KR20090016070A - Mos transistor using piezoelectric film and it's producing method - Google Patents

Mos transistor using piezoelectric film and it's producing method Download PDF

Info

Publication number
KR20090016070A
KR20090016070A KR1020070080438A KR20070080438A KR20090016070A KR 20090016070 A KR20090016070 A KR 20090016070A KR 1020070080438 A KR1020070080438 A KR 1020070080438A KR 20070080438 A KR20070080438 A KR 20070080438A KR 20090016070 A KR20090016070 A KR 20090016070A
Authority
KR
South Korea
Prior art keywords
thin film
piezoelectric thin
gate
semiconductor substrate
spacer
Prior art date
Application number
KR1020070080438A
Other languages
Korean (ko)
Other versions
KR100906066B1 (en
Inventor
김양환
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020070080438A priority Critical patent/KR100906066B1/en
Publication of KR20090016070A publication Critical patent/KR20090016070A/en
Application granted granted Critical
Publication of KR100906066B1 publication Critical patent/KR100906066B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A MOS transistor using a piezoelectric film and a manufacturing method thereof are provided to improve performance of the transistor by applying the stress to a silicon surface of a lower part of a gate with a channel of a transistor. A MOS transistor using a piezoelectric thin film(20) includes a gate(15) formed on a semiconductor substrate(10) and a spacer(22) of the side of a source/drain(24) and a gate. An LDD(Lightly Doped Drain) region is formed in both sides of the gate by implanting the LDD ion to the front side of the semiconductor substrate. The piezoelectric thin film is deposited on the front surface of the semiconductor substrate where the LDD region is formed. The piezoelectric thin film is formed between the spacer, the gate and the semiconductor substrate. The piezoelectric thin film between the semiconductor substrate and the spacer are formed in both sides of the channel region of the lower part of the gate.

Description

압전박막을 사용한 MOS 트랜지스터 및 이의 제조방법{MOS transistor using piezoelectric film and it's producing method}MOS transistor using piezoelectric thin film and its manufacturing method {MOS transistor using piezoelectric film and it's producing method}

본 발명은 MOS 트랜지스터 및 이의 제조방법에 관한 것으로서, 상세하게는 압전박막의 특성을 이용하여 트랜지스터의 성능을 향상시킨 압전박막을 사용한 MOS 트랜지스터 및 이의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS transistor and a method of manufacturing the same, and more particularly, to a MOS transistor using a piezoelectric thin film and improving the performance of the transistor using the characteristics of the piezoelectric thin film.

최근에 전자장비가 소형화, 경량화, 고속화되어감에 따라서 반도체 소자도 고집적화되어 가고, 이러한 추세를 반영하기 위해서는 MOS 트랜지스터의 성능향상을 이루려는 다양한 시도가 이루어지고 있다. Recently, as electronic devices become smaller, lighter, and faster, semiconductor devices are becoming more integrated, and various attempts have been made to improve the performance of MOS transistors in order to reflect these trends.

일반적으로 MOS(Metal oxide semiconductor) 트랜지스터에서 채널이 형성되는 게이트 하부의 실리콘 표면에 스트레스를 가함으로써 트랜지스터의 성능을 향상시킬 수 있는 것으로 알려져 있다. NMOS에서는 신장 스트레스(tensile stress)를, PMOS에서는 압축 스트레스(compressive stress)를 줌으로써 각 트랜지스터의 성능을 향상시킬 수 있다.In general, it is known that the performance of a transistor can be improved by applying stress to a silicon surface under a gate where a channel is formed in a metal oxide semiconductor (MOS) transistor. The performance of each transistor can be improved by applying tensile stress in NMOS and compressive stress in PMOS.

본 발명은 MOS 트랜지스터의 성능을 향상시키기 위하여 트랜지스터의 채널이 형성되는 게이트 하부의 실리콘 표면에 스트레스를 가할 수 있는 수단으로서 압전박막을 이용하며, 이를 통하여 MOS 트랜지스터의 성능을 향상시킬 수 있는 압전박막을 이용한 MOS 트랜지스터 및 이의 제조방법을 제공함에 그 목적이 있다. The present invention uses a piezoelectric thin film as a means for stressing the silicon surface under the gate where the channel of the transistor is formed in order to improve the performance of the MOS transistor, through which a piezoelectric thin film which can improve the performance of the MOS transistor. It is an object of the present invention to provide a MOS transistor and a method of manufacturing the same.

본 발명에 의한 압전박막을 사용한 MOS 트랜지스터는 반도체 기판위에 형성된 게이트, 소스/드레인과 상기 게이트의 측면의 스페이서를 포함하고 있는 MOS 트랜지스터에 있어서, 상기 스페이서와 상기 게이트 및 상기 반도체 기판사이에 압전박막이 형성되어 있으며, 상기 스페이서와 상기 반도체 기판사이의 압전박막이 상기 게이트 하부의 채널영역의 양 옆에 형성되어 있는 것을 특징으로 한다.A MOS transistor using a piezoelectric thin film according to the present invention is a MOS transistor including a gate, a source / drain, and a spacer formed on a semiconductor substrate, and a spacer on the side of the gate, wherein a piezoelectric thin film is formed between the spacer, the gate, and the semiconductor substrate. And a piezoelectric thin film between the spacer and the semiconductor substrate is formed on both sides of the channel region under the gate.

본 발명에 의한 압전박막을 사용한 MOS 트랜지스터 제조방법은 반도체 기판위에 산화막과 폴리실리콘을 증착시키는 증착단계; 사진식각공정으로 게이트를 형성하되, 상기 식각과정에서 반도체 기판의 일부까지 식각하는 사진/식각단계; LDD 영역 형성단계; 상기 반도체 기판의 상부에 압전박막을 증착시키는 압전박막 증착단계; 상기 게이트의 측면에 스페이서를 형성시키는 스페이서 형성단계; 압전박막을 식각하여 상기 스페이서와 상기 게이트 및 상기 반도체 기판사이에 압전박막만 남게 되는 압전박막 식각 단계; 이온 주입을 통하여 소스/드레인을 형성하는 소스/드레인 형성단계를 포함한다.A method of manufacturing a MOS transistor using a piezoelectric thin film according to the present invention includes a deposition step of depositing an oxide film and polysilicon on a semiconductor substrate; Forming a gate by a photolithography process, wherein the photolithography process is performed to etch a part of the semiconductor substrate in the etching process; LDD region formation step; A piezoelectric thin film deposition step of depositing a piezoelectric thin film on the semiconductor substrate; A spacer forming step of forming a spacer on a side of the gate; Etching the piezoelectric thin film so that only the piezoelectric thin film remains between the spacer, the gate and the semiconductor substrate; A source / drain formation step of forming a source / drain through ion implantation is included.

본 발명의 다른 바람직한 특징에 의하면, 상기 사진/식각단계에서의 반도체 기판의 식각은 상기 압전박막식각단계를 거친 후의 상기 스페이서와 상기 반도체 기판사이의 압전박막 층이 상기 게이트 하부의 채널 영역의 양 옆에 형성될 수 있을 정도까지 실시한다.According to another preferred aspect of the invention, the etching of the semiconductor substrate in the photo / etching step is a piezoelectric thin film layer between the spacer and the semiconductor substrate after the piezoelectric thin film etching step is formed on both sides of the channel region below the gate. To the extent that it can be formed.

본 발명은 일반적인 트랜지스터 구조에 전기장에 따라 변형이 발생하는 압전막을 적목시킴으로써 각 NMOS와 PMOS에 스트레스를 인가하여 트랜지스터의 성능을 향상시킬 수 있는 효과가 있다.The present invention has an effect of improving the performance of a transistor by applying stress to each of the NMOS and PMOS by applying a piezoelectric film in which deformation occurs according to an electric field in a general transistor structure.

도 1a 내지 도 1g는 본 발명에 의한 MOS 트랜지스터 제작방법을 도시한 도면이다.1A to 1G illustrate a method of fabricating a MOS transistor according to the present invention.

이하 예시도면에 의거하여 본 발명의 일실시예에 대한 구성 및 작용을 상세히 설명한다. 다만, 아래의 실시예는 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 충분히 이해할 수 있도록 제공되는 것이지, 본 발명의 범위가 다음에 기술되는 실시예에 의해 한정되는 것은 아니다.Hereinafter, the configuration and operation of an embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are provided to enable those skilled in the art to fully understand the present invention, but the scope of the present invention is not limited by the embodiments described below.

도 1a를 참조하면, 증착단계에서는 반도체 기판(10)에 산화막(12) 및 폴리실리 콘(14)을 순차적으로 증착시킨다. 즉, 게이트 절연막으로 사용되는 산화막(12)을 형성한 후 게이트로 사용될 폴리실리콘(14)을 증착시키는 것이다. Referring to FIG. 1A, in the deposition step, the oxide film 12 and the polysilicon 14 are sequentially deposited on the semiconductor substrate 10. That is, after forming the oxide film 12 to be used as the gate insulating film, the polysilicon 14 to be used as the gate is deposited.

다음으로 사진/식각단계를 진행한다. 즉, 사진/식각 공정을 진행하여 게이트(15)을 형성한다. 여기서는 포토레지스트를 도포한 후에 게이트가 형성될 부위에 감광막을 패터닝한 후, 식각공정을 거쳐서 게이트(15)을 형성한다. 다만, 상기 식각과정은 과도하게 진행하여(over etch) 반도체 기판(10)의 일부를 식각하여 도 1b와 같은 형상이 형성되도록 한다. 이러한 반도체 기판(10)의 식각은 게이트의 채널이 형성될 부분의 양 옆에 아래에서 기술할 압전박막이 증착될 수 있을 정도의 깊이까지 실시한다. 상기 오버에치(over etch)는 종말점 검출 이후에 실리콘 기판의 식각율을 고려하여 일정시간동안 과도하게 식각하여 실리콘 기판을 원하는 만큼의 깊이까지 식각하는 방식으로 실시된다.Next, proceed to the photo / etch step. That is, the gate 15 is formed by performing a photo / etch process. In this case, after the photoresist is applied, the photoresist is patterned at the site where the gate is to be formed, and then the gate 15 is formed through an etching process. However, the etching process is excessively over (etched) so that a portion of the semiconductor substrate 10 is etched to form a shape as shown in FIG. 1B. The etching of the semiconductor substrate 10 is performed to a depth such that a piezoelectric thin film to be described below can be deposited on both sides of the portion where the channel of the gate is to be formed. The overetch is performed by etching excessively for a predetermined time in consideration of the etching rate of the silicon substrate after end point detection to etch the silicon substrate to a desired depth.

LDD 영역 형성단계를 진행한다. 도 1c를 참조하면, 반도체 기판상의 게이트(15)을 마스크로 이용하여서 반도체 기판의 전면에 LDD(lightly doped drain) 이온을 주입하여 게이트(15)의 양 측면에 LDD 영역(16)을 형성한다.The LDD region formation step is performed. Referring to FIG. 1C, LDD (lightly doped drain) ions are implanted into the entire surface of the semiconductor substrate using the gate 15 on the semiconductor substrate as a mask to form LDD regions 16 on both sides of the gate 15.

다음으로 압전박막 형성단계를 거친다. 이는 도 1d를 참조하면, 상기 LDD 영역이 형성된 반도체 기판상의 전면에 걸쳐서 압전박막(20)을 증착시킨다. 압전 박막은 사용되는 용도에 따라 다양하게 있으며 그 종류에 따라 증착방법이 각각 다르므로, 사용되는 압전박막의 종류에 따라서 공지의 기술을 이용하여 증착시킨다.Next, the piezoelectric thin film is formed. Referring to FIG. 1D, the piezoelectric thin film 20 is deposited over the entire surface of the semiconductor substrate on which the LDD region is formed. Since the piezoelectric thin film is varied according to the intended use and the deposition method is different depending on the type, the piezoelectric thin film is deposited using a known technique according to the type of piezoelectric thin film used.

압전박막은 전기적인 에너지에 의해 변형이 일어나는 재료로서 일반적으로 다음과 같은 특성을 갖는다. 압전박막은 방향성을 가지고 있으며, 전계에 어떠한 방향으로 노출되느냐에 따라서 특정 방향으로 두께가 증가 또는 감소하게 된다.Piezoelectric thin films are materials in which deformation occurs due to electrical energy, and generally have the following characteristics. The piezoelectric thin film has a directional property, and the thickness increases or decreases in a specific direction depending on which direction the electric field is exposed to the electric field.

도 2는 압전박막의 히스테리시스(hysteresis) 곡선이고, 도 3은 전계하에서의 압전박막의 변형을 실험하기 위한 장치의 개략도이다. 도 3에서의 장치를 이용하여 압전박막의 변형을 실험하였는데, 도 2에서 보는 바와 같이 압전박막은 '0' 전계를 기준으로 볼 때, 음의 전계하에서는 수축하며, 양의 전계하에서는 팽창하는 특성이 있다.FIG. 2 is a hysteresis curve of a piezoelectric thin film, and FIG. 3 is a schematic diagram of an apparatus for experimenting deformation of the piezoelectric thin film under an electric field. The deformation of the piezoelectric thin film was tested using the apparatus of FIG. 3. As shown in FIG. 2, the piezoelectric thin film contracts under a negative electric field and expands under a positive electric field when viewed based on a '0' electric field. have.

도 4는 본 발명에 의한 MOS의 동작을 보여주는 개략적인 단면도이다. 도 4에서 보는 바와 같이, 본 발명에 의한 MOS 트랜지스터는 압전박막의 이러한 특성을 이용하여 NMOS에서 게이트에 동작 전압(+전계)이 인가 된 경우 압전박막이 두께 방향으로 수축하여 채널 형성 부위에 신장 스트레스를 주도록 하고(도 4(a)), PMOS에서는 반대로 압축 스트레스를 주어(도 4(b)) MOS 트랜지스터의 성능이 향상될 수 있게 된다. 또한 게이트의 가장자리 부분에서 가장 강한 전계가 형성되므로 충분한 스트레스 유도가 가능하다4 is a schematic cross-sectional view showing the operation of the MOS according to the present invention. As shown in FIG. 4, in the MOS transistor according to the present invention, when the operating voltage (+ electric field) is applied to the gate in the NMOS, the piezoelectric thin film contracts in the thickness direction to extend the stress at the channel formation site. 4 (a) and conversely, compressive stress is given in the PMOS (FIG. 4 (b)) to improve the performance of the MOS transistor. In addition, the strongest electric field is formed at the edge of the gate, allowing sufficient stress induction.

도 1e를 참조하면, 다음으로 스페이서 형성단계를 진행한다. 즉, 게이트(15)의 양 측면에 스페이서(22)를 형성한다. 이를 위하여 반도체 기판의 전면에 걸쳐서 산화막을 CVD 방법으로 증착시킨 후에, 건식 플라스마 식각에 의해 스페이서(22)를 제외한 산화막을 제거하여 게이트(15)의 측면에 스페이서(22)를 형성한다.Referring to FIG. 1E, a spacer forming step is next performed. That is, spacers 22 are formed on both side surfaces of the gate 15. To this end, after the oxide film is deposited over the entire surface of the semiconductor substrate by the CVD method, the oxide film except for the spacer 22 is removed by dry plasma etching to form the spacer 22 on the side of the gate 15.

도 1f를 참조하면, 다음으로 압전박막 식각단계를 진행한는데, 이 단계에서는 압전박막(20)을 식각하여 상기 스페이서와 상기 게이트 및 상기 반도체 기판사이에 압전박막만 남도록 압전박막(20)을 제거한다. 여기서 압전박막의 제거도 증착된 압전박막의 종류에 따라 다르며, 이러한 제거 방법은 공지의 기술을 이용하여 실시한다.Referring to FIG. 1F, a piezoelectric thin film etching step is performed next. In this step, the piezoelectric thin film 20 is etched to remove the piezoelectric thin film 20 so that only the piezoelectric thin film remains between the spacer, the gate and the semiconductor substrate. do. Here, the removal of the piezoelectric thin film also depends on the type of the deposited piezoelectric thin film, and this removing method is performed using a known technique.

마지막으로 소스/드레인 형성단계를 진행한다. 도 1g를 참조하면, 상기 게이트(15)과 스페이서(22)를 마스크로 사용하여 소스/드레인(24) 형성을 위한 이온주입공정을 진행한다. LDD 형성단계보다는 높은 에너지를 이용하여 이온을 주입한다. 이온주입이 끝나면 어닐링(annealing)을 진행하여 MOS 트랜지스터를 완성한다.Finally, the source / drain formation step is performed. Referring to FIG. 1G, an ion implantation process for forming the source / drain 24 is performed using the gate 15 and the spacer 22 as a mask. The ion is implanted using higher energy than LDD formation step. After ion implantation, annealing is performed to complete the MOS transistor.

이러한 과정을 거쳐서 완성된 MOS 트랜지스터는 도 1g에서 보는 바와같이, 반도체 기판위에 형성된 게이트, 소스/드레인과 상기 게이트의 측면의 스페이서를 포함하고 있는 MOS 트랜지스터에 있어서, 상기 스페이서와 상기 게이트 및 상기 반도체 기판사이에 압전박막이 형성되어 있으며, 상기 스페이서와 상기 반도체 기판사이의 압전박막이 상기 게이트 하부의 채널영역의 양 옆에 증착되어 있는 구조이다.The MOS transistor completed through such a process includes a gate, a source / drain, and a spacer formed on the semiconductor substrate, as shown in FIG. 1G, and the spacer, the gate, and the semiconductor substrate. A piezoelectric thin film is formed therebetween, and a piezoelectric thin film between the spacer and the semiconductor substrate is deposited on both sides of the channel region under the gate.

결국 본 발명은 폴리실리콘의 식각시에 과도하게 식각을 진행하여서 게이트의 채널이 형성될 부분의 양 옆에 압전박막이 증착될 수 있도록 하였다는 점과 스페이서의 버퍼로서 압전박막을 사용한 것을 특징으로 한다.As a result, the present invention is characterized in that the piezoelectric thin film can be deposited on both sides of the portion where the channel of the gate is formed by excessively etching the polysilicon and the piezoelectric thin film is used as a buffer of the spacer. .

도 1a 내지 도 1h는 본 발명에 의한 MOS 트랜지스터 제작방법을 도시한 도면,1A to 1H illustrate a method of fabricating a MOS transistor according to the present invention;

도 2는 압전박막의 히스테리시스(hysteresis) 곡선, 2 is a hysteresis curve of a piezoelectric thin film,

도 3은 전계하에서의 압전박막의 변형을 실험하기 위한 장치의 개략도'3 is a schematic view of an apparatus for testing deformation of a piezoelectric thin film under an electric field '

도 4(a)와 (b)는 본 발명에 의한 MOS의 동작을 보여주는 개략적인 단면도이다.4 (a) and 4 (b) are schematic cross-sectional views showing the operation of the MOS according to the present invention.

<도면의 주요부분에 대한 주요 부호의 설명><Description of the main symbols for the main parts of the drawings>

10:반도체 기판 12:산화막10: semiconductor substrate 12: oxide film

14:폴리실리콘 15:게이트14: polysilicon 15: gate

16:LDD 영역 20:압전박막16: LDD region 20: Piezoelectric thin film

22:스페이서 24:소스/드레인22: Spacer 24: Source / Drain

Claims (3)

반도체 기판위에 형성된 게이트, 소스/드레인과 상기 게이트의 측면의 스페이서를 포함하고 있는 MOS 트랜지스터에 있어서, 상기 스페이서와 상기 게이트 및 상기 반도체 기판사이에 압전박막이 형성되어 있으며, 상기 스페이서와 상기 반도체 기판사이의 압전박막이 상기 게이트 하부의 채널영역의 양 옆에 형성되어 있는 것을 특징으로 하는 압전박막을 사용한 MOS 트랜지스터.In a MOS transistor including a gate, a source / drain, and a spacer formed on a semiconductor substrate, a piezoelectric thin film is formed between the spacer, the gate, and the semiconductor substrate, and between the spacer and the semiconductor substrate. A piezoelectric thin film is formed on both sides of the channel region under the gate, wherein the MOS transistor using a piezoelectric thin film. 반도체 기판위에 산화막과 폴리실리콘을 증착시키는 증착단계;Depositing an oxide film and polysilicon on a semiconductor substrate; 사진식각공정으로 게이트를 형성하되, 상기 식각과정에서 반도체 기판의 일부까지 식각하는 사진/식각단계; Forming a gate by a photolithography process, wherein the photolithography process is performed to etch a part of the semiconductor substrate in the etching process; LDD 영역 형성단계;LDD region formation step; 상기 반도체 기판의 상부에 압전박막을 증착시키는 압전박막 증착단계;A piezoelectric thin film deposition step of depositing a piezoelectric thin film on the semiconductor substrate; 상기 게이트의 측면에 스페이서를 형성시키는 스페이서 형성단계;A spacer forming step of forming a spacer on a side of the gate; 압전박막을 식각하여 상기 스페이서와 상기 게이트 및 상기 반도체 기판사이에 압전박막만 남게 되는 압전박막 식각 단계;Etching the piezoelectric thin film so that only the piezoelectric thin film remains between the spacer, the gate and the semiconductor substrate; 이온 주입을 통하여 소스/드레인을 형성하는 소스/드레인 형성단계를 포함하는 것을 특징으로 하는 압전박막을 사용한 MOS 트랜지스터 제조방법.A method of manufacturing a MOS transistor using a piezoelectric thin film, the method comprising: forming a source / drain through ion implantation. 제2항에 있어서, 상기 사진/식각단계에서의 반도체 기판의 식각은 상기 압전박막식각단계를 거친 후의 상기 스페이서와 상기 반도체 기판사이의 압전박막 층이 상기 게이트 하부의 채널 영역의 양 옆에 형성될 수 있을 정도까지 실시하는 것을 특징으로 하는 압전박막을 사용한 MOS 트랜지스터 제조방법.The semiconductor substrate of claim 2, wherein the etching of the semiconductor substrate in the photo / etching step includes forming a piezoelectric thin film layer between the spacer and the semiconductor substrate after the piezoelectric thin film etching step is formed on both sides of the channel region under the gate. A method of manufacturing a MOS transistor using a piezoelectric thin film, which is carried out to the extent possible.
KR1020070080438A 2007-08-10 2007-08-10 MOS transistor using piezoelectric film and it's producing method KR100906066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070080438A KR100906066B1 (en) 2007-08-10 2007-08-10 MOS transistor using piezoelectric film and it's producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070080438A KR100906066B1 (en) 2007-08-10 2007-08-10 MOS transistor using piezoelectric film and it's producing method

Publications (2)

Publication Number Publication Date
KR20090016070A true KR20090016070A (en) 2009-02-13
KR100906066B1 KR100906066B1 (en) 2009-07-03

Family

ID=40685361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070080438A KR100906066B1 (en) 2007-08-10 2007-08-10 MOS transistor using piezoelectric film and it's producing method

Country Status (1)

Country Link
KR (1) KR100906066B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920844A (en) * 2019-03-26 2019-06-21 电子科技大学 A kind of insulated-gate type piezoelectricity field effect transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851549B1 (en) * 2014-03-14 2018-04-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Transistor using piezoresistor as channel, and electronic circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714065B2 (en) 1990-03-19 1995-02-15 株式会社東芝 MOS semiconductor device and method of manufacturing the same
KR100502407B1 (en) * 2002-04-11 2005-07-19 삼성전자주식회사 Gate Structure Having High-k Dielectric And Highly Conductive Electrode And Method Of Forming The Same
KR20040013265A (en) * 2002-08-05 2004-02-14 주식회사 하이닉스반도체 Method for manufacturing memory device with planar MOS capacitor
US20050224897A1 (en) * 2004-03-26 2005-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. High-K gate dielectric stack with buffer layer to improve threshold voltage characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920844A (en) * 2019-03-26 2019-06-21 电子科技大学 A kind of insulated-gate type piezoelectricity field effect transistor

Also Published As

Publication number Publication date
KR100906066B1 (en) 2009-07-03

Similar Documents

Publication Publication Date Title
JP5009611B2 (en) Method for forming a structure in a FINFET device
JP5795735B2 (en) Transistor with buried Si / Ge material with reduced offset to channel region
JP4802063B2 (en) Semiconductor device having adjacent stress liner film and method for manufacturing the same
JP4384988B2 (en) Strained FinFET CMOS device structure
US7678635B2 (en) Method of producing a transistor
KR20090046907A (en) Method for forming a strained transistor by stress memorization based on a stressed implantation mask
JP2008010871A (en) Mosfets comprising source/drain recesses with slanted sidewall surfaces, and methods for fabricating the same
TWI529815B (en) Contact geometry having a gate silicon length decoupled from a transistor length
US20130109145A1 (en) Method of manufacturing semiconductor device
US20110254092A1 (en) Etsoi cmos architecture with dual backside stressors
JP2009065020A (en) Semiconductor device and its manufacturing method
US7923759B2 (en) Metal gate semiconductor device and manufacturing method
US10177246B2 (en) Semiconductor structure and fabrication method thereof
WO2012055142A1 (en) Transistor and manufacturing method thereof
TW574746B (en) Method for manufacturing MOSFET with recessed channel
KR100906066B1 (en) MOS transistor using piezoelectric film and it&#39;s producing method
US7510923B2 (en) Slim spacer implementation to improve drive current
KR20070101058A (en) Method of forming a fin field effect transistor
US20090065806A1 (en) Mos transistor and fabrication method thereof
US20080102572A1 (en) Manufacturing method of semiconductor device
TW201431007A (en) Semiconductor device structure and methods for forming a CMOS integrated circuit structure
KR20060100779A (en) Method for fabricating semiconductor device having multiple ldd regions
KR20100078341A (en) Method for fabricating a semiconductor
CN102044437B (en) Method for manufacturing semiconductor device
KR100577307B1 (en) Method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120521

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee