. It is preferable that the ratio of the ultraviolet absorbance (2) of the silicone compound to the ultraviolet peak is (ultraviolet absorption rate (1)) / (ultraviolet absorption rate (2))> 2.5.

본 발명에 있어서의 다른 기로서는, 벤질기, 카르보닐기, 카르복실기, 아크 로일기, 디아조기, 아지드기, 신나모일기, 아크릴레이트기, 신나밀리덴기, 시아노신나밀리덴기, 푸릴펜타디엔기, p-페닐렌디아크릴레이트기로 이루어지는 군으로부터 선택된 것이 바람직하다. As another group in this invention, a benzyl group, a carbonyl group, a carboxyl group, an acroyl group, a diazo group, an azide group, a cinnamoyl group, an acrylate group, a cinnamildene group, a cyanocinnamilidene group, a furyl pentadiene group, It is preferable that it is selected from the group which consists of p-phenylenediacrylate group.

본 발명의 다른 일 형태에 의하면, 상기한 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 특정 실리콘 화합물을 포함하여 이루어지는 자외선 흡수체가 제공된다. According to another aspect of the present invention, there is provided an ultraviolet absorber comprising a specific silicone compound having a higher absorption rate of ultraviolet light of 210 nm or less than the aforementioned unsubstituted silicone compound.

본 발명의 또 다른 일 형태에 의하면, 다층 배선 장치의 제조 방법에 있어서, 기판 상에 다공질 절연막 전구체의 층을 형성하고, 상기한 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물의 층을 형성하며, 필요에 따라 해당 실리콘 화합물의 층을 선경화(pre-curing)하고, 해당 실리콘 화합물의 층 또는 선경화층을 통해 해당 다공질 절연막 전구체에 자외선을 조사하는 것을 포함하는 다층 배선 장치의 제조 방법이 제공된다. According to still another aspect of the present invention, in the method for producing a multilayer wiring device, a layer of a porous insulating film precursor is formed on a substrate, and a silicon compound having a high absorptivity of ultraviolet light of 210 nm or less as compared with the aforementioned unsubstituted silicon compound. Forming a layer of silicon oxide, and precuring a layer of the silicon compound, if necessary, and irradiating the porous insulating film precursor with ultraviolet rays through the layer or the layer of the silicon compound. A manufacturing method is provided.

이 경우, 상기 다공질 절연막 전구체가 도포형의 실리카 클러스터 전구체를 이용하여 형성되는 것이 바람직하고, 상기 도포형의 실리카 클러스터 전구체가 4급 알킬아민에 의해 가수 분해하여 형성된 것이 특히 바람직하다. In this case, it is preferable that the said porous insulating film precursor is formed using a coating type silica cluster precursor, and it is especially preferable that the coating type silica cluster precursor was formed by hydrolyzing with a quaternary alkylamine.

자외선의 광원으로서는, 200 ㎚∼800 ㎚의 범위의 파장을 갖는 광원인 것이 바람직하고, 보다 구체적으로, 상기 200 ㎚∼800 ㎚의 범위의 파장을 갖는 광원이 고압 수은 램프, 오존리스 고압 수은 램프, 메탈핼라이드 램프, 크세논 램프, 중수소 램프 중 어느 하나인 것이 바람직하다. As a light source of ultraviolet-ray, it is preferable that it is a light source which has a wavelength of the range of 200 nm-800 nm, More specifically, the light source which has a wavelength of the range of 200 nm-800 nm is a high pressure mercury lamp, an ozone high pressure mercury lamp, It is preferable that it is any one of a metal halide lamp, a xenon lamp, and a deuterium lamp.

자외선 조사의 조건으로서는, 분광 방사 조도계를 사용한 경우에 있어서의 웨이퍼 면에서의 254 ㎚의 자외선 조도가 1 mW/㎠ 이상인 것이나, 50∼470℃ 사이의 온도로 가열하면서 자외선을 조사하는 것이 바람직하다. 이 경우의 분광 방사 조도계로서는, 우시오 전기사 제조의 USR-40D가 바람직하다. As conditions for ultraviolet irradiation, the ultraviolet illuminance of 254 nm in the wafer surface in the case of using a spectroradiometer is 1 mW / cm <2> or more, but it is preferable to irradiate an ultraviolet-ray, heating at the temperature between 50-470 degreeC. As the spectroradiometer in this case, USR-40D manufactured by Ushio Electric Co., Ltd. is preferable.

본 발명의 또 다른 일 형태에 의하면, 상기 제조 방법을 이용하여 제작된 다층 배선 장치가 제공된다. According to still another aspect of the present invention, there is provided a multilayer wiring apparatus produced using the above manufacturing method.

본 발명에 의하면, 저유전률로 신뢰성이 높은 적층 절연막 구조체 및 다층 배선을 얻을 수 있다. 또한, 이 다층 배선에 의해, 특히 반도체 장치 등의 응답 속도의 고속화에 기여할 수 있다. According to the present invention, a highly reliable laminated insulating film structure and a multilayer wiring can be obtained at a low dielectric constant. In addition, this multilayer wiring can contribute to a particularly high speed of response speed of semiconductor devices and the like.

이하에, 본 발명의 실시 형태를 도면, 표, 실시예 등을 사용하여 설명한다. 또, 이들 도면, 표, 실시예 등 및 설명은 본 발명을 예시하는 것이며, 본 발명의 범위를 제한하는 것이 아니다. 본 발명의 취지에 합치하는 한 다른 실시 형태도 본 발명의 범주에 속할 수 있음은 물론이다. EMBODIMENT OF THE INVENTION Below, embodiment of this invention is described using drawing, table | surface, an Example, etc. In addition, these figures, tables, examples, and descriptions illustrate the present invention, and do not limit the scope of the present invention. Of course, other embodiments may fall within the scope of the present invention as long as it is consistent with the spirit of the present invention.

반도체 장치 등의 다층 배선 장치에 있어서의 절연막은, 통상 성막 후에 자외선에 의해 경화되어 고강도화된다. 그러나, 사용하는 자외선에 의한, Si-C 결합의 절단에 의한 유전률 상승이 염려되고 있다. 이것을 억제하기 위해 자외선 필터를 사용하여 특정 파장 영역의 자외선을 사용하고자 하면, 조도가 저하되어 기계적 강도가 향상되지 않는다고 하는 문제가 생긴다. 특히, 다공질 절연막은 저유전률을 부여하는 점에서 주목받고 있지만, 다공질인만큼 기계적 강도가 낮아지기 때문에 이 문제의 영향이 크다. The insulating film in multilayer wiring apparatuses, such as a semiconductor device, is hardened by ultraviolet-ray after film-forming, and is high in strength normally. However, an increase in dielectric constant due to cleavage of Si—C bonds due to ultraviolet rays used is concerned. In order to suppress this, when using the ultraviolet-ray filter and using the ultraviolet-ray of a specific wavelength range, there exists a problem that illumination intensity falls and mechanical strength does not improve. In particular, the porous insulating film is attracting attention in terms of providing a low dielectric constant, but the mechanical strength is lowered as it is porous.

또, Si-C 결합의 절단은, 구체적으로, Si에 결합한 유기기(주로 CH3기)의 절단으로서 관찰된다. The cutting of the Si-C bond is, in particular, are observed as cleavage of organic groups (principally CH 3 groups) bound to Si.

이 문제에 대하여, 본 발명에서 나타내는 자외선 경화 수법으로서는, 다공질 절연막 전구체 상의 필터로서, 210 ㎚ 이하의 자외선을 흡수하는 특정한 실리콘 화합물을 사용함으로써, 자외선원과 다공질 절연막 전구체의 막 사이에 이 실리콘 화합물의 층, 또는 필요에 따라 이 실리콘 화합물의 층을 선경화한 층을 마련하면, 다공질 절연막 전구체에 210 ㎚보다 장파 길이의 자외선을 선택적으로 도달시킴으로써, Si-C 결합의 절단을 억제하고 또한 흡습에 의해 유전률을 상승시키는 원인이 되는 실라놀(silanol)의 탈수 축합을 촉진시키는 것이 가능해진다. In response to this problem, as the ultraviolet curing method shown in the present invention, a specific silicon compound that absorbs ultraviolet rays of 210 nm or less is used as a filter on the porous insulating film precursor, so that the silicon compound is separated between the ultraviolet light source and the film of the porous insulating film precursor. If a layer or a layer obtained by precuring the layer of the silicon compound is provided as necessary, the porous insulating film precursor can selectively reach ultraviolet rays having a longer wave length than 210 nm, thereby suppressing the cleavage of the Si-C bonds and by absorbing moisture. It becomes possible to promote the dehydration condensation of silanol, which causes the dielectric constant to rise.

또한, 이 특정한 실리콘 화합물의 층이 경화되면, 다공질 절연막에 대한 습기의 침입도 억제할 수 있다. 따라서, 이들에 의해, 저유전률을 유지한 채 막 강도를 향상시키는 것이 가능해져, 신뢰성이 높은 고속 회로 기판의 형성이 가능해진다. 본 발명에 따른 특정한 실리콘 화합물의 층 또는 그것을 선경화한 층은, 210 ㎚ 이하의 자외선을 효율적으로 흡수하고 또한 210 ㎚보다 장파 길이의 자외선을 불필요하게 흡수하지 않기 때문에 종래의 자외선용 필터에 비해 조도의 저하가 없거나 혹은 조도의 저하를 작게 억제할 수 있다. In addition, when the layer of this specific silicone compound is cured, intrusion of moisture into the porous insulating film can also be suppressed. As a result, it is possible to improve the film strength while maintaining a low dielectric constant, and to form a high-speed circuit board with high reliability. The layer of the specific silicone compound or the layer which is precured according to the present invention has a roughness in comparison with a conventional filter for ultraviolet rays because it efficiently absorbs ultraviolet rays of 210 nm or less and does not absorb ultraviolet rays having a longer wavelength than 210 nm unnecessarily. There is no fall of or the fall of roughness can be suppressed small.

상기 특정한 실리콘 화합물은, 구체적으로 하기 식(1)에서 나타나는 폴리카르보실란 또는 하기 식(2)에서 나타나는 폴리실라잔 또는 이들의 혼합물로 이루어 지는 실리콘 화합물의 R1∼R3 중 적어도 일부가 다른 기로 치환된 구조를 갖고, 해당 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물이다. 이하, 이 특정한 실리콘 화합물을 「치환 실리콘 화합물」이라고 칭한다. The specific silicone compounds are, according to the following equation (1) polycarboxylic acid-R 1 ~R of the silicon compound which is composed of a polysilazane or a mixture thereof that appear in bosilran or the following formula (2) shown in the third concrete It is a silicone compound which has a structure in which at least one part is substituted by the other group, and the ultraviolet-ray absorption rate of 210 nm or less is high compared with the said unsubstituted silicone compound. Hereinafter, this specific silicone compound is called "substituted silicone compound."

Figure 112008056487765-PAT00003
-(1)
Figure 112008056487765-PAT00003
-(One)

Figure 112008056487765-PAT00004
-(2)
Figure 112008056487765-PAT00004
-(2)

식(1)에서, R1, R2는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, n은 10∼1000이다. 또한, 식(2)에서, R1, R2 및 R3는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치 환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, 단, 치환기 R1, R2 및 R3 중 적어도 1개는 수소 원자이고, n은 해당 실라잔형 중합체가 100∼50,000의 수 평균 분자량을 갖기 위해 필요한 반복 단위의 수이다. 또, 식(1)과 식(2)의 기호는 서로 독립하고 있다. In formula (1), R <1> , R <2> may mutually be same or different, respectively represents a hydrogen atom, or represents a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group, or aryl group, n is 10-1000. In formula (2), R 1 , R 2 and R 3 may be the same or different from each other, and each represent a hydrogen atom or represent a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group or aryl group, At least one of the substituents R 1 , R 2, and R 3 is a hydrogen atom, and n is the number of repeating units necessary for the silazane-type polymer to have a number average molecular weight of 100 to 50,000. In addition, the symbol of Formula (1) and Formula (2) is mutually independent.

비치환 실리콘 화합물, 즉 「본 발명에 따른 식(1) 또는 식(2)에서 나타나는, 다른 기로 치환되어 있지 않은 실리콘 화합물」에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물인 조건은, 어느 자외선을 조사한 경우에 있어서의 210 ㎚ 이하의 전 파장 성분의 흡수율을 비교함으로써 결정할 수 있다. 또한, 어느 피크 파장의 흡수율만을 비교하는 방법에 의해서도 좋은 경우도 많다. 본 발명에 있어서는 그 어느 한 방법을 만족하면 충분한 경우가 많으나, 특히 전자(前者)를 만족하는 것이 바람직하고, 양자(兩者)를 만족하는 것이 보다 바람직하다. The condition which is an unsubstituted silicone compound, ie, a silicone compound with a high absorptivity of the ultraviolet-ray of 210 nm or less compared with "the silicone compound which is not substituted by other group represented by Formula (1) or Formula (2) according to this invention", is It can determine by comparing the absorptivity of all the wavelength components of 210 nm or less in the case of irradiating an ultraviolet-ray. Moreover, it may be good also by the method of comparing only the absorptivity of any peak wavelength. In the present invention, it is often sufficient to satisfy either method, but it is particularly preferable to satisfy the former, and more preferably to satisfy both.

보다 구체적인 판단 방법으로서는, 180∼210 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(1)과, 210∼350 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(2)의 비가 (자외선 흡수율(1))/(자외선 흡수율(2))≥2.5인 것이 바람직하다. 이와 같이 하면 본 발명에 따른 치환 실리콘 화합물의 효과를 객관적으로 평가할 수 있어 여러가지 화합물 중에서 적절한 치환 실리콘 화합물을 용이하게 선택할 수 있게 된다. 또, 상기 판단 기준에 대해 사용하는 자외선의 종류는 임의적으로 정할 수 있지만, 사용하는 자외선에 의해 수치적으로 약간의 차이가 발생하는 경우도 있을 수 있기 때문에, 여러가지 화합물을 비교 평가하는 경우에는 동일한 자외선원을 사용하는 편이 좋다. 이 자외선원으로서는, 본 발명에 있어서 사용하기 알맞은 것으로서 후술하는 종류의 것을 그대로 사용할 수 있다. As a more specific judgment method, the ratio of the ultraviolet absorbance (1) of the silicone compound to the ultraviolet peak between 180 and 210 nm and the ultraviolet absorbance (2) of the silicone compound with respect to the ultraviolet peak between 210 and 350 nm. It is preferable that (ultraviolet absorption rate (1)) / (ultraviolet absorption rate (2))> 2.5. In this way, the effect of the substituted silicone compound which concerns on this invention can be objectively evaluated, and the appropriate substituted silicone compound can be selected easily from various compounds. In addition, although the kind of ultraviolet-ray used with respect to the said criterion can be arbitrarily determined, since some difference may generate numerically by the ultraviolet-ray to be used, when comparing and evaluating various compounds, the same ultraviolet-ray It is better to use circles. As this ultraviolet light source, the thing of the kind mentioned later as a thing suitable for use in this invention can be used as it is.

상기에서, 비치환 실리콘 화합물은 210 ㎚ 이하의 자외선을 거의 흡수하지 않기 때문에, 210 ㎚ 이하의 자외선의 흡수율 증대는, 210 ㎚ 이하의 자외선 흡수의 발현이라고 바꿔 말할 수 있는 경우가 많다. 즉, 「비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물」은, 비치환 실리콘 화합물과 다르게 210 ㎚ 이하의 자외선을 흡수할 수 있는 실리콘 화합물이라고 바꿔 말하여도 좋은 경우가 많다. In the above, since the unsubstituted silicone compound hardly absorbs ultraviolet rays of 210 nm or less, the increase in absorption rate of ultraviolet rays of 210 nm or less is often referred to as the expression of ultraviolet absorption of 210 nm or less. In other words, the "silicon compound having a higher absorption rate of 210 nm or less than the unsubstituted silicone compound" may be referred to as a silicone compound capable of absorbing ultraviolet rays of 210 nm or less, unlike the unsubstituted silicon compound. .

본 치환 실리콘 화합물의 층 또는 그 선경화층을 자외선원과 다공질 절연막 전구체의 층 사이에 마련하면, 210 ㎚보다 장파 길이의 자외선을 선택적으로 다공질 절연막 전구체에 도달시킴으로써, 그 Si-C 결합의 절단을 억제할 수 있고 또한 Si-C 결합의 절단을 염려하지 않고서 실라놀의 탈수 축합을 촉진시킬 수 있게 됨을 발견했다. 이에 따라, 저유전률을 유지한 채 막 강도를 향상시키는 것이 가능해져 신뢰성 높은 고속 회로 기판의 형성이 가능해진다. 본 치환 실리콘 화합물을 경화한 층은 수분의 침입을 방지할 수 있기 때문에, 그 점에서도 다공질 절연막의 보호에 도움이 된다. When the layer of the present substituted silicon compound or its precured layer is provided between the ultraviolet light source and the layer of the porous insulating film precursor, the ultraviolet-ray having a longer wavelength than 210 nm is selectively reached to the porous insulating film precursor, thereby suppressing the cleavage of the Si-C bond. It was found that it is possible to promote dehydration condensation of silanol without fear of cleavage of Si-C bonds. As a result, it is possible to improve the film strength while maintaining a low dielectric constant and to form a high-speed circuit board with high reliability. Since the layer which hardened | cured this substituted silicone compound can prevent the penetration | invasion of water, it also helps to protect a porous insulating film from that point.

또, 상기에 있어서 「선경화」란, 치환 실리콘 화합물의 층의 막 상태로서 안정성을 향상시키기 위해 필요에 따라, 예컨대 가열에 의해 공존하는 용매를 제거시키거나, 가교 구조를 도입하는 것을 의미한다. 이러한 조작은 일반적으로 경화라 고 불리지만, 본 발명에서는 그 후에 자외선 조사에 의한 경화가 행하여지기 때문에, 그것과 구별하기 위해 선경화(즉 사전 경화)로 표현한 것이다. 본 발명에 있어서는, 지장이 없으면 치환 실리콘 화합물의 층을 선경화하지 않고서 자외선을 조사하더라도 좋지만, 취급상 불편한 등의 이유가 있으면 선경화층을 만들고 나서 자외선을 조사하더라도 좋다. 상기에 있어서의 「필요에 따라」란 이러한 의미이다. In addition, in the above, "line hardening" means removing the coexisting solvent or introducing a crosslinked structure as needed, for example, in order to improve stability as a film | membrane state of the layer of a substituted silicone compound. Although such an operation is generally called hardening, in the present invention, since hardening by ultraviolet irradiation is performed thereafter, it is expressed as precuring (ie, pre hardening) to distinguish it from it. In the present invention, ultraviolet rays may be irradiated without precuring the layer of the substituted silicone compound if there is no problem, but ultraviolet rays may be irradiated after making the precured layer if there is a cause of inconvenience in handling. "As needed" in the above means such a meaning.

상기에 있어서, 「R1∼R3 중 적어도 일부가 다른 기로 치환된」이란, 식(1)에서 나타나는 폴리카르보실란만을 사용하는 경우에는, 식(1)의 R1과 R2 중 적어도 일부가 다른 기로 치환된 것을 의미하고, 식(2)에서 나타나는 폴리실라잔만을 사용하는 경우에는, 식(2)의 R1∼R3 중 적어도 일부가 다른 기로 치환된 것을 의미하며, 식(1)에서 나타나는 폴리카르보실란과 식(2)에서 나타나는 폴리실라잔의 혼합물을 사용하는 경우에는, 식(1)의 R1과 R2와 식(2)의 R1∼R3 중 적어도 일부가 다른 기로 치환된 것을 의미한다. 치환하여야 할 다른 기는 1종류일 필요는 없고, 복수 종류를 사용하더라도 좋다. 「적어도 일부」란, R1∼R3 중 하나의 기(즉 R1 또는 R2 또는 R3)의 전부를 치환하는 것을 의미하더라도 좋지만, 반드시 그럴 필요는 없다. 어느 정도 치환할지는, 원하는 210 ㎚ 이하의 자외선 흡수율에 따라 적절하게 선택할 수 있다. In the above, "R 1 to R 3 In which at least a part is substituted with another group ", R 1 and R 2 of Formula (1) when using only the polycarbosilane represented by Formula (1) At least in the case, which means that the part is substituted with another, and using only the polysilazane represented in equation (2), formula (2) R 1 ~R 3 It means that at least part of is substituted with another group, and when using a mixture of polycarbosilane represented by formula (1) and polysilazane represented by formula (2), R 1 and R 2 and R 1 to R 3 in formula (2) It means that at least part of is substituted with another group. The other group to be substituted need not be one kind, and plural kinds may be used. But even if "at least a portion" means, means for replacing the whole of the R 1 ~R a group of three (i.e., R 1 or R 2 or R 3), but it is not necessary to do so. The degree of substitution can be appropriately selected depending on the desired ultraviolet absorbance of 210 nm or less.

비치환 실리콘 화합물, 즉 본 발명에 따른 다른 기로 치환되어 있지 않은 실 리콘 화합물에 있어서의 상기 제한(식(1)에서의 R1, R2, n, 식(2)에서의 R1∼R3, n)은 입수의 용이성이나 취급의 용이성에 의해 결정되는 성질의 것이다. 예컨대, n의 하한을 벗어나면 점도가 지나치게 낮아지고, 상한을 벗어나면 점도가 지나치게 높아지기 때문에 막 형성이 곤란해지기 쉽다.Unsubstituted silicon compound, that is, R 1 ~R 3 at the limit (the formula (1) R 1, R 2, n, formula (2) in the in the silicon compound not substituted with another according to the invention , n) is a property determined by the availability and the ease of handling. For example, if it is out of the lower limit of n, the viscosity is too low, and if it is out of the upper limit, the viscosity is too high.

본 발명에 있어서의 「다른 기」는, 상기 치환의 결과, 치환 실리콘 화합물의 210 ㎚ 이하의 자외선의 흡수율이 비치환 실리콘 화합물의 210 ㎚ 이하의 자외선의 흡수율에 비해 증대하게 되는 것이라면 어떠한 것이라도 좋고, 시행 착오로 발견하는 것이 가능하다. As for the "other group" in this invention, as long as the absorption rate of the ultraviolet-ray of 210 nm or less of a substituted silicone compound increases as compared with the absorption rate of the ultraviolet-ray of 210 nm or less of an unsubstituted silicone compound, as long as a result of the said substitution, it may be anything. It is possible to discover by trial and error.

「다른 기」로서는, 특히 벤질기, 카르보닐기, 카르복실기, 아크로일기, 디아조기, 아지드기, 신나모일기, 아크릴레이트기, 신나밀리덴기, 시아노신나밀리덴기, 푸릴펜타디엔기, p-페닐렌디아크릴레이트기로 이루어지는 군에서 선택된 것이 바람직함이 판명되었다. As "other group", a benzyl group, a carbonyl group, a carboxyl group, an acroyl group, a diazo group, an azide group, a cinnamoyl group, an acrylate group, a cinnamylidene group, a cyanocinnamilidene group, a furylpentadiene group, p-phenyl It turned out that it is preferable that it was chosen from the group which consists of a rendiacrylate group.

이들 기의 치환 방법에 대해서는 특별히 제한은 없고 공지의 방법을 사용할 수 있다. 비치환 실리콘 화합물을 일단 제작하고 그 치환기를 본 발명에 따른 「다른 치환기」로 치환하더라도 좋고, 원료 또는 반응의 중간 단계에서 본 발명에 따른 「다른 치환기」를 도입할 수 있도록 하더라도 좋다. 전자로서는, 후술하는 바와 같은 그리냐르 시약(Grignard reagent)에 의한 방법을 예를 들 수 있다. There is no restriction | limiting in particular about the substitution method of these groups, A well-known method can be used. The unsubstituted silicone compound may be prepared once, and the substituent may be substituted with the "other substituent" according to the present invention, or the "other substituent" according to the present invention may be introduced in the intermediate stage of the raw material or the reaction. As an former, the method by the Grignard reagent mentioned later is mentioned.

본 발명에 따른 치환 실리콘 화합물로 이루어지는 층을 제작하는 경우에는, 치환 실리콘 화합물 그 자체가 충분한 유동성을 갖고 있는 경우에는 그대로 막화하 더라도 좋다. 유동성이 없거나 모자라는 경우에는 용매를 사용하고, 그 후 용매를 가열 등에 의해 적절하게 도산시키더라도 좋다. 막화에는 도포 등 공지된 임의의 방법을 사용할 수 있다. 이 막은 통상 다공질이 아니다. When producing the layer which consists of a substituted silicone compound which concerns on this invention, when the substituted silicone compound itself has sufficient fluidity | liquidity, you may film into it as it is. When fluidity is low or insufficient, a solvent may be used, and the solvent may then be appropriately dispersed by heating or the like. For film formation, any known method such as coating can be used. This membrane is usually not porous.

본 발명에 있어서 사용되는 자외선의 종류에 대해서는 특별히 제한은 없다. 210 ㎚ 이하의 파장 성분의 흡수를 실현하는 것이라고 하는 본 발명의 효과를 충분히 발휘시킨다고 하는 관점에서는, 200 ㎚∼800 ㎚사이의 넓은 파장을 갖는 자외선원을 사용할 수 있다. 이러한 자외선원은 넓은 파장을 갖는 광원으로 불리는 경우도 있다. 이러한 200 ㎚∼800 ㎚의 범위의 파장을 갖는 광원으로서는, 구체적으로 고압 수은 램프, 오존리스 고압 수은 램프, 메탈핼라이드 램프, 크세논 램프, 중수소 램프를 예를 들 수 있다. 이들의 광원은, Xe 엑시머레이저 등에 비해 조도가 높다고 하는 장점을 갖는다. 또한, 210 ㎚ 이하의 파장 성분도 적다고 하는 장점도 갖는다. There is no restriction | limiting in particular about the kind of ultraviolet-ray used in this invention. From the viewpoint of fully exhibiting the effect of the present invention, which realizes absorption of the wavelength component of 210 nm or less, an ultraviolet source having a broad wavelength between 200 nm and 800 nm can be used. Such an ultraviolet source may be called a light source which has a wide wavelength. Specific examples of the light source having a wavelength in the range of 200 nm to 800 nm include high pressure mercury lamps, ozoneless high pressure mercury lamps, metal halide lamps, xenon lamps, and deuterium lamps. These light sources have the advantage that the illuminance is higher than that of the Xe excimer laser or the like. Moreover, it also has the advantage that there are few wavelength components of 210 nm or less.

자외선 조사 처리에 있어서의 조사 조건에는 특별히 제한은 없고, 실정에 따라 적절하게 정하더라도 좋다. 조사 환경은 진공하, 감압하 또는 상압하에서 자외선 조사를 행하면 특별히 한정되지 않지만, 조사 효율상 진공 중에서 조사하는 것이 바람직하다. 또, 자외선 조사시, 압력 조정이나 개질을 위해 질소, 아르곤 등의 불활성 가스를 흘리더라도 좋다. There is no restriction | limiting in particular in the irradiation conditions in an ultraviolet irradiation process, You may set suitably according to the situation. The irradiation environment is not particularly limited as long as it is irradiated with ultraviolet rays under vacuum, under reduced pressure, or under normal pressure, but irradiation in vacuum is preferred for irradiation efficiency. In addition, at the time of ultraviolet irradiation, inert gas, such as nitrogen and argon, may be sent for pressure adjustment or reforming.

자외선 조도에 대해서는, 조사면에서의 254 ㎚의 자외선 조도가 1 mW/㎠ 이상인 것이, 경화를 신속히 완료할 수 있고 또한 Si-C 결합의 절단을 억제한 채 흡습에 의해 유전률을 상승시키는 원인이 되는 실라놀의 탈수 축합을 촉진시키는 것 이 가능해지므로 바람직하다. 이 경우의 조도는 사용하는 조도계에 의해 약간 변할 수 있다. 본 발명에서는, 분광 방사 조도계(USR-40D, 우시오 전기)를 사용했다. Regarding the ultraviolet illuminance, the fact that the ultraviolet illuminance of 254 nm on the irradiated surface is 1 mW / cm 2 or more can cause the curing to be completed quickly and increase the dielectric constant by moisture absorption while suppressing the cleavage of the Si-C bond. It is preferable to facilitate the dehydration condensation of silanol. The illuminance in this case may vary slightly depending on the illuminometer used. In the present invention, a spectroradiometer (USR-40D, Ushio Electric) was used.

환경 온도에 대해서는, 상기 자외선 조사에 있어서 50∼470℃ 사이의 온도로 가열하면서 자외선을 조사하는 것도 유용하다. 이것에 의해 경화를 촉진하여, 막 강도의 향상을 도모할 수 있는 동시에 기초 절연막과의 밀착성이 강화되기 때문이다. 또한, 잔존하는 용매를 더 제거하는 것도 용이해진다. About environmental temperature, it is also useful to irradiate an ultraviolet-ray, heating at the temperature between 50-470 degreeC in the said ultraviolet irradiation. This is because curing can be accelerated, film strength can be improved, and adhesion with the base insulating film is enhanced. Moreover, it becomes easy also to remove the remaining solvent further.

이 경우의 온도는 균일할 필요는 없고, 직선형, 곡선형 또는 단계형으로 바꾸는 것이 바람직한 경우도 있다. 또, 이 온도는 본 발명에 따른 치환 실리콘 화합물의 층 또는 그 선경화층의 표면 온도로서 결정할 수 있다. In this case, the temperature does not need to be uniform, and it may be desirable to change the shape to straight, curved or stepped. In addition, this temperature can be determined as the surface temperature of the layer of the substituted silicone compound which concerns on this invention, or its precured layer.

본 발명에 따른 치환 실리콘 화합물은, 기판 상에 다공질 절연막 전구체의 층을 형성하고, 본 발명에 따른 치환 실리콘 화합물의 층을 형성하며, 필요하면 해당 실리콘 화합물의 층을 선경화하고, 이 치환 실리콘 화합물의 층 또는 선경화층을 통해 다공질 절연막 전구체에 자외선을 조사함으로써, 다층 배선 장치의 제조 방법에 적용할 수 있다. 여기서, 본 발명에 있어서의 다공질 절연막 전구체란, 본 발명에 따른 자외선 조사에 의해 경화되기 전의 상태의 것을 의미하고 있다. 다공질 절연막 전구체는, 이 단계에서 이미 다공질인 것이 일반적이지만, 이 단계에서 다공질이 아닌 것을 본 발명으로부터 배제한다는 의미는 아니다. The substituted silicon compound according to the present invention forms a layer of the porous insulating film precursor on the substrate, forms a layer of the substituted silicon compound according to the present invention, if necessary, precurses the layer of the silicon compound, and the substituted silicon compound It can apply to the manufacturing method of a multilayer wiring apparatus by irradiating an ultraviolet-ray to a porous insulating film precursor through a layer or a line hardening layer. Here, the porous insulating film precursor in this invention means the state before hardening by the ultraviolet irradiation which concerns on this invention. Although the porous insulating film precursor is generally porous at this stage, it is not meant to exclude from the present invention that it is not porous at this stage.

다공질 절연막 전구체의 층의 형성과 치환 실리콘 화합물층의 형성은, 어느 것이 먼저라도 좋지만, 경우에 따라 그 사이에 다른 층이 개재되어도 좋다. 또한, 자외선의 조사는 자외선이 직접 치환 실리콘 화합물층에 닿도록 하는 것이 바람직 한 경우가 많지만, 자외선원과 치환 실리콘 화합물층 사이에 다른 층이 개재하는 경우를 배제하는 것은 아니다. Although the formation of the layer of a porous insulating film precursor and the formation of a substituted silicon compound layer may be any first, another layer may be interposed in some cases. In addition, in many cases, it is preferable to let ultraviolet rays directly contact the substituted silicon compound layer, but the ultraviolet ray irradiation does not exclude the case where another layer is interposed between the ultraviolet source and the substituted silicon compound layer.

보다 구체적으로는, 기판 상에 다공질 절연막 전구체의 층을 형성하고, 그 위에 본 발명에 따른 치환 실리콘 화합물의 층을 형성하며, 필요하면 해당 실리콘 화합물의 층을 선경화하고, 그 후 이 치환 실리콘 화합물의 층 또는 선경화층을 통해 다공질 절연막 전구체에 자외선을 조사하는 방식을 예를 들 수 있다. 이 경우, 다공질 절연막 전구체와 치환 실리콘 화합물이 직접 접촉하게 되기 때문에, 서로 섞이지 않도록 다공질 절연막 전구체는 어느 정도 응고(solidification)된 것일 필요가 있다. 이 응고에는 어떠한 방법이 채용되더라도 좋지만, 가열이 실용적이고 바람직하다. 이 응고도 선경화라고 부를 수 있다. More specifically, a layer of a porous insulating film precursor is formed on a substrate, a layer of a substituted silicon compound according to the present invention is formed thereon, and if necessary, a layer of the silicon compound is precured, and then the substituted silicon compound is formed. The method of irradiating a ultraviolet-ray to a porous insulating film precursor through the layer of or a precuring layer is mentioned, for example. In this case, since the porous insulating film precursor and the substituted silicon compound are in direct contact, the porous insulating film precursor needs to be solidified to some extent so as not to mix with each other. Although what kind of method may be employ | adopted for this solidification, heating is practical and preferable. This solidification can also be called precure.

본 발명에 있어서, 절연막은, 다층 배선 장치에서 사용되는 절연성의 막 또는 층을 의미하며, 그 명칭의 여하에 좌우되는 것이 아니다. 절연 목적으로 사용되는 경우가 많지만 그 밖의 주 목적 또는 부차적 목적을 갖는 경우도 있다. 이들은, 절연막, 절연층, 층간막, 층간 절연막, 층간 절연층 등이라고 불리는 경우가 많다. In the present invention, the insulating film means an insulating film or layer used in a multilayer wiring device, and does not depend on any of its names. It is often used for insulation purposes but may have other primary or secondary purposes. These are often called an insulating film, an insulating layer, an interlayer film, an interlayer insulating film, an interlayer insulating layer, or the like.

본 발명에 따른 다공질 절연막은, 상기 중 다공질인 것을 의미한다. 본 발명에 있어서 다공질 절연막으로 한정되는 것은, 다공질 절연막이 저유전률을 부여하는 점에서 유리한 한편, 다공질인만큼 기계적 강도가 낮아지기 때문에 본 발명의 효과가 특히 바람직하게 발휘되기 때문이다. The porous insulating film according to the present invention means that it is porous. The present invention is limited to the porous insulating film because the porous insulating film is advantageous in providing a low dielectric constant, and the mechanical strength of the porous insulating film is lowered as much as it is porous.

본 발명에 따른 다공질 절연막 전구체의 자외선 조사 처리 후에 얻어지는 다공질 절연막은, 막 내부에 구멍을 갖고 있으면 특별히 한정되지 않는다. 이러한 막 으로서는 기상 성장법에 의해 형성된 Carbon Doped SiO2막이나 상기 Carbon Doped SiO2막에 열분해성 화합물을 첨가하여 다공을 형성한 Porous Carbon Doped SiO2막, 스핀코트법에 의해 형성된 다공질 실리카, 유기 다공질막을 들 수 있다. 또, 상기 중, 다공의 제어나 밀도 제어의 관점에서 스핀코트법으로 형성된 다공질 실리카가 바람직하다. The porous insulating film obtained after the ultraviolet irradiation treatment of the porous insulating film precursor according to the present invention is not particularly limited as long as it has a hole inside the film. Porous silica such film as formed by the Carbon Doped SiO 2 film or the Carbon Doped SiO 2 films pyrolytic a Porous Carbon Doped form a porous by addition of a compound SiO 2 film, a spin coat method is formed by a vapor deposition method, an organic porous Act. Moreover, the porous silica formed by the spin coat method from the viewpoint of pore control and density control is preferable among the above.

이러한 스핀코트법으로 형성된 다공질 실리카로서는, 예컨대 테트라알콕시실란, 트리알콕시실란, 메틸트리알콕시실란, 에틸트리알콕시실란, 프로필트리알콕시실란, 페닐트리알콕시실란, 비닐트리알콕시실란, 알릴트리알콕시실란, 글리시딜트리알콕시실란, 디알콕시실란 디메틸디알콕시실란, 디에틸디알콕시실란, 디프로필디알콕시실란, 디페닐디알콕시실란, 디비닐디알콕시실란, 디알릴디알콕시실란, 디글리시딜디알콕시실란, 페닐메틸디알콕시실란, 페닐에틸디알콕시실란, 페닐프로필트리알콕시실란, 페닐비닐디알콕시실란, 페닐알릴디알콕시실란, 페닐글리시딜디알콕시실란, 메틸비닐디알콕시실란, 에틸비닐디알콕시실란, 프로필비닐디알콕시실란 등의 가수 분해/축중합으로 형성한 폴리머에 열분해성의 유기 화합물 등을 첨가하여 가열에 의해 세공을 형성한 것이 있다. Examples of the porous silica formed by such a spin coating method include tetraalkoxysilane, trialkoxysilane, methyltrialkoxysilane, ethyltrialkoxysilane, propyltrialkoxysilane, phenyltrialkoxysilane, vinyltrialkoxysilane, allyltrialkoxysilane, and glyce. Cedyl trialkoxysilane, dialkoxysilane dimethyl dialkoxysilane, diethyl dialkoxysilane, dipropyl dialkoxysilane, diphenyl dialkoxysilane, divinyl dialkoxysilane, diallyl dialkoxysilane, diglycidyl dialkoxysilane , Phenylmethyl dialkoxysilane, phenylethyl dialkoxysilane, phenylpropyltrialkoxysilane, phenylvinyl dialkoxysilane, phenylallyl dialkoxysilane, phenylglycidyl dialkoxysilane, methylvinyl dialkoxysilane, ethyl vinyl dialkoxysilane, Thermally decomposable organic compounds and the like are added to polymers formed by hydrolysis / condensation polymerization, such as propyl vinyl dialkoxysilane, for heating. It may be formed by the pores.

또한, 도포형의 실리카 클러스터 전구체(클러스터형 실리카를 포함하는 절연막 재료)를 이용하여 형성되는 다공질 실리카도 바람직하다. 이것은, 구멍 사이즈가 작고 균일한 구멍을 갖고 있기 때문이다. 도포형의 실리카 클러스터 전구체란, 예컨대 쇼쿠바이카세이고교주식회사 제조의 나노 클러스터링 실리카(NCS)이며, 이 것을 대상물에 도포 후 가열, 혹은 가열하면서 자외선을 조사함으로써, 비유전률이 2.25 정도의 다공질 실리카를 얻을 수 있다. 또, 실리카 클러스터 전구체의 형성에 있어서는, 4급 알킬아민을 촉매로서 이용하는 것이 바람직하다. Also preferred is a porous silica formed by using a coated silica cluster precursor (an insulating material containing clustered silica). This is because the hole size is small and has a uniform hole. The coated silica cluster precursor is, for example, nano-clustered silica (NCS) manufactured by Shokubai Kasei Co., Ltd., and the porous silica having a relative dielectric constant of about 2.25 is applied by irradiating ultraviolet rays while applying this to the object or heating it. You can get it. Moreover, in formation of a silica cluster precursor, it is preferable to use quaternary alkylamine as a catalyst.

또, 본 발명에 따른 다공질 절연막을 제작할 때는 용매가 사용되는 경우도 있다. 이 용매는, 다공질 절연막 전구체를 작성하는 단계에서 가열 등에 의한 흩어짐에 의해 제거하는 것이 일반적이다. In addition, when producing the porous insulating film which concerns on this invention, a solvent may be used. It is common to remove this solvent by dispersion | distribution by heating etc. in the step of preparing a porous insulating film precursor.

본 발명에 있어서의 치환 실리콘 화합물의 층 또는 그 선경화층에 자외선을 조사하여 얻어지는 층은, 본 발명의 자외선을 흡수한다고 하는 목적으로만 마련하더라도 좋다. 이 의미로부터는 본 발명에 있어서의 치환 실리콘 화합물을 일반적인 의미에서 자외선을 흡수하는 물체인 자외선 흡수체로서 사용할 수 있다. You may provide the layer of the substituted silicone compound in this invention or the layer obtained by irradiating an ultraviolet-ray to this precured layer only for the purpose of absorbing the ultraviolet-ray of this invention. From this meaning, the substituted silicone compound in this invention can be used as an ultraviolet absorber which is an object which absorbs an ultraviolet-ray in a general meaning.

또한, 절연성을 갖는 것이나 딱딱한 표면을 실현할 수 있는 것으로부터, 다른 용도를 함께 갖더라도 좋다. 구체적으로는 상기 절연막으로서 혹은 에칭 스토퍼막 등의 스토퍼막으로서도 사용할 수 있는 경우가 많다. 이와 같이 스토퍼막으로서도 사용할 수 있는 점에서 본 발명에 따른 치환 실리콘 화합물의 층 또는 그 선경화층을 하드 마스크라고 부를 수도 있다. Moreover, you may have other uses together because it has insulation and a hard surface can be realized. Specifically, it can be used also as said insulating film or stopper film, such as an etching stopper film, in many cases. Thus, since it can also be used as a stopper film, the layer of the substituted silicone compound which concerns on this invention, or its precured layer can also be called a hard mask.

이와 같이 하여 제작된 다층 배선 장치는, 저유전률으로 신뢰성이 높아져, 특히 반도체 장치 등의 응답 속도의 고속화에 기여할 수 있다. The multilayer wiring device produced in this way has high reliability at low dielectric constant, and can contribute to particularly high speed of response of semiconductor devices and the like.

다음에 본 발명의 실시예 및 비교예를 상술하지만, 본 발명은 이들에 의해 한정되는 것이 아니다. Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these.

[실시예 1∼6]EXAMPLES 1-6

(1) 본 발명에 있어서의 실시예를 도 1∼8을 이용하여 설명한다. (1) An embodiment in the present invention will be described with reference to Figs.

또, 본 발명에 있어서는, 치환 또는 비치환 실리콘 화합물층, 그 선경화층, 다공질 전구체층이라는 정의가 이루어져 있지만, 이하의 설명에서는 간략화를 위해 그와 같은 말은 사용하지 않고 「층간 절연막」에 치환 또는 비치환 실리콘 화합물층이나 그 선경화층의 상태의 것을 포함하며, 「다공질층 절연막」에 다공질 전구체층의 상태의 것을 포함하고 있다. 이하에 있어서는, 선경화층이나 다공질 전구체층의 형성 방법에 대해서는 기재를 생략하고 있다. In the present invention, a definition is made of a substituted or unsubstituted silicon compound layer, its precured layer, and a porous precursor layer. However, in the following description, such words are not substituted for the sake of simplicity, or substituted or not provided in the "interlayer insulating film". The thing of the state of a ring silicon compound layer or its precured layer is included, and the thing of the state of a porous precursor layer is contained in the "porous layer insulating film." In the following, description is abbreviate | omitted about the formation method of a line hardening layer and a porous precursor layer.

이하에 있어서, 자외선 조사의 조건은 다음과 같이 했다. In the following, the conditions of ultraviolet irradiation were as follows.

(자외선 조사 조건)(Ultraviolet rays irradiation condition)

도 9에 나타내는 발광 스펙트럼을 갖는 고압 수은 램프(UVL-7000H4-N, 우시오덴키)를 이용하여 자외선 경화를 했다. 또, 자외선의 조도, 스펙트럼 분포는 분광 방사 조도계(USR-40D, 우시오덴키)로 측정했다. Ultraviolet curing was performed using a high pressure mercury lamp (UVL-7000H4-N, Ushio Denki) having an emission spectrum shown in FIG. 9. In addition, the illumination intensity and spectral distribution of an ultraviolet-ray were measured with the spectroradiometer (USR-40D, Ushio Denki).

분광 방사 조도계(USR-40D, 우시오덴키)로 측정한 254 ㎚의 자외선 조도는 2.8 mW/㎠였다. 자외선을 조사했을 때의 본 발명에 따른 실리콘 화합물의 막 및 대응하는 비교예의 실리콘 화합물의 표면 온도는 350∼400℃였다. The ultraviolet light intensity of 254 nm measured with the spectroradiometer (USR-40D, Ushio Denki) was 2.8 mW / cm <2>. The surface temperature of the film of the silicone compound which concerns on this invention at the time of ultraviolet irradiation, and the silicone compound of the corresponding comparative example was 350-400 degreeC.

또, 실시예에서 사용한 모든 실리콘 화합물이 비교예에서 사용한 모든 실리콘 화합물보다 210 ㎚ 이하의 자외선의 흡수율이 높은 것 및 실시예에서 사용한 모든 실리콘 화합물에 대해 (자외선 흡수율(1))/(자외선 흡수율(2))≥2.5인 것을 별도로 확인했다(실시예 7, 표 2 참조). In addition, all of the silicone compounds used in the examples have a higher ultraviolet absorption rate of 210 nm or less than all the silicone compounds used in the comparative example, and (ultraviolet absorption rate (1)) / (ultraviolet absorption rate ( 2))> 2.5 was separately confirmed (see Example 7, Table 2).

또, 180∼210 ㎚ 사이에 있는 자외선 피크나 210∼350 ㎚ 사이에 있는 자외 선 피크는 복수 존재하는 경우도 있다. 그 경우는, 그들 피크 전체에 대한 흡수율에 대해 비를 구했다. Also, there may be a plurality of ultraviolet peaks between 180 and 210 nm and ultraviolet peaks between 210 and 350 nm. In that case, the ratio was calculated | required with respect to the water absorption with respect to all those peaks.

(2) 우선, 도 1에 나타낸 바와 같이, 반도체 기판(10)에 LOCOS(Local Oxidation of Silicon)법에 의해 소자 분리막(12)을 형성했다. 소자 분리막(12)에 의해, 소자 영역(14)이 획정된다. 반도체 기판(10)으로서는 실리콘 기판을 이용했다. (2) First, as shown in FIG. 1, the element isolation film 12 was formed in the semiconductor substrate 10 by LOCOS (Local Oxidation of Silicon) method. The element region 14 is defined by the element isolation film 12. As the semiconductor substrate 10, a silicon substrate was used.

(3) 다음에, 소자 영역(14) 상에, 게이트 절연막(16)을 통해 게이트 전극(18)을 형성했다. 다음에, 게이트 전극(18)의 측면에, 측벽 절연막(20)을 형성했다. 다음에, 측벽 절연막(20) 및 게이트 전극(18)을 마스크로 해서 반도체 기판(10) 내에 도펀트 불순물을 도입함으로써, 게이트 전극(18) 양측의 반도체 기판(10) 내에 소스/드레인 확산층(22)을 형성했다. 이렇게 해서, 게이트 전극(18)과 소스/드레인 확산층(22)을 갖는 트랜지스터(24)가 형성되었다(도 1의 (a) 참조). (3) Next, the gate electrode 18 was formed on the element region 14 through the gate insulating film 16. Next, the sidewall insulating film 20 was formed on the side of the gate electrode 18. Next, the dopant impurity is introduced into the semiconductor substrate 10 using the sidewall insulating film 20 and the gate electrode 18 as a mask, so that the source / drain diffusion layer 22 is formed in the semiconductor substrate 10 on both sides of the gate electrode 18. Formed. In this way, a transistor 24 having a gate electrode 18 and a source / drain diffusion layer 22 was formed (see FIG. 1A).

(4) 다음에, 전면에 CVD법에 의해 테트라에톡시실란(TEOS)을 이용하여 실리콘 산화막으로 이루어지는 층간 절연막(26)을 형성했다. (4) Next, an interlayer insulating film 26 made of silicon oxide film was formed on the entire surface by using tetraethoxysilane (TEOS) by CVD.

(5) 다음에, 층간 절연막(26) 상에, 막 두께 50 ㎚의 스토퍼막(28)을 형성했다. 스토퍼막(28)의 재료로서는, 플라즈마 CVD법에 의해 형성한 SiN막을 이용했다. 스토퍼막(28)은, 후술하는 공정에서 CMP법에 의해 텅스텐막(34) 등을 연마할 때에 스토퍼로서 기능한다. 또한, 스토퍼막(28)은, 후술하는 공정에서 층간 절연막(38) 등에 홈(46)을 형성할 때에 에칭 스토퍼로서도 기능한다. (5) Next, a stopper film 28 having a thickness of 50 nm was formed on the interlayer insulating film 26. As the material of the stopper film 28, a SiN film formed by plasma CVD was used. The stopper film 28 functions as a stopper when the tungsten film 34 or the like is polished by the CMP method in a step described later. In addition, the stopper film 28 also functions as an etching stopper when the grooves 46 are formed in the interlayer insulating film 38 and the like in a step described later.

(6) 다음에, 포토리소그래피 기술을 이용하여 소스/드레인 확산층(22)에 이 르는 컨택트 홀(30)을 형성했다(도 1의 (b) 참조). (6) Next, the contact hole 30 leading to the source / drain diffusion layer 22 was formed using photolithography technique (see FIG. 1B).

(7) 다음에, 전면에 스퍼터법에 의해 막 두께 50 ㎚의 TiN막으로 이루어지는 밀착층(32)을 형성했다. 밀착층(32)은, 후술하는 도체 플러그의 기초에 대한 밀착성을 확보하기 위한 것이다. (7) Next, the adhesion layer 32 which consists of a 50-nm-thick TiN film by the sputtering method was formed in the whole surface. The adhesion layer 32 is for ensuring the adhesiveness with respect to the base of the conductor plug mentioned later.

(8) 다음에, 전면에 CVD법에 의해 막 두께 1 ㎛의 텅스텐막(34)을 형성했다. (8) Next, a tungsten film 34 having a thickness of 1 탆 was formed on the entire surface by CVD.

(9) 다음에, CMP법에 의해 스토퍼막(28)의 표면이 노출될 때까지 밀착층(32) 및 텅스텐막(34)을 연마했다. 이렇게 해서, 컨택트 홀 내에 텅스텐으로 이루어지는 도체 플러그(34)가 매립되었다(도 1의 (c) 참조). (9) Next, the adhesion layer 32 and the tungsten film 34 were polished until the surface of the stopper film 28 was exposed by the CMP method. In this way, a conductor plug 34 made of tungsten was embedded in the contact hole (see FIG. 1C).

(10) 다음에, 도 2의 (a)에 나타낸 바와 같이, CVD법에 의해 막 두께 30 ㎚의 층간 절연막(36){SiC:O:H막(SiC 이외에 O, H를 포함하는 막)}을 형성했다. (10) Next, as shown in Fig. 2A, an interlayer insulating film 36 having a thickness of 30 nm by CVD method (SiC: O: H film (film including O and H other than SiC)) Formed.

(11) 다음에, 도 2의 (a)에 나타낸 바와 같이, 전면에 다공질 층간 절연막(38)(본 발명에 따른 다공질층 절연막)을 형성했다. 다공질 층간 절연막(38)으로서는, 다공질 실리카로 이루어지는 층간 절연막(다공질 실리카막)을 형성했다. 다공질 층간 절연막(38)의 막 두께는 160 ㎚으로 했다. (11) Next, as shown in Fig. 2A, a porous interlayer insulating film 38 (porous layer insulating film according to the present invention) was formed on the entire surface. As the porous interlayer insulating film 38, an interlayer insulating film (porous silica film) made of porous silica was formed. The film thickness of the porous interlayer insulating film 38 was set to 160 nm.

(12) 다음에, 도 2의 (b)에 나타낸 바와 같이, 다공질 층간 절연막(38)이 형성된 반도체 기판(10) 상의 전면에 표 1에 나타내는 조건으로 치환기를 부여한 실리콘 화합물(본 발명에 따른 치환 실리콘 화합물)을 도포하여 층간 절연막(40)을 형성했다(도 2의 (b) 참조). 또, 막 두께는 30 ㎚으로 했다. (12) Next, as shown in Fig. 2B, a silicon compound in which a substituent is given to the entire surface on the semiconductor substrate 10 on which the porous interlayer insulating film 38 is formed (substitution according to the present invention) Silicon compound) was applied to form an interlayer insulating film 40 (see Fig. 2B). In addition, the film thickness was 30 nm.

(13) 다음에, 층간 절연막(40) 위로부터 자외선을 조사하여 다공질 층간 절연막을 경화했다. (13) Next, ultraviolet rays were irradiated from the interlayer insulating film 40 to cure the porous interlayer insulating film.

(14) 다음에, 전면에 스핀코트법에 의해 포토레지스트막(42)을 형성했다. (14) Next, a photoresist film 42 was formed on the entire surface by spin coating.

(15) 다음에, 포토리소그래피 기술을 이용하여 포토레지스트막(42)에 개구부(44)를 형성했다. 개구부(44)는, 첫번째층의 배선(제1 금속 배선층)(50)을 형성하기 위한 것이다. 배선 폭이 100 ㎚, 배선 간격이 100 ㎚가 되도록 개구부(44)를 포토레지스트막(42)에 형성했다. (15) Next, openings 44 were formed in the photoresist film 42 using photolithography techniques. The opening part 44 is for forming the wiring (first metal wiring layer) 50 of the first layer. The openings 44 were formed in the photoresist film 42 so that the wiring width was 100 nm and the wiring spacing was 100 nm.

(16) 다음에, 포토레지스트막(42)을 마스크로 해서 절연막(40), 층간 절연막(38) 및 절연막(36)을 에칭했다. 에칭을 할 때는, CF4 가스 및 CHF3 가스를 원료로 한 불소 플라즈마를 이용하여 에칭을 했다. 이 때, 스토퍼막(28)이 에칭 스토퍼로서 기능했다. 이렇게 해서, 절연막(40), 층간 절연막(38) 및 절연막(36)에 배선을 매립하기 위한 홈(트렌치)(46)이 형성되었다(도 3의 (a)참조). 도체 플러그(34)의 상면은 홈 내(46)에 노출된 상태가 된다. 그 후, 포토레지스트막(42)을 박리했다. (16) Next, the insulating film 40, the interlayer insulating film 38, and the insulating film 36 were etched using the photoresist film 42 as a mask. When etching, CF 4 gas and CHF 3 It etched using the fluorine plasma which used gas as a raw material. At this time, the stopper film 28 functioned as an etching stopper. In this way, grooves (trenches) 46 for filling wirings were formed in the insulating film 40, the interlayer insulating film 38, and the insulating film 36 (see FIG. 3A). The upper surface of the conductor plug 34 is in a state exposed in the groove 46. Thereafter, the photoresist film 42 was peeled off.

(17) 다음에, 전면(全面)에 스퍼터법에 의해 막 두께 10 ㎚의 TaN으로 이루어지는 배리어막(도시하지 않음)을 형성했다. 배리어막은, 후술하는 배선 중의 Cu가 절연막 중에 확산되는 것을 방지하기 위한 것이다. 다음에, 전면에 스퍼터법에 의해 막 두께 10 ㎚의 Cu로 이루어지는 시드막(도시하지 않음)을 형성했다. 시드막은, 전기 도금법에 의해 Cu로 이루어지는 배선을 형성할 때에 전극으로서 기능하는 것이다. 이렇게 해서, 배리어막과 시드막으로 이루어지는 적층막(48)이 형성되었다. (17) Next, a barrier film (not shown) made of TaN having a thickness of 10 nm was formed on the entire surface by a sputtering method. The barrier film is for preventing Cu in the wiring described later from being diffused into the insulating film. Next, a seed film (not shown) made of Cu having a film thickness of 10 nm was formed on the entire surface by a sputtering method. The seed film functions as an electrode when forming a wiring made of Cu by the electroplating method. In this way, the laminated film 48 which consists of a barrier film and a seed film was formed.

(18) 다음에, 전기 도금법에 의해 막 두께 600 ㎚의 Cu막(50)을 형성했다. (18) Next, a Cu film 50 having a thickness of 600 nm was formed by the electroplating method.

(19) 다음에, CMP법에 의해 절연막의 표면이 노출될 때까지, Cu막(50) 및 적층막(48)을 연마했다. 이렇게 해서, 홈 내에 Cu로 이루어지는 배선(50)이 매립되었다. 이러한 배선(50)의 제조 프로세스는 싱글 다마신법(single damascene)이라고 불린다. (19) Next, the Cu film 50 and the laminated film 48 were polished until the surface of the insulating film was exposed by the CMP method. In this way, the wiring 50 which consists of Cu was embedded in the groove. This manufacturing process of the wiring 50 is called a single damascene method.

(20) 다음에, 도 3의 (b)에 나타낸 바와 같이, CVD법에 의해 막 두께 30 ㎚의 층간 절연막(52)(SiC:O:H막)을 형성했다. (20) Next, as shown in Fig. 3B, an interlayer insulating film 52 (SiC: O: H film) having a thickness of 30 nm was formed by the CVD method.

(21) 다음에, 도 4의 (a)에 나타낸 바와 같이, 전면에 다공질 층간 절연막(54)(본 발명에 따른 다공질층 절연막)을 형성했다. 다공질 층간 절연막(54)의 형성 방법은, 전술한 다공질 층간 절연막(38)의 형성 방법과 동일하게 했다. 다공질 층간 절연막(54)의 막 두께는 180 ㎚으로 했다. (21) Next, as shown in Fig. 4A, a porous interlayer insulating film 54 (porous layer insulating film according to the present invention) was formed on the entire surface. The formation method of the porous interlayer insulation film 54 was the same as the formation method of the porous interlayer insulation film 38 mentioned above. The film thickness of the porous interlayer insulating film 54 was 180 nm.

(22) 다음에, 도 4의 (b)에 나타낸 바와 같이, 다공질 층간 절연막(54)이 형성된 반도체 기판(10) 상의 전면에, 표 1에 나타내는 조건으로 치환기를 부여한 실리콘 화합물(본 발명에 따른 치환 실리콘 화합물)을 도포하여 층간 절연막(56)을 형성했다. 층간 절연막(56)의 형성 방법은 전술한 층간 절연막(40)의 형성 방법과 동일하게 했다. 또, 막 두께는 30 ㎚으로 했다. (22) Next, as shown in Fig. 4B, a silicon compound provided with a substituent under the conditions shown in Table 1 on the entire surface of the semiconductor substrate 10 on which the porous interlayer insulating film 54 was formed (according to the present invention) A substituted silicon compound) was applied to form an interlayer insulating film 56. The formation method of the interlayer insulation film 56 was the same as the formation method of the interlayer insulation film 40 mentioned above. In addition, the film thickness was 30 nm.

(23) 다음에, 층간 절연막(56) 위로부터 자외선을 조사하여 다공질 층간 절연막을 경화했다. (23) Next, ultraviolet rays were irradiated from above the interlayer insulating film 56 to cure the porous interlayer insulating film.

(24) 다음에, 도 5의 (a)에 나타낸 바와 같이, 다공질 층간 절연막(58)(본 발명에 따른 다공질층 절연막)을 형성했다. 다공질 층간 절연막(58)의 형성 방법은 전술한 다공질 층간 절연막(38)의 형성 방법과 동일하게 했다. 층간 절연막(58)의 막 두께는 160 ㎚으로 했다. (24) Next, as shown in Fig. 5A, a porous interlayer insulating film 58 (porous layer insulating film according to the present invention) was formed. The formation method of the porous interlayer insulation film 58 was the same as the formation method of the porous interlayer insulation film 38 mentioned above. The film thickness of the interlayer insulating film 58 was 160 nm.

(25) 다음에, 도 5의 (b)에 나타낸 바와 같이 다공질 층간 절연막(58)이 형성된 반도체 기판(10) 상의 전면에, 표 1에 나타내는 조건으로 치환기를 부여한 실리콘 화합물(본 발명에 따른 치환 실리콘 화합물)을 도포하여 층간 절연막(60)을 형성했다. 층간 절연막(60)의 형성 방법은 전술한 층간 절연막(40)의 형성 방법과 동일하게 했다. 또, 막 두께는 30 ㎚으로 했다. (25) Next, as shown in FIG. 5B, a silicon compound in which a substituent is given to the entire surface on the semiconductor substrate 10 on which the porous interlayer insulating film 58 is formed (substitution according to the present invention) is provided. Silicon compound) was applied to form an interlayer insulating film 60. The formation method of the interlayer insulation film 60 was the same as the formation method of the interlayer insulation film 40 mentioned above. In addition, the film thickness was 30 nm.

(26) 다음에, 층간 절연막(60) 위로부터 자외선을 조사하여 다공질 층간 절연막을 경화했다. (26) Next, ultraviolet rays were irradiated from above the interlayer insulating film 60 to cure the porous interlayer insulating film.

(27) 다음에, 전면에 스핀코트법에 의해 포토레지스트막(62)을 형성했다. (27) Next, a photoresist film 62 was formed on the entire surface by spin coating.

(28) 다음에, 도 6에 나타낸 바와 같이, 포토리소그래피 기술을 이용하여 포토레지스트막(62)에 개구부(64)를 형성했다. 개구부(64)는 배선(50)에 이르는 컨택트 홀(64)을 형성하기 위한 것이다. (28) Next, as shown in Fig. 6, an opening 64 was formed in the photoresist film 62 using photolithography technique. The opening 64 is for forming the contact hole 64 leading to the wiring 50.

(29) 다음에, 포토레지스트막(62)을 마스크로 해서 절연막(60), 층간 절연막(58), 절연막(56), 층간 절연막(54) 및 절연막(52)을 에칭했다. 에칭을 할 때는, CF4 가스 및 CHF3 가스를 원료로 한 불소 플라즈마를 이용하여 에칭을 했다. 에칭 가스의 조성비나 에칭시의 압력 등을 적절하게 변화시킴으로써 절연막(60), 층간 절연막(58), 절연막(56), 층간 절연막(54) 및 절연막(52)을 에칭하는 것이 가능하다. 이렇게 해서, 배선(50)에 이르는 컨택트 홀(66)이 형성되었다. 그 후, 포토레 지스트막(62)을 박리했다. (29) Next, the insulating film 60, the interlayer insulating film 58, the insulating film 56, the interlayer insulating film 54, and the insulating film 52 were etched using the photoresist film 62 as a mask. When etching, etching was performed using a fluorine plasma using CF 4 gas and CHF 3 gas as raw materials. It is possible to etch the insulating film 60, the interlayer insulating film 58, the insulating film 56, the interlayer insulating film 54, and the insulating film 52 by appropriately changing the composition ratio of the etching gas, the pressure during etching, and the like. In this way, the contact hole 66 which reached the wiring 50 was formed. Thereafter, the photoresist film 62 was peeled off.

(30) 다음에, 전면에 스핀코트법에 의해 포토레지스트막(68)을 형성했다. (30) Next, a photoresist film 68 was formed on the entire surface by spin coating.

(31) 다음에, 도 7에 나타낸 바와 같이, 포토리소그래피 기술을 이용하여 포토레지스트막(68)에 개구부(70)를 형성했다. 이 개구부(70)는 두번째층의 배선(제2 금속 배선층)(76a)을 형성하기 위한 것이다. (31) Next, as shown in Fig. 7, the openings 70 were formed in the photoresist film 68 using photolithography techniques. This opening part 70 is for forming the wiring (second metal wiring layer) 76a of the second layer.

(32) 다음에, 포토레지스트막(68)을 마스크로 해서 절연막(60), 층간 절연막(58) 및 절연막(56)을 에칭했다. 에칭을 할 때는, CF4 가스 및 CHF3 가스를 원료로 한 불소 플라즈마를 이용하여 에칭을 했다. 이렇게 해서, 절연막(60), 층간 절연막(58) 및 절연막(56)에 배선(76a)을 매립하기 위한 홈(72)이 형성되었다. 홈(72)은 컨택트 홀(66)과 연결된 상태가 된다. (32) Next, the insulating film 60, the interlayer insulating film 58, and the insulating film 56 were etched using the photoresist film 68 as a mask. When etching, etching was performed using a fluorine plasma using CF 4 gas and CHF 3 gas as raw materials. In this way, grooves 72 for filling the wiring 76a were formed in the insulating film 60, the interlayer insulating film 58, and the insulating film 56. The groove 72 is connected to the contact hole 66.

(33) 다음에, 전면에 스퍼터법에 의해 막 두께 10 ㎚의 TaN으로 이루어지는 배리어막(도시하지 않음)을 형성했다. 배리어막은, 후술하는 배선(76a) 및 도체 플러그(76b) 중의 Cu가 확산되는 것을 방지하기 위한 것이다. 다음에, 전면에 스퍼터법에 의해 막 두께 10 ㎚의 Cu로 이루어지는 시드막(도시하지 않음)을 형성했다. 시드막은, 전기 도금법에 의해 Cu로 이루어지는 배선(76a) 및 도체 플러그(76b)를 형성할 때에 전극으로서 기능하는 것이다. 이렇게 해서, 배리어막과 시드막으로 이루어지는 적층막(74)이 형성되었다. (33) Next, a barrier film (not shown) made of TaN having a thickness of 10 nm was formed on the entire surface by a sputtering method. The barrier film is for preventing the diffusion of Cu in the wiring 76a and the conductor plug 76b which will be described later. Next, a seed film (not shown) made of Cu having a film thickness of 10 nm was formed on the entire surface by a sputtering method. The seed film functions as an electrode when forming the wiring 76a and the conductor plug 76b made of Cu by the electroplating method. In this way, the laminated film 74 which consists of a barrier film and a seed film was formed.

(34) 다음에, 전기 도금법에 의해 막 두께 1400 ㎚의 Cu막(76)을 형성했다. (34) Next, a Cu film 76 having a film thickness of 1400 nm was formed by the electroplating method.

(35) 다음에, CMP법에 의해 절연막(60)의 표면이 노출될 때까지 Cu막(76) 및 적층막(74)을 연마했다. 이렇게 해서, 콘택트 홀(66) 내에 Cu로 이루어지는 도체 플러그(76b)가 매립됨과 동시에, 홈(72) 내에 Cu로 이루어지는 배선(76a)이 매립되었다. 도체 플러그(76b)와 배선(76a)은 일체로 형성된다. 이와 같이 도체 플러그(76b)와 배선(76a)을 일괄해서 형성하는 제조 프로세스는 듀얼 다마신법으로 불린다. (35) Next, the Cu film 76 and the laminated film 74 were polished until the surface of the insulating film 60 was exposed by the CMP method. In this way, the conductor plug 76b made of Cu was embedded in the contact hole 66, and the wiring 76a made of Cu was embedded in the groove 72. The conductor plug 76b and the wiring 76a are integrally formed. Thus, the manufacturing process which collectively forms the conductor plug 76b and the wiring 76a is called the dual damascene method.

(36) 다음에, 도 8에 나타낸 바와 같이 CVD법에 의해 막 두께 30 ㎚의 층간 절연막(78)을 형성했다. (36) Next, as shown in Fig. 8, an interlayer insulating film 78 having a thickness of 30 nm was formed by the CVD method.

(37) 그 후, 상기와 동일한 공정을 적절하게 반복함으로써, 도시하지 않은 세번째층의 배선(제3 금속 배선층)이 형성되었다. (37) Then, the same process as above was repeated suitably, and the wiring (third metal wiring layer) of the 3rd layer which is not shown in figure was formed.

(38) 이와 같이 하여, 실시예 1∼6 각각에 대해 표 1의 치환 실리콘 화합물을 각각 사용하여 반도체 장치를 형성하고, 형성된 반도체 장치에 대해 100만개의 도체 플러그가 전기적으로 직렬로 접속되도록 배선 및 도체 플러그를 형성하여 수율 측정 등의 평가를 했다. 결과를 표 1, 2에 나타낸다. 수율은 89.5%∼93.1%였다. (38) In this manner, the semiconductor devices were formed using the substituted silicon compounds shown in Table 1 for each of Examples 1 to 6, respectively, and the wirings were connected so that 1 million conductor plugs were electrically connected in series with the formed semiconductor devices. Conductor plugs were formed and evaluated for yield measurement and the like. The results are shown in Tables 1 and 2. The yield was 89.5%-99.1%.

(39) 또한, 배선 간의 실효적인 비유전률을 산출한 바, 2.6∼2.7이었다. 또, 실효적인 비유전률이란, 배선의 주위에 다공질 층간 절연막뿐만 아니라 다른 절연막도 존재하고 있는 상태에 있어서 측정되는 비유전률이다. 비유전률이 낮은 다공질 층간 절연막뿐만 아니라 비유전률이 비교적 높은 절연막도 배선 주위에 존재하고 있는 상태에서 측정되기 때문에, 실효적인 비유전률은 다공질 층간 절연막의 비유전률보다 큰 값이 된다. (39) The effective relative dielectric constants between the wirings were calculated to be 2.6 to 2.7. The effective dielectric constant is a dielectric constant measured in a state where not only the porous interlayer insulating film but also other insulating film exist around the wiring. Since not only the porous interlayer insulating film having a low relative dielectric constant but also an insulating film having a relatively high relative dielectric constant are measured around the wiring, the effective relative dielectric constant is higher than the relative dielectric constant of the porous interlayer insulating film.

(40) 또한, 200℃에서 3000시간 방치한 후에 배선의 저항을 측정한 바, 저항 의 상승은 확인되지 않았다. (40) In addition, when the resistance of the wiring was measured after 3000 hours at 200 占 폚, no increase in resistance was observed.

(41) 또한, 자외선 조사 후의 다공질 절연막의 C 농도를 X선 광전자 분광법(XPS: X-ray Photoelectron Spectroscopy)에 의해 측정한 바, 모두 11∼12 원자 %로 자외선 조사 전과 동등하며, C 농도의 감소는 보이지 않았다. (41) Furthermore, the C concentration of the porous insulating film after ultraviolet irradiation was measured by X-ray photoelectron spectroscopy (XPS), and all of them were 11 to 12 atomic%, which was equivalent to that before ultraviolet irradiation, and the C concentration was decreased. Did not look.

(42) 표 1에는 막 강도에 대한 데이터도 나타나 있다. 표 1로부터, 낮은 비유전률에도 불구하고 양호한 막 강도가 얻어지고 있음을 이해할 수 있다. 이에 비해, 종래 기술이라면 이러한 낮은 비유전률을 얻고자 하는 경우 막 강도가 대폭 저하된다. (42) Table 1 also shows data on film strength. From Table 1, it can be understood that good film strength is obtained despite the low relative dielectric constant. In contrast, in the prior art, when the low relative dielectric constant is to be obtained, the film strength is greatly reduced.

[비교예 1, 2][Comparative Examples 1 and 2]

본 발명에 따른 치환 실리콘 화합물 대신에 표 1에 나타내는 비치환 실리콘 화합물을 사용한 것 이외에는 실시예 1∼6과 동일하게 했다. It carried out similarly to Examples 1-6 except having used the unsubstituted silicone compound shown in Table 1 instead of the substituted silicone compound which concerns on this invention.

이와 같이 하여, 비교예 1, 2 각각에 대해 표 1의 비치환 실리콘 화합물을 각각 사용하여 반도체 장치를 형성하고, 형성된 반도체 장치에 대해 100만개의 도체 플러그가 전기적으로 직렬로 접속되도록 배선 및 도체 플러그를 형성하여 수율을 측정한 바, 수율은 59.2∼63.2%이고, 배선간의 실효적인 비유전률을 산출한 바, 3.1∼3.2이었다. 또한, 200℃에서 3000시간 방치한 후에 배선의 저항을 측정한 바, 저항의 상승이 확인되었다. 이들에 비해 실시예 1이 어느 것이나 좋은 결과를 부여한 것은, 본 발명에 따른 치환 실리콘 화합물의 사용에 의해 210 ㎚ 이하의 자외선을 차단할 수 있었던 효과라고 생각할 수 있다. 이것은 210 ㎚ 이하의 자외선을 차단함으로써 다공질 절연막의 Si-C 결합 절단에 의한 흡습을 억제할 수 있었기 때문 일 것이다. In this way, the semiconductor device was formed using each of the unsubstituted silicon compounds shown in Table 1 for each of Comparative Examples 1 and 2, and the wiring and the conductor plugs were connected so that 1 million conductor plugs were electrically connected in series with the formed semiconductor device. Was formed and the yield was measured. The yield was 59.2 to 63.2%, and the effective relative dielectric constant between the wirings was calculated to be 3.1 to 3.2. Furthermore, after leaving 3000 degreeC for 200 hours, the resistance of wiring was measured, and the rise of resistance was confirmed. In comparison with these, it can be considered that Example 1 gave a good result to the effect which was able to block the ultraviolet-ray below 210 nm by use of the substituted silicone compound which concerns on this invention. This may be because moisture absorption due to Si-C bond breakage of the porous insulating film can be suppressed by blocking ultraviolet rays of 210 nm or less.

또한, 다공질 절연막의 C 농도를 XPS에 의해 측정한 바, 6∼7 원자%이며 C 농도의 감소가 확인되었다. 이에 대해, 실시예 1에 있어서 C 농도의 감소가 관찰되지 않은 것은, Si-C 결합의 절단에 의해 메틸기 등의 소실(loss)이 실질적으로 없었음을 의미하는 것으로 생각된다. Moreover, when C density | concentration of the porous insulating film was measured by XPS, it was 6-7 atomic%, and the decrease of C density | concentration was confirmed. In contrast, the fact that a decrease in C concentration was not observed in Example 1 is considered to mean that there was substantially no loss of a methyl group or the like due to cleavage of the Si—C bond.

Figure 112008056487765-PAT00005
Figure 112008056487765-PAT00005

Figure 112008056487765-PAT00006
Figure 112008056487765-PAT00006

또, 표 1 중, 비치환 실리콘 화합물(폴리카르보실란)에 있어서의 R1, R2는 H이고, n은 213이었다. 또한, 비치환 실리콘 화합물(폴리실라잔)에 있어서의 R1∼R3는 H이고, n은 264였다(식의 정의에 맞는 기재를 부탁합니다). In Table 1, R 1 and R 2 in the unsubstituted silicone compound (polycarbosilane) were H, and n was 213. In addition, R <1> -R <3> in the unsubstituted silicone compound (polysilazane) was H, and n was 264 (please fill in the description of the formula).

또한, 상기 R1, R2 또는 R1∼R3의 수소 수에 대하여, 실시예 1, 4의 벤질기는 27%, 실시예 2, 5의 카르보닐기는 15%, 실시예 3, 6의 카르복실기는 21%였다. In addition, with respect to the hydrogen number of said R <1> , R <2> or R <1> -R <3> , the benzyl group of Examples 1 and 4 is 27%, the carbonyl group of Examples 2 and 5 is 15%, and the carboxyl group of Examples 3 and 6 is 21%.

[실시예 7]Example 7

석영 기판 상에 본 발명에 따른 실리콘 화합물의 막 혹은 비교용 막을 성막하고 진공 자외 분광기(SGV-157, 시마즈 제작소)로 180∼350 ㎚의 자외선 흡수 스펙트럼을 측정함으로써, 본 발명에 따른 실리콘 화합물의 막에 대해서는, 180∼210 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(1)과, 210∼350 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(2)의 비가 (자외선 흡수율(1))/(자외선 흡수율(2))≥2.5인 것을 확인했다. 결과는 표 2에 나타나 있다. 마찬가지로 하여 210 ㎚ 이하의 자외선의 흡수율도 측정했다. The film of the silicon compound according to the present invention was formed by forming a film of the silicon compound or a comparative film according to the present invention on a quartz substrate and measuring an ultraviolet absorption spectrum of 180 to 350 nm with a vacuum ultraviolet spectrometer (SGV-157, Shimadzu Corporation). Is the ratio of the ultraviolet absorbance (1) of the silicon compound to the ultraviolet peak between 180 and 210 nm and the ultraviolet absorbance (2) of the silicon compound with respect to the ultraviolet peak between 210 and 350 nm (ultraviolet absorption rate). It confirmed that (1)) / (ultraviolet-ray absorption rate (2))> 2.5. The results are shown in Table 2. Similarly, the absorption rate of ultraviolet rays of 210 nm or less was also measured.

[실시예 8]Example 8

하기 식(1)에서 나타나는 R1 및 R2가 H인 폴리카르보실란의 R1 혹은 R2를 할로겐화하고, 벤질기를 포함하는 Grignard 시약과 반응시킴으로써 해당 비치환 폴리카르보실란에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 벤질기를 갖는 폴리카르보실란을 제작할 수 있다. The following formula (1) R 1 and R 2 is R 1 of a polycarboxylic H bosilran appearing in Alternatively, a polycarbosilane having a benzyl group having a higher absorption of ultraviolet rays of 210 nm or less than the unsubstituted polycarbosilane can be produced by halogenating R 2 and reacting with a Grignard reagent containing a benzyl group.

또, 상기에 개시한 내용으로부터, 하기의 부기에 나타낸 발명을 도출할 수 있다. Moreover, the invention shown in the following appendix can be derived from the content disclosed above.

(부기 1)(Book 1)

하기 식(1)에서 나타나는 폴리카르보실란 또는 하기 식(2)에서 나타나는 폴리실라잔 또는 이들의 혼합물로 이루어지는 실리콘 화합물의 R1∼R3 중 적어도 일부가 다른 기로 치환된 구조를 갖고, 해당 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물. R 1 to R 3 of the silicone compound composed of polycarbosilane represented by the following formula (1) or polysilazane represented by the following formula (2) or a mixture thereof: The silicone compound which has a structure in which at least one part is substituted by the other group, and is high in the absorption rate of the ultraviolet-ray of 210 nm or less compared with the said unsubstituted silicone compound.

Figure 112008056487765-PAT00007
-(1)
Figure 112008056487765-PAT00007
-(One)

Figure 112008056487765-PAT00008
-(2)
Figure 112008056487765-PAT00008
-(2)

(식(1)에서, R1, R2는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, n은 10∼1000이다. 또한, 식(2)에 있어서, R1, R2 및 R3는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, 단, 치환기 R1, R2 및 R3 중 적어도 1개는 수소 원자이고, n은 해당 실라잔형 중합체가 100∼50,000의 수 평균 분자량을 갖기 위해 필요한 반복 단위의 수이다. 또, 식(1)과 식(2)의 기호는 서로 독립하고 있다.) (In formula (1), R <1> , R <2> may mutually be same or different, and respectively represents a hydrogen atom or represents a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group, or aryl group, n is 10-1000. In formula (2), R 1 , R 2 and R 3 may be the same or different from each other, and each represent a hydrogen atom or a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group, or aryl group, Provided that at least one of the substituents R 1 , R 2 and R 3 is a hydrogen atom and n is the number of repeating units necessary for the silazane-type polymer to have a number average molecular weight of 100 to 50,000. The symbols in and (2) are independent of each other.)

(부기 2)(Supplementary Note 2)

180∼210 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(1)과, 210∼350 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(2)의 비가 (자외선 흡수율(1))/(자외선 흡수율(2))≥2.5인 부기 1에 기재한 실리콘 화합물. The ratio of the ultraviolet absorbance (1) of the silicon compound to the ultraviolet peak between 180 and 210 nm and the ultraviolet absorbance (2) of the silicon compound with respect to the ultraviolet peak between 210 and 350 nm (ultraviolet absorption rate (1) ) / (Ultraviolet absorption rate (2)) The silicone compound according to Appendix 1, wherein ≥2.5.

(부기 3)(Supplementary Note 3)

상기 다른 기는 벤질기, 카르보닐기, 카르복실기, 아크로일기, 디아조기, 아지드기, 신나모일기, 아크릴레이트기, 신나밀리덴기, 시아노신나밀리덴기, 푸릴펜타디엔기, p-페닐렌디아크릴레이트기로 이루어지는 군으로부터 선택된 것인 부기 1 또는 2에 기재한 실리콘 화합물. Said other group is a benzyl group, a carbonyl group, a carboxyl group, an acroyl group, a diazo group, an azide group, a cinnamoyl group, an acrylate group, a cinnamilidene group, a cyanocinnamilidene group, a furyl pentadiene group, a p-phenylenediacrylate group The silicone compound according to Appendix 1 or 2 selected from the group consisting of.

(부기 4)(Appendix 4)

다층 배선 장치의 제조 방법에 있어서, In the manufacturing method of a multilayer wiring apparatus,

기판 상측에 다공질 절연막 전구체층을 형성하는 단계와, Forming a porous insulating film precursor layer on the substrate;

부기 1∼3 중 어느 하나에 기재한 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물층을 형성하는 단계와, Forming a silicon compound layer having a higher absorptivity of 210 nm or less than the unsubstituted silicone compound described in any one of Supplementary Notes 1 to 3,

해당 실리콘 화합물층을 통해 해당 다공질 절연막 전구체에 자외선을 조사하는 단계Irradiating ultraviolet light to the porous insulating film precursor through the silicon compound layer

를 포함하는 다층 배선 장치의 제조 방법. The manufacturing method of the multilayer wiring apparatus containing a.

(부기 5)(Supplementary Note 5)

상기 다공질 절연막 전구체층은 도포형의 실리카 클러스터 전구체를 이용하여 형성되는 부기 4에 기재한 다층 배선 장치의 제조 방법. The porous insulating film precursor layer is a method of manufacturing a multilayer wiring apparatus according to Appendix 4, which is formed using a coated silica cluster precursor.

(부기 6)(Supplementary Note 6)

상기 도포형의 실리카 클러스터 전구체는 4급 알킬아민에 의해 가수 분해하여 형성된 것인 부기 5에 기재한 다층 배선 장치의 제조 방법. The coated silica cluster precursor is formed by hydrolysis by quaternary alkylamine.

(부기 7)(Appendix 7)

상기 자외선의 광원은 200 ㎚∼800 ㎚의 범위의 파장을 갖는 광원인 부기 4∼6 중 어느 하나에 기재한 다층 배선 장치의 제조 방법. The said ultraviolet light source is a manufacturing method of the multilayer wiring apparatus in any one of notes 4-6 which is a light source which has a wavelength of the range of 200 nm-800 nm.

(부기 8)(Appendix 8)

상기 200 ㎚∼800 ㎚의 범위의 파장을 갖는 광원은, 고압 수은 램프, 오존리스 고압 수은 램프, 메탈핼라이드 램프, 크세논 램프, 중수소 램프 중 어느 하나인 부기 7에 기재한 다층 배선 장치의 제조 방법. The light source having a wavelength in the range of 200 nm to 800 nm is any one of a high pressure mercury lamp, an ozoneless high pressure mercury lamp, a metal halide lamp, a xenon lamp, and a deuterium lamp. .

(부기 9)(Appendix 9)

상기 자외선 조사에서, 분광 방사 조도계를 사용한 경우에서의 웨이퍼 면에서의 254 ㎚의 자외선 조도는 1 mW/㎠ 이상인 부기 4∼8 중 어느 하나에 기재한 다층 배선 장치의 제조 방법. The method for producing a multilayer wiring device according to any one of notes 4 to 8, wherein the ultraviolet illuminance of 254 nm on the wafer surface in the case of using a spectroradiometer in the ultraviolet irradiation is 1 mW / cm 2 or more.

(부기 10)(Book 10)

상기 자외선 조사에서, 50℃∼470℃ 사이의 온도로 가열하면서 자외선을 조사하는 부기 4∼9 중 어느 하나에 기재한 다층 배선 장치의 제조 방법. The said ultraviolet irradiation WHEREIN: The manufacturing method of the multilayer wiring apparatus in any one of notes 4-9 which irradiate an ultraviolet-ray, heating at the temperature between 50 degreeC-470 degreeC.

(부기 11)(Appendix 11)

부기에 기재한 제조 방법을 이용하여 제작된 다층 배선 장치. The multilayer wiring apparatus produced using the manufacturing method described in the bookkeeping.

(부기 12)(Appendix 12)

다층 배선 장치의 제조 방법에 있어서, 기판 상측에 다공질 절연막 전구체층 을 형성하는 단계와, A method of manufacturing a multilayer wiring device, comprising: forming a porous insulating film precursor layer on an upper side of a substrate;

부기 1∼3 중 어느 하나에 기재한 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물층을 형성하는 단계와, Forming a silicon compound layer having a higher absorptivity of 210 nm or less than the unsubstituted silicone compound described in any one of Supplementary Notes 1 to 3,

해당 실리콘 화합물층을 통해 해당 다공질 절연막 전구체에 자외선을 조사하는 단계Irradiating ultraviolet light to the porous insulating film precursor through the silicon compound layer

를 포함하는 다층 배선 장치의 제조 방법. The manufacturing method of the multilayer wiring apparatus containing a.

도 1은 반도체 장치의 제조 과정을 나타내는 모식도. BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram which shows the manufacturing process of a semiconductor device.

도 2는 반도체 장치의 제조 과정을 나타내는 모식도. 2 is a schematic diagram illustrating a process of manufacturing a semiconductor device.

도 3은 반도체 장치의 제조 과정을 나타내는 모식도. 3 is a schematic diagram illustrating a process of manufacturing a semiconductor device.

도 4는 반도체 장치의 제조 과정을 나타내는 모식도.4 is a schematic diagram illustrating a manufacturing process of a semiconductor device.

도 5는 반도체 장치의 제조 과정을 나타내는 모식도. 5 is a schematic diagram illustrating a manufacturing process of a semiconductor device.

도 6은 반도체 장치의 제조 과정을 나타내는 모식도. 6 is a schematic diagram illustrating a manufacturing process of a semiconductor device.

도 7은 반도체 장치의 제조 과정을 나타내는 모식도. 7 is a schematic diagram illustrating a manufacturing process of a semiconductor device.

도 8은 반도체 장치의 제조 과정을 나타내는 모식도. 8 is a schematic diagram illustrating a manufacturing process of a semiconductor device.

도 9는 고압 수은 램프(UVL-7000H4-N, 우시오덴키)의 발광 스펙트럼을 나타내는 도면. Fig. 9 shows the emission spectrum of a high pressure mercury lamp (UVL-7000H4-N, Ushio Denki).

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 반도체 기판10: semiconductor substrate

12: 소자 분리막12: device separator

14: 소자 영역14: device region

16: 게이트 절연막16: gate insulating film

18: 게이트 전극18: gate electrode

20: 측벽 절연막20: sidewall insulating film

22: 소스/드레인 확산층22: source / drain diffusion layer

24: 트랜지스터24: transistor

26: 층간 절연막26: interlayer insulating film

28: 스토퍼막28: stopper film

30: 컨택트 홀30: contact hole

32: 밀착층32: adhesion layer

34: 도체 플러그34: conductor plug

36: 층간 절연막36: interlayer insulating film

38: 다공질 층간 절연막38: porous interlayer insulating film

40: 층간 절연막 40: interlayer insulating film

42: 포토레지스트막42: photoresist film

44: 개구부44: opening

46: 홈46: home

48: 적층막48: laminated film

50: Cu막50: Cu film

52: 층간 절연막52: interlayer insulating film

54: 다공질 층간 절연막54: porous interlayer insulating film

56: 층간 절연막56: interlayer insulation film

58: 다공질 층간 절연막 58: porous interlayer insulating film

60: 층간 절연막60: interlayer insulating film

62: 포토레지스트막62: photoresist film

64: 개구부64: opening

66: 컨택트 홀66: contact hall

68: 포토레지스트막 68: photoresist film

70: 개구부70: opening

72: 홈72: home

74: 적층막74: laminated film

76a: 배선76a: wiring

76b: 도체 플러그 76b: conductor plug

Claims (10)

하기 식(1)에서 나타나는 폴리카르보실란 또는 하기 식(2)에서 나타나는 폴리실라잔 또는 이들의 혼합물로 이루어지는 실리콘 화합물의 R1∼R3 중 적어도 일부가 다른 기로 치환된 구조를 갖고, 해당 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물. R of a silicone compound composed of polycarbosilane represented by the following formula (1) or polysilazane represented by the following formula (2) or a mixture thereof:One-R3 The silicone compound which has a structure in which at least one part is substituted by the other group, and is high in the absorption rate of the ultraviolet-ray of 210 nm or less compared with the said unsubstituted silicone compound.
Figure 112008056487765-PAT00009
-(1)
Figure 112008056487765-PAT00009
-(One)
Figure 112008056487765-PAT00010
-(2)
Figure 112008056487765-PAT00010
-(2)
(식 (1)에서, R1, R2는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기 를 나타내며, n은 10∼1000이다. 또한, 식(2)에서, R1, R2 및 R3는 서로 동일하거나 혹은 다르더라도 좋고, 각각 수소 원자를 나타내거나 혹은 치환 혹은 비치환의 알킬기, 알케닐기, 시클로알킬기 또는 아릴기를 나타내며, 단, 치환기 R1, R2 및 R3 중 적어도 1개는 수소 원자이고, n은 해당 실라잔형 중합체가 100∼50,000의 수 평균 분자량을 갖기 위해 필요한 반복 단위의 수이다. 또, 식(1)과 식(2)의 기호는 서로 독립하고 있다.) (In formula (1), R <1> , R <2> may mutually be same or different, and respectively represents a hydrogen atom or shows a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group, or aryl group, n is 10-1000 In formula (2), R 1 , R 2 and R 3 may be the same as or different from each other, and each represent a hydrogen atom or a substituted or unsubstituted alkyl group, alkenyl group, cycloalkyl group, or aryl group, Provided that at least one of the substituents R 1 , R 2 and R 3 is a hydrogen atom and n is the number of repeating units necessary for the silazane-type polymer to have a number average molecular weight of 100 to 50,000. The symbols in and (2) are independent of each other.)
제1항에 있어서, 180∼210 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(1)과, 210∼350 ㎚ 사이에 있는 자외선 피크에 대한 상기 실리콘 화합물의 자외선 흡수율(2)의 비가 (자외선 흡수율(1))/(자외선 흡수율(2))≥2.5인 것인 실리콘 화합물. The ratio of the ultraviolet absorption rate (1) of the silicon compound to the ultraviolet peak between 180 and 210 nm, and the ultraviolet absorption rate (2) of the silicon compound with respect to the ultraviolet peak between 210 and 350 nm. (Ultraviolet absorption rate (1)) / (UV absorption rate (2)) ≥ 2.5. 제1항에 있어서, 상기 다른 기는 벤질기, 카르보닐기, 카르복실기, 아크로일기, 디아조기, 아지드기, 신나모일기, 아크릴레이트기, 신나밀리덴기, 시아노신나밀리덴기, 푸릴펜타디엔기, p-페닐렌디아크릴레이트기로 이루어지는 군으로부터 선택된 것인 실리콘 화합물. The method of claim 1, wherein the other groups are benzyl, carbonyl, carboxyl, acroyl, diazo, azide, cinnamoyl, acrylate, cinnamildene, cyanocinnamilidene, furylpentadiene, p A silicone compound selected from the group consisting of -phenylenediacrylate group. 제1항 내지 제3항 중 어느 한 항에 기재한 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물을 포함하는 것인 자외선 흡수체.The ultraviolet absorber which contains the silicone compound with a high absorptivity of 210 nm or less compared with the unsubstituted silicone compound as described in any one of Claims 1-3. 다층 배선 장치의 제조 방법에 있어서, In the manufacturing method of a multilayer wiring apparatus, 기판 상에 다공질 절연막 전구체의 층을 형성하는 단계와, Forming a layer of a porous insulating film precursor on the substrate, 제1항 내지 제3항 중 어느 한 항에 기재한 비치환 실리콘 화합물에 비해 210 ㎚ 이하의 자외선의 흡수율이 높은 실리콘 화합물의 층을 형성하는 단계와, Forming a layer of a silicone compound having a higher absorption rate of ultraviolet light of 210 nm or less than the unsubstituted silicone compound according to any one of claims 1 to 3, 필요에 따라 해당 실리콘 화합물의 층을 선경화(pre-curing)하는 단계와, Pre-curing the layer of the silicon compound as needed; 해당 실리콘 화합물의 층 또는 선경화층을 통해 해당 다공질 절연막 전구체에 자외선을 조사하는 단계Irradiating the porous insulating film precursor with ultraviolet rays through the layer or precured layer of the silicon compound 를 포함하는 다층 배선 장치의 제조 방법. The manufacturing method of the multilayer wiring apparatus containing a. 제5항에 있어서, 상기 다공질 절연막 전구체는 도포형의 실리카 클러스터 전구체를 이용하여 형성되는 것인 다층 배선 장치의 제조 방법.The method for manufacturing a multilayer wiring apparatus according to claim 5, wherein the porous insulating film precursor is formed using a coated silica cluster precursor. 제5항에 있어서, 상기 자외선의 광원은 200 ㎚~800 ㎚의 범위의 파장을 갖는 광원인 것인 다층 배선 장치의 제조 방법. The method of manufacturing a multilayer wiring apparatus according to claim 5, wherein the light source of ultraviolet rays is a light source having a wavelength in the range of 200 nm to 800 nm. 제5항에 있어서, 상기 자외선 조사에서, 분광 방사 조도계를 사용한 경우에서의 웨이퍼 면에서의 254 ㎚의 자외선 조도는 1 mW/㎠ 이상인 것인 다층 배선 장치의 제조 방법. The method for manufacturing a multilayer wiring apparatus according to claim 5, wherein, in said ultraviolet irradiation, 254 nm ultraviolet illuminance at the wafer surface in the case of using a spectroradiometer is 1 mW / cm 2 or more. 제5항에 있어서, 상기 자외선 조사에서, 50℃∼470℃ 사이의 온도로 가열하면서 자외선을 조사하는 것인 다층 배선 장치의 제조 방법. The manufacturing method of the multilayer wiring apparatus of Claim 5 which irradiates an ultraviolet-ray, heating at the temperature between 50 degreeC-470 degreeC in the said ultraviolet irradiation. 제5항에 기재한 다층 배선 장치의 제조 방법을 이용하여 제작된 다층 배선 장치. The multilayer wiring apparatus produced using the manufacturing method of the multilayer wiring apparatus of Claim 5.
KR1020080076965A 2007-08-10 2008-08-06 Silicon compound, ultraviolet absorber, manufacturing method of multilayer wiring device and multilayer wiring device KR101053960B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007209505A JP5470687B2 (en) 2007-08-10 2007-08-10 Silicon compound, ultraviolet absorber, multilayer wiring device manufacturing method, and multilayer wiring device
JPJP-P-2007-00209505 2007-08-10

Publications (2)

Publication Number Publication Date
KR20090016400A true KR20090016400A (en) 2009-02-13
KR101053960B1 KR101053960B1 (en) 2011-08-04

Family

ID=39870592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080076965A KR101053960B1 (en) 2007-08-10 2008-08-06 Silicon compound, ultraviolet absorber, manufacturing method of multilayer wiring device and multilayer wiring device

Country Status (5)

Country Link
US (1) US8207059B2 (en)
EP (1) EP2028215B1 (en)
JP (1) JP5470687B2 (en)
KR (1) KR101053960B1 (en)
CN (1) CN101649053B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031228A (en) * 2009-07-17 2012-03-30 미쓰이 가가쿠 가부시키가이샤 Laminate and process for production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805857B (en) * 2012-08-27 2014-07-02 北京紫萌同达科技有限公司 Preparation method of compound amino acid (15) dipeptide (2) injecta
CN105045451B (en) * 2015-08-14 2019-03-26 昆山国显光电有限公司 Touch-control display panel and its manufacturing method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761458A (en) * 1987-08-17 1988-08-02 Dow Corning Corporation Preceramic polycarbosilane derivatives
US4824529A (en) * 1987-11-27 1989-04-25 Allied-Signal Inc. Lipid membrane-based device
DE3841348A1 (en) * 1988-12-08 1990-06-13 Kali Chemie Ag METHOD FOR PRODUCING POLYCARBOSILANES AND NEW POLYCARBOSILANS
DE3917838A1 (en) * 1989-06-01 1990-12-06 Kali Chemie Ag HALOGENED POLYCARBOSILANES AND METHOD FOR THE PRODUCTION THEREOF
DE4214045A1 (en) * 1992-04-29 1993-11-04 Solvay Deutschland Poly:carbo:silane for prepn. of fibres
DE4434495A1 (en) * 1993-09-27 1995-03-30 Shiseido Co Ltd Method and device for measuring the efficiency of ultraviolet protection
JPH11105186A (en) * 1997-09-30 1999-04-20 Tonen Corp Low dielectric constant siliceous membrane
US6225238B1 (en) * 1999-06-07 2001-05-01 Allied Signal Inc Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
US6824879B2 (en) * 1999-06-10 2004-11-30 Honeywell International Inc. Spin-on-glass anti-reflective coatings for photolithography
JP2001044474A (en) * 1999-08-04 2001-02-16 Tdk Corp Solar cell module
JP2001093824A (en) * 1999-09-27 2001-04-06 Shin Etsu Chem Co Ltd Composition for resist base layer and method for formation of pattern
JP2002170883A (en) * 2000-12-01 2002-06-14 Nec Corp Method for fabricating wiring structure for semiconductor device
JP3886779B2 (en) * 2001-11-02 2007-02-28 富士通株式会社 Insulating film forming material and insulating film forming method
JP3951124B2 (en) * 2002-12-06 2007-08-01 Jsr株式会社 Insulation film
TW200505966A (en) * 2003-04-02 2005-02-16 Dow Global Technologies Inc Organosilicate resin formulation for use in microelectronic devices
WO2006019157A1 (en) * 2004-08-20 2006-02-23 National Institute Of Advanced Industrial Science And Technology Semiconductor element and process for producing the same
US20060128166A1 (en) * 2004-12-09 2006-06-15 Fujitsu Limited Semiconductor device fabrication method
CN1787186A (en) * 2004-12-09 2006-06-14 富士通株式会社 Semiconductor device fabrication method
US7354852B2 (en) * 2004-12-09 2008-04-08 Asm Japan K.K. Method of forming interconnection in semiconductor device
US20070093587A1 (en) * 2005-10-25 2007-04-26 Starfire Systems Silicon carbide precursors and uses thereof
JP5007511B2 (en) 2006-02-14 2012-08-22 富士通株式会社 Exposure light shielding film forming material, multilayer wiring, manufacturing method thereof, and semiconductor device
JP2007273494A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Insulation film forming composition and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031228A (en) * 2009-07-17 2012-03-30 미쓰이 가가쿠 가부시키가이샤 Laminate and process for production thereof

Also Published As

Publication number Publication date
EP2028215A1 (en) 2009-02-25
CN101649053A (en) 2010-02-17
US8207059B2 (en) 2012-06-26
JP5470687B2 (en) 2014-04-16
CN101649053B (en) 2013-07-10
US20090038833A1 (en) 2009-02-12
KR101053960B1 (en) 2011-08-04
JP2009044057A (en) 2009-02-26
EP2028215B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
KR100875692B1 (en) Method of manufacturing insulating film, multilayer wiring apparatus and multilayer wiring apparatus
JP4667165B2 (en) Manufacturing method of semiconductor device
US7732927B2 (en) Semiconductor device having a interlayer insulation film with low dielectric constant and high mechanical strength
KR100785727B1 (en) Composition for forming insulating film and method for fabricating semiconductor device
JP5007511B2 (en) Exposure light shielding film forming material, multilayer wiring, manufacturing method thereof, and semiconductor device
KR101053960B1 (en) Silicon compound, ultraviolet absorber, manufacturing method of multilayer wiring device and multilayer wiring device
JP2010153824A (en) Method of manufacturing porous insulating film, method of manufacturing semiconductor device, and semiconductor device
JP5218412B2 (en) Method for producing silicon-containing coating, silicon-containing coating and semiconductor device
JP2000273176A (en) Insulation film formation method and semiconductor device
JP4408816B2 (en) Manufacturing method of semiconductor device
KR101443999B1 (en) Method for manufacturing semiconductor device
JP2004186593A (en) Low dielectric insulating film, its manufacturing method, and semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110321

Effective date: 20110621

S901 Examination by remand of revocation
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 8